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Abstract— In this paper, we study Local Information Privacy
(LIP). As a context-aware privacy notion, LIP relaxes the
de facto standard privacy notion of local differential pri-
vacy (LDP) by incorporating prior knowledge and therefore
achieving better utility. We study the relationships between
LIP and some of the representative privacy notions including
LDP, mutual information and maximal leakage. We show that
LIP provides strong instance-wise privacy protection compared
to other context-aware privacy notions. Moreover, we present
some useful properties of LIP, including post-processing, linkage,
composability, transferability and robustness to imperfect prior
knowledge. Then we study a general utility-privacy tradeoff
framework, under which we derive LIP based privacy-preserving
mechanisms for both discrete and continuous-valued data. Three
types of perturbation mechanisms are studied in this paper:
1) randomized response (RR), 2) random sampling (RS) and
3) additive noise (AN) (e.g., Gaussian mechanism). Our privacy
mechanisms incorporate the prior knowledge into the perturba-
tion parameters so as to enhance utility. Finally, we present a
comprehensive set of experiments on real datasets to illustrate the
advantage of context-awareness and compare the utility-privacy
tradeoffs provided by different mechanisms.

Index Terms— Privacy-preserving data aggregation, local
information privacy, information-theoretic privacy.

I. INTRODUCTION

PERSONALIZED data collection is becoming pervasive,
and data is the key enabler that drives applications

spanning all sectors of our society, including e-commerce,
social networking, and healthcare. On one hand, collecting
data at a fine granularity can provide higher utility (such
as in recommendation systems, location-based services and
precision medicine). On the other hand, without rigorous
privacy-preserving mechanisms, there is a risk of potential
privacy breaches which often come with a psychological and
socio-economic impact. Such privacy breaches are becom-
ing increasingly commonplace, and could be intentional or
unintentional. Massive data breaches (2013 at Yahoo [1],
2015 at Equifax [2], 2018 at Facebook [3], 2019 at Capital
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One [4]) are just a few examples in the former category.
Besides malicious activities, seemingly benign data collected
directly from individuals also causes potential privacy leakage
by inference [5], [6]. For example, daily activity information
collected from wearable health trackers could be used to
infer sensitive disease information [7], [8]; mobile location
traces collected by large companies can leak people’s social
relationships [9], [10].
Within the data privacy community, Differential Privacy

(DP) [11]–[13] is the de facto standard notion for providing
rigorous privacy guarantees. DP guarantees that each user’s
presence in the dataset has minimal statistical influence (mea-
sured by the privacy budget ε) on the output of queries.
While DP has been applied in several applications such as
surveying demographics and commuting patterns [14], and
the 2020 U.S. Census [15], it assumes a centralized trusted
server to collect data and answer queries. In contrast, local
differential privacy (LDP), which is a local variant of DP,
has gained significant recent attention. In the local setting the
server/aggregator who collects data is considered as untrusted
by the users, who perturb their own data before sending them
to the server. LDP based mechanisms have been successfully
adopted by Google’s RAPPOR [16] for collecting web brows-
ing behavior, and Apple’s MacOS to identify popular emojis
and media preferences in Safari [17], [18]. On one hand,
DP/LDP based notions provide strong privacy guarantees
against adversaries that may possess arbitrary side information.
On the other hand, this leads to significant utility degradation,
which is more pronounced in the local setting [19], [20], where
more noise is needed to achieve the same level of privacy as
in a centralized setting. That is, for a summation/count query,
with additive noise privacy-preserving mechanism, a lower
bound of noise magnitude of �(

√
N) is required for LDP in

order to defend against potential coalitions of compromised
users, where N is the number of users. In contrast, only
O(1) is required for central DP [21]. One of the reasons
is that DP/LDP notions do not take the particular contextual
knowledge of the data into account.
Contextual information often exists in various applications,

which may include prior knowledge about the data dis-
tribution, correlations within the data, user privacy expec-
tations/different input sensitivity levels, etc. For instance,
in location-based services, people are more likely to be present
at some locations than others (e.g., in Paris, people are more
likely closer to Eiffel tower than a coffee shop nearby [22]); in
mobile-health data, background knowledge such as likelihood
of a certain disease are available through previously published
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medical studies [23]; privacy-sensitive attributes (e.g., sexual
orientation, religious or political affiliations) may be different
than but correlated with the raw data (such as the web brows-
ing history of a user). While the privacy community has been
trying to avoid modeling the background knowledge explicitly,
there is a recent trend among the privacy research community
to leverage such contextual knowledge or partial contex-
tual knowledge and incorporate them in privacy notions to
ultimately provide better utility-privacy tradeoffs. Intuitively,
the main advantage is the amount of noise/perturbation can
be adjusted depending on the different input instances/prior
distributions.
Existing Context-aware privacy notions can be broadly

classified into two categories: 1) those providing average case
guarantees (e.g., mutual information [24]–[26], maximal leak-
age [27]), or 2) those providing worst-case (or per-instance)
guarantees (e.g., information privacy [28], Pufferfish [29],
Bayesian DP [30], membership privacy [31]). Notions pro-
viding average case guarantees are weaker than the latter
since they cannot bound the leakage for all the input and
output pairs, which may not be easily adopted by the users
who are privacy-sensitive. On the other hand, some of the
worst-case context-aware privacy notions (such as Pufferfish
and Bayesian DP) still follow the same structure of DP/LDP –
the maximum ratio between two likelihoods of a certain output
given different input data or secrets.
In this paper, we study local information privacy (LIP),

which guarantees that the ratio of the posterior and prior
of the input data are bounded. The IP (original cerntralized
version of posterior/prior ratio) was proposed in [28], then
the local variant called LIP was presented in our previous
work in [32], where preliminary results on binary random-
ized response mechanisms are presented. Then, in our recent
work [33], relationships between LIP and some other privacy
notions such as maximal leakage and Pufferfish were studied,
and several RR based mechanisms for LIP were proposed
for discrete-valued data aggregation applications, including
weighted sum and frequency estimation. In [34], we present
preliminary context-aware additive noise (Laplacian) mech-
anism for discrete valued data. This notion not only acts
as a natural bridge between average and worst-case privacy
notions (since mutual information is the expected log(·) of
the ratio of posterior to prior), but it can also be related to
DP/LDP. The main advantages of LIP are that, 1) it can be
readily adapted to account for a variety of scenarios with
different contextual/prior knowledge and for any given prior,
the leakage of the data in measured by LIP increases linearly
with the number of output (linear composability). 2) it leads
to simple modular mechanism designs with low complexity:
To design a mechanism satisfying LIP for a prior distribution
P is sufficient to design K sub-mechanisms, each satisfying
LIP for a prior P ′, where P is a convex combination of
P ′s. On the other hand, for any given prior distribution, LIP
needs only O(n2) constraints for all input-output combinations
in contrast to O(n3) for LDP-like notions. Building on our
previous works, the key goal of this paper is to lay down
the theoretical foundations of LIP and designing practical
context-aware privacy mechanisms in the local setting.

A. Contributions
The contributions of this paper are summarized as follows:
(1) We present and categorize some of the most repre-

sentative localized privacy notions, including local differen-
tial privacy, mutual information privacy, maximal information
leakage, differential identifiability, and study the relationship
between them and LIP. In this work we generalize ε-LIP into
(ε, δ)-Local Information Privacy, and we prove tighter bounds
on the relation between LIP and those definitions than the ones
in our previous works [33]. We show that LIP provides a strong
instance-wise privacy guarantee compared with other privacy
notions, and the structure in the definition of LIP is amenable
to the efficient design of privacy-preserving mechanisms.
(2) We present an in-depth study of useful properties of

LIP, including post-processing, composability, transferability
of mechanisms from one prior to another, and modularity of
mechanism design, which is studied for the first time in the
context-aware setting. We use these properties to understand
how prior knowledge affects information leakage in different
scenarios, such as multiple data releases and when the knowl-
edge of the prior may be imperfect.
(3) We present a utility-privacy tradeoff framework that

focuses on maximizing a general class of utility func-
tions subject to LIP privacy constraints. We also present
prior-aware perturbation mechanisms for both discrete and
continuous-valued data that satisfy LIP, including randomized
response (RR) mechanism, random sampling (RS) mechanism,
and additive noise (AN) mechanisms (Gaussian noise and
Laplacian noise). Also, we extend our previous mechanism
in [32] into continuous data, and input instance-dependent
noise distributions.
(4) We present a comprehensive set of experiments con-

ducted on real-world datasets to validate our analysis and
compare the utility-privacy tradeoff of our proposed LIP based
mechanisms to those based on LDP for both discrete and
continuous-valued data. We showed that under each scenario,
LIP-based mechanisms provide enhanced utility than those
based on context-free LDP.

