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Abstract—We consider a multi-armed bandit framework where
the rewards obtained by pulling different arms are correlated.
We develop a unified approach to leverage these reward cor-
relations and present fundamental generalizations of classic
bandit algorithms to the correlated setting. We present a unified
proof technique to analyze the proposed algorithms. Rigorous
analysis of C-UCB (the correlated bandit versions of Upper-
confidence-bound) reveals that the algorithm end up pulling
certain sub-optimal arms, termed as non-competitive, only O(1)
times, as opposed to the O(log T") pulls required by classic bandit
algorithms such as UCB, TS etc. We present regret-lower bound
and show that when arms are correlated through a latent random
source, our algorithms obtain order-optimal regret. We validate
the proposed algorithms via experiments on the MovieLens
and Goodreads datasets, and show significant improvement over
classical bandit algorithms.

Keywords: Multi-Armed Bandits, Online Learning, Sequen-
tial Decision Making, Regret Analysis

I. INTRODUCTION
A. Background and Motivation

Classical Multi-armed Bandits. The multi-armed bandit
(MAB) problem falls under the class of sequential decision
making problems. In the classical multi-armed bandit problem,
there are K arms, with each arm having an unknown reward
distribution. At each round ¢, we need to decide an arm k; € K
and we receive a random reward Ry, drawn from the reward
distribution of arm k;. The goal in the classical multi-armed
bandit is to maximize the long-term cumulative reward. In
order to maximize cumulative reward, it is important to balance
the exploration-exploitation trade-off, i.e., pulling each arm
enough number of times to identify the one with the highest
mean reward, while trying to make sure that the arm with the
highest mean reward is played as many times as possible. This
problem has been well studied starting with the work of Lai
and Robbins [1]] that proposed the upper confidence bound
(UCB) arm-selection algorithm and studied its fundamental
limits in terms of bounds on regret. Subsequently, several other
algorithms including Thompson Sampling (TS) [2]] and KL-
UCB [3]], have been proposed for this setting. The generality
of the classical multi-armed bandit model allows it to be useful
in numerous applications. For example, MAB algorithms are
useful in medical diagnosis [4], where the arms correspond to
the different treatment mechanisms/drugs and are widely used
for the problem of ad optimization [5] by viewing different
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Fig. 1: Upon observing a reward r from an arm k, pseudo-
rewards sy ,(r), give us an upper bound on the conditional
expectation of the reward from arm ¢ given that we observed
reward r from arm k. These pseudo-rewards model the
correlation in rewards corresponding to different arms.

version of ads as the arms in the MAB problem. The MAB
framework is also useful in system testing [6], scheduling in
computing systems [7], [8], [9], and web optimization [10],
5] -

Correlated Multi-Armed Bandits. The classical MAB
setting implicitly assumes that the rewards are independent
across arms, i.e., pulling an arm k does not provide any
information about the reward we would have received from
arm ¢. However, this may not be true in practice as the
reward corresponding to different treatment/drugs/ad-versions
are likely to be correlated with each other. For instance, similar
ads/drugs may generate similar reward for the user/patient.
These correlations, when modeled and accounted for, can allow
us to significantly improve the cumulative reward by reducing
the amount of exploration in bandit algorithms.

Motivated by this, we study a variant of the classical multi-
armed bandit problem in which rewards corresponding to
different arms are correlated to each other, i.e., the conditional
reward distribution satisfies fr, g, (r¢|7x) # fr,(7¢), whence
E [R¢|Rk] # E[Ry]. Such correlations can only be learned
upon obtaining samples from different arms simultaneously,
i.e., by pulling multiple arms at a time. As that is not allowed in
the classical Multi-Armed Bandit formulation, we assume the
knowledge of such correlations in the form of prior knowledge
that might be obtained through domain expertise or from
controlled surveys. One way of capturing correlations is through
the knowledge of the joint reward distribution. However, if
the complete joint reward distribution is known, then the best-
arm is known trivially. Instead, in our work, we only assume
restrictive information about correlations in the form of pseudo-
rewards that constitute an upper bound on conditional expected
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rewards. This makes our model more general and suitable for
practical applications.

Fig. [I] presents an illustration of our model, where the pseudo-
rewards, denoted by s ;(r), provide an upper bound on the
reward that we could have received from arm ¢ given that
pulling arm k led to a reward of r; i.e.,

E[RARk = 7“} < Sg7k(7“). (D)

We show that the knowledge of such bounds, even when
they are not all tight, can lead to significant improvement
in the cumulative reward obtained by reducing the amount
of exploration compared to classical MAB algorithms. Our
proposed MAB model and algorithm can be applied in all real-
world applications of the classical Multi-Armed bandit problem,
where it is possible to know pseudo-rewards from domain
knowledge or through surveyed data. In the next section, we
illustrate the applicability of our novel correlated Multi-Armed
Bandit model and its differences with the existing contextual
and structured bandit works through the example of optimal
ad-selection.

B. An lllustrative Example

Suppose that a company is to run a display advertising
campaign for one of their products, and its creative team
have designed several different versions that can be displayed.
It is expected that the user engagement (in terms of click
probability and time spent looking at the ad) depends the
version of the ad that is displayed. In order to maximize the
total user engagement over the course of the ad campaign,
multi-armed bandit algorithms can be used; different versions
of the ad correspond to the arms and the reward from selecting
an arm is given by the clicks or time spent looking at the ad
version corresponding to that arm.
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Fig. 2: The ratings of a user corresponding to different versions
of the same ad are likely to be correlated. For example, if a
person likes first version, there is a good chance that they will
also like the 2nd one as it also related to tennis. However, the
population composition is unknown, i.e., the fraction of people
liking the first/second or the last version is unknown.

Personalized recommendations using Contextual and
Structured bandits. Although the ad-selection problem can
be solved by standard MAB algorithms, there are several
specialized MAB variants that are designed to give better
performance. For instance, the contextual bandit problem [11]],

[12] has been studied to provide personalized displays of the
ads to the users. Here, before making a choice at each time step
(i.e., deciding which version to show to a user), we observe the
context associated with that user (e.g., age/occupation/income
features). Contextual bandit algorithms learn the mappings
from the context € to the most favored version of ad k*(6)
in an online manner and thus are useful for personalized
recommendations. A closely related problem is the structured
bandit problem [13], [[14], [15]], [[L6], in which the context §
(age/ income/ occupational features) is hidden but the mean
rewards for different versions of ad (arms) as a function of
hidden context 6 are known. Such models prove useful for
personalized recommendation in which the context of the user
is unknown, but the reward mappings px(6) are known through
surveyed data.

Global Recommendations using Correlated-Reward Ban-
dits. In this work we study a variant of the classical multi-armed
bandit problem in which rewards corresponding to different
arms are correlated to each other. In many practical settings, the
reward we get from different arms at any given step are likely
to be correlated. In the ad-selection example given in Figure
a user reacting positively (by clicking, ordering, etc.) to the first
version of the ad with a girl playing tennis might also be more
likely to click the second version as it is also related to tennis;
of course one can construct examples where there is negative
correlation between click events to different ads. The model we
study in this paper explicitly captures these correlations through
the knowledge of pseudo-rewards sgi(r) (See Figure [I).
Similar to the classical MAB setting, the goal here is to
display versions of the ad to maximize user engagement. In
addition, unlike contextual bandits, we do not observe the
context (age/occupational/income) features of the user and do
not focus on providing personalized recommendation. Instead
our goal is to provide global recommendations to a population
whose demographics is unknown. Unlike structured bandits,
we do not assume that the mean rewards are functions of a
hidden context parameter §. In structured bandits, although the
mean rewards depend on 6 the reward realizations can still be
independent. See Section for more details.

C. Main Contributions and Organization

i) A General and Previously Unexplored Correlated
Multi-Armed Bandit Model. In Section [IIl we describe our
novel correlated multi-armed bandit model, in which rewards
of a user corresponding to different arms are correlated with
each other. This correlation is captured by the knowledge of
pseudo-rewards, which are upper bounds on the conditional
mean reward of arm ¢ given reward of arm k. In practice,
pseudo-rewards can be obtained via expert/domain knowledge
(for example, common ingredients in two drugs that are being
considered to treat an ailment) or controlled surveys (for
example, beta-testing users who are asked to rate different
versions of an ad). A key advantage of our framework is
that pseudo-rewards are just upper bounds on the conditional
expected rewards and can be arbitrarily loose. This also makes
the proposed framework and algorithm directly usable in
practice — if some pseudo-rewards are unknown due to lack
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of domain knowledge/data, they can simply be replaced by
the maximum possible reward entries, which serves a natural
upper bound.

ii) An approach to generalize algorithms to the Corre-
lated MAB setting. We propose a novel approach in Section [III|
that extends any classical bandit (such as UCB, TS, KL-UCB
etc.) algorithm to the correlated MAB setting studied in this
paper. This is done by making use of the pseudo-rewards to
reduce exploration in standard bandit algorithms. We refer
to this algorithm as C-BANDIT where BANDIT refers to the
classical bandit algorithm used in the last step of the algorithm
(i.e., UCB/TS/KL-UCB).

iii) Unified Regret Analysis We study the performance of
our proposed algorithms by analyzing their expected regret,
E [Reg(T)]. The regret of an algorithm is defined as the
difference between the cumulative reward of a genie policy, that
always pulls the optimal arm k*, and the cumulative reward
obtained by the algorithm over 7' rounds. By doing regret
analysis of C-UCB, we obtain the following upper bound on
the expected regret of C-UCB.

Proposition 1 (Upper Bound on Expected Regret). The
expected cumulative regret of the C-UCB algorithm is upper
bounded as

E[Reg(T)] < (C —1)-0(logT) + O(1), )

Here C' denotes the number of competitive arms. An arm k is
said to be competitive if expected pseudo-reward of arm k& with
respect to the optimal arm k* is larger than the mean reward of
arm k*, that is, if E [sy, g+ ()] > pg~, otherwise, the arm is said
to be non-competitive. The result in Proposition [T] arises from
the fact that the C-UCB algorithm ends up pulling the non-
competitive arms only O(1) times and only the competitive
sub-optimal arms are pulled O(logT') times. In contrast to
UCB, that pulls all K — 1 sub-optimal arms O(log T') times,
our proposed C-UCB algorithm pulls only C—1 < K —1 arms
O(logT) times. In fact, when C = 1, our proposed algorithm
achieves bounded regret meaning that after some finite step,
no arm but the optimal one will be selected. In this sense,
we reduce a K-armed bandit problem to a C-armed bandit
problem. We emphasize that £*, p* and C' are all unknown to
the algorithm at the beginning.

We present our detailed regret bounds and analysis in
Section A rigorous analysis of the regret achieved under
C-UCB is given through a unified technique. This technique
can be of broad interest as we also provide a recipe to obtain
regret analysis for any C-Bandit algorithm. For instance, the
analysis of C-KL-UCB can be easily done through our provided
outline.

iv) Evaluation using real-world datasets.

We perform simulations to validate our theoretical results
in Section [V} In Section we do extensive validation of
our results by performing experiments on two real-world
datasets, namely MOVIELENS and GOODREADS, which show
that the proposed approach yields drastically smaller regret
than classical Multi-Armed Bandit strategies.

ublication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards,
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TABLE I: The top row shows the pseudo-rewards of arms 1
and 2, i.e., upper bounds on the conditional expected rewards
(which are known to the player). The bottom row depicts two
possible joint probability distribution (unknown to the player).
Under distribution (a), Arm 1 is optimal whereas Arm 2 is
optimal under distribution (b).

II. PROBLEM FORMULATION
A. Correlated Multi-Armed Bandit Model

Consider a Multi-Armed Bandit setting with K arms
{1,2,... K}. At each round ¢, a user enters the system and we
need to decide an arm k; to display to the user. Upon pulling
arm k¢, we receive a random reward Ry, € [0, B]. Our goal is
to maximize the cumulative reward over time. The expected
reward of arm k, is denoted by . If we knew the arm with
highest mean, i.e., k™ = arg maxyc i . beforehand, then we
would always pull arm £* to maximize expected cumulative
reward. We now define the cumulative regret, minimizing which
is equivalent to maximizing cumulative reward:

> (1) A 3)

T
Reg(T) = ik, — e =
t=1 kR

Here, ny(T") denotes the number of times a sub-optimal arm
is pulled till round T and Ay denotes the sub-optimality gap
of arm k, i.e., Ax = pp — k.

