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Abstract—In this paper we consider the problem of best-arm
identification in multi-armed bandits in the fixed confidence set-
ting, where the goal is to identify, with probability 1 − δ for
some δ > 0, the arm with the highest mean reward in minimum
possible samples from the set of arms K. Most existing best-
arm identification algorithms and analyses operate under the
assumption that the rewards corresponding to different arms
are independent of each other. We propose a novel correlated
bandit framework that captures domain knowledge about corre-
lation between arms in the form of upper bounds on expected
conditional reward of an arm, given a reward realization from
another arm. Our proposed algorithm C-LUCB, which gener-
alizes the LUCB algorithm utilizes this partial knowledge of
correlations to sharply reduce the sample complexity of best-
arm identification. More interestingly, we show that the total
samples obtained by C-LUCB are of the form O(

∑
k∈C log( 1

δ
))

as opposed to the typical O(
∑

k∈K log( 1
δ
)) samples required in

the independent reward setting. The improvement comes, as the
O(log(1/δ)) term is summed only for the set of competitive arms
C, which is a subset of the original set of arms K. The size of
the set C, depending on the problem setting, can be as small
as 2, and hence using C-LUCB in the correlated bandits setting
can lead to significant performance improvements. Our theoreti-
cal findings are supported by experiments on the Movielens and
Goodreads recommendation datasets.

Index Terms—Multi-armed bandits, online learning, sequential
decision making, sample complexity analysis.

I. INTRODUCTION

THE MULTI-ARMED bandit (MAB) problem falls under
the class of sequential decision making problems. In the

classical multi-armed bandit setting, the player is asked to sam-
ple one of the K arms at every round t = 1, 2, . . . Upon
sampling arm kt at round t, the player receives a random
reward Rt drawn from the reward distribution of arm kt. These
reward distributions are assumed to be unknown to the player,
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and the most commonly studied objective is to maximize the
long-term cumulative reward; e.g., see the early work by Lai
and Robbins [1]. Since then, the reward maximization problem
has received attention in both classical settings [2], [3] and in
variants of the classical multi-armed bandits such as linear [4],
contextual [5], structured bandits [6] etc.

Best-arm Identification in Bandits with Independent Arms:
Instead of maximizing the cumulative reward, an alternative
objective in the Multi-Armed Bandit setting is to identify the
best arm (i.e., the arm with the largest mean reward) from
as few samples as possible. While reward maximization has
been studied extensively, the best-arm identification problem
is seldom explored in settings outside of the classical MAB
framework, i.e., the setting where rewards corresponding to
different arms are independent of each other. The best-arm
identification problem can be formulated in two different ways,
namely fixed confidence [7] and fixed budget [8]. In the fixed
confidence setting, the player is provided with a confidence
parameter δ and their goal is to achieve the fastest (i.e., with
the least number of samples) possible identification of the best
arm with a probability of at least 1 − δ. In the fixed budget
setting, the number of samples that the player can receive
is fixed, and the goal is to identify the best arm with the
highest possible confidence. In this paper, we focus on the
fixed confidence setting.

The best arm identification problem has been explored in the
classical MAB framework [9], [10], [11], [12], [13], [14], [15]
and three distinct approaches have shown promise, namely,
the racing/successive elimination, law of iterated logarithm
upper confidence bound (lil’UCB) and lower and upper con-
fidence bound (LUCB) based approaches. These algorithms
maintain upper and lower confidence bound indices for each
arm and usually stop once the lower confidence index of one
arm becomes larger than upper confidence bound of all other
arms (discussed in more detail in Section III). These three
approaches differ in their approach of sampling arms. The suc-
cessive elimination approach samples arms in a round robin
manner, lil’UCB samples the arm with the largest upper confi-
dence bound index at round t and LUCB samples two distinct
arms at each round, first it samples the arm with the largest
empirical mean and then amongst the rest it samples an arm
with the largest upper confidence bound index.

These best-arm identification algorithms have found their
use in a wide variety of application settings, such as clin-
ical trials [16], ad-selection campaigns [17], crowd-sourced
ranking [11] and hyperparameter optimization [18] by treating
different drugs/treatments, advertisements, items to be ranked
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Fig. 1. The ratings of a user corresponding to different versions of the same
ad are likely to be correlated. For example, if a person likes first version,
there is a good chance that they will also like the 2nd one as it also related
to tennis. However, the population composition is unknown, i.e., the fraction
of people liking the first/second or the last version is unknown.

Fig. 2. Upon observing a reward r from an arm k, pseudo-rewards s�,k(r),
give us an upper bound on the conditional expectation of the reward from
arm � given that we observed reward r from arm k. These pseudo-rewards
models the correlation in rewards corresponding to different arms.

and hyperparameters as the arms in the multi-armed bandit
problem.

Best-arm Identification when Rewards are Correlated across
arms: The aforementioned best-arm identification algorithms
all operate under the assumption that the rewards from dif-
ferent arms are independent of each other; e.g., at a given
round t, the reward obtained from arm k does not provide any
information about the reward that one might have received
if they sampled another arm �. However, this may not be the
case in many applications of MABs. For instance, the response
of a user for different advertisements in an ad-campaign is
likely to be correlated as the ad designs may be related or
starkly different with each other (see Figure 1). One way to
learn these correlations would be to pull multiple arms at each
round t. Since this is not allowed in the standard MAB setup,
we assume that partial information about such correlations is
available a priori. In practice, the presence of such correlations
may be known beforehand either through domain expertise or
through controlled studies where each user is presented with
multiple arms. For example, before starting ad campaign, par-
tial information may be known about the expected reward we
would receive from a user by showing that ad version �, given
their response to version k. A similar argument can be made
in the application domain of clinical trials, namely in identify-
ing the best drug for an unknown disease. There, the effect of
different drugs on an individual may be correlated if the drugs

share similar or contrasting components among them. In this
context, the correlations would be expected to be known by
the domain expertise of the physicians involved.

The current best-arm identification algorithms cannot lever-
age these correlations to reduce the number of samples
required in identifying the best arm. This papers aims to fill
this gap in the literature through a new MAB model introduced
next.

A Novel Correlated MAB model: Motivated by this, we
consider a multi-armed bandit framework where rewards corre-
sponding to different arms are correlated. We model the partial
knowledge of correlations through pseudo-rewards that rep-
resent upper bounds on the conditional mean rewards. The
pseudo-rewards provide us an upper bound on the expected
reward from arm �, given that the response from arm k was r
(See Figure 2), i.e.,

E[R�|Rk = r] ≤ s�,k(r). (1)

A key advantage of this model is that pseudo-rewards are just
upper bounds on the conditional expected reward and they can
be arbitrarily loose. In the case where all bounds are trivial, our
framework reduces to that of the classical Multi-armed bandit
setting. This model was first proposed by us in [19], where we
studied the problem of reward maximization. Two seemingly
related models are the structured [20], [21] and contextual [5]
multi-armed bandit models.

Comparison with Contextual and Structured bandits: In
contextual bandits, the context features of the user (i.e., the
user to whom ad is recommended) are assumed to be known,
and the goal is to learn a mapping from the context features
to the expected rewards so that each user can be given a per-
sonalized recommendation. In contrast, our model focuses on
a setting where context features of the users are not known
and the goal is to find a single recommendation for the entire
demographic. Our work falls under the class of structured ban-
dits, which in its full generality, poses restrictions on the joint
probability distribution of rewards. To the best of our knowl-
edge, existing work on best-arm identification in structured
bandits focus on settings where mean rewards of the arms
are related to one another through a hidden parameter θ . In
particular, the mean reward of arm k is μk(θ), where θ is
a hidden parameter common to all K arms. It assumes that
the mean reward mappings μk(θ) are known beforehand, but
the hidden parameter is unknown. While the mean rewards are
related to one another in these works, the rewards are not nec-
essarily correlated. A more detailed comparison is presented
in Section III. In this work, we explicitly model the correlation
through knowledge of pseudo-rewards.