B. Paper Organization

The remainder of the paper is organized as follows: In
Section II, we investigate the definition of LIP along with
some other privacy definitions and then derive the relationships
among them. In Section III, we study LIP related properties
and the impact of context-awareness on privacy leakage.
In Section IV, we present different LIP based mechanisms
for both discrete and continuous-valued data, including ran-
domized response, random sampling, as well as additive noise
mechanisms. Finally, in Section V, we conduct numerical
simulations on real data to show the utility-privacy tradeoffs
provided by proposed mechanisms with comparisons to LDP
based mechanisms. The notations used throughout this paper
are listed in Table I.

II. LOCAL INFORMATION PRIVACY AND RELATIONSHIPS
WITH EXISTING PRIVACY NOTIONS

The system model of the privacy-preserving data release
problem shown in Fig. 1 can be summarized as follows:
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Fig. 1. System model for context-aware local privacy-preserving data release,
users privatize data independently according to his/her prior distribution.

TABLE I

LIST OF SYMBOLS

each individual possesses data or answer to some query that
needs to be published or submitted to an untrusted curator.
It is assumed that different users privatize data locally and
independently, and we take an arbitrary user as an example
to formulate the local problem. Denote X ∈ X as the
data or query answer, where X is the support of X . In the
context-aware setting, X is regarded as a random variable with
a prior distribution of P ∈ PX , where PX denotes the set
of all possible prior distributions on X . When X is discrete,
P denotes the probability mass function (PMF), and when
X is continuous, P denotes the probability density function
(PDF). To maintain the privacy of X , before releasing it,
a privacy-preserving mechanism M perturbs the input X to
satisfy a certain privacy guarantee. Denote Y ∈ Y as the output
of M, or the perturbed version of X . Y is the support of Y ,
typically, Y = Range(M).

A. Background on Privacy Definitions

We now list some of the related privacy metrics.
Definition 1 ((ε, δ)-Local Differential Privacy): A mech-

anism M satisfies (ε, δ)-LDP for some ε ∈ R+ and
δ ∈ [0, 1], if for any two measurable sets S′

x , Sx ∈ X and
Sy ∈ Range(M):

Pr(Y ∈ Sy|X ∈ Sx ) ≤ eε Pr(Y ∈ Sy |X ∈ S ′
x ) + δ. (1)

When X and Y are both discrete valued, the definition of
(ε, 0)-LDP (referred to as ε-LDP) can be written as:

LR(y, x, x ′) = PY |X (y|x)

PY |X (y|x ′)
≤ eε,

where LR(y, x, x ′) denotes the ratio of two likelihoods.
Definition 2 (ε-Local Mutual Information Privacy

(L-MIP) [25]): A mechanism M satisfies ε-L-MIP for some
ε ∈ R+, if the mutual information between X and Y is
bounded by ε, i.e., I (X; Y ) ≤ ε.

Definition 3 (ε-Differential Identifiability (DI) [35]): A
mechanism M satisfies ε-DI for some ε ∈ R+, if ∀Sx , S′

x ∈ X
and ∀Sy ∈ Range(M) if

Pr(X ∈ Sx |Y ∈ Sy)

Pr(X ∈ S ′
x |Y ∈ Sy)

≤ eε.

Definition 4 (ε-Maximal Information Leakage (MIL) [27]):
The maximal information leakage for a mechanism M is

LMIL(X; Y ) = sup
U−X−Y−Û

ln
Pr(U = Û)

maxu∈U PU (u)
, (2)

where U is a (possibly randomized) function of X, Û denotes
a guess from the adversary. For any joint distribution PX,Y on
finite alphabets X and Y , (2) can be rewritten as

LMIL(X; Y ) = ln
∑
y∈Y

max
x∈X

PY |X (y|x)

and M satisfies ε-Maximal Information Leakage Privacy if
LMIL(X; Y ) ≤ ε.

B. Local Information Privacy

Next, we introduce the notion of local information pri-
vacy [32], which was studied in our prior work. Information
Privacy was originally proposed for the central setting in [28],
where X denotes the dataset that holds all users’ data. The
difference between the two settings lies in the meaning of X .

Definition 5 ((ε, δ)-Local Information Privacy): A mecha-
nism M satisfies (ε, δ)-LIP for some ε ∈ R+ and δ ∈ [0, 1],
if ∀Sx ∈ X , Sy ∈ Range(M):

Pr(Y ∈ Sy) ≥ e−ε Pr(Y ∈ Sy |X ∈ Sx ) − δ,

Pr(Y ∈ Sy) ≤ eε Pr(Y ∈ Sy|X ∈ Sx ) + δ. (3)

The operational meaning of LIP is, the output Y provides
limited additional information about any possible input X , and
the amount of the additional information is measured by the
privacy budget ε and failure probability δ. Note that, when ε
is small, the posterior probability of X given Y is close to the
prior of X . For discrete valued data, (3) is equivalent to:

e−ε PY |X (y|x) − δ ≤ PY (y) ≤ eε PY |X (y|x) + δ. (4)

Specifically, when δ = 0, pure ε-LIP [32] is satisfied if:

e−ε ≤ Pr(X ∈ Sx )

Pr(X ∈ Sx |Y ∈ Sy)
≤ eε. (5)

Compared with the pure (ε, 0)-LIP, the (ε, δ)-LIP allows a
certain probability of failure when there exist some subsets in
X and Y not satisfying the LIP constraints, and δ captures the
failure probability.

Corollary 1: The definition of (ε, 0)-LIP (referred to as ε-
LIP) can also be written as the ratio between two distributions:

• For discrete-valued X, ε-LIP is equivalent to: ∀x ∈ X ,
y ∈ Y:

e−ε ≤ PX (x)

PX |Y (x |y)
≤ eε. (6)

• For continuous-valued X, ε-LIP is equivalent to: ∀x ∈ X ,
y ∈ Y:

e−ε ≤ fX (x)

fX |Y (x |y)
≤ eε. (7)

In the remainder of this paper, we denote PX (x) as the prior
distribution of X for both discrete and continuous-valued data.
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Then, we define the leakage of a mechanism M under LIP
when δ = 0 as follows:
LLIP(X, Y ) � sup

x∈X ,y∈Y
ln

(
max

(
PX |Y (x |y)

PX (x)
,

PX (x)

PX |Y (x |y)

))
.

(8)

We next generalize the definition of LIP by considering
other scenarios depending on the underlying assumptions on
prior knowledge availability.

Definition 6 (Bounded Prior/Worst-Case ε-Local Informa-
tion Privacy (BP/WC-LIP)): Denote P

bp
X as a subset of PX ,

then a mechanism M satisfies ε-BP/WC-LIP for some ε ∈ R+,
if ∀P ∈ P

bp
X /PX , Y = Range(M), (6) is satisfied.

Similar to LDP, WC-LIP also provides context-free privacy
protection. On the other hand, BP-LIP provides a connection
between context-free and context-aware guarantees by initi-
ating the size of P

bp
X . If P

bp
X contains all possible priors,

BP-LIP is equivalent to WC-LIP, on the other hand, if P
bp
X

contains only one possible prior, BP-LIP is equivalent to fixed
prior LIP.

C. Comparison Between LIP and Other Local Privacy
Notions

In the following part of this Section, we derive the relation-
ships among different privacy notions and LIP.