The classical multi-Armed bandit setting implicitly assumes
the rewards Ry, Ry ... Ri are independent, that is, Pr(R, =
ro|Rp =71) =Pr(Ry =1rp) Vry,r&Ve, k, which implies that,
E[R¢|Rr =7] =E[Ry] Vr, ¢, k. However, in most practical
scenarios this assumption is unlikely to be true. In fact, rewards
of a user corresponding to different arms are likely to be
correlated. Motivated by this we consider a setup where the
conditional distribution of the reward from arm ¢ given reward
from arm k is not equal to the probability distribution of the
reward from arm £, i.e., fr,|r, (Te|rr) # fr,(re), With fr,(r¢)
denoting the probability distribution function of the reward
from arm /. Consequently, due to such correlations, we have
E[R|Ry] # E [Re].

In our problem setting, we consider that the player has partial
knowledge about the joint distribution of correlated arms in
the form of pseudo-rewards, as defined below:

Definition 1 (Pseudo-Reward). Suppose we pull arm k and
observe reward r, then the pseudo-reward of arm { with
respect to arm k, denoted by s, (r), is an upper bound on
the conditional expected reward of arm {, i.e.,

E[Re| Ry, = 7] < se1(r), “4)

without loss of generality, we define sg (1) = 7.

The pseudo-rewards information consists of a set of K x K
functions s, () over [0, B]. This information can be obtained

/
7:29:46 UTC from III:EEE Xplore. Restrictions apply.

ublications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2021.3081508, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY

r | s21(r) | s3,1(r) r | s12(r) | s3,.2(r)
0] 07 0] 05 1.5
108 1.2 1|13 2
2|2 1 2|2 0.8

r 8173(7‘) 82’3(7')

0| 15 2

1|2 1.3

2|07 0.75

TABLE II: If some pseudo-reward entries are unknown (due
to lack of prior-knowledge/data), those entries can be replaced
with the maximum possible reward and then used in the C-
BANDIT algorithm. We do that here by entering 2 for the
entries where pseudo-rewards are unknown.

in practice through either domain/expert knowledge or from
controlled surveys. For instance, in the context of medical
testing, where the goal is to identify the best drug to treat
an ailment from among a set of K possible options, the
effectiveness of two drugs is correlated when the drugs share
some common ingredients. Through domain knowledge of
doctors, it is possible answer questions such as “what are the
chances that drug B would be effective given drug A was not
effective?", through which we can infer the pseudo-rewards.

B. Computing Pseudo-Rewards from prior-data/surveys

The pseudo-rewards can also be learned from prior-available
data, or through offline surveys in which users are presented
with all K arms allowing us to sample Ry,..., Rx jointly.
Through such data, we can evaluate an estimate on the
conditional expected rewards. For example in Table [I} we can
look at all users who obtained 0 reward for Arm 1 and calculate
their average reward for Arm 2, say fi21(0). This average
provides an estimate on the conditional expected reward. Since
we only need an upper bound on E [Ry|R; = 0], we can use
several approaches to construct the pseudo-rewards.

1) If the training data is large, one can use the empirical
estimate i 1(0) directly as s3 1(0), because through
law of large numbers, the empirical average equals the
E[R2|R; =0].

2) Alternatively, we can set s31(0) = fi21(0) + 62.1(0),
with 62.1(0) denoting the empirical standard deviation
on the conditional reward of arm 2, to ensure that pseudo-
reward is an upper bound on the conditional expected
reward.

3) In addition, pseudo-rewards for any unknown conditional
mean reward could be filled with the maximum possible
reward for the corresponding arm. Table [[I shows an
example of a 3-armed bandit problem where some
pseudo-reward entries are unknown, e.g., due to lack
of data. We can fill these missing entries with maximum
possible reward (i.e., 2) as shown in Table [[I| to complete
the pseudo-reward entries.

4) If through the training data, we obtain a soft upper bound
u on E[Rz|R; = 0] that holds with probability 1 — 4,
then we can translate it to the pseudo-reward s51(0) =
ux (1—40)+2x 6, (assuming maximum possible reward
is 2).
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Fig. 3: A special case of our proposed problem framework is
a setting in which rewards for different arms are correlated
through a hidden random variable X. At each round X takes
a realization in X. The reward obtained from an arm k is
Y% (X). The figure illustrates lower bounds and upper bounds
on Yj(X) (through dotted lines). For instance, when X takes
the realization 1, reward of arm 3 is a random variable bounded
between 1 and 3.

Remark 1. Note that the pseudo-rewards are upper bounds
on the expected conditional reward and not hard bounds on
the conditional reward itself. This makes our problem setup
practical as upper bounds on expected conditional reward are
easier to obtain, as illustrated in the previous paragraph.

Remark 2 (Reduction to Classical Multi-Armed Bandits).
When all pseudo-reward entries are unknown, then all pseudo-
reward entries can be filled with maximum possible reward
for each arm, that is, s; (1) = B Vr, L, k. In such a case, the
problem framework studied in this paper reduces to the setting
of the classical Multi-Armed Bandit problem and our proposed
C-BANDIT algorithm performs exactly as standard BANDIT
(for e.g., UCB, TS etc.) algorithms.

While the pseudo-rewards are known in our setup, the
underlying joint probability distribution of rewards is unknown.
For instance, Table [I] (a) and Table [[] (b) show two joint
probability distributions of the rewards that are both possible
given the pseudo-rewards at the top of Table [l If the joint
distribution is as given in Table |I| (a), then Arm 1 is optimal,
while Arm 2 is optimal if the joint distribution is as given in
Table [b).

Remark 3. For a setting where reward domain is large or
there are a large number of arms, it may be difficult to learn the
pseudo-reward entries from prior-data. In such scenarios, the
knowledge of additional correlation structure may be helpful
to know the value of pseudo-rewards. We describe one such
structure in the next section where rewards are correlated
through a latent random source and show how to evaluate
pseudo-rewards in such a scenario.

C. Special Case: Correlated Bandits with a Latent Random
Source

Our proposed correlated multi-armed bandit framework
subsumes many interesting and previously unexplored multi-
armed bandit settings. One such special case is the correlated
multi-armed bandit model where the rewards depend on a
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Fig. 4: An illustration on how to calculate pseudo-rewards in
CMAB with latent random source. Upon observing a reward of
4 from arm 1, we can see that the maximum possible reward for
arms 2 and 3 is 3.5 and 4 respectively. Therefore, s3 1(4) = 3.5
and s31(4) = 4.

common latent source of randomness [[17]. More concretely,
the rewards of different arms are correlated through a hidden
random variable X (see Figure E]) At each round ¢, X takes
a an i.i.d. realization X; € X (unobserved to the player) and
upon pulling arm k, we observe a random reward Yy (X}). The
latent random variable X here could represent the features
(i.e., age/occupation etc.) of the user arriving to the system,
to whom we show one of the K arms. These features of the
user are hidden in the problem due to privacy concerns. The
random reward Y} (X;) represents the preference of user with
context X, for the k" version of the ad, for the application
of ad-selection.

In this problem setup, upper and lower bounds on Yy (X),
namely gx(X) and g, (X) are known. For instance, the
information on upper and lower bounds of Y;(X;) could
represent knowledge of the form that children of age 5-10 rate
documentaries only in the range 1-3 out of 5. Such information
can be known or learned through prior available data. While the
bounds on Y (X) are known, the distribution of X and reward
distribution within the bounds is unknown, due to which the
optimal arm is not known beforehand. Thus, an online approach
is needed to minimize the regret.

It is possible to translate this setting to the general framework
described in the problem by transforming the mappings Y (X)
to pseudo-rewards sy (7). Recall the pseudo-rewards represent
an upper bound on the conditional expectation of the rewards.
In this framework, sy ,(r) can be calculated as:

Ge(),

max

See(T) =
é,k( ) {z:g, (2)<r<gi(z)}

where g, () and gy (z) represent upper and lower bounds on
Y (x). Upon observing a realization from arm k, it is possible
to estimate the maximum possible reward that would have
been obtained from arm ¢ through the knowledge of bounds
on Y (X).

Figure [] illustrates how pseudo-reward is evaluated when
we obtain a reward » = 4 by pulling arm 1. We first
infer that X lies in [0,0.8] if » = 4 and then find the
maximum possible reward for arm 2 and arm 3 in [0, 0.8].

ublication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards,

Once these pseudo-rewards are constructed, the problem fits
in the general framework described in this paper and we can
use the algorithms proposed for this setting directly.

Remark 4. In the scenario where g, () and gi(z) are soft
lower and upper bounds, i.e., g, (x) < Yj(z) < ge(z) wp.
1 — 6, we can still construct pseudo-reward as follows:

sep(r)=(1—06)2%x ma gelx
ek(r) = (1-9) <{x;gk(x)gr);gk(x)}g£( )>
+(1—-(1-9)%) x M,

where M is the maximum possible reward an arm can provide.
Thus our proposed framework and algorithms work under this
setting as well.F_-]

D. Comparison with parametric (structured) models

As mentioned in Section [} a seemingly related model is the
structured bandits model [13], [14], [18]. Structured bandits is
a class of problems that cover linear bandits [[15], generalized
linear bandits [19]], Lipschitz bandits [20], global bandits [?],
regional bandits [21] etc. In the structured bandits setup, mean
rewards corresponding to different arms are related to one
another through a hidden parameter 6. The underlying value of
0 is fixed and the mean reward mappings 8 — () are known.
Similarly, [22]] studies a dependent armed bandit problem, that
also has mean rewards corresponding to different arms related
to one another. It considers a parametric model, where mean
rewards of different arms are drawn from one of the K clusters,
each having an unknown parameter ;. All of these models are
fundamentally different from the problem setting considered
in this paper.

We list some of the differences with the structured bandits
(and the model in [22]) below.

1) In this work we explicitly model the correlations in the
rewards of a user corresponding to different arms. While
mean rewards are related to each other in structured ban-
dits and [22], the reward realizations are not necessarily
correlated.

2) The model studied here is non-parametric in the sense
that there is no hidden feature space as is the case in
structured bandits and the work of Pandey et al. [22].

3) In structured bandits, the reward mappings from 6 to
1x(0) need to be exact. If they happen to be incorrect,
then the algorithms for structured bandit cannot be used
as they rely on the correctness of p(#) to construct
confidence intervals on the unknown parameter 6. In
contrast, the model studied here relies on the pseudo-
rewards being upper bounds on conditional expectations.
These bounds need not be tight and the proposed C-
Bandit algorithms adjust accordingly and perform at least
as well as the corresponding classical bandit algorithm.

4) Similar to the structured bandits, the unimodal bandit
framework [23]], [24] also assumes a structure on the

'We evaluate a range of values within which z lies based on the reward
with probability 1 — §. The maximum possible reward of arm £ for values of
is then identified with probability 1 — §. Due to this, with probability (1 —J)2,
conditional reward of arm £ is at-most MaX {4y (2)<r<gy(z)} geo(z).
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mean rewards and does not capture the reward corre-
lations explicitly. Under the unimodal framework, it is
assumed that the mean reward pj as a function of the
arms k has a single mode. Instead of assuming that
mean rewards are related to one another, our framework
explicitly captures the inherent correlations in the form
of pseudo-reward. Unimodal bandits have often been
used to model the problem of link-rate adaptation in
wireless networks, where the mean-reward corresponding
to different choices of arms is a unimodal function
[25], [26], [27]. The same problem can also be dealt by
modeling the correlations explicitly through the pseudo-
reward framework described in this paper.