Proposed C-LUCB Algorithm and its Sample Complexity:
After establishing a correlated bandit model, we then focus on
designing best-arm identification algorithms, that are able to
make use of this correlation information to identify the best-
arm in fewer samples than the classical best-arm identification
algorithms. In particular, we propose an approach that makes
use of the pseudo-reward information and extends the LUCB
approach to the correlated bandit setting. Our sample complex-
ity analysis shows that the proposed C-LUCB approach is able
to explore certain arms without explicitly sampling them. Due
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Fig. 3. This plot illustrates the number of samples required by different
algorithms to identify the best movie genre out of the 18 possible movie genres
in the Movielens dataset with confidence 1−δ. As δ decreases, the algorithms
need more samples to identify the best arm. As our proposed C-LUCB and
C-LUCB++ algorithms utilize correlation information, they identify the best
arm in fewer samples relative to Racing, lil’UCB, LUCB and LUCB++.

to this, we see that these arms, termed as non-competitive con-
tribute only an O(1) term in the sample complexity as to the
typical O(log 1

δ
) contribution by each arm. As a result of this,

we are able to provide better sample complexity results than
LUCB in the correlated bandit setting. In particular, the LUCB
algorithm stops with probability 1 − δ after obtaining at most
∑

k∈K
2ζ

�2
k
(log(

K log( 1
�2

k
)

δ
)) samples, where �k = μk∗ −μk, i.e.,

the difference in mean reward of optimal arm k∗ and mean
reward of arm k and �k∗ = mink �=k∗ �k, i.e., the gap between
best and second best arm and ζ > 0 is a constant. The C-

LUCB stops after at most
∑

k∈C
2ζ

�2
k
(log(

2K log( 1
�2

k
)

δ
)) + O(1)

samples with probability 1−δ. Here, C ⊆ K with 2 ≤ |C| ≤ K
depending on the problem instance. As the size of the set C can
be smaller than K, we improve upon the sample complexity
results of standard approaches of best-arm identification. This
theoretical advantage gets reflected in our experiments on two
real-world recommendation datasets, namely, Movielens and
Goodreads. For instance, Figure 3 illustrates the performance
of our proposed algorithms in a correlated bandit framework,
where the goal is to identify the best movie genre from the set
of 18 movie genres in the Movielens dataset. As our proposed
approach utilizes the correlations in the problem, they draw
fewer samples than the Racing, lil’UCB and the LUCB based
approaches.

Organization of the rest of the paper: In Section II of
this paper, we present a new multi-armed bandit framework,
where correlation between arms is captured in the form of
pseudo-rewards. We also discuss how pseudo-rewards can be
computed in practical settings in Section II. In Section III,
we review state-of-the-art best-arm identification algorithms
such as successive elimination (or racing), lil’UCB, and LUCB
designed for the classical (independent arm) framework. We
also discuss how our proposed correlated multi-armed ban-
dit framework compares with the structured and linear bandit
frameworks that have been studied previously. In Section IV
we propose the C-LUCB algorithm, and compare it with
state-of-the-art approaches. We discuss several variants of C-
LUCB in Section VI. In Section V we analyze the sample

complexity analysis of C-LUCB and discuss its proof tech-
nique and implications. This analysis reveals that utilizing
correlations can lead to significant reduction in the num-
ber of samples required to identify the best-arm. Finally, in
Section VII we demonstrate the practical applicability our
proposed model and algorithm via extensive experiments on
real-world recommendation datasets.

II. THE CORRELATED MULTI-ARMED BANDIT MODEL

A. Problem Formulation

Consider a Multi-Armed Bandit setting with K arms
{1, 2, . . . K}. At each round t, we sample an arm kt ∈ K and
receive a random reward Rkt ∈ [0, b]. Among the set of K
arms, we denote the arm with the largest mean reward as the
best-arm k∗, i.e., k∗ = arg maxk∈K μk. In the fixed-confidence
setting [7], the objective is to identify the best-arm in as few
samples as possible. In particular, given δ > 0, the goal is
to devise a sampling strategy that stops at some round T (a
random variable) and declares an arm kout as the optimal arm,
where,

Pr
(
kout = k∗) ≥ 1 − δ.

Put differently, we aim to find the best arm with probability at
least 1−δ while minimizing the total number of samples drawn
from the arms. We note that the number of samples can be dif-
ferent from the number of rounds T as some algorithms (e.g.,
LUCB, Racing) sample multiple arms in one round. Using
the total number of samples drawn until round T allows us
to compare them fairly against algorithms that draw only one
sample at each round t (e.g., lil’UCB).

The classical multi-armed bandit setting implicitly assumes
that the rewards R1, R2, . . . , RK are independent. That is,
Pr(R� = r�|Rk = r) = Pr(R� = r�) ∀r�, r and ∀�, k, which
implies that, E[R�|Rk = r] = E[R�] ∀r, �, k. Motivated by
the fact that rewards of a user corresponding to different arms
might be correlated, we consider a setup where fR�|Rk(r�|rk) �=
fR�

(r�), with fR�
(r�) denoting the probability distribution func-

tion of the reward from arm �. Consequently, due to such
correlations, we have E[R�|Rk] �= E[R�].

In our problem setting, we consider that the player has par-
tial knowledge about the joint distribution of correlated arms
in the form of pseudo-rewards, as defined below.

Definition 1 (Pseudo-Reward): Suppose we sample arm k
and observe reward r. Then the pseudo-reward of arm � with
respect to arm k, denoted by s�,k(r), is an upper bound on the
conditional expected reward of arm �, i.e.,

E[R�|Rk = r] ≤ s�,k(r). (2)

For convenience, we set s�,�(r) = r.
Remark 1: Note that the pseudo-rewards are upper bounds

on the expected conditional reward and not hard bounds on
the conditional reward itself. This makes our problem setup
practical as upper bounds on expected conditional reward are
easier to obtain, as illustrated below.

The pseudo-reward information consists of a set of K × K
functions s�,k(r) over [0, b]. This information can be obtained
in practice through either domain and expert knowledge or
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TABLE I
THE TOP ROW SHOWS THE PSEUDO-REWARDS OF ARMS 1 AND 2, I.E.,
UPPER BOUNDS ON THE CONDITIONAL EXPECTED REWARDS (WHICH

ARE KNOWN TO THE PLAYER). THE BOTTOM ROW DEPICTS TWO

POSSIBLE JOINT PROBABILITY DISTRIBUTION (UNKNOWN TO THE

PLAYER). UNDER DISTRIBUTION (a), ARM 1 IS OPTIMAL WHEREAS

ARM 2 IS OPTIMAL UNDER DISTRIBUTION (b)

TABLE II
IF SOME PSEUDO-REWARD ENTRIES ARE UNKNOWN (DUE TO LACK OF

DOMAIN KNOWLEDGE), THOSE ENTRIES CAN BE REPLACED WITH THE

MAXIMUM POSSIBLE REWARD AND THEN USED IN THE C-LUCB
ALGORITHM. WE DO THAT HERE BY ENTERING 2 FOR THE ENTRIES

WHERE PSEUDO-REWARDS ARE UNKNOWN

from controlled surveys. For instance, in the context of med-
ical testing, where the goal is to identify the best drug to
treat an ailment from among a set of K possible options, the
effectiveness of two drugs is correlated when the drugs share
some common ingredients. Through domain knowledge of
doctors, it is possible to answer questions such as “what are the
chances that drug B would be effective given drug A was not
effective?”, through which we can infer the pseudo-rewards.

Computing Pseudo-Rewards from domain knowledge or his-
torical data: The pseudo-rewards can also be obtained from
domain knowledge or through offline pilot surveys in which
users are presented with all K arms allowing us to sample
R1, . . . , RK jointly. Through such data, we can evaluate an
estimate on the conditional expected rewards. For example
in Table I, we can look at all users who obtained 0 reward
for Arm 1 and calculate their average reward for Arm 2, say
μ̂2,1(0). Since we only need an upper bound on E[R2|R1 = 0],
we can use any one of the following approaches to set the
pseudo-reward s2,1(0).

1) The pseudo-reward s2,1(0) can be set to μ̂2,1(0) +
σ̂2,1(0), where μ̂2,1(0) is the empirical average of con-
ditional rewards of R2 given R1 = 0 and σ̂2,1(0) is the
empirical standard deviation. Adding the standard devi-
ation ensures that the pseudo-reward is an upper bound
on the conditional expected reward E[R2|R1 = 0] with
high probability.

2) Alternately, pseudo-rewards for any unknown condi-
tional mean reward could be set to b, the maximum pos-
sible reward for the arm (recall that Rk ∈ [0, b]). Table II

shows an example where unknown pseudo-rewards are
set to 2, the maximum possible reward.

3) If through the training data, we obtain a soft upper bound
u on E[R2|R1 = 0] that holds with probability 1 − δ,
then we can translate it to the pseudo-reward s2,1(0) =
u×(1−δ)+2×δ, (assuming maximum possible reward
is 2).

Remark 2 (Reduction to Classical Multi-Armed Bandits):
When all pseudo-reward entries are unknown, then all pseudo-
reward entries can be filled with maximum possible reward for
each arm, that is, s�,k(r) = b ∀r, �, k. In that case, the problem
framework studied in this paper reduces to the setting of the
classical Multi-Armed Bandit problem.

While the pseudo-rewards are known in our setup,
the underlying joint probability distribution of rewards is
unknown. For instance, Table I(a) and Table I(b) show two
joint probability distributions of the rewards that are both pos-
sible given the pseudo-rewards at the top of Table I. If the joint
distribution is as given in Table I(a), then Arm 1 is optimal,
while Arm 2 is optimal if the joint distribution is as given in
Table I(b).