1) LIP v.s. LDP for Discrete-Valued Data: We first compare
the relationship between LIP and LDP with discrete-valued
data for a fixed prior. From our previous work [32],
ε-LDP implies ε-LIP, and ε-LIP implies 2ε-LDP. Our goal
in this subsection is to understand if this relationship can be
tightened, and how it depends on the prior of the data. We state
our first result in the following Theorem.

Theorem 1 (Relationship Between LIP and LDP): If M
satisfies ε-LIP, it satisfies ε̃(P)-LDP, where ε̃(P) can be
calculated by solving the following optimization problem:

ε̃(P) � max
x,x ′∈X ,y∈Y

LR(y, x ′, 1)
LR(y, x, 1)

,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

LR(y, x, 1) ≥ 0, ∀x ∈ X , y ∈ Y,∑
x∈X PX (x)LR(y, x, 1)

≥ e−ε maxx∈X ,y∈Y{LR(y, x, 1)},
eε minx∈X ,y∈Y{LR(y, x, 1)}

≥
∑

x∈X PX (x)LR(y, x, 1).

(9)

Conversely, if M satisfies ε-LDP, it satisfies
ln(Pmin + eε(1− Pmin))-LIP, where Pmin = minx∈X PX (x).
In addition, based on the optimization problem in Eq. (9),

we derive a looser closed-form bound which corresponds to
the following corollary.

Proposition 1: If M satisfies ε-LIP, it satisfies
min{2ε, ln eε−1+Pmin

Pmin
}-LDP, where Pmin = minx∈X PX (x).

Detailed proofs of Theorem 1 and Proposition 1 are
presented in Appendix A of the supplementary document.
We next visualize the leakage of LDP given ε-LIP by
simulation on synthetic data with |X | = 4 under two
possible prior distributions: P1 = [0.01, 0.33, 0.33, 0.33],

P2 = [0.25, 0.25, 0.25, 0.25]. We compare the maximum
LR(y, x ′, x) derived in Theorem 1 with the loose bounds
in Proposition 1 under P1 and P2 respectively. The results
are presented in Fig. 2(a). Observe that, when a mechanism
satisfies ε-LIP, then the leakage of the mechanism under LDP
is always sandwiched between ε and 2ε under different priors.
When the prior is uniformly distributed (i.e., P2), the curve of
the theoretical bound perfectly overlaps with the maximal LR.
When the prior is more skewed (Pmin is smaller), the leakage
of LDP increases as a result. Intuitively, ε-LIP guarantees the
ratio of prior to posterior to be bounded for a fixed prior, but
the leakage of LDP examines the ratio of prior to posterior
for any arbitrary prior.
Next, we show the relationship between BP-LIP and LDP

in the following Theorem.
Theorem 2 (Relationship Between BP-LIP and LDP): If a

mechanism M satisfies ε-LDP, it satisfies

ln
{
minPbp

min + eε(1−minPbp
min)

}
-BP-LIP.

Conversely, if a mechanism M satisfies ε-BP-LIP, it satisfies

min

{
2ε, ln

eε − 1+maxPbp
min

maxPbp
min

}
-LDP,

where minPbp
min = min

x∈X ,P∈Pbp
X

PX (x) and

maxPbp
min = max

P∈Pbp
X
minx∈X PX (x).

The proof is provided in Appendix B of the supplementary
document.
Notice that min Pbp

min ≤ Pmin ≤ max Pbp
min, for any P ∈ P

bp
X .

Thus, minPbp
min + eε(1 − minPbp

min) ≤ Pmin + eε(1− Pmin),

also, min

{
2ε, ln

eε−1+maxPbp
min

maxPbp
min

}
≤ min

{
2ε, ln eε−1+Pmin

Pmin

}
.

This observation implies that the privacy guarantee provided
by ε-BP-LIP approaches that of ε-LDP as the size of the set
of P

bp
X increases. As an extreme case, we have the following

corollary.
Corollary 2: ε-WC-LIP is equivalent to ε-LDP.
The equivalence of these two definitions means that in the

worst-case setting, the LIP privacy notion (if satisfied for all
possible priors), is equivalent to LDP. By Corollary 2, BP-LIP
connects the setting of context-aware to context-free through
the notion of priors, Pbp

X .
We next present the relationship between LIP and LDP for

the approximate case in the following Corollary.
Corollary 3 (Relationship Between Approximate LIP and

Approximate LDP): If a mechanism M satisfies (ε, δ)-LDP,
then it also satisfies (ε, δ)-LIP. Conversely, if M satisfies
(ε, δ)-LIP, then it satisfies (2ε, (eε + 1)δ)-LDP.
The proof steps follow on similar lines from our previous

work [34].
2) LIP v.s. Other Privacy Notions: The following The-

orem states the relationships between LIP and other
context-aware privacy notions.
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Fig. 2. Comparison between theoretical bounds and exact leakage under two different priors: P1 = [0.01, 0.33, 0.33, 0.33], P2 = [0.25, 0.25, 0.25, 0.25].

Fig. 3. Relationships between LIP and other privacy notions.

Theorem 3: Relationships between LIP and other
context-aware privacy notions.
1) LIP v.s. DI: ε-LIP implies (2ε+ D∞(P))-DI, conversely,

ε-DI implies ln[Pmin + (1− Pmin)eε+D∞(P)]-LIP, where
D∞(P) = maxx,x ′∈X ln PX (x)

PX (x ′) .
2) LIP v.s MIP: ε-LIP implies ε-MIP, conversely, ε-MIP

does not necessarily imply ε′-LIP for any ε′ ≥ 0.
3) LIP v.s. MIL: ε-LIP implies ε-MIL, conversely, ε-MIL

does not necessarily imply ε′-LIP for any ε′ ≥ 0.
The proof is provided in Appendix C of the supplemen-
tary document. The relationships between LIP and other
related privacy notions are summarized in Fig. 3. LDP pro-
vides the strongest context-free instance-wise privacy protec-
tion compared with context-aware privacy notions. Among
context-aware privacy notions, the relationship of ε-MIL
implying ε-MIP is studied in [27], and they both provide
relatively weak average privacy guarantee. For those notions
providing instance-wise privacy guarantee, LIP and DI assume
the exact prior distribution is available. The exact maximal
posterior ratio of Pr(X = x |Y = y)/ Pr(X = x ′|Y = y) when
LLIP ≤ ε can be calculated numerically through the following
optimization problem (subject to constraints similar to (9)):

max
x,x ′∈X ,y∈Y

LR(y, x ′, 1)PX (x ′)
LR(y, x, 1)PX (x)

. (10)

The comparison between the theoretical bound is described
in Theorem 3, and the exact maximal posterior ratio is shown
in Fig. 2. Observe that the gap between theoretical bound and
the exact leakage of DI under ε-LIP is larger than that of the
leakage of LDP given ε-LIP, because the objective function
in (10) contains a prior ratio which is amplified by taking
the maximal value in deriving the loose bound presented in
Theorem 3.
We next use the following mechanism as an example

to demonstrate that MIP and MIL provide weaker privacy
guarantees compared to LIP or LDP.

Example 1: Consider releasing a binary valued data X ∈
{0, 1} through a privacy preserving mechanism M. The mech-
anism M is described by PY |X (0|1) = PY |X (1|0) = q,
where q denotes the perturbation parameter. We derive the
leakages under different privacy notions as functions of the

prior PX (1)
�= P:

• LL D P = max ln
{

q
1−q , 1−q

q

}
,

• LL I P = max
{

PY (1)
q , PY (1)

1−q , PY (0)
q , PY (0)

1−q

}
,

• LM I L = ln (2max{1− q, q}),
• LM I P = P(1 − q) ln

(
1−q
PY (1)

)
+ Pq ln

(
q

PY (0)

)
+ (1 −

P)(1 − q) ln
(
1−q
PY (0)

)
+ (1− P)q ln

(
q

PY (1)

)
.

