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Abstract—We consider a finite-armed structured bandit
problem in which mean rewards of different arms are known
functions of a common hidden parameter θ∗. Since we do not
place any restrictions on these functions, the problem setting sub-
sumes several previously studied frameworks that assume linear
or invertible reward functions. We propose a novel approach
to gradually estimate the hidden θ∗ and use the estimate
together with the mean reward functions to substantially reduce
exploration of sub-optimal arms. This approach enables us to
fundamentally generalize any classical bandit algorithm including
UCB and Thompson Sampling to the structured bandit setting.
We prove via regret analysis that our proposed UCB-C algorithm
(structured bandit versions of UCB) pulls only a subset of the sub-
optimal arms O(log T) times while the other sub-optimal arms
(referred to as non-competitive arms) are pulled O(1) times. As a
result, in cases where all sub-optimal arms are non-competitive,
which can happen in many practical scenarios, the proposed
algorithm achieves bounded regret. We also conduct simulations
on the MOVIELENS recommendations dataset to demonstrate the
improvement of the proposed algorithms over existing structured
bandit algorithms.

Index Terms—Multi-armed bandits, sequential decision mak-
ing, online learning, statistical learning, regret bounds.

I. INTRODUCTION

A. Overview

THE MULTI-ARMED bandit problem [1] (MAB) falls
under the umbrella of sequential decision-making prob-

lems. It has numerous applications such as clinical trials [2],
system testing [3], scheduling in computing systems [4], and
Web optimization [5], [6], to name a few. In the classi-
cal K-armed bandit formulation, a player is presented with
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K arms. At each time step t = 1, 2, . . ., she decides to
pull an arm k ∈ K and receives a random reward Rk with
unknown mean μk. The goal of the player is to maximize
their expected cumulative reward (or equivalently, minimize
expected cumulative regret) over T time steps. In order to
do so, the player must strike a balance between estimat-
ing the unknown rewards accurately by pulling all the arms
(exploration) and always pulling the current best arm (exploita-
tion). The seminal work of Lai and Robins (1985) proposed
the Upper Confidence Bound (UCB) algorithm that balances
the exploration-exploitation tradeoff in the MAB problem.
Subsequently, several algorithms such as UCB1 [7], Thompson
Sampling (TS) [8] and KL-UCB [9] were proposed and
analyzed for the classical MAB setting.

In this article, we study a fundamental variant of clas-
sical multi-armed bandits called the structured multi-armed
bandit problem, where mean rewards of the arms are func-
tions of a hidden parameter θ . That is, the expected reward
E[Rk|θ] = μk(θ) of arm k is a known function of the param-
eter θ that lies in a (known) set �. However, the true value
of θ , denoted as θ∗, is unknown. The dependence of mean
rewards on the common parameter introduces a structure in
the MAB problem. For example, rewards observed from an
arm may provide partial information about the mean rewards
of other arms, making it possible to significantly lower the
resulting cumulative regret as compared to the classical MAB
setting.

Structured bandit models arise in many applications and
have been studied by several authors with motivating applica-
tions including dynamic pricing (described in [10]), cellular
coverage optimization (by [11]), drug dosage optimization
(discussed in [12]) and system diagnosis; see Section I-B for
an illustrative application of the structured MAB framework.
In this article, we consider a general version of the struc-
tured MAB framework that subsumes and generalizes several
previously considered settings. More importantly, we propose
a novel and unified approach that would allow extending any
current or future MAB algorithm (UCB, TS, KL-UCB, etc.)
to the structured setting; see Sections I-C and III for our
main contributions and a comparison of our work with related
literature.

B. An Illustrative Example

For illustration purposes, consider the example of movie
recommendation, where a company would like to decide
which movie(s) to recommend to each user with the goal
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Fig. 1. Movie recommendation application of the structured bandit frame-
work studied in this article. The context θ (for example, the age of the user)
is unknown because the user is not signed in. But if a user gives a high rating
the first movie (Frozen) one could infer that the age θ is small, which in
turn implies that the user will give a high rating to the third movie (Finding
Nemo).

of maximizing user engagement (e.g., in terms of click
probability and time spent watching, etc.). In order to achieve
this, the company needs to identify the most appealing movie
for the user in an online manner and this is where multi-
armed bandit algorithms can be helpful. However, classical
MAB algorithms are typically based on the (implicit) assump-
tion that rewards from different arms (i.e., different movies
in this context) are independent of each other. This assump-
tion is unlikely to hold in reality since the user choices
corresponding to different movies are likely to be related to
each other; e.g., the engagement corresponding to different
movies may depend on the age/occupation/income/taste of
the user.

To address this, contextual bandits [13], [14] have been
proposed and studied widely for personalized recommenda-
tions. There, it is assumed that before making a choice (of
which movie to recommend), a context feature of the user
is observed; the context can include personal information of
the user including age, occupation, income, or previous brows-
ing information. Contextual bandit algorithms aim to learn the
mapping from context information to the most appealing arm,
and can prove useful in applications involving personalized
recommendations (or, advertising). However in several use
cases, observing contextual features leads to privacy concerns.
In addition, the contextual features may not be visible for new
users or users who are signed in anonymously to protect their
identity.

The structured bandit setting considered in this article (and
by many others [10], [11], [12]) can be viewed as the same
problem setting with contextual bandits with the following dif-
ference. Unlike contextual bandits, the context of the users are
hidden in the structured setting, but in return it is assumed
that the mappings from the contexts to mean rewards of arms
are known a priori. It is anticipated that the mean reward
mappings can be learned from paid surveys in which users
participate with their consent. The proposed structured bandit
framework’s goal is to use this information to provide the best
recommendation to an anonymous user whose context vector θ

is unknown; e.g., see Figure 1. Thus, our problem formulation
is complementary to contextual bandits; in contextual bandits
the context θ is known while the reward mappings μk(θ) are
unknown, whereas in our setting θ is unknown and the mean
rewards μk(θ) are known. A detailed problem formulation

discussing the assumptions and extensions of this set-up is
given in Section II.

C. Main Contributions and Organization

We summarize the key contributions of the paper below.
The upcoming sections will develop each of these in detail.

1) General Setting Subsuming Previous Works: Structured
bandits have been studied in the past [10], [12], [15],
[16], [17], [18] but with certain restrictions (e.g., being
linear, invertible, etc.) on the mean reward mappings
μk(θ). We consider a general setting that puts no
restrictions on the mean reward mappings. In fact,
our setting subsumes recently studied models such as
Global Bandits [10], Regional Bandits [12] and struc-
tured bandits with linear rewards [15]; see Section III
for a detailed comparison with previous works. There
are a couple of recent works [19], [20] that do con-
sider a general structured bandit setting similar to our
work—see Section III for details. Our approach differs
from these in its flexibility to extend any classical ban-
dit algorithm (UCB, Thompson sampling, etc.) to the
structured bandit setting. In particular, using Thompson
sampling [21], [22] as the underlying bandit algo-
rithm yields a robust and empirically superior way (see
Section V-D) to minimize superfluous exploration. The
UCB-S algorithm proposed in [19] extends the UCB
algorithm to structured setting. However, the approach
presented in [19] can not be extended to Thompson
sampling or other classical bandit algorithms; in fact,
this point was highlighted in [19] as an open question
for future work. In [20], there are several assumptions
in the model that are not imposed here, including the
assumption that the conditional reward distributions are
known and reward mappings are continuous. In addi-
tion, the main focus of [20] is the parameter regime
where regret scales logarithmically with time T , while
our approach demonstrates the possibility of achieving
bounded regret.

2) Extending any Classical Bandit Algorithm to the
Structured Bandit Setting: We propose a novel and uni-
fied approach that would allow extending any classical
or future MAB algorithm (that is developed for the non-
structured setting) to the structured bandit framework
given in Figure 2. Put differently, we propose a class of
structured bandit algorithms referred to as ALGORITHM-
C, where “ALGORITHM” can be any classical bandit
algorithm including UCB, TS, KL-UCB, etc. A detailed
description of the resulting algorithms, e.g., UCB-C, TS-
C, etc., are given in Section IV with their steps illustrated
in Figure 3.