B. Application for Correlated Multi-Armed Bandits

Consider a scenario where a company needs to run a dis-
play advertising campaign in a community for one of their
products, and their design team has proposed several different
designs. The traction (i.e., the number of clicks, time spent
on the ad) that the company generates is likely to be depen-
dent on the design that is used for publicity. In order to find
the best design, the company can run a best-arm identification
algorithm by viewing the problem as a multi-armed bandit
problem. Here, at each round t, a new user of that community
enters the system and they show one of the K designs (i.e.,
arms) to this user. The reward is received through the response
of the user to the ad. A straightforward solution would be to
treat this problem as a classical multi-armed bandit problem
and use a well known best-arm identification algorithm such as
lil’UCB, LUCB or successive elimination to identify the best
design for the community. But, in practice, the rewards corre-
sponding to different designs are likely to be correlated to one
another. Consider the example shown in Figure 1, over there if
a user reacts positively to the first design, the user is also likely
to react positively to the second ad as both ads are related to
tennis. Such correlations, when accounted for in the form of
pseudo-rewards, can help us identify the best-arm in much
fewer samples relative to algorithms such as lil’UCB, LUCB
and Successive elimination that do not account for correlations
in choices.

These correlations could be known from a controlled survey
or a previous advertisement campaign performed in a differ-
ent demographic. For instance, from these surveys one can
interpret information such as “users who like ad 1 represent-
ing tennis tend to like ad 2 that also represents tennis but not
ad K which represents soccer”. If a company wants to identify
the best ad in a new demographic, it can use this learned cor-
relation information to identify the best-ad in a quick manner.
Note that the population composition in the two demographics
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Fig. 4. A special case of our proposed problem framework is a setting
in which rewards for different arms are correlated through a hidden random
variable X. At each round X takes a realization in X . The reward obtained
from an arm k is Yk(X). The figure illustrates lower bounds and upper bounds
on Yk(X) (through dotted lines). For instance, when X takes the realization 1,
reward of arm 1 is a random variable bounded between 2 and 4.

may be very different, i.e., the fraction of users liking tennis
may be very different, but it is likely that the correlation in
choices remain consistent across the two demographics. One
can also consider the example of identifying best policy to
publicize for a political campaign, where users preferences
towards different policies (i.e., climate change, gun control,
abortion laws) are often correlated in all demographics, but the
marginal distribution of people advocating for a single policy
is very different in different communities. In such scenarios,
transferring correlation information from one demographic to
another by modeling them through pseudo-reward in our corre-
lated bandit framework can help reduce the number of samples
needed to identify the best-arm.

These pseudo-rewards can also be known from domain
knowledge. Consider the problem of identifying the best drug
for the treatment of an unknown disease. The effectiveness of
different drugs is likely to be correlated as they often contain
similar components. In such a situation, the domain exper-
tise of doctors can tell us “what are the chances that drug
y will be effective given drug x was effective?”. One can
use a conservative upper bound on the answer to this ques-
tion to model pseudo-rewards. Alternatively, such correlation
information could also be obtained on how different people
react to different drugs in a community. As the effective-
ness of drugs depends on underlying medical conditions of
the patients, their response would be correlated. This corre-
lation knowledge can then be transferred to identify the best
treatment in a different community, where the distribution of
underlying medical conditions may be very different.

C. Special Case: Correlated Bandits With a Latent Random
Source

The studied correlated multi-armed bandit can generalize
several other interesting and unexplored multi-armed ban-
dit problems. For example, one special case is the corre-
lated multi-armed bandit model where rewards are correlated
through a latent random source [22] (See Figure 4). In this
problem setup, the hidden random variable X takes an i.i.d.
realization Xt ∈ X at round t and upon pulling arm k at
round t, reward Yk(Xt) is observed. For the application setting

of ad-recommendation, the random variable X can represent
the features (i.e., age/occupation/income etc.) of the user. At
each round a new user with feature Xt enters the system, and
the goal is to identify the single best ad recommendation for
the whole population in as few samples as possible. The fea-
ture Xt remains hidden to the player due to privacy concerns.
Additionally, the reward Yk(Xt) represents the preference of
the kth ad for the user with feature Xt.

In this problem setup, the correlation information is known
to the player in the form of upper and lower bounds on Yk(X),
namely ḡk(X) and g

k
(X). These upper and lower bounds can

be probabilistic, e.g., they may hold with probability 0.8 (80%
confidence). For instance, the information on prior information
represents the knowledge that children of age 5-10 rate docu-
mentaries only in the range 1-3 out of 5 in 80% cases. While
such prior knowledge may be known from domain expertise or
previous ad-campaigns performed in a different demographic,
the age distribution of the community may be unknown. Due
to which, the best-arm remains unknown and it needs to be
found in an online manner.

This particular correlated bandit setting can be reduced to
our general framework by translating the mappings Yk(X) to
pseudo-rewards s�,k(r). Recall the pseudo-rewards represent
an upper bound on the conditional expectation of the rewards.
In this framework, if g

k
(x) and ḡk(x) are soft lower and upper

bounds, i.e., g
k
(x) ≤ Yk(x) ≤ ḡk(x) w.p. 1−κ , we can construct

pseudo-reward as follows:

s�,k(r) = (1 − κ)2 ×
(

max
{x:g

k
(x)≤r≤ḡk(x)}

ḡ�(x)

)

+
(

1 − (1 − κ)2
)

× M, (3)

where M is the maximum possible reward an arm can provide.
We evaluate this pseudo-reward by first finding the range of
values within which x lies based on the reward with probability
1 − κ . The maximum possible reward of arm � for values of
x is then identified with probability 1 − κ . Due to this, with
probability (1 − κ)2, conditional reward of arm � is at-most
max{x:g

k
(x)≤r≤ḡk(x)} ḡ�(x). As the maximum possible reward is

M otherwise, we get the pseudo-reward as shown in (3). Once
these pseudo-rewards are constructed, the problem fits in the
general framework described in this paper and we can use the
algorithms proposed for this setting directly.

The presented model resembles the structured bandit model
studied in [23] in which mean rewards of different arms,
μk(θ), are known as a function of a hidden parameter θ , but
the parameter θ is unknown. It is important to see that this
presented model differs from [23] in two key ways – i) In [23],
instead of a hidden random variable X, there is a hidden fea-
ture θ which is fixed and unknown and ii) the mean reward
mappings as a function of θ are known, whereas in our model
we consider the knowledge of soft upper and lower bounds on
Yk(X). The model studied in [23] is more suitable for settings
where the goal is to provide personalized recommendation to
a user whose features θ are hidden, whereas the latent ran-
dom source model (and the general correlated bandit model)
is appropriate for application settings where the goal is to
identify a single recommendation for the global demographic.
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TABLE III
ALL BEST-ARM IDENTIFICATION ALGORITHMS HAVE THREE KEY COMPONENTS, I) SAMPLING STRATEGY AT EACH ROUND t,

II) ELIMINATION CRITERIA FOR AN ARM AND III) THE STOPPING CRITERIA OF THE ALGORITHM. WE COMPARE THESE FOR RACING,
LIL’UCB, LUCB AND LUCB++ ALGORITHMS AND SEE THE DIFFERENCES IN THEIR OPERATION. THE INDICES USED FOR

OUR PROPOSED C-LUCB AND C-LUCB++ ARE DEFINED IN (8) AND (10)

Note that the model presented in this subsection requires the
understanding of hidden random variable X. While in certain
problem settings it may be possible to obtain a latent random
source representation in the form of X. In general, these hidden
features may be more complicated and one may not be able
to represent them. It is important to note that our proposed
model in the most general setting works without having to
construct a hidden feature representation through which arms
are correlated. This is a key advantage of our general model
over the latent random source model and the model presented
in [23], which requires modeling the problem through a hidden
parameter θ . Instead, our general model utilizes the avail-
able prior information directly and our algorithms adapt to the
information to identify the best-arm in fewer samples relative
to classical best-arm identification algorithms.

III. RELATED PRIOR WORK

The design of best-arm identification algorithms in the
fixed-confidence setting have three key design components:
i) their sampling strategy, i.e., which arm to pick at round t;
ii) their elimination criteria, i.e., when to declare an arm as
sub-optimal and remove it from the rest of the sampling pro-
cedure; and iii) their stopping criteria, i.e., when to stop the
algorithm and declare an arm as the best arm.

In order to accomplish the task of best-arm identification,
algorithms use the empirical mean μ̂k(t) for arm k at round
t. In addition to this, upper confidence bound and lower con-
fidence bound on the mean of arm k are maintained based
on the number of samples of arm k, nk(t), and the input
confidence parameter δ. In particular, the upper confidence
index Uk(nk, δ) = μ̂k(t)+B(nk, δ) and lower confidence index

Lk(nk, δ) = μ̂k(t) − B(nk, δ) are maintained for each arm

k ∈ K. Here B(nk, δ) ∝
√

log
(

log(nk)

δ

)

nk
is an anytime confidence

bound [9], [24] constructed such that

Pr(∃ nk ≥ 1: μk /∈ [Lk(nk, δ), Uk(nk, δ)]) ≤ δ. (4)

Note that the anytime confidence interval bound the prob-
ability of the mean lying outside the confidence interval
uniformly for all nk ≥ 1, i.e., the probability that the mean lies
outside the confidence interval [Lk(nk, δ), Uk(nk, δ)] at any
round t is upper bounded by δ. In contrast to the Hoeffding
bound, which are only valid for a fixed and deterministic nk,
the anytime confidence bound holds true uniformly for all
t ≥ 1 and for random nk as well. We refer the reader to [24] for
a detailed discussion and developments in anytime confidence
bounds B(nk, δ).