The marginal probability of PY (1) and PY (0) can be expressed
as functions of P and q. The leakages of LDP, LIP, MIP, and
MIL as functions of q are plotted in Fig. 4(a) and Fig. 4(b)
(for two sets of priors P = 0.5 and P = 0.2). Observe that,
the leakages under LIP and LDP for different mechanisms (i.e.,
different values of q) are always larger than that of MIP or
MIL, as a special case, when q = 0, LL I P = ∞. Obviously,
there exist some ε ≥ 0 such that, M satisfies ε-MIP or ε-MIL,
but does not satisfy ε-LIP.

III. PROPERTIES OF LIP

In this Section, we present and discuss several fundamental
properties of LIP.

A. Extreme Values of Leakage, Post-Processing, Linkage
Inequality and Modular Property

In this Section, we assume that the output of the mechanism
M is Y , and thus together with the data prior on X , it induces
a joint distribution PXY on the r.v.’s (X, Y ).
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Fig. 4. In (a) and (b): Comparison of the leakages under symmetric
perturbation mechanism among different privacy notions with two prior
distributions.

Lemma 1: For any joint distribution PX,Y :
1) LLIP(X; Y ) is symmetric, i.e., LLIP(X; Y ) =

LLIP(Y ; X).
2) LLIP(X; Y ) = 0 if and only if Y is independent of X.
3) Given the input and output data domain X and Y ,

if there exist x ∈ X and y ∈ Y such that Pr(Y = y|X =
x) = 0, then LLIP(X; Y ) = ∞.

4) (Post-processing property) The leakage of LIP cannot be
increased by any post-processing of the output Y i.e.,

LLIP(X; Z) ≤ LLIP(X; Y ),

where X → Y → Z forms a Markov chain.
5) (Linkage inequality) The local information leakage of

input data is larger than the leakage of any correlated
data, i.e.,

LLIP(X; Y ) ≥ LLIP(S; Y ),

where S → X → Y forms a Markov chain.
The proof of Lemma 1 is presented in Appendix D in the
supplementary material. The linkage inequality captures the
notion that if there were primary (e.g., measurements) and
secondary (e.g., latent variable) sensitive data, X and S,
respectively that are correlated and the release was indepen-
dently generated from only the primary sensitive data X ,
then the privacy-leakage for the secondary sensitive data S
is bounded by the privacy-leakage for the primary sensitive
data.
We next present modular property for LIP under mixture

distributions in the following Lemma with proof presented in
Appendix E of the supplementary document.

Lemma 2 (Modular Property): Given a mechanism M
satisfying (ε, δ)-LIP for each prior distribution Pi , where
i = 1, 2, . . . , K . Then M satisfies (ε, δ)-LIP for the composite
prior distribution PX (x) = ∑K

i=1 αi Pi (x) where αi ∈ (0, 1)
and

∑K
i=1 αi = 1.

In other words, if a mechanism M was designed to sat-
isfy (ε, δ)-LIP for each prior Pi (x), i = 1, · · · , K , then
the same LIP privacy guarantee is achieved for the mixture
distribution PX (x) = ∑K

i=1 αi Pi (x).

B. Composability

Next, we discuss the composability of LIP. In particular,
consider multiple (say n) queries over the same data, and we

use the mechanism independently over time. Recall that for
LDP, basic composition results say that applying a mechanism
independently n times has leakage no more than nε [11].
In contrast to LDP, where the leakage over multiple queries is
additive, the composition of LIP is more nuanced and depends
on the underlying prior. Given the input data X and an output
sequence Yn

1 = {Y1, Y2, . . . , Yn} which are generated by n
independent mechanisms, where each mechanismMk satisfies
εk-LIP. Thus, given the raw data, the output Y at each time
are independent of each other: Yi ⊥⊥ Y j |X , ∀ j �= i . Then the
leakage about X given Yn

1, LLIP(X; Yn
1) becomes:

sup
x∈X ,yn

1∈Yn
ln

(
max

(
PX (x)

PX |Yn
1
(x |yn

1)
,

PX |Yn
1
(x |yn

1)

PX (x)

))
.

For the maximum leakage of the mechanism after n inde-
pendent outputs, we have the following Theorem with detailed
proof provided in Appendix F of the supplementary document.

Theorem 4: LLIP(X; Yn
1) is upper bounded by

ln

(
Pmin+exp

(
n∑

k=1
min

{
2εk, ln

eεk −1+ Pmin
Pmin

})
(1− Pmin)

)
,

where Pmin = minx∈X PX (x).
Corollary 4: In the above setting, if each mechanism Mk

satisfies εk-BP-LIP for a bounded prior set of P
bp
X , then

LBP-LIP(X; Yn
1) is upper bounded by

ln

(
min Pbp

min + exp
(

n∑
k=1

ωk

)
(1−min Pbp

min)

)
,

where ωk = min

{
2εk , ln

eεk −1+max Pbp
min

max Pbp
min

}
,

minPbp
min = min

x∈X ,P∈Pbp
X

PX (x), and maxPbp
min =

max
P∈Pbp

X
minx∈X PX (x).

The proof for Corollary 4 follows the same steps with the
proof for Theorem 4.
Fig. 5(a) and 5(b) numerically show the leakage of LIP (BP-

LIP) as a function of the number of repeated queries under
three sets of prior distributions: P1 = [0.25, 0.25, 0.25, 0.25],
P2 = [0.1, 0.1, 0.1, 0.7] and P3 = [0.01, 0.33, 0.33, 0.33]
(for BP-LIP, we let Pbp

1 = {P1, P2}, Pbp
2 = {P1, P2} and

Pbp
3 = {P2, P3}) for ε = 2 and ε = 5. We can observe
that, under each possible prior (set) and each value of ε,
the LIP (BP-LIP) leakage increases linearly with the number
of releases. Other than the number of releases, a larger ε
allows larger information leakage. Intuitively, the increment of
leakage as a function n is related to the underlying prior. For
LIP, when Pmin is small, the prior knowledge is more skewed;
in this case, we observe a decrease in terms of the maximum
leakage. Intuitively, when Pmin is small, the adversary already
possesses significant knowledge on the data, after multiple
outputs, the additional information leaked about X is relatively
small. On the contrary, when Pmin is large, the prior is close to
a uniform distribution, we observe an increase in the maximum
leakage of X .

Sequential Composability: Next, we consider
releasing a data vector in a sequential manner: denote

Authorized licensed use limited to: The University of Arizona. Downloaded on September 01,2021 at 17:09:29 UTC from IEEE Xplore.  Restrictions apply.



3700 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 5. In (a) Composition for LIP for different priors, (b) BP-LIP for different priors sets, (c) sequential composition for LIP for correlated data.

Xn
1 = {X1, X2, . . . , Xn} as the data sequence, where the
index denotes the timestamp. Let PXn

1
(xn
1) be the joint

distribution of the sequence. Suppose at each time k,
Yk is released independently through mechanism Mk ,
i.e., PYk |Xk ,Xi (y|x, x ′) = PYk |Xk (y|x) and LL I P (Xk, Yk) ≤ εk ,
∀k = {1, 2, ..n}. We next derive an upper bound of the
leakage of the whole data sequence after time n, defined as:

LL I P (Xn
1; Yn

1)

�= sup
xn
1∈X n,yn

1∈Yn
ln

(
max

(
PXn

1
(xn
1)

PXn
1 |Yn

1
(xn
1 |yn

1)
,

PXn
1 |Yn

1
(xn
1 |yn

1)

PXn
1
(xn
1)

))
.

Corollary 5: If each mechanism Mk satisfies εk -LIP, then
the total leakage of the sequence is upper bounded by

ln

(
PminXn

1
+exp

(
n∑

k=1
min

{
2εk, ln

eεk −1+ Pk
min

Pk
min

})
(1− PminXn

1
)

)
,

(11)

where PminXn
1

= minxn
1∈X n PXn

1
(xn
1), Pk

min = minx∈X PXk (x).