3) Unified Regret Analysis: A key benefit of our algorithms
is that they pull a subset of the arms (referred to as the
non-competitive arms) only O(1) times. Intuitively, an
arm is non-competitive if it can be identified as sub-
optimal with high probability using only the samples
from the optimal arm k∗. This is in contrast to clas-
sical MAB algorithms where all sub-optimal arms are
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pulled O(log T) times, where T is the total number of
rounds. This is shown by analyzing the expected regret
E
[
Reg(T)

]
, which is the difference between the expected

cumulative reward obtained by using the proposed algo-
rithm and the expected cumulative reward of a genie
policy that always pulls the optimal arm k∗. In partic-
ular, we provide rigorous regret analysis for UCB-C as
summarized in the theorem below, and describe how our
proof technique can be extended to other classical MAB
algorithms.
Theorem 1 (Expected Regret Scaling): The expected
regret of the UCB-C algorithm has the following scaling
with respect to the number of rounds T:

E
[
Reg(T)

] ≤ (
C
(
θ∗) − 1

) · O(log T)

+ (
K − C

(
θ∗))O(1) (1)

where C(θ∗) is the number of competitive arms (includ-
ing the optimal arm k∗) and θ∗ is the true value
of the hidden parameter. The remaining K − C(θ∗)
arms are called non-competitive. An arm is said to be
non-competitive if there exists an ε > 0 such that
μk(θ) < μk∗(θ) for all θ ∈ �∗(ε), where �∗(ε) =
{θ ∈ � : |μk∗(θ) − μk∗(θ∗)| ≤ ε} (more details in
Section V). The exact regret upper bound with all the
constants follows from Theorem 2 and Theorem 3 in
Section V. Recall that for the standard MAB setting [1],
the regret upper bound is (K − 1)O(log T), where K is
the total number of arms. Theorem 1 reveals that with
our algorithms only C(θ∗) − 1 out of the K − 1 sub-
optimal arms are pulled O(log T) times. The other arms
are pulled only O(1) times.

4) Reduction in the Effective Number of Arms: For any
given set of reward functions μk(θ), the number C(θ∗)
of competitive arms depends on the unknown parameter
θ∗; see Figure 4 in Section V for an illustration of this
fact. We show that C(θ∗) can be much smaller than
K in many practical cases. This is because, the reward
functions (particularly that corresponding to the optimal
arm) can provide enough information about the hidden
θ∗, which in turn can help infer the sub-optimality of
several other arms. More specifically, this happens when
the reward functions are not flat around θ∗, that is, the
pre-image set of {θ ∈ �:μk(θ) = μk(θ

∗)} is small. In
the special case where the optimal arm k∗ is invertible
or has a unique maximum at μk∗(θ∗), C(θ∗) = 1 and
our algorithms can achieve O(1) regret.

5) Evaluation on Real-World Datasets: In Section V, we
present extensive simulations comparing the regret of
the proposed algorithm with previous methods such as
GLM-UCB [16] and UCB-S [19]. We also present simu-
lation results for the case where the hidden parameter θ

is a vector. In Section VII, we perform experiments on
the MOVIELENS dataset to demonstrate the applicability
of the UCB-C and TS-C algorithms. Our experimental
results show that both UCB-C and TS-C lead to sig-
nificant improvement over the performance of existing

Fig. 2. Structured bandit setup: mean rewards of different arms share a
common hidden parameter. This example illustrates a 3-armed bandit problem
with shaded regions indicating the values of θ for which the particular arm
is optimal.

bandit strategies. In particular, TS-C is shown to con-
sistently outperform all other algorithms across a wide
range of settings.

II. PROBLEM FORMULATION

Consider a multi-armed bandit setting with the set of arms
K = {1, 2, . . . , K}. At each round t, the player pulls arm kt ∈
K and observes a reward Rkt . The reward Rkt is a random
variable with mean μkt(θ) = E

[
Rkt |θ, kt

]
, where θ is a fixed,

but unknown parameter which lies in a known set �; see
Figure 2.

We denote the (unknown) true value of θ by θ∗. There are
no restrictions on the set �. Although we focus on scalar θ

in this article for brevity, the proposed algorithms and regret
analysis can be generalized to the case where we have a hid-
den parameter vector �θ = [θ1, θ2, . . . θm]. In Section V, we
present simulation results for the case of a parameter vector
θ . The mean reward functions μk(θ) = E[Rk|θ ] for k ∈ K
can be arbitrary functions of θ with no linearity or continuity
constraints imposed. While μk(θ) are known to the player, the
conditional distribution of rewards, i.e., p(Rk|θ) is not known.

We assume that the rewards Rk are sub-Gaussian with
variance proxy σ 2, i.e.,
E
[
exp(s(Rk − E[Rk]))

] ≤ exp( σ 2s2

2 ) ∀s ∈ R, and σ is
known to the player. Both assumptions are common in the
multi-armed bandit literature [10], [19], [23], [24]. In par-
ticular, the sub-Gaussianity of rewards enables us to apply
Hoeffding’s inequality, which is essential for the analysis of
regret (defined below).

The objective of the player is to select arm kt in round
t so as to maximize her cumulative reward

∑T
t=1 Rkt after T

rounds. If the player had known the hidden θ∗, then she would
always pull arm k∗ = arg maxk∈K μk(θ

∗) that yields the high-
est mean reward at θ = θ∗. We refer to k∗ as the optimal arm.
Maximizing the cumulative reward is equivalent to minimizing
the cumulative regret, which is defined as

Reg(T) �
T∑

t=1

(
μk∗

(
θ∗) − μkt

(
θ∗)) =

∑

k �=k∗
nk(T)�k,

where nk(T) is the number of times arm k is pulled in T slots
and �k � μk∗(θ∗) − μk(θ

∗) is the sub-optimality gap of arm
k. Minimizing the cumulative regret is in turn equivalent to
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minimizing nk(T), the number of times each sub-optimal arm
k �= k∗ is pulled.

Remark 1 (Connection to Classical Multi-Armed Bandits):
The classical multi-armed bandit setting, which does not
explicitly consider a structure among the mean rewards of
different arms, is a special case of the proposed structured
bandit framework. It corresponds to having a hidden param-
eter vector �θ = (θ1, θ2, . . . , θK) and the mean reward of
each arm being μk = θk. In fact, our proposed algorithm
described in Section IV reduces to standard UCB or Thompson
sampling [1], [7] in this special case.

The proposed structured bandit subsumes several previously
considered models where the rewards are assumed to be lin-
ear [15], [17], invertible and Hölder continuous [10], [12], etc.
See Section III for a detailed comparison with these works.

III. RELATED WORK

Since we do not make any assumptions on the mean reward
functions μ1(θ), μ2(θ), . . . , μK(θ), our model subsumes sev-
eral previously studied frameworks [10], [12], [15]. The
similarities and differences between our model and existing
works are discussed below.

Structured Bandits With Linear Rewards [15]: In [15], the
authors consider a similar model with a common hidden
parameter θ ∈ R, but the mean reward functions, μk(θ) are
linear in θ . Under this assumption, they design a greedy pol-
icy that achieves bounded regret. Our formulation does not
make linearity assumptions on the reward functions. In the
special case when μk(θ) are linear, our proposed algorithm
also achieves bounded regret.

Global and Regional Bandits: The papers [10], [12] general-
ize this to invertible and Hölder-continuous reward functions.
Instead of scalar θ , [12] considers M common unknown
parameters, that is, θ = (θ1, θ2, . . . , θM). Under these assump-
tions, [10], [12] demonstrate that it is possible to achieve
bounded regret through a greedy policy. In contrast, our work
makes no invertibility or continuity assumptions on the reward
functions μk(θ). In the special case when μk(θ) are invertible,
our proposed algorithm also achieves bounded regret.

Finite-Armed Generalized Linear Bandits: In the finite-
armed linear bandit setting [17], the reward function of arm xk

is �θᵀxk, which is subsumed by our formulation. For the case
when μk(θ) = g(�θᵀxk), our setting becomes the generalized
linear bandit setting [16], for some known function g. Here, θ

is the shared unknown parameter. Due to the particular form of
the mean reward functions, linear bandit algorithms construct
confidence ellipsoid for θ∗ to make decisions. This approach
cannot be easily extended to non-linear settings. Although
designed for the more general non-linear setting, our algo-
rithms demonstrate comparable regret to the GLM-UCB [16],
which is designed for linear bandits.