III. THE PROPOSED C-BANDIT ALGORITHMS

We now propose an approach that extends the classical multi-
armed bandit algorithms (such as UCB, Thompson Sampling,
KL-UCB) to the correlated MAB setting. At each round ¢ + 1,
the UCB algorithm [28] selects the arm with the highest UCB
index Iy, i.e.,

2log(t)

ni (t) ’

where [ix(t) is the empirical mean of the rewards received
from arm % until round ¢, and ny(¢) is the number of times
arm k is pulled till round ¢. The second term in the UCB index
causes the algorithm to explore arms that have been pulled
only a few times (i.e., those with small ng(t)). Recall that we
assume all rewards to be bounded within an interval of size B.
When the index ¢ is implied by context, we abbreviate fiy(t)
and Iy (t) to jix and Iy respectively in the rest of the paper.
Under Thompson sampling [29], the arm ki1 = arg
maxgek Sk, is selected at time step ¢ + 1. Here, Sy ¢ is the
sample obtained from the posterior distribution of puy, That is,

&)

r41 = argmax fg, iy fur(t) +

. BB
kt+1 = arg Il?ealé{ Sk,u Sk,t ~N (Mk(t)7 W , (6)

here [ is a hyperparameter for the Thompson Sampling
algorithm

In the correlated MAB framework, the rewards observed
from one arm can help estimate the rewards from other arms.
Our key idea is to use this information to reduce the amount
of exploration required. We do so by evaluating the empirical
pseudo-reward of every other arm ¢ with respect to an arm k
at each round ¢. Using this additional information, we identify
some arms as empirically non-competitive at round ¢, and only
for this round, do not consider them as a candidate in the
UCB/Thompson Sampling/(any other bandit algorithm).

A. Empirical Pseudo-Rewards

In our correlated MAB framework, pseudo-reward of arm ¢
with respect to arm k provides us an estimate on the reward
of arm ¢ through the reward sample obtained from arm k. We
now define the notion of empirical pseudo-reward which can
be used to obtain an optimistic estimate of p, through just
reward samples of arm k.

ublication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards,

Definition 2 (Empirical and Expected Pseudo-Reward). After t
rounds, arm k is pulled ny(t) times. Using these ny(t) reward
realizations, we can construct the empirical pseudo-reward
Qg&k(t) for each arm € with respect to arm k as follows.

Po(t) 2 L= ]lk;;&)””“(r’“*), ve{l,... KY\{k},
(7

The expected pseudo-reward of arm { with respect to arm k is
defined as

ber = E[ser(R)].
For convenience, we set q@k,k(t) = i (t) and ¢y i = pk.

Observe that E [sg x(Ry)] > E[E [R¢|Rx = r]] = pt¢. Due to
this, empirical pseudo-reward ég,k(t) can be used to obtain an
estimated upper bound on p,. Note that the empirical pseudo-
reward ¢y (t) is defined with respect to arm % and it is only
a function of the rewards observed by pulling arm k.

(®)

B. The C-BANDIT Algorithm

Using the notion of empirical pseudo-rewards, we now de-
scribe a 3-step procedure to fundamentally generalize classical
bandit algorithms for the correlated MAB setting.

Step 1: Identify the set S; of significant arms: At each
round ¢, define S; to be the set of arms that have at least ¢/ K
samples, i.e., Sy = {k € K : ng(t) > %} As S; is the set of
arms that have relatively large number of samples, we use these
arms for the purpose of identifying empirically competitive and
empirically non-competitive arms. Furthermore, define kP (¢)
to be the arm that has the highest empirical mean in set S;,
ie., k(1) = argmaxycg, fix(t). EI

Step 2: Identify the set of empirically competitive arms A,

Using the empirical mean, figem (t), of the arm with highest
empirical reward in the set S;, we define the notions of
empirically non-competitive and empirically competitive arms
below.

Definition 3 (Empirically Non-Competitive arm at round t).
An arm k is said to be Empirically Non-Competitive at round

t, if minges, dr,o(t) < fugen (t).

Definition 4 (Empirically Competitive arm at round ¢). An
arm k is said to be Empirically Competitive at round t
if minges, quSk,g(t) > figew (t). The set of all empirically
competitive arms at round t is denoted by A;.

The expression minges, ¢y ¢(t) provides the tightest esti-
mated upper bound on mean of arm k, through the samples of
arms in S;. If this estimated upper bound is smaller than the
estimated mean of k°™P(t), then we call arm k as empirically
non-competitive as it seems unlikely to be optimal through the
samples of arms in ;. If the estimated upper bound of arm &

2If one were to use all arms (even those that have few samples) to identify
empirically non-competitive arms, it can lead to incorrect inference, as pseudo-
rewards with few samples will have larger noise, which can in-turn lead to
elimination of the optimal arm. Using only the arms that have been pulled
L times in Sy, allows us to ensure that the non-competitive arms are pulled

K
only O(1) times as we show in Section

/
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is greater than figen (£) , i.€., minges, dp.o(t) > figems (t), We
call arm £ as empirically competitive at round ¢, as it cannot
be inferred as sub-optimal through samples of arms in &;.
Note that the set of empirically competitive and empirically
non-competitive arms is evaluated at each round ¢ and hence
an arm that is empirically non-competitive at round ¢ may be
empirically competitive in subsequent rounds.

Step 3: Play BANDIT algorithm in {A4, U {k*™P(¢)}} As
empirically non-competitive arm seem sub-optimal to be
selected at round ¢, we only consider the set of empirically
competitive arms along with k°™(¢) in this step of the
algorithm. At round ¢, we play a BANDIT algorithm from the
set A; U {k“™P(¢)}. For instance, the C-UCB pulls the arm

ki = arg Ik.,tflv

max

ke{ AUk (t)}

where Ij, ;1 is the UCB index defined in (3).
Similarly, C-TS pulls the arm

ky = arg max

Skt—1,
ke{A Uk (t)}

where Sy, ; is the Thompson sample defined in (6)). At the end
of each round we update the empirical pseudo-rewards ¢y, (t)
for all ¢, the empirical reward for arm k;.

Note that our C-BANDIT approach allows using any
classical Multi-Armed Bandit algorithm in the correlated
Multi-Armed Bandit setting. This is important because some
algorithms such as Thompson Sampling and KL-UCB are
known to obtain much better empirical performance over
UCB. Extending those to the correlated MAB setting allows
us to have the superior empirical performance over UCB
even in the correlated setting. This benefit is demonstrated
in our simulations and experiments described in Section |V|and
Section

Remark 5 (Pseudo-lower bounds). If suppose one had the
information about pseudo-lower bounds (which are lower
bounds on conditional expected rewards), then it is possible
to use this in our correlated bandit framework. In step 2
of our algorithm, we identify an arm k as empirically non-
competitive if minges, dr.o(t) < A" (t). We can maintain
empirical pseudo-lower bound W; ;(t) of each arm i with
respect to every other arm j. Then, we can replace the step 2 of
our algorithm by calling an arm empirically non-competitive if
minges, gr.e(t) < max;es, maxjes, w; ;(t). In the situation
where pseudo-lower bounds are unknown, they can be set
to —oo and the algorithm reduces to the C-Bandit algorithm
proposed in the paper. We can expect the empirical performance
of this algorithm (which is aware of pseudo-lower bounds) to
be slightly better than the C-Bandit algorithm. However, its
regret guarantees will be the same as that of the C-Bandit
algorithm. This is because pseudo-upper bounds are crucial
to deciding whether an arm is competitive/non-competitive
(defined in the next section), and pseudo-lower bounds are not.
Put differently, even in the presence of pseudo-lower bound, the
definition of non-competitive and competitive arms (Definition
5) remains the same.

ublication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards,

7

Algorithm 1 C-UCB Correlated UCB Algorithm

1: Input: Pseudo-rewards s, 1,(r)
2: Initialize: n;, = 0,[; = oo for all k € {1,2,... K}
3: for each round ¢ do
4 Find S; = {k : ni(t) > £}, the arm that have been
pulled significant number of times till ¢ — 1. Define
K (1) = arg maxy e, (1)
5. Initialize the empirically competitive set .4; as an empty
set {}.
for k € K do
if mingegt (bk,é(t) > ﬂkemp (f,) then
Add arm k to the empirically competitive set: A; =
Ay U{k}
9: end if
10:  end for
11:  Apply UCBI over arms in A; U {k*™P(¢)} by pulling
arm k; = arg maxye A, ugkemr ()} Jr(t — 1)
12:  Receive reward 7, and update ng, (t) = ng, (t) + 1

13:  Update Empirical reward: ik, (t) =
A, (0=1) (g, (£)—=1) 414
1k, (t)
14 Update the UCB Index: Iy, (t) = fur, (1) + B,/ =%
15:  Update empirical pseudo-rewards for all %+ ky:

Phe k() = D, =k, Skikr (T7) /1, ()

16: end for

Algorithm 2 C-TS Correlated TS Algorithm

1: Steps 1 - 10 as in C-UCB

2: Apply TS over arms in A; U {k*™P(¢)} by pulling
arm k; = argmaXpc4,u{rem ()} Sk, Where Sk ~
N (), 2hm )-

3: Receive reward r;, and update ny, (t), fix, (¢) and empirical
pseudo-rewards ¢y y, ().

IV. REGRET ANALYSIS AND BOUNDS

We now characterize the performance of the C-UCB algo-
rithm by analyzing the expected value of the cumulative regret
(B). The expected regret can be expressed as

K

E [Reg(T)] = Y E[ni(T)] Ay, )
k=1

where Ay = g+ — pg is the sub-optimality gap of arm & with

respect to the optimal arm k*, and ng(7) is the number of

times arm k is pulled in T slots.

For the regret analysis, we assume without loss of generality
that the rewards are between 0 and 1 for all k € {1,2,... K}.
Note that the C-BANDIT algorithms do not require this
condition, and the regret analysis can also be generalized to
any bounded rewards.

A. Competitive and Non-competitive arms with respect to Arm
k

For the purpose of regret analysis in Section we need to
understand which arms are empirically competitive as ¢ — oo.
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We do so by defining the notions of Competitive and Non-
Competitive arms.

Definition 5 (Non-Competitive and Competitive arms). An
arm ! is said to be non-competitive if the expected reward
of optimal arm k* is larger than the expected pseudo-reward
of arm { with respect to the optimal arm k*, i.e, if, Ag,k* =
Hix — G = > 0. Similarly, an arm { is said to be competitive
ing,k.* = pp= — Qe x <= 0. The unique best arm k* has
Ak*,k* = Ui — Qg+~ = 0 and is counted in the set of
competitive arms.

We refer to A& k+ as the pseudo-gap of arm ¢ in the rest of the
paper. These notions of competitiveness are used in the regret
analysis in Section The central idea behind our correlated
C-BANDIT approach is that after pulling the optimal arm k*
sufficiently large number of times, the non-competitive (and
thus sub-optimal) arms can be classified as empirically non-
competitive with increasing confidence, and thus need not be
explored. As a result, the non-competitive arms will be pulled
only O(1) times. However, the competitive arms cannot be
discerned as sub-optimal by just using the rewards observed
from the optimal arm, and have to be explored O(log T') times
each. Thus, we are able to reduce a K-armed bandit to a C-
armed bandit problem, where C' is the number of competitive
arms. E]We show this by bounding the regret of C-BANDIT
approach.

B. Regret Bounds

In order to bound E [Reg(T)] in @), we can analyze the
expected number of times sub-optimal arms are pulled, that is,
E [ng(T)], for all k # k*. Theorem [I| and Theorem [2| below
show that E [n(T")] scales as O(1) and O(logT) for non-
competitive and competitive arms respectively. Recall that a
sub-optimal arm is said to be non-competitive if its pseudo-gap
A;%k* > 0, and competitive otherwise.