The proof of Corollary 5 is provided in Appendix M of the
supplementary material.
To numerically demonstrate the leakage of releasing a

correlated data sequence in terms of LIP, we consider releasing
three data X1, X2 and X3 in a sequential manner, suppose
the prior of X1 is P1 = [0.25, 0.25, 0.25, 0.25], X2 is
P2 = [0.1, 0.1, 0.1, 0.7] and P3 = [0.01, 0.33, 0.33, 0.33] for
X3. Now we consider releasing the data in different orders:
{X1, X2, X3} or {X2, X3, X1} or {X3, X2, X1} with different
ε = 2 or ε = 5. Fig. 5(c) numerically shows the leakage of the
whole sequence for different orders and εs. Observe that the
leakage of the data sequence does not increase linearly with
the number of releases (individual leakage increment can be
different from data to data), however, for a given ε, the total
leakage after 3 independent releases with different order are
identical to each other.

C. Transferability

The basic question of transferability of a context-aware
mechanism is the following: suppose we design a mecha-
nism M(P1) assuming a prior P1, and achieve a leakage
LLIP(M(P1), P1). How much does this mechanism M(P1)
leak if we use it to release data with a different prior P2,

i.e., how can we relate LLIP(M(P1), P1) to LLIP(M(P1), P2)?
It is intuitive to expect that if the distributions P1 and P2
are statistically close, then we should expect similar leakage.
We next define metrics, to capture the statistical distance
between distributions, and then present our result on trans-
ferability of leakage under LIP.

Definition 7: Given two pmfs P1 and P2, the total variation
distance between P1 and P2 is defined as

DTV(P1, P2) = sup
S⊆X

|P1(S) − P2(S)|.

Next, we present our main result on the transferability.
Lemma 3: For any distributions P1 and P2 and a mechanism

M, we have

|LLIP(M(P1), P1) − LLIP(M(P1), P2)| ≤ η,

where η = ln

(
1 + �

c

)
, � = DTV(P1, P2) and c =

min
{

P1min, P2min
}
.

The proof is presented in Appendix G of the supplementary
document. The main idea behind the above result is to first
relate the ratio P1(x)/P2(x) to the TV distance DTV(P1, P2)
between distributions. Subsequently, we use this relationship
to bound the leakage of the mechanism M(P1) under P1 to
that of the leakage of the same mechanism M(P1) under P2.
The key feature of the above result is that the transferability
gap between the leakage measure is a monotonic function of
the TV distance, i.e., a smaller TV distance implies smaller
difference in leakage and vice-versa.

Remark 1: Note that, the leakage of LLIP(M(P1), P2) is
larger than LLIP(M(P1), P1) by at most η, which depends on
the TV distance between P1 and P2. Also note that, the value
of c = min

[
P1min, P2min

]
could be small, which makes the

increased amount very large. To this end, we can tighten the
upper bound by considering the relationship between LIP and
LDP. The Leakage defined in Eq. 8 is upper bounded by:

min

[
η + ε, 2ε, ln

eε − 1+ P1min
P1min

]
. (12)

The bound follows the relationship between LIP
and LDP; the optimal mechanism with P1 implies at
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least min

[
2ε, ln

eε−1+P1min
P1min

]
-LDP, which further implies

min

[
2ε, ln

eε−1+P1min
P1min

]
-LIP for any prior P2.

Corollary 6: By comparing the bounds in (12) together,
it can be readily shown that the bound η + ε is the smallest
when

DTV(P1, P2) ≤ min(P1min, P2min)(e
min(ε,	) − 1),

where 	 � eε−1+P1min
P1min

− ε.

The proof is presented in Appendix N. In practice, obtaining
an accurate prior distribution is hard. Instead, the data owner
uses samples coming from the true distribution. The goal is
to design a privacy-preserving mechanism as a function of the
empirical distribution estimated from these samples. However,
the privacy guarantees for the empirical distribution, and the
true distribution might be different. We next quantify the
discrepancy between the privacy guarantees for the empirical
distribution, used to design privacy mechanism, and for the
true distribution experienced by the privacy mechanism used
in practice.

Leakage of LIP using an estimated prior from samples:
We invoke the above result in Lemma 3 to quantify the
discrepancy of the privacy guarantees as follows: Consider a
data owner using an empirical distribution P1 = P̂X , estimated
from n i.i.d. samples drawn from a distribution P2 = PX .
Given n i.i.d. samples x1, x2, · · · , xn , the empirical probability
distribution defined on X is defined as

P̂X (x) � 1

n

n∑
i=1

�{xi =x}. (13)

The leakage of LLIP(M(P̂X ), P̂X ) in this case is

sup
x∈X ,y∈Y

ln

⎛
⎝max

⎛
⎝ PM̂

X |Y (x |y)

P̂X (x)
,

P̂X (x)

PM̂
X |Y (x |y)

⎞
⎠
⎞
⎠ ,

where PM̂
X |Y is the posterior distribution when using the

mechanism M(P̂X ) and P̂X . We next relate the leakage
LLIP(M(P̂X ), P̂X ) with LLIP(M(P̂X ), PX ), i.e., the leakage
under the true prior distribution PX for a given mechanism,
i.e.,M(P̂X ). We show a probabilistic bound on the difference
between the two leakages.

Corollary 7: Let P̂X be the empirical distribution obtained
from n i.i.d. samples drawn from PX . Then, with probability
1− β, we have

�n � |LLIP(M(P̂X ), P̂X ) − LLIP(M(P̂X ), PX )| ≤ η, (14)

where η = ln

(
1 + �̄

2c

)
, c = min

[
P̂min, Pmin

]
and �̄ =√

2
n (|X | − ln β).
The proof is presented in Appendix H of the supplementary

document. Note that the upper bound η in (14) behaves like

O
(
ln

(
1 + √

1/n
))
. Therefore, as the number of samples

n goes to infinity, the privacy guarantee provided by the
mechanism using the estimate P̂X converges to the ideal case
if we know the true prior PX .

Numerical Evaluations: We give a numerical example for
the transferability property for a perturbation mechanism.
Specifically, in Fig.(s) 6(a) and 6(b), we compare between the
bounds obtained in (12). In Fig. 6(c), we depict the leakage
discrepancy for a context-aware binary randomized response
perturbation mechanism M(P̂X ) designed as a function of
the empirical prior distribution (the mechanism is provided
in Eqn. (19)). As shown in the figure, when the number of
samples increases, the leakage discrepancy �n decreases with
n, and converges to zero which is consistent with the result in
Corollary 7.

Corollary 8 (Generalization to Family of Priors): The
Transeferability result can be invoked in a setting, when we
have a known family of priors {Pi }n

i=1 and a true prior PTrue.
In this case, it is straightforward to show that the bound on
the leakage discrepancy is obtained as

η = log

[
1+ maxi DTV(PTrue, Pi )

mini min(PTrue
min , Pi

min)

]
. (15)

Proof Sketch: The Transferability result for this case
follows on similar lines as before: we bound the worst case
among the family of priors (including the true prior or not)
and the true prior, i.e.,

PTrue(x)

Pi (x)
≤ max

x
1+ ‖PTrue(x) − Pi (x)‖1

2Pi (x)
� δi

1,

Pi (x)

PTrue(x)
≤ max

x
1+ ‖PTrue(x) − Pi (x)‖1

2PTrue(x)
� δi

2,

⇒ max
i
max

[
PTrue(x)

Pi (x)
,

Pi (x)

PTrue(x)

]
≤ max

i
max(δi

1, δ
i
2). (16)

Following the same set of steps, it is straightforward to show
that leakage discrepancy is obtained as

η = log

[
1+ maxi DTV(PTrue, Pi )

mini min(PTruemin , Pi
min)

]
. (17)

IV. LIP MECHANISMS UNDER GENERAL
UTILITY-PRIVACY FRAMEWORK

In this Section, we present LIP based mechanisms for dif-
ferent data modalities. We start with the general utility-privacy
framework. Then, under the general framework, we study
the case where input data is discrete, where we present
general randomized response mechanisms. Then, we devise
LIP mechanisms where the input data is continuous val-
ued. We first study random sampling mechanism that sat-
isfies (ε, δ)-LIP. We also devise context-aware Gaussian
mechanism and context-aware Laplacian mechanism that
satisfy (ε, δ)-LIP.