Minimal Exploration in Structured Bandits [20]: The
problem formulation in [20] is very similar to this article.
However, [20] assumes knowledge of the conditional reward
distribution p(Rk|θ) in addition to knowing the mean reward
functions μk(θ). It also assumes that the mappings θ → μk(θ)

are continuous. As noted before, none of these assumptions

are imposed in this article. Another major difference of [20]
with our work is that they focus on obtaining asymptotically
optimal results for the regimes where regret scales as log(T).
When all arms are non-competitive (the case where our algo-
rithms lead to O(1) regret), the solution to the optimization
problem described in [20, Th. 1] becomes 0, causing the
algorithm to get stuck in the exploitation phase. Put differ-
ently, the algorithm proposed in [20] is not applicable to cases
where C(θ∗) = 1. An important contribution of [20] is that
it provides a lower bound on the regret of structured bandit
algorithms. In fact, the lower bound presented in this article
is directly based on the lower bound in [20].

Finite-Armed Structured Bandits [19]: The work closest to
ours is [19]. They consider the same model that we consider
and propose the UCB-S algorithm, which is a UCB-style algo-
rithm for this setting. Our approach allows us to extend our
UCB-style algorithm to other classical bandit algorithms such
as Thompson sampling. In Section V and Section VII, we
extensively compare our proposed algorithms (both qualita-
tively and empirically) with the UCB-S algorithm proposed
in [19]. As observed in the simulations, UCB-S is suscepti-
ble to small changes in the mean reward functions and θ∗,
whereas the UCB-C algorithm that we propose here is seen to
be much more robust to such variations.

Connection to Information-Directed Sampling: Works such
as [25], [26] consider a similar structured setting but assume
that the conditional reward distributions p(Rk|θ) and the prior
p(θ) are known, whereas we only consider that the mean
reward functions μk(θ) = E[Rk|θ ] are known. The proposed
algorithms are based on Thompson sampling from the pos-
terior distribution of θ . Firstly, this approach will require
a good prior over θ , and secondly, updating the posterior
can be computationally expensive since it requires comput-
ing integrals over possibly high-dimensional spaces. The focus
of [25] is on worst-case regret bounds (which are typically
O(

√
T)), where the minimum gap between two arms can scale

as O(log T/T), while [26] gives gap-dependent regret bounds
in regimes where the regret scales as O(log T). In addition
to providing gap-dependent regret bounds, we also identify
regimes where it is possible to achieve O(1) regret.

Best-Arm Identification: In several applications such as as
hyper-parameter optimization [27] and crowd-sourced rank-
ing [28], [29], [30], the objective is to maximize the probability
of identifying the arm with the highest expected reward within
a given time budget of T slots instead of maximizing the
cumulative reward; that is, the focus is on exploration rather
than exploitation. Best-arm identification started to be stud-
ied fairly recently [31], [32], [33]. A variant of the fixed-time
budget setting is the fixed-confidence setting [24], [34], [35],
[36], [37], where the aim is to minimize the number of slots
required to reach a δ-error in identifying the best arm. Very few
best-arm identification works consider structured rewards [6],
[38], [39], [40], and they mostly assume linear rewards. The
algorithm design and analysis tools are quite different in
the best-armed bandit identification problem as compared to
regret minimization. Thus, extending our approach to best-
arm identification would be a non-trivial future research
direction.
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Fig. 3. Illustration of the steps of the proposed algorithm. In step 1, for each arm k we find the set of θ such that |μk(θ) − μ̂k(t)| <
√

2ασ 2 log t/nk(t)
(shaded in gray in part (a)). The intersection of these sets gives the confidence set �̂t shown in part (b). Next, we observe that the mean reward μ3(θ) of
Arm 3 (shown in green) cannot be optimal if the unknown parameter θ∗ lies in set �̂t . Thus, it is declared as �̂t-non-competitive and not considered in Step
3. In step 3, we pull one of the �̂t-competitive arms (shown in (c)) using a classical bandit algorithm such as UCB, Thompson Sampling, KL-UCB, etc.

IV. PROPOSED ALGORITHM: ALGORITHM-C

For the problem formulation described in Section II, we pro-
pose the following three-step algorithm called ALGORITHM-
Competitive, or, in short, ALGORITHM-C. Figure 3 illustrates
the algorithm steps for the mean reward functions shown in
Figure 2. Step 3 can employ any classical multi-armed bandit
algorithm such as UCB or Thompson Sampling (TS), which
we denote by ALGORITHM. Thus, we give a unified approach
to translate any classical bandit algorithm to the structured
bandit setting. The formal description of ALGORITHM-C with
UCB and TS as final steps is given in Algorithm 1 and
Algorithm 2, respectively.

At each round t + 1, the algorithm performs the following
steps.

Step 1 (Constructing a Confidence Set, �̂t): From the sam-
ples observed till round t, we define the confidence set as
follows:

�̂t =
⎧
⎨

⎩
θ : ∀k ∈ K,

∣∣μk(θ) − μ̂k(t)
∣∣ <

√
2ασ 2 log t

nk(t)

⎫
⎬

⎭
.

Here, μ̂k(t) is the empirical mean of rewards obtained from
the nk(t) pulls of arm k. For each arm k, we construct a con-
fidence set of θ such that the true mean μk(θ) is within an

interval of size
√

2ασ 2 log t
nk(t)

from μ̂k(t). This is illustrated by the
error bars along the y-axis in Figure 3(a), with the correspond-
ing confidence sets shown in grey for each arm. Taking the
intersection of these K confidence sets gives us �̂t, wherein
θ lies with high probability, as shown in Figure 3(b).

Step 2 (Finding the Set Ct of �̂t-Competitive Arms): We let
Ct denote the set of �̂t-Competitive arms at round t, defined
as follows.

Definition 1 (�̂t-Competitive Arm): An arm k is said to be
�̂t-Competitive if its mean reward is the highest among all
arms for some θ ∈ �̂t; i.e., ∃θ ∈ �̂t such that μk(θ) =
max	∈K μ	(θ).

Definition 2 (�̂t-Non-competitive Arm): An arm k is said
to be �̂t-Non-competitive if it is not �̂t-Competitive; i.e., if
μk(θ) < max	∈K μ	(θ) for all θ ∈ �̂t.

If an arm is �̂t-Non-competitive, then it cannot be optimal
if the true parameter lies inside the confidence set �̂t. These
�̂t-Non-competitive arms are not considered in Step 3 of the
algorithm for round t + 1. However, these arms can be �̂t-
Competitive in subsequent rounds; see also Remark 2. For
example, in Figure 3(b), the mean reward of Arm 3 (shown in
green) is strictly lower than the two other arms for all θ ∈ �̂t.
Hence, this arm is declared as �̂t-Non-competitive and only
Arms 1 and 2 are included in the competitive set Ct. In the
rare case when �̂t is empty, we set Ct = {1, . . . , K} and go
directly to step 3 below.

Step 3 (Pull an Arm From the set Ct Using a Classical
Bandit Algorithm): At round t + 1, we choose one of the
�̂t-Competitive arms using any classical bandit ALGORITHM

(for, e.g., UCB, Thompson sampling, KL-UCB, or any algo-
rithm to be developed for the classical bandit framework
which does not explicitly model a structure connecting the
rewards of different arms). Formal descriptions for UCB-C
and TS-C, i.e., the structured bandit versions on UCB [1], [7]
and Thompson Sampling [21] algorithms, are presented in
Algorithm 1 and Algorithm 2, respectively. The ability to
employ any bandit algorithm in its last step is an important
advantage of our algorithm. In particular, Thompson sampling
has attracted a lot of attention [8], [21], [41], [42] due to its
superior empirical performance. Extending it to the structured
bandit setting results in significant regret improvement over
previously proposed structured bandit algorithms.

Remark 2 (Connection to Successive Elimination
Algorithms for Best-Arm Identification): Note that the
empirically competitive set is updated at every round
t. Thus, an arm that is empirically non-competitive at
some round τ can be empirically competitive in subse-
quent rounds. Hence, the proposed algorithm is different
from successive elimination methods used for best-arm
identification [24], [31], [32], [33]. Unlike successive elimi-
nation methods, the proposed algorithm does not permanently
eliminate empirically non-competitive arms but allows them
to become competitive again in subsequent rounds.

Remark 3 (Comparison With UCB-S Proposed in [19]):
The paper [19] proposes an algorithm called UCB-S for the
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Algorithm 1 UCB-Competitive (UCB-C)
1: Input: Reward Functions {μ1, μ2 . . . μK}
2: Initialize: nk = 0 for all k ∈ {1, 2, . . . K}
3: for each round t + 1 do
4: Confidence set construction:

�̂t =
⎧
⎨

⎩
θ :∀k ∈ K, | μk(θ) − μ̂k(t) |<

√
2ασ 2 log t

nk(t)

⎫
⎬

⎭
.