A. Existing Best-Arm Identification Strategies

There are three well-known approaches to the best-arm iden-
tification problem: i) Successive Elimination (also called rac-
ing) [14], [15], [25]; ii) lil’UCB (Law of Iterated Logarithms
Upper Confidence Bound) [9]; and iii) LUCB [10], [13]
(Lower and Upper Confidence Bound). Below, we briefly
introduce these algorithms, and present a summary of their
arm sampling strategies and elimination and stopping criteria
in Table III.1 For more details, we refer the reader to [7] that

1The confidence bound C(nk(t), δ), and subsequently lower and upper con-
fidence indices Lk(nk(t), δ) and U(nk(t), δ), depend on the number of rounds
t, the number of samples of arm k till round t nk(t) and the confidence param-
eter δ. For brevity purposes, at times we represent the confidence bound as
C(nk, δ) or C(δ) and the LCB, UCB indices as Lk(t, δ), Lk(nk, δ) or Lk(δ)
and Uk(t, δ), Uk(nk, δ) or Uk(δ) respectively.
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provides a comprehensive survey of best-arm identification in
the fixed confidence setting.

Successive Elimination or Racing: The successive elimina-
tion (also called racing) strategy maintains a set of active arms
At at each round. It samples arms in a round-robin fashion
from the set of active arms and at the end of each round,
it eliminates an arm k from the set of active arms if the
lower confidence index of some other arm � �= k, L�(n�,

δ
K ),

is strictly larger than the upper confidence index of arm k,
Uk(nk,

δ
K ). It continues this until a single arm is left in the

set At and returns that arm as the optimal arm. Two other
algorithms, Exponential-gap elimination [26] and PRISM [27],
build upon successive elimination to provide stronger theoret-
ical guarantees. However, their empirical performance is not
promising as noted in [7].

lil’UCB [9]: The lil’UCB algorithm samples the arm with
the largest upper confidence index Uk(nk, δ) at round t and
stops when an arm has been sampled more than αt

α+1 times till
round t. In practice, the value of α is taken to be 9. It then
declares the most sampled arm as the best-arm.

LUCB [7], [13]: The LUCB approach samples two arms
m1(t), m2(t) at each round t. Here, m1(t) is the arm with the
largest empirical reward till round t, and m2(t) is the arm with
the largest UCB index Uk(nk,

δ
K ) among the rest. The LUCB

algorithm stops if the lower confidence bound of the first arm
m1(t) is larger than the upper confidence index of all other
arms.2 Subsequently, another algorithm LUCB++ [11], [12]
was designed that operates in a similar manner to LUCB but
constructs the upper confidence and lower confidence indices
with different confidence parameters for m1(t), m2(t). The
details of the upper confidence and lower confidence indices
for each of these algorithms are presented in Table III. Note
that our metric for comparison is the total number of sam-
ples collectively drawn from the arms. As LUCB algorithms
sample two arms at each round, the total number of samples
drawn from the LUCB algorithms is two times the number of
rounds t. By comparing the total number of samples and not
the number of rounds t, we draw a fair comparison between
the performance of LUCB and lil’UCB algorithm.

All the approaches described above work well for the
case where rewards are known to be either sub-Gaussian or
bounded. Furthermore, if the class of distribution is known
(e.g., it is known that rewards are Gaussian with known σ and
unknown μ), then there are two more approaches known in the
literature, namely Top Two Thompson Sampling (TTTS) [28]
and Tracking [29]. In TTTS, the player computes a posterior
distribution on the mean reward of each arm and then applies
Thompson sampling on the posterior to obtain two samples. It
stops when the posterior probability of an arm k being optimal
exceeds a certain threshold τk(nk, δ). The TTTS algorithm can
be computationally intensive as it involves the computation of
posterior probability in each round of their algorithm. In [29],

2Equivalently, one can eliminate an arm k from At at the end of each
round if the upper confidence index of arm k is smaller than the lower confi-
dence index of some other arm, and stop the algorithm when the set of active
arms |At| = 1. This implementation of the LUCB algorithm has the same
guarantees as the one proposed in [7], [13] while obtaining similar empirical
performance.

authors evaluate a lower bound for the Multi-Armed bandit
problem in the form of an optimization problem. They pro-
pose a tracking based approach, that solves the optimization
problem at each round to obtain an estimated rate at which
each arm should be sampled at round t and sample arms in
proportion to that rate. More recently, [30] proposed alternative
approaches to the track-and-stop algorithm that do not require
solving an optimization problem at each round. Instead, they
view the optimization problem as an unknown game and have
sampling rules based on iterative saddle point strategies. All
of the approaches listed above require knowing the class of
reward distribution. Since we only assume that the rewards
are bounded and not the class of distribution, we do not
focus on extending TTTS or Tracking based approaches to
the correlated bandit setting in this paper.

B. Developments in Confidence Sequence B(nk, δ)

It is important to note that the performance of the algorithms
described above depends critically on the tightness of the con-
fidence bound B(nk, δ). For instance, initially the LUCB algo-
rithm was proposed with the confidence interval B(nk, δ) =√

log
( 405n1.1

k
δ

log
( 405n1.1

k
δ

))

2nk
(See [13]) for [0, 1] bounded ran-

dom variables. Subsequently tighter bounds as in [7], [10]
were developed, which led to performance improvements in
the LUCB algorithm. See Table IV for a comparison dif-
ferent confidence bound developed over time and how they
affect the empirical performance of the best-arm identification
algorithms.3 For a more detailed comparison of different con-
fidence bounds Bk(nk, δ), we refer the reader to [24, Table 2].
To the best of our knowledge, the tightest 1−δ anytime confi-
dence interval for bounded and sub-Gaussian random variables
is proposed in [24], which constructs

B(nk, δ) = 0.85

√
log(log(0.5nk)) + 0.72 log(5.2/δ)

nk
. (5)

Due to this observation, which is also supported by empirical
evidence in Table IV, we use the bound suggested by [24]
in all implementations of Successive Elimination, LUCB and
our proposed algorithm. However, our algorithm and analysis
extend to arbitrary 1 − δ anytime confidence interval B(nk, δ).

We would also like to highlight the fact that lil’UCB is
known to have the best known theoretical sample complexity
(in terms of its dependency on the number of arms K). The
LUCB algorithm stops with probability 1−δ after obtaining at

most
∑

k∈K
2ζ

�2
k

(
log

(K log
(

1
�2

k

)

δ

))
samples, where �k = μk∗ −

μk, the difference in mean reward of optimal arm k∗ and mean
reward of arm k. And �k∗ = mink �=k∗ �k, the gap between best
and second best arm. It is known that lil’UCB algorithm has a

sample complexity O
(∑

k∈K 1
�2

k
log

( log
(

1
�2

k

)

δ

))
, i.e., it avoids

the log(K) term in the numerator, and hence has the best

3The bound proposed in [10], [11] are KL based bounds that evaluate
the indices Uk(nk, δ), Lk(nk, δ) as inf{j > μ̂k:nk(t)dkl(μ̂k, j) < d(B)} and
sup{j < μ̂k:nk(t)dkl(μ̂k, j) < d(B). The distance dkl(x, y) is evaluated as
x log(x/y) + (1 − x) log((1 − x)/(1 − y)).
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TABLE IV
DESCRIPTION OF THE WELL-KNOWN BEST-ARM IDENTIFICATION ALGORITHMS AND THE CONFIDENCE BOUND B(nk, δ) THAT THEY USE FOR [0,1]

BOUNDED REWARDS. ALL THE THREE TYPES OF ALGORITHMS HAVE EVOLVED WITH TIME DUE TO THE DEVELOPMENT OF TIGHTER 1 − δ ANYTIME

CONFIDENCE INTERVALS B(nk, δ). WE SEE THAT THE ALGORITHMS PERFORM BEST WITH THE CONFIDENCE BOUND SUGGESTED IN [24], AND HENCE

WE USE THAT FOR ALL OUR IMPLEMENTATIONS OF RACING, LUCB, LUCB++ AND OUR PROPOSED ALGORITHM IN THE REST OF THE PAPER. THE

REPORTED SAMPLE COMPLEXITY IS FOR THE TASK OF IDENTIFYING BEST MOVIE GENRE FROM THE SET OF 18 MOVIE GENRES IN THE MOVIELENS

DATASET. EXPERIMENTAL SETUP IS DESCRIBED IN DETAIL IN SECTION VII

known theoretical sample complexity. However, it has been
observed (both in [7] and our experiments) that its empirical
performance is inferior to that of the LUCB algorithm. Due
to this reason, we focus on proposing an algorithm C-LUCB
that extends the LUCB approach to the correlated bandit set-
ting. We have included the performance of lil’UCB in all our
experiments.