A. A General Utility-Privacy framework

In this Section, we focus on characterizing tradeoffs
between utility and context-aware privacy. To this end,
we present a general framework for designing context-aware
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Fig. 6. In (a) and (b): Bound on LIP Leakage vs. number of samples n. In (c): Discrepancy between privacy guarantees vs. number of samples n, for an
RR mechanism where β = 0.01, |X | = 2 and PX (0) = 0.3.

privacy-preserving mechanisms that satisfy LIP while maxi-
mizing data utility.
The expected utility of a mechanism that releases Y as the

output when the raw data is X can be described as

Utility = −E[D(Q(X), Q(Y ))], (18)

where Q is query function of X and Y that depends on the
particular application. D(a, b) : (R,R) → R+ denotes a
distortion/distance measure between a, b, and the expectation
E[·] is taken over both the underlying distribution of the data
PX (x), as well as over the randomness of the mechanism,
i.e., PY |X (y|x). Note that the expected distance between Q(X)
and Q(Y ) stands for a general type of utility measurement. For
example, in Location-Based Service (LBS): Q(X) = X , and
typically Euclidean distance between X and Y is deployed to
measure the performance: Utility = −E[(X − Y )2]. Another
example is histogram estimation: To estimate how many
people possess each of the data categories, or classification
according to users’ data value, then Q(X) is an indicator
function, with the absolute distance the utility function can be
written as Utility = −∑K

i=1 E[|�{X∈Si} −�{Y∈Si }|]. The above
examples illustrate that for a variety of applications, the utility
function defined in (18) can be adapted by modifying the Q
function and the distortion function D(·, ·). In general, mech-
anism design can be formulated as an optimization problem,
maximizing the application/problem specific utility functions
given local information privacy constraints:

min E[D(Q(X), Q(Y ))], s.t. LLIP(X, Y ) ≤ ε.

B. LIP Mechanisms for Discrete-Valued Data

1) RR Mechanism for a Fixed Prior: In [33], our previous
work has studied the optimal RR mechanism satisfying LIP.
We include this result here for completeness. Denote qxy =
Pr(Y = y|X = x) ∀x ∈ X , y ∈ Y as the perturbation
parameters in the RR mechanism, and the optimal solutions
satisfying LIP constraints are described as follows:

Optimal RR Mechanism of LIP for a Fixed Prior:

q∗
xy =

⎧⎪⎨
⎪⎩

PX (y)

eε
, x �= y, x, y ∈ X ,

1− (1− PX (x))

eε
, x = y, x, y ∈ X .

(19)

Intuitively, the optimal solutions which maximize the utility
are achieved when each PY |X (y|x) (y �= x) is minimized, and

the above results are derived by making the privacy constraints
satisfy at the boundary of the convex polytope. An insight of
the optimal solution for the RR-LIP mechanism is: less noise
is required for more certain data.

2) RR Mechanism for Uncertain Prior: In [36], for the
uncertain prior model, we have derived the optimal parameters
under the RR mechanism for a binary model where the input
and output take value from {0, 1}. Firstly, specify PX as
PX (1) = Pr(X = 1) ∈ [a, b], where 0 ≤ a ≤ b ≤ 1. The
optimal solutions are described as follows:

Optimal RR Mechanism of LIP for an Uncertain Prior:

q∗
01 = b

b − a + eε
and q∗

10 = 1− a

b − a + eε
.

Observe that when a = b = PX (1), the prior knowledge is
certain and fixed. Then q∗

01 = PX (1)
eε and q∗

10 = 1−PX (1)
eε which

are identical to the optimal solutions of proposition IV-B1;
When a = 0, b = 1, we have the optimal solutions for the
WC-LIP (LDP): q∗

01 = q∗
10 = 1

1+eε , which is independent of
prior. In Section V-A, we simulate with real data (data with
discrete value that from a M-ary domain), and use build-in
optimization solver to numerically obtain the optimal pertur-
bation parameters. Then compare among the performance of
BP-LIP, LIP and LDP.

C. Mechanism Design for Continuous-Valued Data

1) Sampling Mechanism: In this subsection we consider the
case where the data X is drawn from a continuous distribution,
i.e., X ∼ fX (x). The sampling mechanism is defined as
follows:

Y =
{

X, w.p. λ,

X̃ , w.p. 1− λ,
(20)

where X̃ is drawn independently from fX . For a sam-
pling mechanism, the utility function defined in (18) can be
expressed as:

E[D(Q(X), Q(Y ))]
=

∫
x

∫
y

D[Q(x), Q(y)] fX (x) fY |X (y|x)dxdy

= (1− λ)

∫
x

∫
x ′

D[Q(x), Q(x ′)] fX (x) fX (x ′)dxdx ′. (21)

The last step is due to the fact that when Y = X ,
D[Q(X), Q(X)] is zero, and when Y �= X , the distribution
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Fig. 7. Utility-Privacy tradeoff of the sampling mechanism under (ε, δ)-LIP
for three different distributions.

of Y is identical to that of X . Observe that, the term of
the integral is non-negative. The above argument implies that
maximizing utility is equivalent to maximizing λ. Note that,
for continuous-valued data, we are able to find a mechanism
that satisfies a relaxed version of LIP. We next show a
feasible choice of λ which satisfies (ε, δ)-LIP in the following
proposition.

Proposition 2: A feasible λ satisfying (ε, δ)-LIP is λ =
min{δeε, 1− e−ε + δe−ε}.
The proof is provided in Appendix I of the supplementary

document. Note that, when δ ≥ 1−e−ε

eε−e−ε , λ = 1 − e−ε + e−εδ,

when δ < 1−e−ε

eε−e−ε , λ = eεδ. Another observation is that there
does not exist a sampling mechanism satisfying pure ε-LIP.
As when δ = 0, λ = min{0, 1 − e−ε} = 0, which means
the mechanism would always sample Y from the distribution
of X .

Numerical Evaluations: We consider N = 50000 users
in the system. Each user locally generates private data Xi

(i denotes the user’s index) drawn from a fixed distribution,
and he/she releases a perturbed version Yi through a sampling
mechanism satisfying (ε, δ)-LIP. The utility of the system is
measured by the averaged absolute error between Xi and Yi

over N users:

Utility = 1

N

N∑
i=1

|Xi − Yi |.

We consider three different distributions of Xi , including
Beta distribution B(α, β), Gaussian distribution N (μ, σ 2) and
uniform distribution Unif(a, b) respectively. We first fix the
value of δ to be 0.01, and vary ε to calculate the utility. The
result is depicted in Fig. 7(a). Then we fix the value of ε to be
2, and compare the utility of different distributions as functions
of δ. The result is shown in Fig. 7(b). From the results, we have
the following observations: (1) Different distributions of Xi do
not affect each curve’s trend in the plot and the utility increases
with the value of ε, and δ; (2) The utility increases faster with
δ when the value of δ is small, and increases slowly when δ
approaches 1.

2) Context-Aware Additive Noise Mechanisms: We now
consider the design of additive noise mechanism, where a user
perturbs the continuous-valued data X by adding a random
noise N drawn from a certain distribution. The noise-adding
mechanism will output

Y = X + N(X),

where the distribution of the noise N(X) can also be a function
of the raw data X .

a) Context-aware Gaussian mechanism:: Next,
we design context-aware Gaussian mechanism whose
variance is calibrated directly using the Gaussian cumulative
density function (alternatively, Q-function). We would like
to highlight that bounding the LIP ratio using tail bound
approximation is known to be challenging specially for
continuous-valued data [37]. Our goal is to design Gaussian
mechanism that satisfies (ε, δ)-LIP. We assume a Gaussian
prior on X with mean μX and variance σ 2X . Therefore,
we have fY |X = N (x, σ 2N ) and fY = N (μX , σ 2X + σ 2N ).
For data utility, it is readily seen that under Gaussian

mechanism, a small σ 2N implies a high utility under zero
mean (μN = 0). In order to analyze the mechanism, we use
a particular divergence metric between to distributions (i.e.,
fY and fY |X ) called E-divergence [38], which captures the
outage events of the mechanism where we cannot guarantee
pure ε-LIP. It is worth noting that E-divergence, defined next,
is considered as a generalization of the total variation distance.