If �̂t is an empty set, then define Ct = {1, . . . , K} and go to
step 6

5: Define competitive set Ct:

Ct =
{

k:μk(θ) = max
	∈K

μ	(θ) for some θ ∈ �̂t

}
.

6: UCB among competitive arms

kt+1 = arg max
k∈Ct

⎛

⎝μ̂k(t) +
√

2ασ 2 log t

nk(t)

⎞

⎠.

7: Update empirical mean μ̂k(t + 1) and nk(t + 1) for arm kt+1.
8: end for

Algorithm 2 Competitive Thompson Samp. (TS-C)
1: Steps 1 to 5 as in Algorithm 1
2: Apply Thompson sampling on Ct:
for k ∈ Ct do

Sample Sk,t ∼ N
(
μ̂k(t),

βσ 2

nk(t)

)
.

end for
kt+1 = arg maxk∈Ct Sk,t
3: Update empirical mean, μ̂k and nk for arm kt+1.

same structured bandit framework considered in this work.
UCB-S constructs the confidence set �̂t in the same way
as Step 1 described above. It then pulls the arm k =
arg maxk∈K sup

θ∈�̂t
μk(θ). Taking the supremum of μk(θ)

over θ makes UCB-S sensitive to small changes in μk(θ)

and to the confidence set �̂t. Our approach of identifying
competitive arms is more robust, as observed in Section V
and Section VII. Moreover, the flexibility of using Thompson
Sampling in Step 3 results in a significant reduction in regret
over UCB-S. As noted in [19], the approach used to design
UCB-S cannot be directly generalized to Thompson Sampling
and other bandit algorithms.

Remark 4 (Computational Complexity of ALGORITHM-C):
The computational complexity of ALGORITHM-C depends
on the construction of �̂t and identifying �̂t-competitive arms.
The algorithm is easy to implement in cases where the set
� is small or in situations where the pre-image of mean
reward functions μk(θ) can be easily computed. For our sim-
ulations and experiments, we discretize the set � wherever �

is uncountable.

V. REGRET ANALYSIS AND INSIGHTS

In this section, we evaluate the performance of the UCB-
C algorithm through a finite-time analysis of the expected

cumulative regret defined as

E
[
Reg(T)

] =
K∑

k=1

E[nk(T)]�k, (2)

where �k = μk∗(θ∗) − μk(θ
∗) and nk(T) is the number of

times arm k is pulled in a total of T time steps. To ana-
lyze the expected regret, we need to determine E[nk(T)] for
each sub-optimal arm k �= k∗. We derive E[nk(T)] sepa-
rately for competitive and non-competitive arms. Our proof
presents a novel technique to show that each non-competitive
arm is pulled only O(1) times; i.e., our algorithms stop pulling
non-competitive arms after some finite time. To establish the
fact that competitive arms are pulled O(log T) times each,
we prove that the proposed algorithm effectively reduces a
K-armed bandit problem to a C(θ∗)-armed bandit problem,
allowing us to extend the regret analysis of the underly-
ing classical multi-armed bandit algorithm (UCB, Thompson
Sampling, etc.).

A. Competitive and Non-Competitive Arms

In Section IV, we defined the notion of competitiveness of
arms with respect to the confidence set �̂t at a fixed round
t. For our regret analysis, we need asymptotic notions of
competitiveness of arms, which are given below.

Definition 3 (Non-Competitive and Competitive Arms): For
any ε > 0, let

�∗(ε) = {
θ :

∣∣μk∗
(
θ∗) − μk∗(θ)

∣∣ < ε
}
.

An arm k is said to be non-competitive if there exists an ε > 0
such that k is not the optimal arm for any θ ∈ �∗(ε); i.e., if
μk(θ) < max	∈K μ	(θ) for all θ ∈ �∗(ε). Otherwise, the arm
is said to be competitive; i.e., if for all ε > 0, ∃θ ∈ �∗(ε) such
that μk(θ) = max	∈K μ	(θ). The number of competitive arms
is denoted by C(θ∗).

Since the optimal arm k∗ is competitive by definition, we
have

1 ≤ C
(
θ∗) ≤ K.

We can think of �∗(ε) as a confidence set for θ obtained
from the samples of the best arm k∗. To intuitively understand
the meaning of non-competitiveness, recall that the observed
rewards μ̂k(t) from the arms help infer that θ∗ lies in the
confidence set �̂t with high probability. The observed reward
μ̂k∗(t) of arm k∗ will dominate the construction of the con-
fidence set �̂t because a good multi-armed bandit strategy
pulls the optimal arm O(t) times, while other arms are pulled
at most O(log t) times. Thus, for any ε > 0, we expect the
confidence set �̂t to converge to �∗(ε) as the number nk∗(t)
of pulls for the optimal arm gets larger. As a result, if a
sub-optimal arm k is non-competitive as per the definition
above, i.e., μk(θ) < max	∈K μ	(θ) for all θ ∈ �∗(ε), then the
proposed algorithm will identify k as �̂t-non-competitive (and
thus not pull it) with increasing probability at every round t.
In fact, our regret analysis shows that the likelihood of a non-
competitive arm being pulled at time t decays as t−1−γ for
some γ > 0, leading to such arms being pulled only finitely
many times.
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Fig. 4. (a) Illustration of how the number of competitive arms C(θ∗) depends
on the value of θ∗ and the mean reward functions, when θ∗ = 3. To identify
the competitive arms, we first find the set �∗(ε) = {θ :|μk∗ (θ∗) − μk∗ (θ)| <

ε} for small ε > 0. Since Arm 3 (shown in green) is sub-optimal for all
θ ∈ �∗(ε) it is non-competitive. As a result, C(θ∗) = C(3) = 2. (b) The
number of competitive arms depend on the value of θ∗. The grey region
illustrates range of θ∗ where C(θ∗) = 1 and the yellow region indicates the
range of values for which C(θ∗) = 2.

We note that the number of competitive C(θ∗) arms is a
function of the unknown parameter θ∗ and the mean reward
functions μk(θ). Figure 4(a) illustrates how C(θ∗) is deter-
mined for the set of reward functions in Figure 2 and when
θ∗ = 3. If θ∗ = 3, arm 2 (shown in red) is optimal. The corre-
sponding confidence set �∗(ε) = [2 − 2ε

3 , 4 + 2ε
3 ] is a slightly

expanded version of the range of θ corresponding to the flat
part of the reward function around θ∗. Arm 3 (shown in green)
has sub-optimal mean reward μ3(θ) for all θ ∈ �∗(ε), and
thus it is non-competitive. On the other hand, Arm 1 (shown
in blue) is competitive. Therefore, the number of competitive
arms C(θ∗) = 2 when θ∗ = 3. Figure 4(b) shows how C(θ∗)
changes with the value of θ∗. When θ∗ is outside of [2, 4], i.e.,
the flat portion of Arm 2, �∗(ε) is a much smaller set and it is
possible to show that both Arms 1 and 3 are non-competitive.
Therefore, the number of competitive arms C(θ∗) = 1 when
θ∗ is outside [2, 4].

B. Upper Bounds on Regret

Definition 4 (Degree of Non-Competitiveness, εk): The
degree of non-competitiveness εk of a non-competitive arm
k is the largest ε for which μk(θ) < max	∈K μ	(θ) for all
θ ∈ �∗(ε), where �∗(ε) = {θ : |μk∗(θ∗) − μk∗(θ)| < ε}.
In other words, εk is the largest ε for which arm k is
�∗(ε)-non-competitive.

Our first result shows that the expected pulls for non-
competitive arms are bounded with respect to time T . Arms
with a larger degree of non-competitiveness εk are pulled fewer
times.

Theorem 2 [Expected Pulls of Each of the K − C(θ∗) Non-
Competitive Arms]: If arm k is non-competitive, then the
number of times it is pulled by UCB-C is upper bounded as

E[nk(T)] ≤ Kt0 +
T∑

t=1

2Kt1−α + K3
T∑

t=Kt0

6
( t

K

)2−α

= O(1) for α > 3. (3)

Here,

t0 = inf

⎧
⎨

⎩
τ ≥ 2:�min, εk ≥ 4

√
Kασ 2 log τ

τ

⎫
⎬

⎭
;

�min = min
k∈K

�k.