Theorem 1 (Expected Pulls of a Non-competitive Arm). The
expected number of times a non-competitive arm with pseudo-
gap Ay, i~ is pulled by C-UCB is upper bounded as

T -2 T
E[ni(T)] < Kto+ K> Y 2 (It{) +) 3t7%, (10)
t=1

t=Kto

— o(1), (11

where,
~ 2K |
to = inf {7’ > 20 Apin, D x> 44/ OgT}.
’ T

3As t — oo, only the optimal arm will remain in S, and hence the
definition of competitive arms only compares the expected mean of arm k*
and expected pseudo-reward of arm k with respect to arm k*

4Observe that k* and subsequently C' are both unknown to the algo-
rithm. Before the start of the algorithm, it is not known which arm is
optimal/competitive/non-competitive. Algorithm works in an online manner by
evaluating the noisy notions of competitiveness, i.e., empirically competitive
arms, and ensures that only C' — 1 of the arms are pulled O(logT") times.
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Theorem 2 (Expected Pulls of a Competitive Arm). The
expected number of times a competitive arm is pulled by C-UCB
algorithm is upper bounded as

2
log(T") w2 L <7 min >
< T
E [ne(T)] < 8 A2 + <1+ 3 +;2Kte ,
(12)
=O0(logT) where Ay = mkin A > 0. (13)

Substituting the bounds on E [ny(T)] derived in Theorem
and Theorem [2] into (9), we get the following upper bound on
expected regret.

Corollary 1 (Upper Bound on Expected Regret). The expected
cumulative regret of the C-UCB and C-TS algorithms is upper
bounded as

ElReg(T)] < > MU M+ Y ApUSD),

keC\{k*} kex\{C}
(14)

=(C—-1)-0(logT) + O(1), (15)

where C C {1,...,K} is set of competitive arms with

cardinality C, Ukc) (T') is the upper bound on E [ny(T)] for

nc

competitive arms given in @), and U, (T') is the upper bound

Jfor non-competitive arms given in ().

C. Proof Sketch

We now present an outline of our regret analysis of C-UCB.
A key strength of our analysis is that it can be extended very
easily to any C-BANDIT algorithm. The results independent
of last step in the algorithm are presented in Appendix B, while
the rigorous regret upper bounds for C-UCB is presented in
Appendix D. We also present a regret analysis for C-TS in a
scenario where K = 2, and TS is employed with Beta priors
in Appendix E.

There are three key components to prove the result in
Theorem |l| and Theorem [2| The first two components hold
independent of which bandit algorithm (UCB/TS/KL-UCB) is
used for selecting the arm from the set of competitive arms,
which makes our analysis easy to extend to any C-BANDIT
algorithm. The third step is specific to the last step in C-
BANDIT algorithm. We analyse the third component for C-
UCB to provide its rigorous regret results.

i) Probability of optimal arm being identified as empirically
non-competitive at round ¢ (denoted by Pr(FE;(t))) is small.
In particular, we show that
tAI%]in
2K ) '

This ensures that the optimal arm is identified as empirically
non-competitive only O(1) times. We show that the number
of times a competitive arm is pulled is bounded as

Pr(E:(t)) < 2Ktexp (—

T

E[nk(T)] < ZPT(El(t))+PT(E1C(t), ke =k g1 > I g—1)-
=1

(16)
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The first term sums to a constant, while the second term is
upper bounded by the number of times UCB pulls the sub-
optimal arm k. Due to this the upper bound on the number
of pulls of competitive arm by C-UCB / C-TS is only an
additive constant more than the upper bound on the number
of pulls for an arm by UCB / TS algorithms and hence we
have same pre-log constants for the upper bound on the pulls
of competitive arms.

ii) Probability of identifying a non-competitive arm as
empirically competitive jointly with optimal arm being
pulled more than % times is small. Notice that the first
two steps of our algorithm involve identifying the set of arms
S; that have been pulled at least % times, and eliminating arms
which are empirically non-competitive with respect to the set
S; for round ¢. We show that the joint event that arm k* € S,
and a non-competitive arm k is identified as empirically non-
competitive is small. Formally,

t tAg -
= * > — | < — : .
Pr (ktH kyng-(t) > K) <texp ( Yo ) (I7)

This occurs because upon obtaining a large number of samples
of arm k*, expected reward of arm k* (i.e., ug~) and expected
pseudo-reward of arm k with respect to arm k* (i.e., ¢p k=)
can be estimated fairly accurately. Since the pseudo-gap of
arm k is positive (i.e., g > @y i+ ), the probability that arm k
is identified as empirically competitive is small. An implication
of is that the expected number of times a non-competitive
arm is identified as empirically competitive jointly with the
optimal arm having at least % pulls at round ¢ is bounded
above by a constant.

iii) Probability that a sub-optimal arm is pulled more than
t/K times at round ¢t is small. Formally, we show that for
C-UCB, we have

t t\ 2 )
Pr (nk(t)z K) < (2K +2) (K) vVt > Kto, k # k
(18)
This component of our analysis is specific to the classical
bandit algorithm used in C-BANDIT. Intuitively, a result of
this kind should hold for any good performing classical multi-
armed bandit algorithm. We reach the result of (I8) in C-UCB
by showing that

t
Pr (ktJrl = k,nk(t) > 2]{) § t_3 Vit > t07 k 7é k* (19)

The probability of selecting a sub-optimal arm k after it has
been pulled significantly many times is small as with more
number of pulls, the exploration component in UCB index
of arm k becomes small, and consequently it is likely to be
smaller than the UCB index of optimal arm k* (as it has larger
empirical mean reward or has been pulled fewer number of
times). Our analysis in Lemma 9] shows how the result in (T9)
can be translated to obtain (this translation is again not
dependent on which bandit algorithm is used in C-BANDIT).
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pi(r) | r | s21(r) | s3,1(r)
0.2 01| 07 2

0.2 1108 1.2

0.6 2|2 1

TABLE III: Suppose Arm 1 is optimal and its unknown
probability distribution is (0.2,0.2,0.6), then pu; = 1.4, while
¢2,1 = 1.5 and ¢3 1 = 1.2. Due to this Arm 2 is Competitive
while Arm 3 is non-competitive

We show that the expected number of pulls of a non-
competitive arm k can be bounded as

T

< Z(Pr (kt+1 =k k* = arglrgnaxnk(t)> +

t=1

S Cr—

The first term in 20) is O(1) due to and the second term
is O(1) due to (I8). Refer to Appendix D for rigorous regret
analysis of C-UCB.

E [nx(T)]

(20)

D. Discussion on Regret Bounds

Competitive Arms. Recall than an arm is said to be competi-
tive if pg+ (i.e., expected reward from arm k*) > E [¢y -] =

E [E[Rk/|Rk]] Since the distribution of reward of each arm

is unknown, initially the Algorithm does not know which arm
is competitive and which arm is non-competitive.

Reduction in effective number of arms. Interestingly, our
result from Theorem E] shows that the C-UCB algorithm,
that operates in a sequential fashion, makes sure that non-
competitive arms are pulled only O(1) times. Due to this, only
the competitive arms are pulled O(logT') times. Moreover,
the pre-log terms in the upper bound of UCB and C-UCB
for these arms is the same. In this sense, our C-BANDIT
approach reduces a K-armed bandit problem to a C'-armed
bandit problem. Effectively only C — 1 < K — 1 arms are
pulled O(logT') times, while other arms are stopped being
pulled after a finite time.

Depending on the joint probability distribution, different arms
can be optimal, competitive or non-competitive. Table [[II| shows
a case where arm 1 is optimal and the reward distribution of
arm 1 is (0.2,0.2,0.6), which leads to p; = 1.4 > ¢31 = 1.2
and py = 1.4 < ¢21 = 1.5. Due to this Arm 2 is competitive
while Arm 3 is non-competitive.

Achieving Bounded Regret. If the set of competitive arms
C is a singleton set containing only the optimal arm (i.e.,
the number of competitive arms C' = 1), then our algorithm
will lead to (see (I3)) an expected regret of O(1), instead
of the typical O(logT') regret scaling in classic multi-armed
bandits. One such scenarion in which this can happen is if
pseudo-rewards sy, i~ of all arms with respect to optimal arm
k* match the conditional expectation of arm k. Formally, if
Sk = E [RMR/C*}V]C, then E[Sk,k*} =E [R;g} = W < Ui*.
Due to this, all sub-optimal arms are non-competitive and our
algorithms achieve only O(1) regret. We now evaluate a lower
bound result for a special case of our model, where rewards
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are correlated through a latent random variable X as described
in Section [[I=C1

We present a lower bound on the expected regret for the
model described in Section Intuitively, if an arm £ is
competitive, it can not be deemed sub-optimal by only pulling
the optimal arm £* infinitely many times. This indicates that
exploration is necessary for competitive sub-optimal arms. The
proof of this bound closely follows that of the 2-armed classical
bandit problem [1]; i.e., we construct a new bandit instance
under which a previously sub-optimal arm becomes optimal
without affecting reward distribution of any other arm.

Theorem 3 (Lower Bound for Correlated MAB with latent
random source). For any algorithm that achieves a sub-
polynomial regret, the expected cumulative regret for the model

described in Section is lower bounded as

Ay .
lim infM > Ha¥kec m fFo>1
T—o00 log(T) 0 ifC=1.
2D

Here fr, is the reward distribution of arm &, which is linked
with fx since Ry = Yj(X). The term f5 represents the
reward distribution of arm £ in the new bandit instance where
arm k becomes optimal and distribution fg,. is unaffected. The
divergence term represents "the amount of distortion needed
in reward distribution of arm % to make it better than arm £*",
and hence captures the problem difficulty in the lower bound
expression.

Bounded regret whenever possible for the special case of
Section [IT-C] From Corollary [T} we see that whenever C' > 1,
our proposed algorithm achieves O(logT') regret matching
the lower bound given in Theorem E] order-wise. Also, when
C = 1, our algorithm achieves O(1) regret. Thus, our algorithm
achieves bounded regret whenever possible, i.e., when C' = 1
for the model described in Section [[I-C] In the general problem
setting, a lower bound 2(log T') exists whenever it is possible to
change the joint distribution of rewards such that the marginal
distribution of optimal arm k* is unaffected and pseudo-rewards
sk (r) still remain an upper bound on E [Ry|R) = r| under
the new joint probability distribution. In general, this can
happen even if C' = 1, we discuss one such scenario in the
Appendix F and explain the challenges that need to come from
the algorithmic side to meet the lower bound.

V. SIMULATIONS

We now present the empirical performance of proposed
algorithms. For all the results presented in this section, we
compare the performance of all algorithms on the same reward
realizations and plot the cumulative regret averaged over 100
independent trials. The shaded area represents error bars with
one standard deviation. We set 8 = 1 for all TS and C-TS
plots.

A. Simulations with known pseudo-rewards

Consider the example shown in Table |I} with the top row
showing the pseudo-rewards, which are known to the player,
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r Sgﬁl(’l") r 81’2(7')
0 0| 08
1] 04 1|05
(a) Ri=0| R =1 (b) Ri=0| R =1
Ry =0 | 0.2 0.4 Ry =0 | 0.2 0.3
Ry=1 102 0.2 Ry=1 1 04 0.1

TABLE IV: The top row shows the pseudo-rewards of arms 1
and 2, i.e., upper bounds on the conditional expected rewards
(which are known to the player). The bottom row depicts two
possible joint probability distribution (unknown to the player).
Under distribution (a), Arm 1 is optimal whereas Arm 2 is
optimal under distribution (b).

(a) (b)

100 200 TUcB
gt AC-UCB
= 80 aallinn TS
© +
S bl 150 |x C-TS pant
o) + A*A
T 60 + NG
2 A
= + 100 ‘A
©
=} 40 A 0 0 0 %
IS i x) X0 %
= 50 tol
O 20 ) *
LN NN NN

0
0 2 4 0 2 4

%x10* Number of rounds, T
Fig. 5: Cumulative regret for UCB, C-UCB, TS and C-TS
corresponding to the problem shown in Table For the
setting (a) in Table Arm 1 is optimal and Arm 2 is non-
competitive, in setting (b) of Table [[V| Arm 2 is optimal while
Arm 1 is competitive.

x10%

and the bottom row showing two possible joint probability
distributions (a) and (b), which are unknown to the player. We
show the simulation result of our proposed algorithms C-UCB,
C-TS against UCB, TS in Figure [5] for the setting considered
in Table [

Case (a): Bounded regret. For the probability distribution
(a), notice that Arm 1 is optimal with y; = 0.6, us = 0.4.
Moreover, ¢ 1 = 0.4x0.7+0.6x0.4 = 0.52. Since ¢21 < p1,
Arm 2 is non-competitive. Hence, in Figure Eka), we see that
our proposed C-UCB and C-TS Algorithms achieve bounded
regret, whereas UCB, TS show logarithmic regret.