Definition 8 (E-Divergence [38]): Given two probability
distributions f and g defined over the same support set Y
and γ ≥ 0, the E-divergence is defined as follows:

Eγ ( f ||g) � sup
S⊆Y

f (S) − γ g(S)

=
∫

{y: f (y)≥γ g(y)}
( f (y) − γ g(y))dy.

Notice that for any γ , Eγ (P||Q) ≤ 1 for any two distrib-
utions P and Q. Next, we show the equivalence between the
aforementioned definition and (ε, δ)-LIP when γ = eε .

Corollary 9: A mechanism satisfies (ε, δ)-LIP if

Eeε ( fY |X || fY ) ≤ δ & Eeε ( fY || fY |X ) ≤ δ. (22)

We next show the relationship between Ee−ε ( fY |X || fY ) and
Eeε ( fY || fY |X ) which will be useful later for the mechanism
design in the following Proposition with proof provided in
Appendix J of the supplementary document.

Proposition 3: For two distributions fY |X and fY defined
over the same support Y , we have

Eeε ( fY |X || fY ) = eε Ee−ε ( fY || fY |X ) − eε + 1.
We next compute the E-divergence for two Gaussian distri-

butions in the following Lemma.
Lemma 4: For two Gaussian distributions, f ∼ N (μ1, σ

2
1 )

and g ∼ N (μ2, σ
2
2 ), Eγ ( f ||g) is given as

Eγ ( f ||g) = 1+ Q

(
yu − μ1

σ1

)
− Q

(
yl − μ1

σ1

)

− γ

[
1+Q

(
yu − μ2

σ2

)
− Q

(
yl − μ2

σ2

)]
, (23)

where σ1 ≥ σ2, yl and yu are the points where f = γ g and
yl ≤ yu (please refer to Appendix K in the supplementary
document for more details).
Having computed Ee−ε ( fY || fY |X ) using Lemma 4 by setting

f = fY , g = fY |X and γ = e−ε , it is straightforward to
compute Eeε ( fY |X || fY ) using Proposition 3.
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Fig. 8. Numerical comparison for (ε, δ) between LDP and LIP: μX = 0,
σX = 5, �X = 20 and σN = 10. For fair comparisons, we compare with
2ε-LDP.

Fig. 9. Numerical comparisons for context-aware Gaussian mechanism under
different values of X for μX = 0, σX = 5, δ = 10−4. High density instances
require less noise and vice versa.

We next summarize the results on the Gaussian mechanism
in the following Theorem.

Theorem 5: Suppose X ∼ N (μX , σ 2X ), then the Gaussian
mechanism with noise variance σ 2N satisfies (ε, δ)-LIP where

δ = sup
x
max{Eeε

(N (x, σ 2N )||N (μX , σ 2X + σ 2N )
)
,

Eeε
(N (μX , σ 2X + σ 2N )||N (x, σ 2N )

)}.
In Fig. 9, we show the impact of the value of the data

X on the choice of σN . As we see from the figure, the noise
parameter σN is adjusted to the priors, i.e., less density (higher
value of X) requires more noise and vice versa.
Alternatively, for a given x , we can find the smallest amount

of noise as follows.
Corollary 10: For a given privacy level (ε, δ)-LIP and a

data point x , the optimum noise parameter of the Gaussian
mechanism can be numerically obtained from the following
optimization problem:

σ 2LIP(x) = min
σN

σ 2N (x),

s.t. Eeε
(N (x, σ 2N )||N (μX , σ 2X + σ 2N )

) ≤ δ,

Eeε
(N (μX , σ 2X + σ 2N )||N (x, σ 2N )

) ≤ δ.

Numerical Evaluations:We next compare with some results
from the literature that design Gaussian mechanism under LDP
notion. First, the vanilla Gaussian Mechanism [39]. For a given
ε, σN and �X we have the following upper bound on δ:

δ ≤ 1.25× exp
[
− ε2σ 2N
2(�X)2

]
.

In [40], the authors improved the Vanilla Gaussian mecha-
nism by using the E-divergence metric, they showed that

Eeε (N (x, σ 2N )||N (x ′, σ 2N ))

= 	

(
�X

2σN
− εσN

�X

)
− eε	

(
− �X

2σN
− εσN

�X

)
, (24)

where 	(·) is the normal CDF and �X = maxx,x ′ |x − x ′|,
i.e., the local sensitivity. Note that we can write the
above equation in terms of the Q-function, where
Q(x) = 1− Q(−x) = 1− 	(x).
We compare our context-aware mechanism with the vanilla

Gaussian mechanism [39] and its improved version in [40].
Specifically, we plot the outage probability δ vs the privacy
level ε for different data realizations X = x , and noise variance
σ 2N in Fig. 9. We notice that under the same noise variance σ 2N ,
we outperform the two mechanisms designed for differential
privacy in terms of the outage probability δ.

Remark 2: It is worth mentioning that the proposed
Gaussian mechanism is not limited to Gaussian priors only.
In fact, any arbitrary distribution fX can be fitted by a
Gaussian mixture model (GMM), i.e., fX = ∑K

i=1 αi fXi ,
where fXi = N (μi , σ

2
i ), αi is the proportional weight and∑K

i=1 αi = 1. The optimal parameters {(μi , σ
2
i )}K

i=1
can be obtained by using the expectation-maximization
algorithm [41]. Also, the Gaussian mechanism will guarantee
(ε, δ)-LIP under GMM using the modularity property of LIP
(see Lemma 2).
Next, we present our results on the context-aware Laplacian

mechanism.
b) Context-aware Laplacian mechanism: In this sub-

section, we present our main result on the context-aware
Laplacian mechanism which satisfies ε-LIP. We perturb the
data X by adding a random noise N(X) drawn from Lapla-
cian distribution, where N(X) ∼ Lap(0, b(X)) is a random
variable with probability density function and b(X) is the
noise parameter that describes the Laplacian distribution. Note
that b(X) controls the width of the distribution, and the
variance is 2 b(X)2. In particular, we show how to design
the noise parameter b as a function of the prior knowledge
about the user’s input data X . We notice that bounding the
density ratio fY

fY |X under Laplacian mechanism is challenging.
Instead, we can employ a data pre-processing (i.e., discretiza-
tion) on the continuous-valued data [42], [43]. It has been
shown in [13] that if we pick the noise parameter b as
bLDP = �X

ε satsifies ε-LDP, where �X is the local sensitivity,
i.e., �X � maxxi ,x j |Xi − X j | = xmax − xmin.

Theorem 6: Let M be the Laplacian mechanism and let
ε ≥ 0. Then, M : X → Y, Y ∈ [l, u] satisfies ε-LIP if

bindep.
LIP =

⎧⎪⎪⎨
⎪⎪⎩

�X

ln
(

eε−Pmin
1−Pmin

) , ε < ln(
1

Pmin
)

�X

ε
, otherwise,

(25)

bdep.
LIP (x) = �X

αε PX (x) + ε
, ∀x ∈ X . (26)

where Pmin is the minimum probability value of the
distribution PX (x).
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Fig. 10. Comparison between context-free and context-aware Laplacian
mechanisms. The prior distribution is PX = { 13 + s

2 ,
1
3 , 13 − s

2 } and s = 0.2.

The first part of (25) is presented in the Appendix of [34].
The proof of this Theorem is in Appendix L of the supple-
mentary document.

Numerical Evaluations: Fig. 10 shows a comparison
between the three mechanisms, i.e., 1) independent mech-
anism, bLDP, 2) instance independent mechanism, bLIP and
3) instance dependent mechanism, bLIP(X). We can see that
our mechanism outperforms the conventional Laplacian mech-
anism, this is due to the relaxed definition of LIP where the
noise parameter b can be a function of the data prior.