The O(1) constant depends on the degree of competitiveness
εk through t0. If εk is large, it means that t0 is small and hence
E[nk(T)] is bounded above by a small constant. The second
and third terms in (3) sum up to a constant for α > 3, β > 1.

The next result shows that expected pulls for any competi-
tive arm is O(log T). This result holds for any sub-optimal arm,
but for non-competitive arms we have a stronger upper bound
(of O(1)) as given in Theorem 2. Regret analysis of UCB-C
is presented in Appendix E. In Appendix D, we present a uni-
fied technique to prove results for any other ALGORITHM-C,
going beyond UCB-C. We present the regret analysis of TS-C
(with Beta prior and K = 2) in Appendix F.

Theorem 3 [Expected Pulls for Each of the C(θ∗) − 1
Competitive Sub-Optimal Arms]: The expected number of
times a competitive sub-optimal arm is pulled by UCB-C
Algorithm is upper bounded as

E[nk(T)] ≤ 8ασ 2 log T

�2
k

+ 2α

α − 2
+

T∑

t=1

2Kt1−α

= O(log T) for α > 2,

Plugging the results of Theorem 2 and Theorem 3 in (2)
yields the bound on the expected regret in Theorem 1. Note
that in this work we consider a finite-armed setting where the
number of arms K is a fixed constant that does not scale with T
– we focus on understanding how the cumulative regret scales
with T while K remains constant.

C. Proof Sketch

We now present the proof sketch for Theorem 2. The detail
proof is given in the Appendix. For UCB-C, the proof can
be divided into three steps presented below. The analysis is
unique to our paper and allows us to prove that the UCB-
C algorithm pulls the non-competitive arms only O(1) times.
The key strength of our approach is that the analysis can be
easily extended to any ALGORITHM-C.

i) The Probability of arm k∗ Being �̂t-Non-Competitive is
Small: Observe that θ∗ ∈ �̂t implies that k∗ is �̂t-competitive.
Let E1(t) denote the event that the optimal arm k∗ is �̂t-non-
competitive at round t. As we obtain more and more samples,
the probability of θ∗ lying outside �̂t decreases with t. Using
this, we show that (viz. Lemma 3 in the Appendix)

Pr(E1(t)) ≤ 2Kt1−α. (4)

This enable us to bound the expected number of pulls of a
competitive arm as follows.

E[nk(t)] ≤
T∑

t=1

Pr(E1(t)) +
T−1∑

t=0

Pr(Ik(t) > Ik∗(t), kt+1 = k).

(5)

In view of (4), the first term in (5) sums up to a constant for
α > 2. The term Ik(t) represents the UCB Index if the last

step in the algorithm is UCB, i.e., Ik(t) = μ̂k(t) +
√

2ασ 2 log t
nk(t)

.
The analysis of second term is exactly same as that for the
UCB algorithm [7]. Due to this, the upper bound on expected
number of pulls of competitive arms using UCB-C has the
same pre-log constants as UCB.
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ii) The Probability of a Non-Competitive Arm Being Pulled
Jointly With the Event That nk∗(t) > t/K is Small: Consider
the joint event that a non-competitive arm with parameter εk

is pulled at round t + 1 and the number of pulls of optimal
arm till round t is at least t/K. In Lemma 4 in Appendix C
we show that this event is unlikely. Intuitively, this is because
when arm k∗ is pulled sufficiently many times, the confidence
interval of mean of optimal arm is unlikely to contain any
value outside [μk∗(θ∗) − εk, μk∗(θ∗) + εk]. Due to this, with
high probability, arm k is eliminated for round t + 1 in step 2
of the algorithm itself. This leads to the result of Lemma 4 in
the Appendix,

Pr
(

kt+1 = k, nk∗(t) >
t

K

)
≤ 2t1−α ∀t > t0 (6)

iii) The Probability That a Sub-Optimal Arm is Pulled More
Than t

K Times Till Round t is Small: In Lemma 6 in the
Appendix, we show that

Pr
(

nk(t) >
t

K

)
≤ 6K2

( t

K

)2−α

∀t > Kt0. (7)

This result is specific to the last step used in ALGORITHM-C.
To show (7) we first derive an intermediate result for UCB-C
which states that

Pr(kt+1 = k, nk(t) ≥ s) ≤ (2K + 4)t1−α for s ≥ t

2K
.

Intuitively, if we have large number of samples of arm k, its
UCB index is likely to be close to μk, which is unlikely to be
larger than the UCB index of optimal arm k∗ (which is around
μk∗ if nk∗ is also large, or even higher if nk∗ is small due to
the exploration term added in UCB index).

The analysis of steps ii) and iii) are unique to our paper
and help us obtain the O(1) regret for non-competitive arms.
Using these results, we can write the expected number of pulls
for a non-competitive arm as

E[nk(t)] ≤ Kt0 +
T−1∑

t=Kt0

Pr

(
kt+1 = k, nk∗(t) = max

k∈K
nk(t)

)

+
T−1∑

t=Kt0

∑

k∈K,k �=k∗
Pr

(
nk(t) = max

k∈K
nk(t)

)
. (8)

The second term in (8) is bounded through step ii) (viz. (6))
and the third term in (8) is bounded for each sub-optimal arm
through step iii) (viz. (7)). Together, steps ii) and iii) imply
that the expected number of pulls for a non-competitive arm
is bounded.

D. Discussion on Regret Bounds

Reduction in the Effective Number of Arms: The classical
multi-armed bandit algorithms, which are agnostic to the struc-
ture of the problem, pull each of the (K − 1) sub-optimal
arms O(log T) times. In contrast, our UCB-C algorithm pulls
only a subset of the sub-optimal arms O(log T) times, with the
rest (i.e., non-competitive arms) being pulled only O(1) times.
More precisely, our algorithms pull each of the C(θ∗) − 1 ≤
K − 1 arms that are competitive but sub-optimal O(log T)

times. It is important to note that the upper bound on the

Fig. 5. (left) Arm 2 is optimal for θ∗ ∈ [0, 1], Arm 3 is optimal for
θ∗ ∈ [1, 2.5] and Arm 1 is optimal for θ∗ ∈ [2.5, 6], (right) the number
of competitive arms for different ranges of θ shaded in grey (C(θ) = 1),
yellow (C(θ) = 2) and white (C(θ) = 3).

pulls of these competitive arms by UCB-C has the same pre-
log constants with that of the UCB, as shown in Theorem 1.
Consequently, the ability of UCB-C to reduce the pulls of non-
competitive arms from O(log T) to O(1) results directly in it
achieving a smaller cumulative regret than its non-structured
counterpart.

The number of competitive arms, i.e., C(θ∗), depends on
the functions μ1(θ), . . . , μK(θ) as well as the hidden param-
eter θ∗. Depending on θ∗, it is possible to have C(θ∗) = 1,
or C(θ∗) = K, or any number in between. When C(θ∗) = 1,
all sub-optimal arms are non-competitive due to which our
proposed algorithms achieve O(1) regret. What makes our
algorithms appealing is the fact that even though they do not
explicitly try to predict the set (or, the number) of competitive
arms, they stop pulling any non-competitive arm after finitely
many steps.

Empirical Performance of ALGORITHM-C: In Figure 6
we compare the regret of ALGORITHM-C against the regret
of ALGORITHM (UCB/TS/KL-UCB). We plot the cumula-
tive regret attained under ALGORITHM-C vs. ALGORITHM

of the example shown in Figure 5 for three different values of
θ∗:0.5, 1.5 and 2.6. Refer to Figure 5 to see that C = 1, 2 and
3 for θ∗ = 0.5,1.5 and 2.6, respectively. Due to this, we see
that ALGORITHM-C achieves bounded regret for θ∗ = 0.5,
and reduced regret relative to ALGORITHM for θ∗ = 1.5 as
only one arm is pulled O(log T) times. For θ∗ = 2.6, even
though C = 3 (i.e., all arms are competitive), ALGORITHM-C
achieves empirically smaller regret than ALGORITHM. We also
see the advantage of using TS-C and KL-UCB-C over UCB-C
in Figure 6 as Thompson Sampling and KL-UCB are known
to outperform UCB empirically. For all the simulations, we
set α = 3, β = 1. Rewards are drawn from the distribution
N (μk(θ

∗), 4), i.e., σ = 2. We average the regret over 100
experiments. For a given experiment, all algorithms use the
same reward realizations.