C. Algorithms Outside the Classical Setting

Unlike the regret-minimization problem, the best-arm iden-
tification problem is relatively unexplored outside of the
classical multi-armed bandit setting. A rare exception is the
structured bandit setting, where mean rewards corresponding
to different arms are related to one another through a hidden
parameter θ . The underlying value of θ is fixed and unknown,
but the mean reward mappings θ → μk(θ) are known. The
linear bandit setting is a special case of structured bandits,
where mean reward mappings are of the form xᵀ

k θ with xk

known to the player. The best-arm identification problem has
been studied in [31], [32] for linear bandits and in [21] for
the general structured bandit setting. Other special cases of
structured bandits include global bandits [33], regional ban-
dits [34] and the generalized linear bandits [35]; to the best
of our knowledge the best arm identification problem has
not been addressed in these special cases. Note that in the
full generality, the structured bandit framework is simply a
bandit problem with constraints on the joint probability dis-
tribution [36], but that setting has only been studied for the
objective of regret minimization and not best-arm identifica-
tion. To the best of our knowledge, the structured bandits work
studying best-arm identification [21], [31], [32] assume the
presence of a hidden parameter θ through which mean rewards
of different arms are related to one another. Our correlated

bandit framework focuses on structured bandit settings by
modeling the correlations explicitly through the knowledge of
pseudo-rewards.

Recently, best-arm identification was studied under the spec-
tral bandit framework [37], which assumes that the arms
are the nodes of known a weighted graph, with wa,b denot-
ing the weight between arms a and arms b. The spectral
bandit framework poses a restriction on the relationship
between mean rewards of individual arms by assuming that
∑

a,b∈K wa,b
(μa−μb)

2

2 ≤ R, where R is known to the player.
The correlated bandit model considered in this paper is fun-

damentally different from the structured bandit framework as
detailed below.

1) The model studied here explicitly models the correla-
tions in the rewards of different arms at any given round
t. In structured bandits, the mean rewards are related to
each other, but the reward realizations at a given round
are not necessarily correlated. Similar to structured ban-
dits, the work on spectral bandits [37] considers a setup
with constrains between mean rewards of different arms,
but does not capture the correlations explicitly in their
framework.

2) It is also possible to use the structured bandit framework
for the objective of identify best global recommenda-
tion in an ad-campaign. However, there are two major
challenges i) In deciding upon the hidden parame-
ter θ that we need to use, through which the mean
rewards are related to one another. ii) Secondly, in
the structured bandits framework, the reward mappings
from θ to μk(θ) need to be exact. If they happen to
be incorrect, then the algorithms for structured ban-
dit cannot be used as they rely on the correctness of
μk(θ) to construct confidence intervals on the unknown
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parameter θ . In contrast, the model studied here only
relies on the pseudo-rewards being upper bounds on
the conditional expectations E[R�|Rk = r]. Our proposed
algorithm works even when these bounds are not tight.
The lack of hidden parameter θ and pseudo-rewards
being upper bounds on conditional expectations make
the model studied in this paper more suitable for practi-
cal scenarios where the goal is to identify the best global
recommendation.

IV. PROPOSED CORRELATED-LUCB BEST-ARM

IDENTIFICATION ALGORITHM

In the correlated MAB framework, the rewards observed
from one arm can help estimate the rewards from other arms.
Our key idea is to use this information to reduce the number
of samples taken before stopping. We do so by maintaining
the empirical pseudo-rewards of all pairs of distinct arms at
each round t.

A. Empirical Pseudo-Rewards and New UCB indices

In our correlated MAB framework, pseudo-reward of arm �

with respect to arm k provides us an estimate on the reward
of arm � through the reward sample obtained from arm k. We
now define the notion of empirical pseudo-reward which can
be used to obtain an optimistic estimate of μ� through just
reward samples of arm k.

Definition 2 (Empirical and Expected Pseudo-Reward):
After t rounds, arm k is sampled nk(t) times. Using these nk(t)
reward realizations, we can construct the empirical pseudo-
reward φ̂�,k(t) for each arm � with respect to arm k as
follows.

φ̂�,k(t) �
∑t

τ=1 1kτ =k s�,k
(
rkτ

)

nk(t)
, � ∈ {1, . . . , K} \ {k}.

(6)

The expected pseudo-reward of arm � with respect to arm k
is defined as

φ�,k � E
[
s�,k(Rk)

]
. (7)

For convenience, we set φ̂k,k(t) = μ̂k(t) and φk,k = μk. Note
that the empirical pseudo-reward φ̂�,k(t) is defined with respect
to arm k and it is only a function of the rewards observed by
sampling arm k.

Observe that E
[
s�,k(Rk)

] ≥ E[E[R�|Rk = r]] = μ�. Due
to this, empirical pseudo-reward φ̂�,k(t) can serve as an esti-
mated upper bound on μ�. Using the definitions of empirical
pseudo-reward, we now define auxiliary UCB indices, namely
crossUCB and pseudoUCB indices, which are used in the
selection and elimination strategy of the C-LUCB algorithm.

Definition 3 (CrossUCB Index Ũ�,k(t, δ)): At the end of
round t, we have nk(t) samples of arm k. Using these, we
define the CrossUCB Index of arm � with respect to arm k as

Ũ�,k(t, δ) � φ̂�,k(t) + B(nk, δ). (8)

Furthermore, we define

Ũ�(t, δ) = min
k

Ũ�,k(t, δ),

i.e., the tightest of the K upper bounds, Ũ�,k(t, δ), for arm �.
Note that the CrossUCB index for arm � with respect

to arm k, Ũ�,k(t, δ) is constructed only through the sam-
ples obtained from arm k. Furthermore, we have Ũk,k(t, δ) =
μ̂k(t)+B(nk, δ), which coincides with the standard upper con-
fidence index used in the best-arm identification literature. We
use the confidence bound suggested by [24] (see Section III)
for the construction of B(nk, δ) for [0, b] bounded random
variables, i.e.,

B(nk, δ) = 1.7b

2

√
√
√
√ log

(
log
(

b2nk
2

))
+ 0.72 log(5.2/δ)

nk
. (9)

As pseudo-rewards are upper bounds on conditional
expected reward, they can only be used to construct alter-
native upper bounds on the mean reward of other arms and
not alternative lower bounds. Due to this reason, we keep
the definition of lower confidence index Lk(t, δ) the same as
that in the classical multi-armed bandit setting, i.e., Lk(t, δ) =
μ̂k(t) − B(nk, δ). In addition to the CrossUCB and the LCB
index for each arm, we now define the PseudoUCB index of
arm � with respect to arm k. The PseudoUCB indices prove
useful for the design and analysis of our proposed algorithm.

Definition 4 (PseudoUCB Index I�,k(t)): We define the
PseudoUCB Index of arm � with respect to arm k as follows.

I�,k(t) � φ̂�,k(t) + b

√
2 log t

nk(t)
(10)

Furthermore, we define I�(t) = mink I�,k(t), the tightest of the
K upper bounds for arm �.

Note that the PseudoUCB Index uses a confidence bound,
b
√

2 log t
nk(t)

, which is typically used in the UCB1 algorithm [2]
for the objective of cumulative reward maximization. It has
the property that Pr(I�(t) < μ�) ≤ Kt−3 [See Lemma 3 in the
Appendix] in the supplementary material, i.e., the probability
of mean lying outside the pseudoUCB index I�(t) at round t
decays exponentially with the number of rounds t. This prop-
erty allows us to show desirable sample complexity results
for our proposed algorithm in Section V. We now present
the C-LUCB algorithm, that makes use of the PseudoUCB,
CrossUCB and LCB indices in its strategy for sampling arms,
eliminating arms and stopping the algorithm.

B. C-LUCB Algorithm

The C-LUCB algorithm maintains a set of active arms At,
which is initialized to the set of all arms K = {1, . . . , K}.
At each round t, it samples arms, eliminates arms and then
decides whether to stop as described below.

1) Sampling Strategy: At each round t, the C-LUCB algo-
rithm samples two arms m1(t) and m2(t), where

m1(t) = arg max
k∈At

Ik(t),

m2(t) = arg max
k∈At\{m1(t)}

min

(

Ũk,k

(

t,
δ

2K

)

, Ik(t)

)

.

2) Elimination Criteria: The C-LUCB algorithm removes
an arm k from the set At, if the CrossUCB index of
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arm k is smaller than the LCB index of some other arm
in At, i.e., if

Ũk

(

t,
δ

2K

)

< max
�∈At

L�

(

t,
δ

2K

)

.

Here, Ũ�(t,
δ

2K ) = mink Ũ�,k(t,
δ

2K ).

3) Stopping Criteria: If |At| = 1, stop the algorithm and
declare the arm in At as the optimal arm with 1 − δ

confidence.
Both LUCB and C-LUCB sample the top two arms at round

t in m1(t) and m2(t) so as to resolve the ambiguity among
them as fast as possible. However, C-LUCB uses the addi-
tional pseudo-reward information to modify its choice of m1(t)
and m2(t). In particular, the use of Ik(t) in definition of m2(t)
avoids the sampling of an arm that appears sub-optimal from
samples of other arms. Similarly, using the CrossUCB index
Ũk(t, δ/2K) instead of Ũk,k(t, δ/2K), allows the C-LUCB to
eliminate some arms earlier than the LUCB algorithm. A com-
parison of the operation of C-LUCB with LUCB and Racing
based algorithms is presented in Table III. We show that the
proposed C-LUCB algorithm is 1 − δ correct and analyze its
sample complexity in the next section. As the key difference
between C-LUCB and LUCB is in its sampling strategy, we
explore some other variants of C-LUCB in Section VI, where
we study the effect of performance on altering the definitions
of m1(t) and m2(t).