V. EVALUATION WITH REAL DATA

In this Section, we provide numerical results on real datasets
to demonstrate the utility-privacy tradeoffs provided by dif-
ferent mechanisms. The first dataset is Students Performance
Assessment dataset [44], which reports student achievement
in secondary education of two Portuguese schools (395 stu-
dents in total). The data attributes include student grades,
demographic, social, and school-related features, which were
collected by using school reports and questionnaires. Two
datasets are provided regarding the performance in two distinct
subjects: Mathematics (mat) and Portuguese language (por),
the content of the students performance dataset. We use
this dataset to test the performance of different mechanisms
for discrete data release leveraging different scenarios of
the context-awareness. The second dataset is Baltimore city
employee’s salary for year 2019 [45], which captures the
gross salary of 13812 employees from July 1, 2018, through
June 30, 2019. This dataset is used to test mechanisms for
continuous-valued data release. Note that in the following
experiments, it is assumed that each user locally possesses
one row of the dataset.

A. Comparison Among Different Mechanisms for
Discrete-Valued Data Release

Observe from the student performance dataset, each row
stands for a student’s entry, and for each student, 30 different
personal behaviors, the grades for two periods and the final
grade are listed. In this experiment, it is assumed that a subset
of the students’ full records and other students’ records except
for the last column (final grade) have been collected. The other
students are submitting their final grade (denoted as X) to the
collector independently in a privacy-preserving way. Denote

set A as the set of students whose full records have been pub-
lished and B as the set of students who are releasing their final
grade. We are comparing among the following mechanisms:
(a) Each student in B uses RR-LIP mechanism to perturb their
final grade with a local prior. Each local prior is calculated as
follows: the data in A are treated as training data used to
learn the correlation between students’ personal information
(including two-period grade) and the final grade. Then B is
treated as testing data, and the distribution of their final grades
are calculated by predicting using their personal information
and two-period grades. (b) Each student in B uses RR-LIP
mechanism to perturb with the same global prior (the same
mechanism for each student). The global prior is estimated by
the grade collected from A. (c) Each student in B uses RR
mechanism satisfying BP-LIP constraints with perturbation
parameters numerically solved by build-in optimizer: notice
that some personal information is very relevant to the final
grade, such as “study time”, “go out”, “absence” and first
and second-period grades, but some are not, such as “gender”,
“address”, “nursery”, “parents job”, etc. It is assumed that the
relationships between different combinations of information
and the final grades are learned from A, and each student in B
uses these relationships to predict the distribution of their final
grade (assign each value in the support with a probability),
the set of different predictions becomes the uncertainty:Pbp.
(d) Each student in B uses Optimal LDP mechanism to perturb
data, the mechanism is described as follows: qx x = eε

eε+|X |−1 ,
qxy = 1

eε+|X |−1 , where x �= y [46], we consider both
ε-LDP and 2ε-LDP. (e) Each student in B uses Optimal Unary
Encoding LDP mechanism [46] to perturb data, his/her final
grade is firstly mapped into a vector, wherein the value of the
i -th bit is 1 if his/her final grade is i , and 0 if not. Then, each
bit is independently perturbed under binary LDP mechanism:
q01 = 1

eε+1 , q10 = 1
2 .

The Utility of different mechanisms described above is
measured by the averaged absolute distance between the real
final grade and the perturbed final grade of each student in B.
The relationships between personal information and final grade
in training dataset A are estimated through a two-layer neural
network. Note that the domain of X is X = {0, 1, . . . , 20}.
To illustrate the impact on the utility-privacy tradeoff from the
data domain provided by different mechanisms. We consider
the final grade in four cases with the cardinality of 2, 5, 10,
and 21, respectively. For example, when the cardinality is 2,
the final grade of each student is either above 10 or below 10;
when the cardinality is 21, each student’s grade ranges from
0 to 20. The privacy of different mechanisms is measured by
the privacy budget of ε, which takes value from 0 to 5. The
curves of different mechanisms with different cardinalities are
plotted in Fig. 11.
Observe that LIP with local priors provides the most

enhanced utility under each ε compared with other cases.
As the training results with all features offer the highest
accuracy and the estimated prior is close to the real one. When
|X | = 2, BP-LIP provides better utility than LIP with global
priors. But as |X | increases, LIP with global prior outperforms
BP-LIP. This is because BP-LIP has more constraints than
LIP with a fixed prior, and when the cardinality increases,
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Fig. 11. Utility-privacy tradeoff comparison for discrete-valued data release with student performance dataset.

Fig. 12. Utility-privacy tradeoff comparison for continuous-valued data release with Baltimore city employee salaries dataset.

the feasible region of BP-LIP decreases as a result. Hence,
the utility decreases. At last, LDP provides the worst utility
since no prior knowledge is utilized during perturbation,
OUE-LDP performs better than LDP when |X | > 2, as the
utility provided by LDP is largely influenced by the cardinality
of input data, thus transferring a large domain into a binary
vector can significantly mitigate it.

B. Utility-Privacy Tradeoff Comparisons Among Mechanisms
for Continuous-Valued Data

Next, we compare different Gaussian mechanisms with
the RR mechanism when releasing continuous-valued data.
The dataset we use in this part is “Baltimore city employee
salaries,” where 13812 employee’s personal information
is listed, including Name, Job tile, Department ID, Job
description, Hire date, net/gross income. In this experiment,
we assume each user releases his/her gross income, which
is from a continuous-valued data domain. We first estimate
the distribution of all users’ income by fitting the income
density with a probability distribution. Observe that there are
two peaks in the density of income. To fit the underlying
prior distribution, we use Gaussian mixture model (GMM)
fitting technique (see Fig. 12(a)). In the experiment, it is
assumed that each individual uses Gaussian mechanism with
GMM fitted for the prior distribution and sampling mechanism
with two fitted models for the prior distribution to release
data satisfying (ε, δ)-LIP. More specifically, for the Gaussian
mechanism, we consider two cases: 1) instance-independent,
where we design σLIP as a function of the prior distribution
by making the variance proportional to minx fX (x). Note that
each instance is perturbed by the same amount of noise. 2)
instance-dependent, where we design σLIP(x) as a function of
every input instance x such that we add less noise for the high

density instances, and vice versa. We also consider Gaussian
mechanism under LDP, i.e., σLDP [40]. We fix δ to be 10−4,
10−3 and 10−2 respectively, and range the value of ε from 1
to 4. The utility of different mechanisms is measured by the
averaged absolute error, and the comparison results are shown
in Fig. 12.
We observe from Fig. 12, when δ is small, Gaussian mecha-

nism provides improved utility than the sampling mechanism.
Another observation is that the sampling with different density
fits has a very slight influence on the performance of the
mechanism, as the density distribution does not affect the
value of λ, but only determines how the output is sam-
pled. But on the other hand, releasing data with an inac-
curate density could result in additional privacy leakage,
as we studied in Section III-C. Finally, we observe that
LDP-based Gaussian mechanism performs worse than the
instance-dependent LIP-based Gaussian mechanism. However,
LDP-based mechanism outperforms the instance-independent
LIP-based mechanism (i.e., sampling mechanism and Gaussian
mechanism) in terms of utility. In turn, this observation shows
the benefits of designing instance dependent perturbation
mechanism to achieve higher utility.

VI. CONCLUSION

In this paper, we study the local information privacy (LIP) as
a relaxation of the de facto standard privacy notion, i.e., local
differential privacy. For the LIP notion, we proved that the
metric satisfies desirable properties such as post-processing,
modularity, composability and transferability. We then com-
pare the relationship of LIP with some of the most represen-
tative existing privacy notions and show that LIP provides a
context-aware instance-wise privacy guarantee. We proposed
private mechanisms that satisfy ε-LIP or (ε, δ)-LIP for both
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discrete and continuous-valued data, including randomized
response mechanism, random sampling mechanism, additive
noise mechanism. We have conducted numerical simulations
and evaluations with real data that shows utility improvements
over the LDP based mechanisms.
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