Performance Comparison With UCB-S: In the first row of
Figure 6, we also plot the performance of the UCB-S algo-
rithm proposed in [19], alongside UCB and UCB-C. The
UCB-S algorithm constructs the confidence set �̂t just like
UCB-C, and then in the next step selects the arm kt+1 =
arg maxk∈K sup

θ∈�̂t
μk(θ). Informally, it finds the maximum

possible mean reward μk(θ) over θ ∈ �̂ for each arm k. As a
result, UCB-S tends to favor pulling arms that have the largest
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Fig. 6. Cumulative regret of ALGORITHM-C vs. ALGORITHM (UCB in row
1, TS in row 2 and KL-UCB in row 3) for the setting in Figure 5. The number
of competitive arms is C(θ∗) = 1 in the first column, C(θ∗) = 2 in second
column and C(θ∗) = 3 in third column. Unlike UCB-S which only extends
UCB, our approach generalizes any classical bandit algorithm such as UCB,
TS, and KL-UCB to the structured bandit setting.

Fig. 7. Arm 2 is optimal for θ∗ ∈ [0, 3] and Arm 1 is optimal for θ∗ ∈ [3, 5].
For θ ∈ [0, 3] ∪ [5, 6], C(θ) = 1 and C(θ) = 2 for θ ∈ [3, 5].

Fig. 8. Cumulative regret of UCB,UCB-S,UCB-C and TS-C versus θ∗ for
the example in Figure 7 over 50000 runs. UCB-S is sensitive to the value
of θ∗ and the reward functions as it is seen to achieve a small regret for
θ∗ = 2.75, but obtains a worse regret than UCB for θ∗ = 3.25.

mean reward for θ ∈ �∗(ε). This bias renders the performance
of UCB-S to depend heavily on θ∗. When θ∗ = 0.5, UCB-S
has the smallest regret among the three algorithms compared
in Figure 6, but when θ∗ = 2.6 it gives even worse regret than
UCB. A similar observation can be made in another simulation
setting described below.

Figure 8 compares UCB, UCB-S, UCB-C and TS-C for the
functions shown in Figure 7. We plot the cumulative regret
after 50000 rounds for different values of θ∗ ∈ [0, 5] and

Fig. 9. Cumulative regret of UCB, GLM-UCB, UCB-C and TS-C in the linear
bandit setting, with x1 = (2, 1), x2 = (1, 1.5) and x3 = (3, −1). Mean rewards
are (�θ∗)ᵀxk , with θ∗ = (0.9, 0.9) in (a) and θ∗ = (0.5, 0.5) in (b). While
UCB-C and TS-C are designed for a much broader class of problems, they
show competitive performance relative to GLM-UCB, which is a specialized
algorithm for the linear bandit setting.

observe that TS-C performs the best for most θ∗ values. As
before, the performance of UCB-S varies significantly with
θ∗. In particular, UCB-S has the smallest regret of all when
θ∗ = 2.75, but achieves worse regret even compared to UCB
when θ∗ = 3.25. On the other hand, our UCB-C performs
better than or at least as good as UCB for all θ∗. While UCB-
S also achieves the regret bound of Theorem 1, the ability to
employ any ALGORITHM in the last step of ALGORITHM-C
is a key advantage over UCB-S, as Thompson Sampling and
KL-UCB can have significantly better empirical performance
over UCB.

Comparison in Linear Bandit and Multi-Dimensional θ

Settings: As highlighted in Section II, our problem formula-
tion allows θ to be multi-dimensional as well. Figure 9 shows
the performance of UCB-C and TS-C relative to GLM-UCB in
a linear bandit setting. In a linear bandit setting, mean reward
of arm k is μk(θ

∗) = (θ∗)ᵀxk. Here xk is a vector associated
with arm k, which is known to the player. The parameter θ∗
is unknown to the player, and hence it fits in our structured
bandit framework. It is important to see that while UCB-C
and TS-C are designed for a much broader class of problems,
they still show competitive performance relative to special-
ized algorithms (i.e., GLM-UCB) in the linear bandit setting
(Figure 9). Figure 10 shows a setting in which θ is multi-
dimensional, but the reward mappings are non-linear and hence
the setting is not captured through a linear bandit framework.
Our results in Figure 10 demonstrate that the UCB-C and TS-
C algorithms work in such settings as well while providing
significant improvements over UCB in certain cases.

E. When Do We Get Bounded Regret?

When C(θ∗) = 1, all sub-optimal arms are pulled only O(1)

times, leading to a bounded regret. Cases with C(θ∗) = 1
can arise quite often in practical settings. For example, when
functions are continuous or � is countable, this occurs when
the optimal arm k∗ is invertible, or has a unique maximum at
μk∗(θ∗), or any case where the set �∗ = {θ :μk∗(θ) = μk∗(θ∗)}
is a singleton. These cases lead to all sub-optimal arms
being non-competitive, whence UCB-C achieves bounded (i.e.,
O(1)) regret. There are more general scenarios where bounded
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Fig. 10. Cumulative regret for UCB,UCB-C and TS-C for the case in which
θ ∈ [ − 1, 1] × [ − 1, 1]. The reward functions are μ1(�θ) = θ1 + θ2, μ2(�θ) =
θ1−θ2, and μ3(�θ) = max(|θ1|, |θ2|). The true parameter �θ∗ is (0.9, 0.2) in (a)
and (−0.2, 0.1) in (b). The value of C(θ∗) is 1, 3 in (a) and (b) respectively.

regret is possible. To formally present such cases, we utilize
a lower bound obtained in [20].

Proposition 1 (Lower Bound): For any uniformly good
algorithm [1], and for any θ ∈ �, we have:

lim inf
T→∞

Reg(T)

log T
≥ L(θ), where

L(θ) =
{

0 if C̃(θ∗) = 1,

> 0 if C̃(θ∗) > 1.

An algorithm π is uniformly good if Regπ (T, θ) = o(Ta) for
all a > 0 and all θ ∈ �. Here C̃(θ∗) is the number of arms
that are �∗-Competitive, with �∗ being the set {θ : μk∗(θ) =
μk∗(θ∗)}.

This suggests that bounded regret is possible only when
C̃(θ) = 1 and logarithmic regret is unavoidable in all other
cases. The proof of this proposition follows from a bound
derived in [20] and it is given in Appendix B.

There is a subtle difference between C(θ∗) and C̃(θ∗). This
arises in corner case situations when a �∗-Non-Competitive
arm is competitive. Note that the set �∗ = {θ : μk∗(θ∗) =
μk∗(θ)} can be interpreted as the confidence set obtained when
we pull the optimal arm k∗ infinitely many times. In practice,
if we sample the optimal arm a large number of times, we can
only obtain the confidence set �∗(ε) = {θ :|μk∗(θ∗)−μk∗(θ)| <

ε} for some ε > 0. Due to this, there is a difference between
C̃(θ∗) and C(θ∗). Consider the case shown in Figure 11 with
θ∗ = 3. For θ∗ = 3, Arm 1 is optimal. In this case �∗ = [2, 4].
For all values of θ ∈ �∗, μ2(θ) ≤ μ1(θ) and hence Arm
2 is �∗-Non-Competitive. However, for any ε > 0, Arm 2
is �∗(ε)-competitive and hence Competitive. Due to this, we
have C̃(3) = 1 and C(3) = 2 in this case.

If � is a countable set, a �∗-Non-Competitive arm is always
�∗(ε)-Non-Competitive, that is, C̃(θ∗) = C(θ∗). This occurs
because one can always choose ε = min{θ∈�\�∗}{|μk∗(θ∗) −
μk∗(θ)|} so that a �∗-Non-Competitive arm is also �∗(ε)-Non-
Competitive. This shows that when � is a countable set (which
is true for most practical situations where the hidden param-
eter θ is discrete), UCB-C achieves bounded regret whenever
possible, that is, whenever C̃(θ∗) = 1. While this property
holds true for the case when � is a countable set, there can

Fig. 11. For values of θ ∈ [2, 4] Arm 2 is �∗-Non-Competitive but it is still
Competitive. As for any set slightly bigger than �, i.e., �∗(ε), it is �∗(ε)-
Competitive. Hence this is one of the corner case situations where C(θ) and
C̃(θ∗) are different.