V. SAMPLE COMPLEXITY RESULTS

In this section, we analyze sample complexity of the
proposed C-LUCB algorithm, that is, the number of samples
required to identify the best arm with probability 1 − δ. We
show that some arms, referred to as non-competitive arms, are
explored implicitly through the samples of the optimal arm k∗
and contribute only an O(1) term in the sample complexity,
while other arms called competitive arms have an O(log(1/δ))

contribution in the sample complexity of the C-LUCB algo-
rithm. The correlation information enables us to identify the
non-competitive arms using samples from other arms and elim-
inate them early. For the sample complexity analysis, we
assume that the rewards are bounded between [0, 1]∀k ∈ K.
Note that the algorithms do not require this condition and the
analysis can also be generalized to any bounded rewards.

A. Competitive and Non-Competitive Arms

We now define the notion of competitive and non-
competitive arms, which are important to interpret our sample
complexity results for the C-LUCB algorithm. Let k∗ denote
the arm with the largest mean and k(2) denote the arm with
the second largest mean.

Definition 5 (Non-Competitive and Competitive arms): An
arm � is said to be non-competitive if the expected reward of
the second best arm k(2) is strictly larger than the expected
pseudo-reward of arm � with respect to the optimal arm k∗,
i.e., �̃� � (μk(2) − φ�,k∗) > 0. Similarly, an arm � is said to
be competitive if �̃� = (μk(2) − φ�,k∗) ≤ 0. We refer to �̃� as
the pseudo-gap of arm � in the rest of the paper. We denote

the set of the competitive arms as C and the total number of
competitive arms as C in this paper.

The best arm k∗ and second best arm k(2) have pseudo-gaps
�̃k∗ = (μk(2) − φk∗,k∗) < 0 and �̃k(2) = (μk(2) − φk(2),k∗) ≤ 0
respectively, and hence are counted in the set of competitive
arms. As φ�,k∗ ≥ μ�, the pseudo-gap �̃� ≤ ��. Due to this,
we have 2 ≤ C ≤ K.

The central idea behind our C-LUCB approach is that after
sampling the optimal arm k∗ sufficiently large number of
times, the non-competitive (and thus sub-optimal) arms will
not be selected as m1(t) or m2(t) by the C-LUCB algorithm,
and thus will not be explored explicitly. Furthermore, the
non-competitive arms can be eliminated from the information
obtained through arm k∗. As a result, the non-competitive arms
contribute only an O(1) term in the sample complexity, i.e.,
the contribution is independent of the confidence parameter δ.
However, the competitive arms cannot be discerned as sub-
optimal by just using the rewards observed from the optimal
arm, and have to be explored O(log( 1

δ
)) times each. Thus,

we are able to reduce a K-armed bandit to a C-armed bandit
problem, where C is the number of competitive arms.4

B. Analysis of C-LUCB

We start by first proving the (1−δ)-correctness of C-LUCB
algorithm and then analyzing its sample complexity in terms
of the number of samples obtained until the stopping criterion
is satisfied.

Theorem 1 ((1 − δ) correctness of C-LUCB): Upon stop-
ping, the C-LUCB algorithm declares arm k∗ as the best arm
with probability 1 − δ.

Proof Sketch: To prove Theorem 1, we define three events
E1, E2 and E3 below. Let E1 be the event that empirical mean
of all arm lie within their confidence intervals uniformly for
all t ≥ 1

E1 =
{

∀t ≥ 1,∀k ∈ K, μ̂k(t) − B

(

nk(t),
δ

2K

)

≤ μk ≤ μ̂k + B

(

nk(t),
δ

2K

)}

(11)

Define E2 to be the event that empirical pseudo-reward of
optimal arm with respect to all other arms lie within their
CrossUCB indices uniformly for all t ≥ 1, i.e.,

E2 =
{

∀t ≥ 1,∀� ∈ K, φk∗,� ≤ φ̂k∗,�(t) + B

(

n�(t),
δ

2K

)}

(12)

Similarly define E3 to be the event that the empirical pseudo-
reward of the sub-optimal arms with respect to the optimal arm
lies within their CrossUCB indices uniformly for all t ≥ 1, i.e.,

E3 =
{

∀t ≥ 1,∀� ∈ K, φ�,k∗ ≤ φ̂�,k∗(t) + B

(

nk∗(t),
δ

2K

)}

(13)

4Observe that k∗ and subsequently C are both unknown to the algo-
rithm. Before the start of the algorithm, it is not known which arm is
optimal/competitive/non-competitive.
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Furthermore, we define E to be the intersection of the three
events, i.e.,

E = E1 ∩ E2 ∩ E3. (14)

Due to the nature of anytime confidence intervals (See 4)
and union bound over the set of arms, we have Pr(Ec

1) ≤ δ
2 ,

Pr(Ec
2) ≤ δ

4 and Pr(Ec
3) ≤ δ

4 giving us Pr(Ec) ≤ δ.
Furthermore, we show that, when event E occurs, the C-LUCB
algorithm always declares k∗ as the best arm. This gives us
the desired result in Theorem 1. A detailed proof is given in
Appendix in the supplementary material.

Theorem 2: Given event E (defined in 14), the expected
number of samples drawn by C-LUCB until stopping, is
bounded as

E

[
NC-LUCB | E

]
≤
∑

k∈C

2ζ

�2
k

log

⎛

⎜
⎜
⎝

2K log

(
1

�2
k

)

δ

⎞

⎟
⎟
⎠

+ 3K + 2Kt0
1 − δ

+ 2

1 − δ

(
(K + 1)3

t0
+ 2

t20

)

,

(15)

where t0 = inf{τ ≥ 2:�k∗ ≥ 4
√

2K log τ
τ

∀k /∈ C} and ζ is
a universal constant that depends on the type of confidence
bound used to construct B(nk, δ) (Section III-B) – the tighter
the bound, the smaller the ζ . The gap �k is defined as �k �
μk∗ − μk for k �= k∗, i.e., the difference in mean reward
of optimal arm k∗ and mean reward of arm k and �k∗ �
mink �=k∗ �k, i.e., the gap between best and second best arm.

We present a brief proof outline below, while the detailed
proof is available in Appendix E in the supplementary
material.

Proof Sketch: In order to bound the total number of samples
drawn by C-LUCB, we bound the total number of rounds T
taken by C-LUCB before stopping. As C-LUCB algorithm
pulls two arms m1(t) and m2(t) in each round t, the number
of samples NC-LUCB = 2T . We obtain an upper bound on
the total number of rounds T , considering the following four
counts of the number of rounds and obtain an upper bound
for each of them under the event E :

1) T(R): Let T(R) denote the number of rounds in which
Ik∗(t) < μk∗ , i.e., the count of events in which the pseu-
doUCB index of arm k∗ is smaller than the mean of arm
k∗ at round t.

2) T(C): Define T(C) to be the number of rounds in which
m1(t), m2(t) ∈ C and event Ik∗(t) < μk∗ does not occur.

3) T(NC): Define T(NC) to be the number of rounds in
which m1(t) /∈ C, m2(t) �= k∗ or m2(t) /∈ C, m1(t) �= k∗.

4) T(∗): Define T(∗) to be the number of rounds in which
m1(t) = k∗, m2(t) /∈ C or m2(t) = k∗, m1(t) /∈ C .

We can now see that T ≤ T(R) + T(C) + T(NC) + T(∗). We
show that

Pr(Ik∗(t) < μk∗ |E) = Pr(Ik∗ < μk∗ , E)

Pr(E)

≤ Pr(Ik∗ < μk∗ , E)

1 − δ
≤ Pr(Ik∗ < μk∗)

1 − δ

≤ Kt−3

1 − δ
,

giving us E
[
T(R)|E] ≤ 1

1−δ

∑∞
t=1 Kt−3 ≤ 3K

2(1−δ)
. Next we

show that

Pr

⎛

⎜
⎜
⎝T(C) + T(∗) ≥

∑

k∈C

ζ

�2
k

log

⎛

⎜
⎜
⎝

2K log

(
1

�2
k

)

δ

⎞

⎟
⎟
⎠|E

⎞

⎟
⎟
⎠ = 0.

Due to this,

T(C) + T(∗) ≤
∑

k∈C

ζ

�2
k

log

⎛

⎜
⎜
⎝

2K log

(
1

�2
k

)

δ

⎞

⎟
⎟
⎠ w.p. 1 − δ.

We then evaluate an upper bound on E
[
T(NC)|E] and show

that it is upper bounded by a O(1) constant, i.e.,

E

[
T(NC)|E

]
≤ Kt0

1 − δ
+ 1

1 − δ

(
(K + 1)3

t0
+ 2

t20

)

.

Putting these results together, we obtain the result of
Theorem 2.