Case (b): All competitive arms. For the probability distri-
bution (b), Arm 2 is optimal with po = 0.5 and p; = 0.4.
The expected pseudo-reward of arm 1 w.r.t to arm 2 in this
case is ¢12 = 0.8 X 0.5+ 0.5 x 0.5 = 0.65. Since ¢1 2 > pa,
the sub-optimal arm (i.e., Arm 1) is competitive and hence
C-UCB and C-TS also end up exploring Arm 1. Due to this
we see that C-UCB, C-TS achieve a regret similar to UCB,
TS in Figure [5(b). C-TS has empirically smaller regret than
C-UCB as Thompson Sampling performs better empirically
than the UCB algorithm. The design of our C-Bandit approach
allows the use of any other bandit algorithm in the last step,
e.g., KL-UCB.

B. Simulations for the latent random source model in Sec-
tion [[.4

We now show the performance of C-UCB and C-TS against
UCB, TS for the model considered in Section |[I-C| where
rewards corresponding to different arms are correlated through

/
7:29:46 UTC from III:EEE Xplore. Restrictions apply.

ublications/rights/index.html for more information.



0018-9448 (c) 2021 IEEE. Personal use is permitted, but r

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2021.3081508, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY

14 10
y
12
/ 8 I
10 2, W f
e 2,7 s I
3 % 3
> 6 7 > 4 \ ‘1
’ /
4 // 5 \\ I
2, 7 ¢ N =
/
0 0 N/
0 2 4 6 0 2 4 6
X X
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lower and upper bounds on reward of Arms 1 ,Y;(X), and 2,
Y2(X), given the realization of random variable X.
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Fig. 7: Simulation results for the example shown in Figure @
In (a), X ~ Beta(1,1) and in (b) X ~ Beta(1.5,5). In case
(a), Arm 1 is optimal while Arm 2 is non-competitive (C = 1),
due to which we see that C-UCB and C-TS obtain bounded
regret. Arm 2 is optimal for the distribution in (b) and Arm 1
is competitive, due to which C' = 2 and we see that C-UCB
and C-TS attain a performance similar to UCB and TS.

a latent random variable X . We consider a setting where reward
obtained from Arm 1, given a realization x of X, is bounded
between 2x — 1 and 22+ 1, ie., 2X —1 <Y;(X) <2X +1.
Similarly, conditional reward of Arm 2 is, (3 — X)? -1 <
Y2(X) < (3—X)%+1. Figure |§| demonstrates these upper and
lower bounds on Y (X). We run C-UCB, C-TS, TS and UCB
for this setting for two different distributions of X. For the
simulations, we set the conditional reward of both the arms to
be distributed uniformly between the upper and lower bounds,
however this information is not known to the Algorithms.
Case (a): X ~ Beta(1,1). When X is distributed as X ~
Beta(1,1), Arm 1 is optimal while Arm 2 is non-competitive.
Due to this, we observe that C-UCB and C-TS achieve bounded
regret in Figure [7(a).
Case (b): X ~ Beta(1.5,5). In the scenario where X has
the distribution Beta(1.5,5), Arm 2 is optimal while Arm 1
is competitive. Due to this, C-UCB and C-TS do not stop
exploring Arm 1 in finite time and we see the cumulative
regret similar to UCB, TS in Figure [7[b).

Our next simulation result considers a setting where the
known upper and lower bounds on Y3 (X) match and the
reward Y} corresponding to a realization of X is deterministic,
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Fig. 8: Reward Functions used for the simulation results
presented in Figure [9] The reward g;(X) is a function of
a latent random variable X. For instance, when X = 0.5,
reward from Arms 1,2 and 3 are ¢, (X) = 1, g2(X) = 0.7135
and g3(X) = 0.5.
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Fig. 9: The cumulative regret of C-UCB and C-TS depend on
C, the number of competitive arms. The value of C' depends
on the unknown joint probability distribution of rewards and is
not known beforehand. We consider a setup where C' = 1 in
(a), C = 2 in (b) and C = 3 in (c). Our proposed algorithm
pull only the C — 1 competitive sub-optimal arms O(logT)
times, as opposed to UCB, TS that pull all K — 1 sub-optimal
arms O(log T') times. Due to this, we see that our proposed
algorithms achieve bounded regret when C = 1. When C' =
3, our proposed algorithms perform as well as the UCB, TS
algorithms.

ie., Y5(X) = gp(X). We show our simulation results for the
reward functions described in Figure [§] with three different
distributions of X. Corresponding to X ~ Beta(4,4), Arm 1 is
optimal and Arms 2,3 are non-competitive leading to bounded
regret for C-UCB, C-TS in Figure Pfa). In setting (b), we
consider X ~ Beta(2,5) in which Arm 1 is optimal, Arm 2
is competitive and Arm 3 is non-competitive. Due to this, our
proposed C-UCB and C-TS Algorithms stop pulling Arm 3
after some time and hence achieve significantly reduced regret
relative to UCB in Figure Ekb). For third scenario (c), we set
X ~ Beta(1,5), which makes Arm 3 optimal while Arms 1
and 2 are competitive. Hence, our algorithms explore both the
sub-optimal arms and have a regret comparable to that of UCB,
TS in Figure [9fc).

VI. EXPERIMENTS

We now show the performance of our proposed algorithms
in real-world settings. Through the use of MOVIELENS and
GOODREADS datasets, we demonstrate how the correlated

/
7:29:46 UTC from III:EEE Xplore. Restrictions apply.

ublications/rights/index.html for more information.



0018-9448 (c) 2021 IEEE. Personal use is permitted, but re& : 1 .
Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 01,2021 a

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2021.3081508, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY

(@) (b)

1750| + UCB Fhi7s0 /1750
. A C-UCB / /
1500 500 500
o> s/
& 1250 X C-TS 250 250
[
2 1000 ;1000
= D
T 750 AS- | 750
=
£ 500 500
S
O 250{ 250{ 43
01 [} 4
0 2500 5000 0 2500 5000 0 2500 5000

Number of rounds

Fig. 10: Cumulative regret for UCB, C-UCB, TS and C-TS
for the application of recommending the best genre in the
Movielens dataset, where p fraction of the pseudo-entries are
replaced with maximum reward i.e., 5. In (a),p = 0.25, for
(b),p=0.50 and p = 0.7 in (c). The value of C' is 4,11 and
13 in (a), (b) and (c) respectively. As C'is smaller than K (i.e.,
18) in each case, we see that C-UCB and C-TS outperform
UCB and TS significantly.

MAB framework can be used in practical settings for recom-
mendation system applications. In such systems, it is possible to
use the prior available data (from a certain population) to learn
the correlation structure in the form of pseudo-rewards. When
trying to design a campaign to maximize user engagement in a
new unknown demographic, the learned correlation information
in the form of pseudo-rewards can help significantly reduce
the regret as we show from our results described below.

A. Experiments on the MOVIELENS dataset

The MOVIELENS dataset [30] contains a total of 1M ratings
for a total of 3883 Movies rated by 6040 Users. Each movie is
rated on a scale of 1-5 by the users. Moreover, each movie is
associated with one (and in some cases, multiple) genres. For
our experiments, of the possibly several genres associated with
each movie, one is picked uniformly at random. To perform
our experiments, we split the data into two parts, with the first
half containing ratings of the users who provided the most
number of ratings. This half is used to learn the pseudo-reward
entries, the other half is the test set which is used to evaluate
the performance of the proposed algorithms. Doing such a split
ensures that the rating distribution is different in the training
and test data.

Recommending the Best Genre. In our first experiment,
the goal is to provide the best genre recommendations to
a population with unknown demographic. We use the training
dataset to learn the pseudo-reward entries. The pseudo-reward
entry s¢ () is evaluated by taking the empirical average of
the ratings of genre ¢ that are rated by the users who rated
genre k as r. To capture the fact that it might not be possible in
practice to fill all pseudo-reward entries, we randomly remove
p-fraction of the pseudo-reward entries. The removed pseudo-
reward entries are replaced by the maximum possible rating,
i.e., b (as that gives a natural upper bound on the conditional
mean reward). Using these pseudo-rewards, we evaluate our
proposed algorithms on the test data. Upon recommending
a particular genre (arm), the rating (reward) is obtained by
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Fig. 11: Cumulative regret of UCB, C-UCB, TS and C-TS for
providing the best movie recommendations in the Movielens
dataset. Each pseudo-reward entry is added by 0.1 in (a), 0.4
in (b) and 0.6 in (c). The value of C' is 6,24 and 39 in (a), (b)
and (c) respectively. As C' is smaller than K (i.e., 50) in each
case, we see the superior performance of C-UCB, C-TS over
UCB and TS.

sampling one of the ratings for the chosen arm in the test data.
Our experimental results for this setting are shown in Figure[I0]
with p = 0.25,0.50 and 0.70 (i.e., fraction of pseudo-reward
entries that are removed). We see that the proposed C-UCB
and C-TS algorithms significantly outperform UCB and TS in
all three settings. For each of the three cases we also evaluate
the value of C' (which is unknown to the algorithm), by always
pulling the optimal arm and finding the size of empirically
competitive set at 7" = 5000. The value of C turned out to
be 4,11 and 13 for p = 0.25,0.50 and 0.70. As C' < 18 in
each case, some of the 18 arms are stopped being pulled after
some time and due to this, C-UCB and C-TS significantly
outperform UCB and TS respectively. This shows that even
when only a subset of the correlations are known, it is possible
to exploit them to improve the performance of classical bandit
algorithms.

Recommending the Best Movie. We now consider the goal of
providing the best movie recommendations to the population.
To do so, we consider the 50 most rated movies in the dataset.
containing 109,804 user-ratings given by 6,025 users. In the
testing phase, the goal is to recommend one of these 50 movies
to each user. As was the case in previous experiment, we learn
the pseudo-reward entries from the training data. Instead of
using the learned pseudo-reward directly, we add a safety buffer
to each of the pseudo-reward entry; i.e., we set the pseudo-
reward as the empirical conditional mean plus the SAFETY
BUFFER. Adding a buffer will be needed in practice, as the
conditional expectations learned from the training data are likely
to have some noise and adding a safety buffer allows us to
make sure that pseudo-rewards constitute an upper bound on the
conditional expectations. Our experimental result in Figure [T1]
shows the performance of C-UCB and C-TS relative to UCB
for this setting with safety buffer set to 0.1 in Figure [T1fa),
0.4 in Figure [[T(b) and 0.6 in Figure [TTfc). In all three cases,
even after addition of safety buffers, our proposed C-UCB and
C-TS algorithms outperform the UCB algorithm.
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Fig. 12: Cumulative regret of UCB, C-UCB, TS and C-TS for
providing best poetry book recommendation in the Goodreads
dataset. Every pseudo-reward entry is added by ¢ and p fraction
of the pseudo-reward entries are removed, with (a) p = 0.1,¢ =
0.1 and (b) p = 0.3, = 0.1. The value of C is 8 and 11 in
(a) and (b) respectively. As C' is much smaller than K (i.e.,
25) in each case, we see that C-UCB and C-TS outperform
UCB and TS significantly.

B. Experiments on the GOODREADS dataset

The GOODREADS dataset [31] contains the ratings for
1,561,465 books by a total of 808,749 users. Each rating is
on a scale of 1-5. For our experiments, we only consider the
poetry section and focus on the goal of providing best poetry
recommendations to the whole population whose demographics
is unknown. The poetry dataset has 36,182 different poems
rated by 267,821 different users. We do the pre-processing of
goodreads dataset in the same manner as that of the MovieLens

dataset, by splitting the dataset into two halves, train and test.

The train dataset contains the ratings of the users with most
number of recommendations.