Fig. 12. In this example, Arm 3 has μ3(θ∗) = 1 for θ∗ < 3 and μ3(θ∗) = 4
for θ∗ ≥ 3. See that Arm 3 is sub-optimal for all values of θ∗, and hence is
non-competitive for all θ∗. However, a few pulls of Arm 3 can still be useful
in getting some information on whether θ∗ ≥ 3 or θ∗ < 3.

be more general cases where C(θ) = C̃(θ). Our algorithms
and regret analysis are valid regardless of � being countable
or not.

VI. ADDITIONAL EXPLORATION OF NON-COMPETITIVE

BUT INFORMATIVE ARMS

The previous discussion shows that the UCB-C and TS-C
algorithms enable substantial reductions in the effective num-
ber of arms and the expected cumulative regret. A strength of
the proposed algorithms that can be a weakness in some cases
is that they stop pulling non-competitive arms that are unlikely
to be optimal after some finite number of steps. Although an
arm may be non-competitive in terms of its reward yield, it can
be useful in inferring the hidden parameter θ∗, which in turn
may help reduce the regret incurred in subsequent steps. For
instance, consider the example shown in Figure 12. Here, Arm
3 is sub-optimal for all values of θ∗ ∈ [0, 6] and is never pulled
by UCB-C, but it can help identify whether θ∗ ≥ 3 or θ∗ < 3.
Motivated by this, we propose an add-on to Algorithm-C,
named as the Informative Algorithm-C (Algorithm 3), that
takes the informativeness of arms into account and performs
additional exploration of the most informative arm with a
probability that decreases over time.

A. Informativeness of an Arm

Intuitively, an arm is informative if it helps us to obtain
information about the hidden parameter θ∗. At the end of
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round t, we know a confidence interval �̂t for the hidden
parameter θ∗. We aim to quantify the informativeness of an
arm with respect to this confidence set �̂t. For instance, if
�̂t ∈ [2, 4] in Figure 12, we see that the reward function of
Arm 3 μ3(θ) has high variance and it suggests that the sam-
ples of Arm 3 could be helpful in knowing about θ∗. On the
other hand, samples of Arm 2 will not be useful in identifying
θ∗ if �̂t = [2, 4]. There can be several ways of defining the
informativeness Ik(�̂t) of an arm with respect to set �̂t. We
consider the following two metrics in this article.

KL-Divergence: Assuming that θ has a uniform distribu-
tion in �̂t, we can define the informativeness Ik(�̂t) of an
arm as the expected KL-Divergence between two samples
of arm k, i.e., Ik(�̂t) = Eθ1,θ2 [DKL(fRk(Rk|θ1), fRk(Rk|θ2))].
Our intuition here is that larger expected KL-divergence for
an arm indicates that samples from it have substantially dif-
ferent distributions under different θ∗ values, which in turn
indicates that those samples will be useful in inferring the
true value of θ∗. Assuming that Pr(Rk|θ) is a Gaussian distri-
bution with mean μk(θ) and variance σ 2, then the expected
KL-Divergence can be simplified as

Eθ1,θ2

[
DKL

(
fRk(Rk|θ1), fRk(Rk|θ2)

)]

= Eθ1,θ2

[
DKL

(
N
(
μk(θ1), σ

2
)
,N

(
μk(θ2), σ

2
))]

= Eθ1,θ2

[
1

2
(μk(θ1) − μk(θ2))

2
]

=
∫

�̂t

(
μk(θ) −

∫

�̂t

μk(θ)U(θ)dθ

)2

U(θ)dθ = Vk

(
�̂t

)
,

where, Vk(�̂t) is the variance in the mean reward function
μk(θ), calculated when θ is uniformly distributed over the
current confidence set �̂t. Observe that the metric Ik(�̂t) =
Vk(�̂t) is easy to evaluate given the functions μk(θ) and the
confidence set obtained from Step 1.

Entropy: Alternatively, μk(θ) can be viewed as a
derived random variable of θ , where θ is uniformly dis-
tributed over the current confidence set �̂t. The infor-
mativeness of arm k can then be defined as Ik(�̂t) =
H(μk(θ)). When μk(θ) is discrete this will be the Shannon
entropy H(μk(θ)) = ∑

θ∈�̂t
− Pr(μk(θ)) log(Pr(μk(θ))),

while for continuous μk(θ) it will be the differential entropy
H(μk(θ)) = ∫

�̂t
−fμk(θ) log(fμk(θ))d(μk(θ)) where fμk(θ) is the

probability density function of the derived random variable
μk(θ). Observe that differential entropy takes into account the
shape as well as the range of μk(θ). For example, if two reward
functions are linear in θ , the one with a higher slope will
have higher differential entropy, as we would desire from an
informativeness metric. Evaluating the differential entropy in
μk(θ), i.e., can be computationally challenging.

Other than the two metrics described above, there might be
alternative (and potentially more complicated) ways of quanti-
fying the informativeness of an arm. Another candidate would
be the information gain metric proposed in [25], which defines
informativeness in terms of identifying the best arm, rather
than inferring θ∗. However, as already mentioned in [25] by
the authors, information gain is computationally challenging

Algorithm 3 Informative UCB-C
1: Steps 1 to 5 as in Algorithm 1
2: Identify k

�̂t
, i.e., the most informative arm for set �̂t:

k
�̂t

= arg maxk∈K Ik(�̂t)

3: Play informative arm with probability γ

td
, play UCB-C

otherwise:

kt+1 =

⎧
⎪⎨

⎪⎩

k
�̂t

w.p. γ

td
,

arg maxk∈Ct

(

μ̂k(t) +
√

2ασ 2 log t
nk(t)

)

w.p. 1 − γ

td

4: Update empirical mean, μ̂k and nk for arm kt+1.

to implement in practice outside of certain specific class of
problems where prior distribution of θ is Beta or Gaussian.

B. Proposed Informative Algorithm-C and Its Expected
Regret

Given an informativeness metric Ik(�̂t), we define the
most informative arm for the confidence set �̂t as k

�̂t
=

arg maxk∈K Ik(�̂t). At round t, Informative Algorithm-C
(described in Algorithm 3) picks the most informative arm
k
�̂t

with probability γ

td
where d > 1, and otherwise uses

UCB-C or TS-C to pull one of the competitive arms. Here,
γ and d are hyperparameters of the Informative UCB-C algo-
rithm. Larger γ or small d results in more exploration during
the initial rounds. Setting the probability of pulling the most
informative arm as γ

td
ensures that the algorithm pulls the

informative arms more frequently at the beginning. This helps
shrink �̂t faster. Setting d > 1 ensures that informative
but non-competitive arms are only pulled

∑∞
t=1

γ

td
= O(1)

times in expectation. Thus, asymptotically the algorithm will
behave exactly as the underlying Algorithm-C and the regret
of Informative-Algorithm-C is at most an O(1) constant worse
than the Algorithm-C algorithm.

C. Simulation Results

We implement two versions of Informative-Algorithm-C,
namely ALGORITHM-C-KLdiv and ALGORITHM-C-Entropy,
which use the KL-divergence and Entropy metrics respec-
tively to identify the most informative arm k

�̂t
at round t.

ALGORITHM-C-KLdiv picks the arm with highest variance in
�̂t, i.e., Ik(�̂t) = arg maxk Vk(�̂t). ALGORITHM-C-Entropy
picks an arm whose mean reward function, μk(θ), has largest
shannon entropy for θ ∈ �̂t (assuming θ to be a uniform
random variable in �̂t). As a baseline for assessing the effec-
tiveness of the informativeness metrics, we also implement
ALGORITHM-C-Random which selects k

�̂t
by sampling one

of the arms uniformly at random from the set of all arms K
at round t.