Furthermore, as E
[
T(NC)|E], E

[
T(R)|E] is upper bounded

by an O(1) constant as δ → 0, we have
∑∞

t=1 Pr(ENC
t ) < ∞,

where ENC
t is the event that m1(t) /∈ C, m2(t) �= k∗ or m2(t) /∈

C, m1(t) �= k∗. By Borel-Cantelli Lemma 1, this implies that
with probability 1, the event ENC

t takes place only finitely
many time steps t. As a result of this, ∃d1: Pr(T(NC) > d1|E) =
0 almost surely. Similarly ∃d2: Pr(T(R) > d2|E) = 0 a.s. As a
consequence of this, we have the following result bounding the
total number of samples drawn from the C-LUCB algorithm
with probability 1 − δ.

Corollary 1: The number of samples obtained by C-LUCB
is upper bounded as

NC-LUCB ≤
∑

k∈C

2ζ

�2
k

log

⎛

⎜
⎜
⎝

2K log

(
1

�2
k

)

δ

⎞

⎟
⎟
⎠+ d w.p. 1 − δ,

(16)

where d = max(d1, d2). Note that the O(log( 1
δ
)) term is only

summed for the set of competitive arms C, in contrast to the
LUCB algorithm where the sample complexity term involves
summation of a O(log( 1

δ
)) for all arms k ∈ K. In this sense,

our proposed algorithm reduces a K-armed bandit problem to
a C-armed bandit problem.

The key intuition behind our sample complexity result is
that the sampling of m1(t) = arg maxk∈At

Ik(t) ensures that
the optimal arm is sampled at least t/K times till round t with
high-probability. This in turn ensures that the non-competitive
arms are not selected as m1(t) or m2(t), due to which we see
that their expected number of samples are bounded above by
a O(1) constant.

C. Comparison With the LUCB Algorithm

The LUCB algorithm is known to stop after obtaining at

most
(∑

k∈K
2ζ

�2
k

log
(K log

(
1

�2
k

)

δ

))
samples with probability at
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TABLE V
WE STUDY TWO INTUITIVE VARIANTS OF C-LUCB WHICH DIFFER IN THEIR SAMPLING STRATEGY OF m1(t) AND m2(t). BOTH OF THEM HAVE SAME

ELIMINATION AND STOPPING CRITERIA AS THE C-LUCB ALGORITHM. WE REPORT THE NUMBER OF SAMPLES NEEDED TO IDENTIFY THE BEST

GENRE FROM THE SET OF 18 MOVIE GENRES IN THE MOVIELENS DATASET. WHILE ALL OF THESE ARE SMALLER THAN THE SAMPLES DRAWN BY

LUCB (WHICH IS 61175.4 IN THIS CASE), THE DIFFERENCE BETWEEN THE VARIANTS OF C-LUCB IS MINIMAL. EXPERIMENTAL DETAILS ARE

DESCRIBED IN DETAIL IN SECTION VII, WE SET THE VALUE OF p = 0.2 (I.E., THE FRACTION OF PSEUDO-REWARD ENTRIES THAT ARE REPLACED BY

5) IN THIS EXPERIMENT. SUCH SIMILARITY IN EMPIRICAL PERFORMANCE HAS ALSO BEEN OBSERVED IN OUR OTHER EXPERIMENTS AND WE

FOUND NO CLEAR WINNER AMONG THE THREE WHEN COMPARED ON THEIR EMPIRICAL PERFORMANCE

least 1 − δ. More formally,

NLUCB ≤

⎛

⎜
⎜
⎝

∑

k∈K

2ζ

�2
k

log

⎛

⎜
⎜
⎝

K log

(
1

�2
k

)

δ

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠, w.p. 1 − δ.

We compare this result with the one that we prove for C-LUCB
algorithm in Theorem 2.

Reduction to a C-Armed Bandit problem: As highlighted
earlier, in the C-LUCB approach, the O(log( 1

δ
)) term only

comes from the set of competitive arms, as opposed to the
LUCB algorithm which has O((log( 1

δ
)) contribution from all

its arms. In this sense, C-LUCB algorithm reduces a K-armed
bandit problem to a C-armed bandit problem. Depending on
the problem instance, the value of C can vary between 2
and K.

Slightly larger number of samples from competitive arms:
We see that the contribution coming from a competitive

arm in C-LUCB algorithm is 2ζ

�2
k

log
( 2K log

(
1

�2
k

)

δ

)
. This is

slightly larger than the contribution coming from a sub-
optimal arm in LUCB algorithm, where each arm contributes

2ζ

�2
k

log
(K log

(
1

�2
k

)

δ

)
in the sample complexity. This is due to

the fact that we construct slightly wider confidence intervals,
B(nk,

δ
2K ) instead of B(nk,

δ
K ), in C-LUCB to take advan-

tage of the correlations present in the problem. We see in
Section VII that this small increase in the width of confidence
intervals does not have a significant impact on the empirical
performance of the algorithm.

Theorem 2’s result is in conditional expectation: While the
sample complexity result of the LUCB algorithm bounds the
total number of samples taken with probability 1 − δ, our
sample complexity result bounds the expected samples taken
by C-LUCB algorithm under the event E (Theorem 2). This
arises as the analysis of our algorithm requires a transient
component, because it tries to avoid sampling non-competitive
arm at each round with high probability. We have a result in
Corollary 1 that evaluates an upper bound which holds with
probability 1 − δ, but we are unable to quantify the constant
d in Corollary 1 and can only characterize d in expectation
as done in Theorem 2. An open problem is to evaluate the
expected sample complexity of our C-LUCB algorithm for the
cases where the event E does not occur. While such results are

hard to obtain theoretically, in all our experiments we observed
that the variance in the number of samples drawn by C-LUCB
is not much, and is in fact similar to that of the LUCB algo-
rithm in all the experiments performed. This indicates that
even when algorithm stops with an incorrect arm, the number
of samples obtained are similar to the samples obtained under
the good event E .

The log (K) term in numerator: Just like the sample com-
plexity result of the LUCB algorithm [7], our sample com-
plexity result also has a log(K) in its sample complexity
result. This is avoidable in the classical MAB framework if
one uses the lil’UCB algorithm, which is known to have the
optimal theoretical sample complexity in the classical bandit
setting as it avoids the log(K) term in its sample complex-
ity expression. However the use of lil’UCB algorithm leads
to worse empirical performance as seen in our experiments
and prior work [7]. Due to this reason, we focus only on
the extension of LUCB to the correlated bandit setting. The
LUCB++ algorithm has a sample complexity of the form

of
(∑

k∈K\{k∗}
2ζ1

�2
k

log
( log

(
1

�2
k

)

δ

) + 2ζ2

�2
k∗

log
(K log

(
1

�2
k∗

)

δ

))
. The

LUCB++ algorithm avoids the log(K) term in the sample com-
plexity for the sub-optimal arms and has it only for the optimal
arm k∗. Due to this, it is seen that LUCB++ slightly outper-
forms the LUCB algorithm empirically. In our next section, we
propose the C-LUCB++ algorithm, which is a heuristic exten-
sion of LUCB++ to the correlated bandit setting and show that
it finds the optimal arm with probability at least 1 − δ.

Dependency with K: In our sample complexity results,
the dependence with respect to K is loose. For our the-
oretical results, we focus on studying the dependence of
sample complexity on δ in this paper. In Section VII, we
show that even when δ = 0.1 (i.e., a moderate confidence
regime), our proposed algorithms outperform the classical
bandit algorithms (See Figure 3).

VI. VARIANTS OF C-LUCB

In our proposed C-LUCB algorithm, at each round we sam-
ple two arms m1(t), m2(t), where m1(t) = arg maxk∈At

Ik(t)
and m2(t) = arg maxk∈At\{m1} min(Ũk,k(δ/2K), Ik(t)). A sam-
pling such as this allowed us to show 1 − δ correctness of
the algorithm (Theorem 1) and analyse its sample complexity
(Theorem 2). In this section, we explore two other algorithms,
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that we call maxmin-LUCB and 2-LUCB, that sample differ-
ent m1(t) and m2(t) at round t, but have the same elimination
and stopping criteria as that of C-LUCB. In Table V, we con-
trast their sampling strategy with respect to C-LUCB. While
we are able to show that both maxmin-LUCB and 2-LUCB
algorithm will stop with the best-arm with probability at least
1−δ, we are unable to provide a sample complexity result for
them.

We also evaluated the empirical performance of maxmin-
LUCB and 2-LUCB on a real-world recommendation dataset,
and found their empirical performance to be similar to C-
LUCB. We chose to use C-LUCB as our proposed algorithm as
it is possible to provide theoretical guarantees as in Theorem 1
and Theorem 2. Moreover, we find its empirical performance
to be superior than classical bandit algorithms in correlated
bandit settings, as we illustrate through our experiments in
the next section.

A. C-LUCB++: Heuristic Extension of LUCB++

The LUCB++ algorithm as illustrated in Section III, is able
to improve upon LUCB, by modifying its stopping criteria
and in its sampling of m1(t) and m2(t). We propose an exten-
sion, C-LUCB++, that extends the LUCB++ algorithm to the
correlated bandit setting. The comparison of C-LUCB++ and
LUCB++ in its sampling, elimination and stopping criteria
is presented in Table III. While we are able to show that
the C-LUCB++ stops with the best arm with probability at
least 1 − δ in Appendix G in the supplementary material,
analysing its sample complexity remains an open problem.
We compare the performance of C-LUCB++, with C-LUCB,
LUCB, Racing and lil’UCB algorithms extensively through
our experiments on Movielens and Goodreads datasets in the
next section.