Recommending the best poetry book. We consider the 25
most rated books in the dataset and use these as the set of
arms to recommend in the testing phase. These 25 poems
have 349,523 user-ratings given by 171,433 users. As with the
MOVIELENS dataset, the pseudo-reward entries are learned on
the training data. In practical situations it might not be possible
to obtain all pseudo-reward entries. Therefore, we randomly
select p fraction of the pseudo-reward entries and replace them
with maximum possible reward (i.e. 5). Among the remaining

pseudo-reward entries we add a safety buffer of ¢ to each entry.

Our result in Figure [I2] shows the performance of C-UCB and
C-TS relative to UCB and TS in two scenarios. In scenario
(a), 10% of the pseudo-reward entries are replaced by 5 and
remaining are padded with a safety buffer of 0.1. For case (b),
30% entries are replaced by 5 and safety buffer is 0.1. Under
both cases, our proposed C-UCB and C-TS algorithms are able
to outperform UCB and TS significantly.

C. Pseudo-rewards learned on a smaller dataset

In our previous set of experiments, half of the dataset was
used to learn the pseudo-reward entries. We did additional
experiments in a setup where only 10% of the data was used
for learning the pseudo-reward entries and tested our algorithms
on the remaining dataset. On doing so, we observed that C-UCB
and C-TS were still able to outperform UCB and TS in most of
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Fig. 13: Cumulative regret for UCB, C-UCB, TS and C-TS
for the application of recommending the best genre in the
Movielens dataset, where p fraction of the pseudo-entries are
replaced with maximum reward i.e., 5. In (a),p = 0.25, for
(b),p=0.50 and p = 0.7 in (c¢). We used 10% of the dataset to
learn the pseudo-reward entry and the algorithms are tested on
the remaining dataset. The value of C'is 5,11 and 15 in (a), (b)
and (c) respectively. As C' is smaller than K (i.e., 18) in each
case, we see that C-UCB and C-TS outperform UCB and TS
significantly. Note that the value of C' is larger in the case
where only 10% data is used for learning the pseudo-reward.
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Fig. 14: Cumulative regret of UCB, C-UCB, TS and C-TS for
providing the best movie recommendations in the Movielens
dataset. In this experiment 10% of the dataset is used for
learning the pseudo-reward entry and the algorithms are tested
on the remaining dataset. Each pseudo-reward entry is added
by 0.1 in (a), 0.4 in (b) and 0.6 in (c). The value of C' is
14,29 and 42 in (a), (b) and (c) respectively. Note that the
value of C is larger in the case where only 10% data is used
for learning the pseudo-reward. As C' is still smaller than K
(i.e., 50) in each case, we see the superior performance of
C-UCB, C-TS over UCB and TS.

our experimental setups. One setting in which the performance
of C-UCB was similar to that of UCB is in a scenario where
each pseudo-reward entry was padded by 0.6. As the padding
was large, the C-UCB algorithm was not able to identify many
arms as non-competitive, leading to a performance that is
similar to that of UCB. In all other scenarios, we noted that
C-UCB and C-TS significantly outperformed UCB and TS,
suggesting that even when smaller dataset is used for learning
pseudo-rewards, the C-UCB and C-TS can be quite effective.
The results are presented in Figure [13] Figure [I4] and Figure T3]
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Fig. 15: Cumulative regret of UCB, C-UCB, TS and C-TS for
providing best poetry book recommendation in the Goodreads
dataset. We used 10% of the dataset to learn the pseudo-reward
entry and the algorithms are tested on the remaining dataset.
Every pseudo-reward entry is added by ¢ and p fraction of the
pseudo-reward entries are removed, with (a) p = 0.1,q = 0.1
and (b) p = 0.3,¢ = 0.1. The value of C is 7 and 12 in (a)
and (b) respectively. As C' is much smaller than K (i.e., 25)
in each case, we see that C-UCB and C-TS outperform UCB
and TS significantly.
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VII. CONCLUSION

This work presents a new correlated Multi-Armed bandit
problem in which rewards obtained from different arms are
correlated. We capture this correlation through the knowledge
of pseudo-rewards. These pseudo-rewards, which represent
upper bound on conditional mean rewards, could be known in
practice from either domain knowledge or learned from prior
data. Using the knowledge of these pseudo-rewards, we the
propose C-Bandit algorithm which fundamentally generalizes
any classical bandit algorithm to the correlated multi-armed
bandit setting. A key strength of our paper is that it allows
pseudo-rewards to be loose (in case there is not much prior
information) and even then our C-Bandit algorithms adapt and
provide performance at least as good as that of classical bandit
algorithms.

We provide a unified method to analyze the regret of C-
Bandit algorithms. In particular, the analysis shows that C-
UCB ends up pulling non-competitive arms only O(1) times;
i.e., they stop pulling certain arms after a finite time ¢. Due
to this, C-UCB pulls only C — 1 < K — 1 of the K — 1
sub-optimal arms O(logT) times, as opposed to UCB that
pulls all K — 1 sub-optimal arms O(logT) times. In this
sense, our C-Bandit algorithms reduce a K-armed bandit
to a C-armed bandit problem. We present several cases
where C' = 1 for which C-UCB achieves bounded regret.
For the special case when rewards are correlated through
a latent random variable X, we provide a lower bound
showing that bounded regret is possible only when C = 1;
if C > 1, then O(logT) regret is not possible to avoid.
Thus, our C-UCB algorithm achieves bounded regret whenever
possible. Simulation results validate the theoretical findings and
we perform experiments on MOVIELENS and GOODREADS
datasets to demonstrate the applicability of our framework in
the context of recommendation systems. The experiments on
real-world datasets show that our C-UCB and C-TS algorithms
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significantly outperform the UCB and TS algorithms.

There are several interesting open problems and extensions
of this work, some of which we describe below.
Extension to light tailed and heavy tailed rewards In this
work, we assume that the rewards have a bounded support.
The algorithm and analysis can be extended to settings with
sub-gaussian rewards as well. In particular, in step 3 of the
algorithm, one would play UCB/TS for sub-gaussian rewards.
For instance, the UCB index in the scenario of sub-gaussian
rewards can be redefined as fi; + 2‘:;1((;3“, where o is the
sub-Gaussianity parameter of the reward distribution. Similar
regret bounds will hold in this setting as well because the
Hoeffding’s inequality used in our regret analysis is valid for
sub-Gaussian rewards as well. For heavy-tailed rewards, the
Hoeffding’s inequality is not valid. Due to which, one would
need to construct confidence bounds for UCB in a different
manner as done in [32]]. On doing so, the C-Bandit algorithm
can be employed in heavy-tailed reward settings. However, the
regret analysis may not extend directly as one would need to
use modified concentration inequalities to obtain bounds on
mean reward of arm £ as done in Lemma 1 of [32].
Designing better algorithms. While our proposed algorithms
are order-optimal for the model in Section 2.3, they do not
match the pre-log constants in the lower bound of the regret. It
may be possible to design algorithms that have smaller pre-log
constants in their regret upper bound. Further discussion along
these lines is presented in Appendix F. A key advantage of
our approach is that our algorithms are easy to implement and
they incorporate the classical bandit algorithms nicely for the
problem of correlated multi-armed bandits.
Best-Arm Identification. We plan to study the problem of
best-arm identification in the correlated multi-armed bandit
setting, i.e., to identify the best arm with a confidence 1 — §
in as few samples as possible. Since rewards are correlated
with each other, we believe the sample complexity can be
significantly improved relative to state of the art algorithms,
such as LIL-UCB [33]], [34], which are designed for classical
multi-armed bandits. Another open direction is to improve
the C-Bandit algorithm to make sure that it achieves bounded
regret whenever possible in the general framework studied in
this paper.
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APPENDIX

A. Standard Results from Previous Works

Fact 1 (Hoeffding’s inequality). Let Z1,Zs...Z, be i.i.d
random variables bounded between [a,b] : a < Z; < b, then

for any 6 > 0, we have
exp .
2 = 0 )2

Pr (‘ Z?:l Zi
n
Lemma 1 (Standard result used in bandit literature). If jig, , (¢)
denotes the empirical mean of arm k by pulling arm k ny(t)
times through any algorithm and i, denotes the mean reward
of arm k, then we have

- E[Zi]

T2
Pr (ﬂk,nk(t) — g > €, > ng(t) > 7'1) < Z exp (—2862) .

s=T71

Proof. Let Zy,Zs,...Z; be the reward samples of arm k drawn
separately. If the algorithm chooses to play arm & for m‘" time,
then it observes reward Z,,. Then the probability of observing
the event fiy, ,, (1) — pr > €, 72 > ni(t) > 71 can be upper
bounded as follows,

Pr (Apenpe) — bk = €12 2 ny(t) > 1) =

'(Lk(t) 7.
Pr ((% — g > e) T2 > ng(t) > 71>

T2 m Z
<Pr<< U rinZi k>€>77'2>nk(t)>7'1>
m=ty

W
m
(23)
T2 m Zi
<pr<LJ2#ﬂ'—uk>% 24)
m
m=Ti
T2
< Z exp (—2562) (25)
S=T1
O

Lemma 2 (From Proof of Theorem 1 in [28])). Let I} (t) denote
the UCB index of arm k at round t, and py, = E [g1,(X)] denote
the mean reward of that arm. Then, we have

Pr(uy, > I(t) <t

Observe that this bound does not depend on the number 7, ()
of times arm k is pulled. UCB index is defined in equation (6)
of the main paper.

Proof. This proof follows directly from [28]]. We present the
proof here for completeness as we use this frequently in the

ublication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards,
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paper.
) 2logt
Pr(ux > Ii(t)) = Pr (Mk > M (t) T4/ (gt) ) (26)
t
. 2logt
sZM@»mﬁwj>@n
m=1
! . 2logt
= ZPT Prym — pl < —
m=1 m
(28)
t
2logt
< -2 29
< mz::lexp ( m - ) (29)
t
=> t* (30)
m=1
=13 (31)

where follows from the union bound and is a standard
trick (Lemma |1)) to deal with random variable n(t). We use
this trick repeatedly in the proofs. We have 29) from the
Hoeffding’s inequality. O

Lemma 3. Let E[1;,5;,.] be the expected number of times
I (t) > I+ (t) in T rounds. Then, we have
2
14+—.
(%)

The proof follows the analysis in Theorem 1 of [28]. The
analysis of Pr(I; > Iy«) is done by by evaluating the joint
probability Pr (Ik(t) > I (1), nps(t) > glggcT). Authors in
[28]] show that the probability of pulling arm & jointly with the

event that it has had at-least 812—%T pulls decays down with ¢,
k

ie., Pr (Ik(t) > I (1), npe(t) > 812#) <t2
k

8log(T)

T
Elr>r.] = ZPT(Ik > I ) < 2
k

t=1

Lemma 4 (Theorem 2 [1l]). Consider a two armed bandit prob-
lem with reward distributions © = {fr, (r), fr,(r)}, where
the reward distribution of the optimal arm is fgr,(r) and for
the sub-optimal arm is fr,(r), and E|[fr, (r)] > E[fr,(r)];
i.e., arm 1 is optimal. If it is possible to create an alternate
problem with distributions ©' = {fr, (1), fr,(r)} such that

E[fro(r)] > Elfr (] and 0 < D(fr,(r)||fy(r) < o0
(equivalent to assumption 1.6 in [\I]]), then for any policy that
achieves sub-polynomial regret, we have

E [no(T)] S 1 _ .
logT = D(fgr,(r)||fry (7))

Proof. Proof of this is derived from the analysis done in [35].
We show the analysis here for completeness. A bandit instance
v is defined by the reward distribution of arm 1 and arm 2.
Since policy 7 achieves sub-polynomial regret, for any instance
v, By » [(Reg(T))] = O(T?) as T — oo, for all p > 0.

Consider the bandit instances © = {fr,(r), fr, (1)},
e = {le (71)7 fR2 (’I‘)}, where E [fRz (71)] < E [le (7’)] <
E [ f Ro (T)J The bandit instance ©’ is constructed by changing
the rewar

lim inf
T—o00

distribution of arm 2 in the original instance, in

/
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such a way that arm 2 becomes optimal in instance ©’ without
changing the reward distribution of arm 1 from the original
instance.