Figure 13 shows the cumulative regret of the aforementioned
algorithms for the reward functions shown in Figure 12, where
the hidden parameter θ∗ = 3.1. Among UCB-C, UCB-C-
KLdiv, UCB-C-Entropy and UCB-C-Random, UCB-C-KLdiv
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Fig. 13. Performance comparison of ALGORITHM, ALGORITHM-C and
Informative ALGORITHM-C algorithms (with parameter γ = 30, d = 1.1)
for the example shown in Figure 12 with θ∗ = 3.1. UCB-C, TS-C do not
pull Arm 3 at all, but UCB-C-KLdiv, TS-C-KLdiv pull it in the initial rounds
to determine whether θ∗ > 3 or not. As a result, UCB-C-KLdiv and TS-C-
KLdiv shrink �̂t faster initially and have a better empirical performance than
UCB-C and TS-C, while retaining similar regret guarantees of UCB-C and
TS-C respectively.

has the smallest cumulative regret. This is because UCB-C-
KLdiv identifies Arm 3 as the most informative arm, samples
of which are helpful in identifying whether θ∗ > 3 or θ∗ < 3.
Hence, occasional pulls of Arm 3 lead to fast shrinkage of the
set �̂t. In contrast to UCB-C-KLdiv, UCB-C-Entropy identi-
fies Arm 2 as the most informative arm for �̂ = [0, 6], due to
which UCB-C-Entropy samples Arm 2 more often in the ini-
tial stages of the algorithm. As the information obtained from
Arm 2 is relatively less useful in deciding whether θ∗ > 3 or
not, we see that UCB-C-Entropy/TS-C-Entropy does not per-
form as well as UCB-C-KLdiv/TS-C-KLdiv in this scenario.
UCB-C-Random picks the most informative arm by selecting
an arm uniformly at random from the available set of arms.
The additional exploration through random sampling is help-
ful, but the cumulative regret is larger than UCB-C-KLdiv as
UCB-C-Random pulls Arm 3 fewer times relative to UCB-
C-KLdiv. For this particular example, cumulative regret of
UCB-S was 2500, whereas other UCB style algorithms achieve
cumulative regret of 600-800 as shown in the Figure 13(a).
This is due to the preference of UCB-S to pick Arm 1
in this example. We see similar trends among TS-C, TS-
C-KLdiv, TS-C-Entropy and TS-C-Random. The cumulative
regret is smaller for Thompson sampling variants as Thompson
sampling is known to outperform UCB empirically.

We would like to highlight that the additional exploration by
Informative-Algorithm-C is helpful only in cases where non-
competitive arms help significantly shrink the confidence set
�̂t. For the experimental setup presented in Section VII below,
the reward functions are mostly flat as seen in Appendix G
and thus, Informative Algorithm-C does not give a significant
improvement over the corresponding Algorithm-C. Therefore
for clarity of the plots, we do not present experiments results
for Informative-C in other settings of this article.

VII. EXPERIMENTS WITH MOVIELENS DATA

We now show the performance of UCB-C and TS-C on a
real-world dataset. We use the MOVIELENS dataset [43] to

demonstrate how UCB-C and TS-C can be deployed in prac-
tice and demonstrate their superiority over classical UCB and
TS. Since movie recommendations is one of many applica-
tions of structured bandits, we do not compare with methods
such as collaborative filtering that are specific to recommenda-
tion systems. Also, we do not compare with contextual bandits
since the structured bandit setting has a different goal of mak-
ing recommendations without accessing a user’s contextual
features.

The MOVIELENS dataset contains a total of 1M ratings
made by 6040 users for 3883 movies. There are 106 different
user types (based on having distinct age and occupation fea-
tures) and 18 different genres of movies. The users have given
ratings to the movies on a scale of 1 to 5. Each movie is asso-
ciated with one (and in some cases, multiple) genres. For the
experiments, of the possibly multiple genres for each movie,
we choose one uniformly at random. The set of users that
belong to a given type is referred to as a meta-user; thus there
are 106 different meta-users. These 106 different meta-users
correspond to the different values that the hidden parameter θ

can take in our setting. For example, one of the meta-users in
the data-set represents college students whose age is between
18 and 24, and this corresponds to the case θ∗ = 25. We split
the dataset into two equal parts, training and test. This split is
done at random, while ensuring that the training dataset has
samples from all 106 meta-users.

For a particular meta-user whose features are unknown (i.e.,
the true value of θ is hidden), we need to sequentially choose
one of the genres (i.e., one of the arms) and recommend a
movie from that genre to the user. In doing so, our goal is
to maximize the total rating given by this user to the movies
we recommended. We use the training dataset (50% of the
whole data) to learn the mean reward mappings from meta-
users (θ ) to different genres (arms); these mappings are shown
in Appendix G. The learned mappings indicate that the mean-
reward mappings of meta-users for different genres are related
to one another. For example, on average 56+ year old retired
users may like documentaries more than children’s movies.
In our experiments, these dependencies are learned during the
training. In practical settings of recommendations or adver-
tising, these mappings can be learned from pilot surveys in
which users participate with their consent.

We test the algorithm for three different meta-users, i.e.,
for three different values of θ∗. The movie rating samples
for these meta-users are obtained from the test dataset, (the
remaining 50% of the data). Figure 14 shows that UCB-C and
TS-C achieve significantly lower regret than UCB, TS as only
a few arms are pulled O(log T) times. This is because only
C(θ∗) − 1 of the sub-optimal arms are pulled O(log T) times
by our UCB-C and TS-C algorithms. For our experimental
setting, the value of C depends on θ∗ (which is unknown to
the algorithm). Figure 15 shows how C(θ∗) varies with θ∗,
where it is seen that C(θ∗) is significantly smaller than K for
all θ∗. As a result, the performance improvements observed in
Figure 14 for our UCB-C and TS-C algorithms will apply to
other θ∗ values as well. There are θ∗ values for which UCB-
C is better than UCB-S, and vice versa. But, TS-C always
outperforms UCB-C and UCB-S in our experiments. We tried
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Fig. 14. Regret plots for UCB, UCB-S, UCB-C, TS and TS-C for (a) θ∗ = 67
(35-44 year old grad/college students), (b) θ∗ = 87 (45-49 year old cleri-
cal/admin), (c) θ∗ = 25 (18-24 year old college students) and (d) θ∗ = 93
(56+ Sales and Marketing employees). The value of C(θ∗) is 6, 6, 3 and 1
for (a), (b), (c) and (d) respectively – in all cases C(θ∗) is much smaller than
K = 18.

Fig. 15. The value of C(θ∗) varies with the unknown hidden parameter θ∗
(i.e., the age and occupation of the anonymous user). We see that for all θ∗,
C(θ∗) < K. While the total number of arms, K = 18, the value of C(θ∗)

ranges between 1 and 9. This suggests that the ALGORITHM-C approach can
lead to significant performance improvement for this problem.

Informative UCB-C in this setting as well, but the results were
similar to that of UCB-C because the arms in this setting are
not too informative.

VIII. CONCLUDING REMARKS

In this work, we studied a structured bandit problem in
which the mean rewards of different arms are related through
a common hidden parameter. Our problem setting makes no
assumptions on mean reward functions, due to which it sub-
sumes several previously studied frameworks [10], [12], [15].
We developed an approach that allows us to extend a classical
bandit ALGORITHM to the structured bandit setting, which
we refer to as ALGORITHM-C. We provide a regret analy-
sis of UCB-C (structured bandit versions of UCB). A key
insight from this analysis is that ALGORITHM-C pulls only
C(θ∗) − 1 of the K − 1 sub-optimal arms O(log T) times and

all other arms, termed as non-competitive arms, are pulled
only O(1) times. Through experiments on the MOVIELENS

dataset, we demonstrated that UCB-C and TS-C give sig-
nificant improvements in regret as compared to previously
proposed approaches. Thus, the main implication of this article
is that it provides a unified approach to exploit the struc-
tured rewards to drastically reduce exploration in a principled
manner.

For cases where non-competitive arms can provide
information about θ that can shrink the confidence set �̂t,
we propose a variant of ALGORITHM-C called informative-
ALGORITHM-C that takes the informativeness of arms into
account without increasing unnecessary exploration. Linear
bandit algorithms [16], [17], [44] shrink the confidence set
�̂t in a better manner by taking advantage of the linearity
of the mean reward functions to estimate θ∗ as the solution
to least squares problem [44]. Moreover, linearity helps them
to use self-normalized concentration bound for vector valued
martingale, ([44, Th. 1]) to construct the confidence intervals.
Extending this approach to the general structured bandit setting
is a non-trivial open question due to the absence of constraints
on the nature of mean reward functions μk(θ). The paper [20]
proposes a statistical hypothesis testing method for the case
of known conditional reward distributions. Generalizing it to
the setting considered in this article is an open future direc-
tion. While we state our results for a scenario where mean
reward functions are known, our algorithmic approach, anal-
ysis and results can also be extended to a setting where only
lower and upper bounds on the mean reward function μk(θ)

are known. This setting is discussed in Appendix A. Another
open direction in this field is to study the problem of struc-
tured best-arm identification where the goal is to conduct pure
exploration and identify the best arm in the fewest number of
rounds.
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