VII. EXPERIMENTS

We now evaluate the performance of our proposed C-LUCB
and C-LUCB++ algorithms in a real-world setting. By compar-
ing the performance against classical best-arm identification
algorithms on the MOVIELENS and GOODREADS datasets, we
show that our proposed algorithms are able to exploit corre-
lation to identify the best-arm in fewer samples. All results
reported in our paper are presented after conducting 10 inde-
pendent trials and computing their average. Additionally, in
all our plots we show the error bars of width 2σ , where σ is
the standard deviation in the number of samples drawn by an
algorithm across the 10 independent trials.

A. Experiments on the MOVIELENS Dataset

The MOVIELENS dataset [38] contains a total of 1M ratings
for a total of 3883 Movies rated by 6040 Users. Each movie is
rated on a scale of 1-5 by the users. Moreover, each movie is
associated with one (and in some cases, multiple) genres. For
our experiments, of the possibly several genres associated with
each movie, one is picked uniformly at random. To perform
our experiments, we split the data into two parts, with the
first half containing ratings of the users who provided the most
number of ratings. This half is used to learn the pseudo-reward

Fig. 5. Number of samples drawn by Racing, lil’UCB, LUCB, LUCB++,
C-LUCB and C-LUCB++ to identify the best movie genre out of 18 possible
genres in the Movielens dataset. Here, p represents the fraction of pseudo-
reward entries that are replaced by the maximum possible reward (i.e., 5).
When p is small, there is more correlation information available that our
proposed C-LUCB and C-LUCB++ algorithms exploit to reduce the number
of samples needed to identify the best movie genre. When p = 1, there is no
correlation information available, in which case our proposed C-LUCB and
C-LUCB++ algorithms have a performance similar to LUCB and LUCB++
respectively.

entries, the other half is the test set which is used to evaluate
the performance of the proposed algorithms. Doing such a split
ensures that the rating distribution is different in the training
and test data.

Best Genre identification: In this experiment, our goal is
to identify the most preferred genre among the 18 differ-
ent genre in the test population in fewest possible samples.
The pseudo-reward entry s�,k(r) is evaluated by taking the
empirical average of the ratings of genre � that are rated by
the users who rated genre k as r. As in practice, all such
pseudo-reward entries might not be available, we randomly
replace p-fraction of the pseudo-reward entries by maximum
possible reward, i.e., 5. We then run our best-arm identifica-
tion algorithms on the test data to identify the best-arm with
99% confidence. Figure 5 shows the average samples taken
by C-LUCB and C-LUCB++ algorithm relative to the classi-
cal best-arm identification algorithms for different value of p
(the fraction of pseudo-reward entries that are removed). We
see that C-LUCB and C-LUCB++ algorithms significantly out-
perform all Racing, lil’UCB, LUCB and LUCB++ algorithms
for p = 0.1, 0.25, 0.35 as they are able to exploit the corre-
lations present in the problem to identify the best arm in a
faster manner.

In the scenario where all pseudo-reward entries are
unknown, i.e., p = 1, we see that the performance of C-LUCB
is only slightly worse than that of LUCB algorithm. This is
due to the construction of slightly wide confidence interval
B(nk, δ/2K) for the C-LUCB algorithm relative to LUCB algo-
rithm that uses B(nk, δ/K). We also see that in this scenario,
LUCB++ and C-LUCB++ algorithm (which is an extension of
LUCB++) outperform C-LUCB, which is due to the known
superiority of LUCB++ over LUCB [11], [12].

Variation with δ: We then study the performance of the
best-arm identification algorithms for different value of δ. In
Figure 3, we plot the number of samples required by C-LUCB
and C-LUCB++ to identify the best arm with 90%, 94%, 98%
and 99% confidence, with p = 0.2 (i.e., 20% of pseudo-reward
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Fig. 6. Number of samples needed by Racing, lil’UCB, LUCB, LUCB++,
C-LUCB and C-LUCB++ to identify the best poem out of the set of 25 poem
books in the Goodreads dataset. Here p represents the fraction of pseudo-
rewards that are replaced by maximum possible reward and q = 0.1 is added
to each pseudo-reward entry to account for the fact that pseudo-reward entries
may be noisy. Our proposed C-LUCB and C-LUCB++ utilize correlation
information and require significantly less samples than the classical best-arm
identification algorithms.

entries are replaced by 5). As C-LUCB and C-LUCB++ are
able to make use of the available correlation information, we
see our proposed algorithms require fewer samples than the
Racing, lil’UCB, LUCB and LUCB++ algorithms in each of
the four settings.

B. Experiments on the GOODREADS Dataset

The GOODREADS dataset [39] contains the ratings for
1,561,465 books by a total of 808,749 users. Each rating is
on a scale of 1-5. For our experiments, we only consider the
poetry section and focus on the goal of identify the most
liked poem for the population. The poetry dataset has 36,182
different poems rated by 267,821 different users. We do the
pre-processing of goodreads dataset in the same manner as
that of the MovieLens dataset, by splitting the dataset into two
halves, train and test. The train dataset contains the ratings of
the users with most number of recommendations.

Best book identification: We consider the 25 most rated
poetry books in the dataset and aim to identify the best book in
fewest possible samples with 99% confidence. After obtaining
the pseudo-reward entries from the training data, we replace
p fraction of the entries with the highest possible reward (i.e.,
5) as some pseudo-rewards may be unknown in practice. To
account for the fact that these pseudo-reward entries may be
noisy in practice, we add a safety buffer of 0.1 to each of the
pseudo-reward entry s�,k(r); i.e., we set the pseudo-reward to
be empirical conditional mean (obtained from training data)
plus the safety buffer q = 0.1. We perform experiment on the
test data and compare the number of samples obtained for dif-
ferent algorithms in Figure 6 for two different values of p. We
see that in both the cases, our C-LUCB and C-LUCB++ algo-
rithms outperform other algorithms as they are able to exploit
the correlations in the rewards.

VIII. CONCLUDING REMARKS

In this work, we studied a new multi-armed bandit problem,
where rewards corresponding to different arms are correlated

to each other and this correlation is known and modeled
through the knowledge of pseudo-rewards. These pseudo-
rewards are loose upper bounds on conditional expected
rewards and can be evaluated in practical scenarios through
controlled surveys or from domain expertise. We then extended
an LUCB based approach to perform best-arm identification
in the correlated bandit setting. Our approach makes use of
the pseudo-rewards to reduce the number of samples taken
before stopping. In particular, our approach avoids the sam-
pling of non-competitive arms leading to a stark reduction in
sample complexity. The theoretical superiority of our proposed
approach is reflected in practical scenarios. Our experimental
results on Movielens and Goodreads recommendation dataset
show that the presence of correlation, when exploited by our
C-LUCB approach, can lead to significant reduction in the
number of samples required to identify the best-arm with
probability 1 − δ.

This work opens up several interesting future directions,
including but not limited to the following.

PAC-C-LUCB: In this work, we explored the problem of
identifying the best-arm with probability 1 − δ. A closely
related problem is to find a PAC (probably approximately cor-
rect) algorithm, that identifies an arm which is within ε from
μk∗ with probability at least 1 − δ. We believe such an algo-
rithm can be constructed by modifying the elimination and
stopping criteria of C-LUCB algorithm. More specifically, if
one compares Uk(nk, δ) + ε v/s maxk∈At Lk(nk, δ) in the C-
LUCB’s elimination criteria, it may be possible to design and
analyse a PAC algorithm in the correlated multi-armed bandit
setting.

Using Pseudo-Lower bounds: We assume in our work that
only upper bounds on conditional expected rewards, in the
form of pseudo-upper-bounds, are known to the player. In
practical settings, it may also be possible to obtain pseudo-
lower-bounds, that may allow us to know information about
lower bound on conditional expected reward. In presence of
such knowledge, we believe C-LUCB algorithm will need
a modification in its definition of lower confidence bound
Lk(nk, δ). By defining a crossLCB index L�,k(nk, δ), equiv-
alent to crossUCB index for upper bound, we can re-define
Lk = max L�,k. This new definition of the lower confi-
dence bound index can help us to incorporate cases where
pseudo-lower bounds are also known.

Top m arms identification: Throughout this work, our focus
was to identify just the optimal arm from the set of K arms.
Another similar problem is to come up with an approach
to find the best m arms from the set of K arms. It is an
interesting direction to explore in the correlated-multi armed
bandit setting. We believe such a problem would be even more
interesting if the pseudo-lower bounds are known. An open
problem is to extend a C-LUCB like approach to identify the
best m arms from the set of K arms.

Lower bound and optimal solution: While our proposed
approach shows promising empirical performance and has
some theoretical guarantees, it may not be the optimal solu-
tion for the correlated bandit problem studied in this paper.
Studying a lower bound and correspondingly an optimal
solution to this problem remains an open problem.
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