From divergence decomposition lemma (derived in [35]), it
follows that

D(Pon|lPer 1) = Ee.x [n2(T)] D(fr, (r)|| fr,(r)).
The high probability Pinsker’s inequality (Lemma 2.6 from
[36]], originally in [37]) gives that for any event A,

1
P@,T{'(A) + ]P)@’,ﬂ' (Ac) > 5 €xp (_D(P@,WHPG’,W)) ’

or equivalently,
1
(Po x(A) + Peor (A))

If arm 2 is suboptimal in a 2-armed bandit problem, then
E [Reg(T)] = AqE [ne(T)] . Expected regret in O is

TA, T
>
5 Po.r <n2(T)_ 2>7

Similarly regret in bandit instance ©’ is

D(P@,WHIED@/,TF) 2 IOg 2

Eo,rx [Reg(T)] >

T T
E@/7‘n’ [Reg(T)] 2 ?]PJGIJT (TLQ(T) < 2) ,

since suboptimality gap of arm 1 in ©' is §. Define x(Ay,d) =
%. Then we have,

%JQMH>T>+%mQMﬂ<T)

-2 2
< ]E@m- [Reg(T)] + E@/Jr [Reg(T)]
- H(AQ, (S)T ’
(32)

On applying the high probability Pinsker’s inequality and
divergence decomposition lemma stated earlier, we get

D(fr, (1)l fra (r))Ee,x [n2(T)] >

R(AQ, 5)T
o (2<E@,w [Reg(T)] + Eer» [Reg<T>]>) &9
= log <H(A227 6)> + log(T)
—log(Ee, [Reg(T)] + Eer x [Reg(T)]). (34)

Since policy 7 achieves sub-polynomial regret for any bandit
instance, Eg » [Reg(T)] + Eo/ » [Reg(T)] < ~T? for all T
and any p > 0, hence,

gggmhmwﬁmw&ﬂﬁﬂﬂz

logT
1 — lim Sup E@,Tr [Reg(T)] + E@’,‘rr [Reg(T)] +
T— o0 log T
log (n<A22.,6>)
=1. (36)
. . E@YW[/’LQ(T)] > 1 _
Hence, lim inf =307 2 5 om0 .
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B. Results for any C-BANDIT Algorithm

Lemma 5. Define Ei(t) to be the event that arm k* is
empirically non-competitive in round t + 1, then,

—_tA2.
Pr(Ey(t)) < 2Ktexp (;?{mm> ,

where A, = ming Ag, the gap between the best and second-
best arms.

Proof. The arm k* is empirically non-competitive at round ¢
if k* £ k°™ and the empirical psuedo-reward of arm £* with
respect to arms £ € S; is smaller than figems (£). This event can
only occur if at-least one of the two following conditions is
satisfied, i) the empirical mean of k°™P # k* is greater than
Hy — A;‘“ or ii) the empirical pseudo-reward of arm k* with
respect to arms in S is smaller than pi- — Aé"‘". We use this
observation to analyse the Pr(Fy(t)).

Amin
Pr(E <P 0 .
({51 (1)) < Pr ( (B85 00> e = 52
n Amin
1 « ot . —
U <{e;wf§1)1§lt/x} G- 0 (t) < g 5 > )
(37)
< Pr max [1o(t) > — Bmin +
- {e;ne(t)>t/K,e¢k*}M Fok 2
n Amin
P i «g(t « = 38
r <{Z:nzr(£1)1§t/K} i 0(t) < pu 5 ) (38)
< SOPr (ult) > e — 2E () > L) +
= e Mk D) N e
e
X n Amin t
D Pr{ G (t) < e — =5 me(t) > 52 (39)
=1

A A
=> Pr </~Le(t)—ue > ps = pe —

(k"
K A A
+> Pr (¢k*,£(t) = Q0 < pikr — P — I2nm7
(=1
t
ne(t) > ?) (40)

K t
1 = * T Api
+ZPr (ZT_l (2= 5 £lrv) — Ppe g < ——5,

p ng(t) 2
7mw>;> @1
7tAr2nin

Here (38) follows from union bound. We have {@2) from the
Hoeffding’s inequality, as we note that rewards {r, : 7 =
1,...,t, k; =k} and pseudo-rewards {sy-;: 71,...,¢t, k; =
[} form a collection of i.i.d. random variables each of which
is bounded between [—1, 1] with mean py, and ¢~ ;. The term

/
7:29:46 UTC from III:EEE Xplore. Restrictions apply.

ublications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2021.3081508, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY

t before the exponent in (@2) arises as the random variable
ng(t) can take values from ¢/K to ¢ (Lemma [I)).
O

Lemma 6. For a sub-optimal arm k # k* with sub-optimality
gap Ay,

t —tA?
_ pemp . > )< k .
Pr (k kM (t), g () > K) _texp( 5K )

Proof. We bound this probability as,

=Pr <k = K" (t), ng= (1) %,nk(t) > It(> 43)
< Pr () 2 e (0.0 = om0 2 1) @b
A A
<Py ( (-0 < e = Um0 > - = 5.
ng(t) > —,ne=(t) > ;;) (45)

t
ng(t) > K,nk*(t) > K) (46)
t
< Pr <ﬂk*(t) — per < kamk*(t) > K> +
A t
Pr(i@-m> Pz ) @
—tA?

< 2texp< e > (48)

We have (@3] as arm k& needs to be pulled at least % in order to
be arm k°™P(t) at round ¢. The selection of k™ is only done

from the set of arms that have been pulled atleast % times.

Here, (@8) follows from the Hoeffding’s inequality. The term
t before the exponent in (@g) arises as the random variable
nk(t) can take values from ¢/K to t (Lemma [1)).

O

Lemma 7. If for a suboptimal arm k # k*, Ahk* > 0, then,

—2tA7 .
Pr(keyr = k,ny- (1) = m]?xnk(t)) stexp| ———— |-

Moreover, ifAk,k* >
Then,

2K logto
to

Pr(kir1 = k,np-(t) = max nk(t)) <t3
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Proof. We now bound this probability as,

Pr(kiy1 = k,ngs(t) = max ng(t))

<Pr <k‘t+1 =k, ng~(t) > It(> (49)
t
P (k € (AU (hamp(}} Krsn = ki (1) > =
(50)
<Pr <k € Ap, ki1 = kynp- (1) > ;;) +
Pr (,Z{Z _ kemp(t),nk* (t) Z ;{) (51)

2K
(52)

t —tA?
SPI' keAt,kH,l:k,'ka*(t)Z? +2texp

N - t
<Pr (uk*(t) < Ok (t), k1 = Ky mp= (t) > K) +
—tA2
9 k
t exp ( 5K )

< Pr (ﬂk* (t) < J)k,k* (t),nk* (t) > ;() + 2t exp (tA%)

(53)

2K
(54)
< Pr S L —yry _ S L —pey Sk (1)
- ng= (1) N (4) '
t —tA?
npe (1) > K) + 2texp ( 2K’€> (55)
Sy ey (rr — Skpe)
— Pr ( 14 - (}t) — (pr — Prpr) <
~ t —tA?
- . Mpr D> — k
Ak,k s M > K) —|—2texp( oK > (56)
—tA2 | —tA2
< texp <2Kkk> + 2t exp ( 2Kk> 57)
<372 VWt > t. (58)

We have [@9) as ny-(t) needs to be at-least - for ny-(t)
to be maxy, nk(t). Equation (30) holds as arm % needs to be
in the set {A; U {k*™(¢)}} to be selected by C-BANDIT at
round ¢t. Inequality (32) arises from the result of Lemma [6]
The inequality (33) follows as ¢y g« > fig+ is a necessary
condition for arm & to be in the competitive set A4; at round ¢.
Here, (36) follows from the Hoeffding’s inequality as we note
that rewards {r; — spp=(r7) :7=1,...,¢, k; = k*} form a
collection of i.i.d. random variables each of which is bounded
between [—1, 1] with mean (ug — @ g+ ). The term ¢ before the
exponent in (36) arises as the random variable ny () can take
values from t/K to t (Lemma . Step (38) follows from the

fact that Ay, - > 24/ 21{)&%“’ for some constant ty > 0. O
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C. Algorithm specific results for C-UCB
Lemma 8. If A,;, > 4 21{){%“’ for some constant ty > 0,
then,

t
for s > — Vt > ;.

Pr(kiy1 = k,ng(t) > s) < 3t73 5%

Proof. By noting that k;y; = k corresponds to arm k having
the highest index among the set of arms that are not empirically
non-competitive (denoted by A), we have,

Pr(keyr = k,ng(t) > s) =

Pr(I(t) = arg max J (), (t) = s) (59)
< Pr(Ey(t) U (ES(t), In(t) > Ii- (1)) ,ni(t) > s)  (60)
< Pr(Eq(t), ng(t) > s)+
Pr(ES(t), Iu(t) > L (), ni(t) > 5) 61)
—tAZ;
< 2Ktexp <2Km‘“> + Pr(I(t) > L1+ (t),ng(t) > s5) .
(62)

Here F4(t) is the event described in Lemma [5} If arm k* is
not empirically non-competitive at round ¢, then arm k can
only be pulled in round ¢ + 1 if I (t) > Iy~ (t), due to which
we have (60). Inequalities (61) and (62) follow from union
bound and Lemma [3] respectively.

We now bound the second term in (62).

Pr(li(t) > L~ (t), ni(t) > s) =

Pr (I (t) > I (t), nk(t) > s, ppr < I (t)) +
Pr (Ik(t) > [+ (t),nk(t) > S|/1,]€* > I (t)) X

Pr(pg- > I+ (%)) (63)
< Pr(Li(t) > I (8), nk(t) = 8, e < T (£)) +
Pr (ugs > I« (1)) (64)

< Pr(Ip(t) > I (t), () > s, e < L= (1)) +172 (65)
= Pr(Ii(t) > e, nie(t) > s) + 7 (66)

2log t
—Pr{ n(t) + | 228 S e () > s | 170 (67)
ng(t)
R 2logt
— Pr (Mk(t) — Wk > e — [ Ti)’nk(t) > 8) +
=3 (68)
Sy L —iy7s 2logt
=P T — k> A
! < (1) S WO
ng(t) > s) +¢73 (69)
Yogt )
<texp | —2s <Ak —/ Zg ) 13 (70)
2logt
<t Pexp (—25 (Ai - 2Ak\/Tg>> +173 (71)
S
< 2t73%  forall t > t,. (72)
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We have (63) holds because of the fact that P(A) =
P(A|B)P(B)+ P(A|B°)P(B¢), Inequality (65) follows from
Lemma 2] From the definition of I;,(¢) we have (67). Inequality
(70) follows from Hoeffding’s inequality and the term ¢ before
the exponent in (70) arises as the random variable ng(¢) can
take values from s to ¢ (Lemma [I). Inequality (72) follows
from the fact that s > ﬁ and A, > 4 Mi%to for some
constant ¢y > 0.

Plugging this in the expression of Pr(k; = k,ng(t) > s)

(62) gives us,

Pr(l{it_;,_l = k,nk(t) Z 8) S
—tAZ,
2Ktexp Tmm + Pr(Ix(t) > L= (t), n(t) > s) (73)
A2
< 2Ktexp <t2Kmm> +2t73 (74)
<2(K + 1)t3. (75)

Here, (75) follows from the fact that Ay, > 44/ Mi%t“ for
O

some constant £y > 0.

Lemma 9. If A,,;, > 4 Mi%to for some constant ty > 0,
then,

Pr (nk(t) > It() < 2K +2)K (;{) -

Proof. We expand Pr (ny(t) > &) as,

Pr (nk(t) > ;{) _
Pr <nk(t) > % | ng(t—1) > ;) Pr <nk(t -1)> ;{) +

t
Pr (kt =knp(t—1)= r'an 1) (76)
<Prnpt=1)> L) +Pr (k= kot —1)= = —1
S EPr| ng = ? T t = ,nk( ) = E
(77
<Pr (nk(t —1)> ;) + (2K +2)(t—1)73,
V(t — 1) > 1.
(78)
Here, (78) follows from Lemma [§]
This gives us
t t
Pr (nk(t) > K> —Pr (nk(t -1 > K>
< (2K +2)(t—1)73 VY(t—1)>tg.

Now consider the summation
t t
Pr <nk(7) > K) —Pr (nk(T -1 > K) <

(2K +2)(r —1)73.

-
Mﬁ

3
Il
e
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D. Regret Bounds for C-UCB
Proof of Theorem 1 We bound E [ny(T)] as,
T
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Here, (86) follows from Lemma [7] and (87) follows from
Lemma [0
Proof of Theorem 2
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For any suboptimal arm k # k*,
T
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Here, (92) follows from Lemma [5} We have (93) from the
definition of E [ns,~7,.(T)] in Lemma [3| and (94) follows
from Lemma 3

Proof of Theorem 3: Follows directly by combining the
results on Theorem 1 and Theorem 2.

E. Regret analysis for the C-TS Algorithm

We now present results for C-TS in the scenario where
K = 2 and Thompson sampling is employed with Beta priors
[29]]. In order to prove results for C-TS, we assume that rewards
are either O or 1. The Thompson sampling algorithm with
beta prior, maintains a posterior distribution on mean of arm
k as Beta (nk(t) X ﬂk(t) + 1,nk(t) X (]. — ﬂk(t)) + ].)
Subsequently, it generates a sample Si(t) ~
Beta (ng(t) x fig(t) + 1,n(t) x (1 — fig(t)) +1) for each
arm k and selects the arm k;11 = argmax,c Sk(t). The
C-TS algorithm with Beta prior uses this Thompson sampling
procedure in its last step, i.e., ki1 = argmaxgcc, Sk(t),
where C; is the set of empirically competitive arms at round t.
We show that in a 2-armed bandit problem, the regret is O(1)
if the sub-optimal arm k is non-competitive and is O(logT")
otherwise.

For the purpose of regret analysis of C-TS, we define two
thresholds, a lower threshold L, and an upper threshold Uy
for arm k # k*,
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Let EY(t) and E7(t) be the events that,

By (t) = {fm(t) < Ux}
ER(t) = {Sk(t) < Ly}

To analyse the regret of C-TS, we first show that the number
of times arm  is pulled jointly with the event that nj, (t—1) > £
is bounded above by an O(1) constant, which is independent
of the total number of rounds 7.

(96)

Lemma 10. If A, > 4 Mi%to for some constant ty > 0,
then,

ET: Pr (/gt — kot —1) > ;) — o(1)

t=2t¢

where k # k* is a sub-optimal arm.

Proof. We start by bounding the probability of the pull of k-th
arm at round ¢ as follows,
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term B

2 o7

term C

where (), comes from Lemma |5| Here, follows from

the fact that Ay, > 4 Mi%to for some constant £y > 0.
Now we treat each term in (97) individually. To bound term
A, we note that Pr (ky = k, Bl (t), B2 (t),n,(t — 1) > L) <
Pr (k, = k, E}(t), E{ (t)). From the analysis in [29] (equation
6), we see that Z?:l Pr (ke =k, Ell(t), EZ(t)) = O(1) as it
is shown through Lemma 2 in [29] that,

oy Pr (ke = b, B (1), E (1)) < a4

2
T _AkI 1 9 —D.i
. 18 - kJ

Z]:OG (& + Aij + (j_H)Aie

36 —1

€
Here, Dy, = Ly log Ifk’“ +(1—Lg)log 11—_;5;1 . Due to this,

S imor, Pr (ke =k, B (1), ES (8),ni(t = 1) > £) = O(1).

We now bound the sum of term B from ¢ = 1 to T" by noting
that
Pr (ke =k, B (t), BS (1), ni(t — 1) > g) <

Pr(k; = k,E;f (t)) Additionally, from Lemma 3 in [29],
we get that Zthl Pr (k:t =k, E,f(t)) <

1
m —+ 1, Where
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d(z,y) = xlog & + (1 — x)log 1=F. As a result, we see that
S Pr (ke =k, B (), BR (0, mi(t — 1) = §) = O(1).

Finally, for the last term C we can show that,

A t
=Pr (ﬂkuk > ?kank(tfl) 2 2>

t A?
stexp{ =257

<t

(98)

Here follows from hoeffding’s inequality and the union
bound trick to handle random variable n(t—1). After plugging
these results in (97), we get that
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O

We now show that the expected number of pulls by C-TS for
a non-competitive arm is bounded above by an O(1) constant.
Expected number of pulls by C-TS for a non-competitive
arm. We bound E [ng(¢)] as

T
> l{kt=k}]
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=Y Pr(kii1 = k)
t=0

En(T)] = E
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T-1 T-1

t
<2+ » B34+ Y Pr (km = k,ng(t) > 2)
t=2t¢ t=2t¢
(103)
= 0(1) (104)

Here, (I03) follows from Lemma [7] and (I04) follows from
Lemma [10] and the fact that the sum of 3¢~2 is bounded and

to=1nf <7 > 0: Amin, €& 24\/%

We now show that when the sub-optimal arm k£ is
competitive, the expected pulls of arm % is O(logT).

Expected number of pulls by C-TS for a competitive arm
k # k*.: For any sub-optimal arm k # k*,

E [ni(1)] < 3" Pr(k, = )

(105)
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t=1
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k t=1
= O(logT). (109)

Here, follows from Lemma [5] We have from the
analysis of Thompson Sampling for the classical bandit problem
in [29]. This arises as the term Pr (S(t) > Si= (1), kiy1 = k)

counts the number of times Sy (t) > Sg«(t) and ki1 = k.

This is precisely the term analysed in Theorem 3 of [29]

to bound the expected pulls of sub-optimal arms by TS.

In particular, [29] analyzes the expected number of pull
of sub-optimal arm (termed as E [k;(T)] in their paper) by
evaluating ZtT;()l Pr(Si(t) > Si=(t), ki1 = k) and it is
shown in their Section 2.1 (proof of Theorem 1 of [29]]) that

o Pr(Si(t) > Sk (), kyra = k) < O(1) + 72221 The
term x; is equivalent to Uy and y; is equal to Ly in our

2
notations. Moreover d(Uy, Ly) < %, giving us the desired

result of (TO8).

F. Lower Bounds

For the proof we define Ry, = Y3 (X) and R, = gk(f(),
where fx(z) is the probability density function of random
variable X and fg(x) is the probability density function of
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random variable X. Similarly, we define fr, (r) to be the
reward distribution of arm k.
Proof of Theorem 4

Let arm k be a Competitive sub-optimal arm, i.e Ak.’k* < 0.
To prove that regret is Q(logT) in this setting, we need to
create a new bandit instance, in which reward distribution of
optimal arm is unaffected, but a previously competitive sub-
optimal arm k becomes optimal in the new environment. We do
so by constructing a bandit instance with latent randomness X
and random rewards Y;(X). Let’s denote to Y3(X) to be the
random reward obtained on pulling arm & given the realization
of X. To make arm k optimal in the new bandit instance,
we construct Y, (X) and X in the following manner. Let )
denote the support of Yj(X).

Define

Vo(X) = qk(X) wp.1—¢€
g Vi(X) ~ Uniform(Jy) w.p. e

This changes the conditional reward of arm £ in the new bandit
instance (with increased mean).
Furthermore, Define

X: {S(Rk*)

Uniform ~ X  w.p.€s.

w.p.1l — €

with S(Rk*) = arg Hlank* () <Rpx <G+ () Gk (l‘)
Here Ry~ represents the random reward of arm k* in the
original bandit instance.

This construction of X is possible for some €1,e5 > 0,
whenever arm k is competitive by definition. Moreover, under
such a construction one can change reward distribution of
\7 (X' ) such that reward Ry,+ has the same distribution as Ry .
This is done by changing the conditional reward distribution,

fy, « \X(T)fX(m)
fyrx(r) = =55

Due to this, if an arm is competitive, there exists a new bandit
instance with latent randomness X and conditional_rewards
Y-|X and Yi|X such that fp,. = [, and E {Rk} > [,
with fgr, denoting the probability distribution function of the
reward from arm k and Rj representing the reward from arm
k in the new bandit instance.

Therefore, if these are the only two arms in our problem,
then from Lemma [4]

E[ne(T)] 1
= D ()77, ()

where fp (1) represents the reward distribution of arm & in
the new bandit instance.

Moreover, if we have more K — 1 sub-optimal arms, instead
of just 1, then

Tlgnoc inf logT

B [Sepe (@] |
log T = D(fr, ("I fz,(r)

Consequently, since E [Reg(T)] = S5, _ AJE [ny(T))], we
have

lim inf
T—o0

Ay

E[Reg(T)] _
=W D(frllfa)

lim inf
700 log(T)

(110)
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TABLE V: The top row shows the pseudo-rewards of arms 1
and 2, i.e., upper bounds on the conditional expected rewards
(which are known to the player). The bottom row depicts two
possible joint probability distribution (unknown to the player).
Under distribution (a), Arm 1 is optimal and all pseudo-reward
except sg,1(1) are tight.

A stronger lower bound valid for the general case
A stronger lower bound for the general case can be shown
by using the result in Proposition 1 of [38]. If P denotes the
set of all possible joint probability distribution under which
all pseudo-reward constraints are satisfied and P denotes the
underlying unknown joint probability distribution which has k*
as the optimal arm. Then, the expected cumulative regret for
any algorithm that achieves a sub-polynomial regret is lower

bounded as

lim inf Reg(T)
T—oo logT

> L(P),

where L(P) is the solution of the optimization problem:

| ) )
a3 o) (e —

kek
subject to Z n(k)D(P,Q,k) > 1, VQ € Q,
keK
(111)

where

Q={QeP: fr(Ri|Q.k") = fr(Ry-
and k* # argrglea/%(uk(Q)}.

P, k%)

Here, D(P,Q, k) is the KL-Divergence between reward dis-
tributions of arm £ under joint probability distributions P
and Q, i.e., fr(Rg|0,k) and fr(Ri|A k). The term p(Q)
represents the mean reward of arm % under the joint probability
distribution Q.

To interpret the lower bound, one can think of Q as the set
of all joint probability distributions, under which the reward
distribution of arm £* remains the same, but some other arm
k' # k* is optimal under the joint probability distribution. The
optimization problem reflects the amount of samples needed to
distinguish these two joint probability distributions. This result
is based on the original result of [39]], which has been used
recently in [13]], [38]] for studying other bandit problems.
Lower bound discussion in general framework

Consider the example shown in Table |V| for the joint proba-
bility distribution (a), Arm 1 is optimal. Moreover, all pseudo-
rewards except so 1(1) are tight, i.e.,sp (1) = E[R¢| Ry = r].
For the joint probability distribution shown in (a), expected
pseudo-reward of Arm 2 is 0.8 and hence it is competitive. Due
to this, our C-UCB and C-TS algorithms pull Arm 2 O(logT")
times.

However, it is not possible to construct an alternate bandit
environment with joint probability distribution shown in
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Table[V|b), such that Arm 2 becomes optimal while maintaining
the same marginal distribution for Arm 1, and making sure that
the pseudo-rewards still remain upper bound on conditional
expected rewards. Formally, there does not exist a, b, ¢, d such
that c +d = 0.7, 2% < 3/4, b5 < 2/3, ;4 < 2/3,
dic < 6/7 and a+b+c+d = 1. This suggests that there should
be a way to achieve O(1) regret in this scenario. We believe
this can be done by using all the constraints (imposed by the
knowledge of pair-wise pseudo-rewards to shrink the space
of possible joint probability distributions) when calculating
empirical pseudo-reward. However, this becomes tough to
implement as the ratings can have multiple possible values
and the number of arms is more than 2. We leave the task of
coming up with a practically feasible and easy to implement
algorithm that achieves bounded regret whenever possible in a
general setup as an interesting open problem.
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