
Gemini: A Grammar and Recommender System for Animated
Transitions in Statistical Graphics

Younghoon Kim and Jeffrey Heer

{
 "timeline": {
 "concat": [
 {
 "sync": [
 {"component": {"axis": "y"}, "timing": {"duration": 900}},
 {"component": {"axis": "x"}, "timing": {"duration": 900}},
 {
 "component": {"mark": "marks"},
 "change": {"data": false},
 "timing": {"duration": 900}
 }
]
 },
 {"component": "pause", "timing": {"duration": 200}},
 {"component": {"mark": "marks"}, "timing": {"duration": 900}}
]
 }
}

3
2

1.1
1.2

1.3

Start End
2

31.1
1.2
1.3

Fig. 1. Left: An animated transition zooms a line chart to a larger time window. The timeline indicates the animation sequence; the
enlarged gray interval indicates a pause. Right: The Gemini specification for the transition, which changes the scales of the axes and
lines (1), pauses (2), and then extends the lines (3). The numbered items represent steps, the basic units of the Gemini grammar.

Abstract—Animated transitions help viewers follow changes between related visualizations. Specifying effective animations demands
significant effort: authors must select the elements and properties to animate, provide transition parameters, and coordinate the timing
of stages. To facilitate this process, we present Gemini, a declarative grammar and recommendation system for animated transitions
between single-view statistical graphics. Gemini specifications define transition “steps” in terms of high-level visual components (marks,
axes, legends) and composition rules to synchronize and concatenate steps. With this grammar, Gemini can recommend animation
designs to augment and accelerate designers’ work. Gemini enumerates staged animation designs for given start and end states, and
ranks those designs using a cost function informed by prior perceptual studies. To evaluate Gemini, we conduct both a formative study
on Mechanical Turk to assess and tune our ranking function, and a summative study in which 8 experienced visualization developers
implement animations in D3 that we then compare to Gemini’s suggestions. We find that most designs (9/11) are exactly replicable in
Gemini, with many (8/11) achievable via edits to suggestions, and that Gemini suggestions avoid multiple participant errors.

Index Terms—Animated transition, animation, transition, declarative grammar, automated design, charts

1 INTRODUCTION

When exploring data or communicating results, people often transition
between related statistical graphics. To facilitate understanding of what
has changed across a transition, visualization researchers have devel-
oped and studied animation techniques. Prior studies have examined the
effectiveness of animation for conveying transitions [2,10,13,14,21,24]
and proposed guidelines and strategies for animation design, including
the use of techniques such as staging and staggering [5, 11, 15, 22, 31].

Despite this guidance, creating effective animations remains chal-
lenging, as current tools either cannot express more nuanced de-
signs [1, 25] or do so only with significant effort. A designer may
need to select elements and properties to animate, specify transition
parameters, and coordinate the relative timing of separate stages. Using
D3 [4], for example, the implementation of animated transitions often
requires manual orchestration of animation stages using a transition ab-
straction that intertwines visual encoding and animation specifications,
impeding rapid design exploration and reuse.

To reduce this hurdle we contribute Gemini, a declarative gram-
mar and recommender system for animated transitions between two
single-view statistical graphics. In Gemini, animated transitions are

• Younghoon Kim and Jeffrey Heer are with the University of Washington.
E-mails: yhkim01, jheer@uw.edu

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

formally represented by transition steps in terms of high-level visual
components (marks, axes, legends) and composition rules synchroniz-
ing and concatenating steps into staged animations (Fig. 1). This formal
representation allows software to reason systematically about animated
transitions. By taking advantage of this formalism, Gemini’s recom-
mender system produces candidate animated transitions between given
start and end visualization states expressed in the Vega visualization
grammar [28]. The recommendations can facilitate the design process
by serving as starting points so that users need not manually create
animations from scratch.

We begin by articulating our design goals for the Gemini grammar.
We target a balance between expressiveness and ease-of-use by review-
ing existing animation tools and alternate approaches. We also observe
how people describe animated transitions in a preliminary study to
gauge a proper level of abstraction. We then introduce the primitives of
Gemini along with our backing design rationale.

We go on to describe the workflow of the Gemini recommender
system: change detection, enumeration, and ranking. We introduce a
heuristic cost function that ranks enumerated candidate designs based
on their complexity. To assess and refine the cost function, we conduct
a user study and tune the cost function parameters to user preferences
by promoting single-stage designs and demoting multi-stage ones.

We verify the utility of Gemini by replicating animated transitions
created by designers using D3. We observe that among 11 user-crafted
animated transitions, 9 can be expressed exactly in the Gemini gram-
mar, 5 can be replicated by changing only timing parameters of a top-3
Gemini suggestion, and a total of 8 can be achieved by editing a top sug-
gestion. We also find that 7/11 designs exhibit mistakes that all Gemini-

produced designs avoid. These findings show Gemini’s potential to
suggest useful starting points for user-desired animations. We conclude
by discussing ways to improve Gemini’s user interface, achieve more
nuanced suggestions, enhance expressiveness, and overcome imple-
mentation challenges in our current proof-of-concept system.

2 RELATED WORK

Animated transitions are used to convey state changes and engage
viewers. We focus on animated transitions between statistical graphics,
with the goal of accurately conveying changes, directing attention, and
helping viewers stay oriented.

2.1 Animated Transitions
Animation is a common method for conveying changes between visual-
ization states. Prior research has found that animation can help viewers
build mental maps of spatial information [2], make decisions [10], and
remain oriented across transitions [23, 24]. More recently, researchers
found that animations can outperform small multiple encodings in
a comparison task [21] and outperform static aggregate uncertainty
visualizations in value judgment and trend inference tasks [13, 14].

However, the effectiveness of animation has also been the subject
of skepticism. Tversky et al. [31] scrutinized studies showing advan-
tages for animation over static transitions and found that the animation
conditions conveyed more information than the static conditions. They
proposed two high-level principles, congruence and apprehension, for
animation design. Robertson et al. [22] found that animation was less
efficient than static small multiple charts for time-series data analysis,
but was preferred by users in a presentation context. In addition, Hull-
man et al. [12] identified conditions where animation may be preferable
to static representations. Heer & Robertson [11] contribute strategies
for achieving Tversky et al.’s principles in the context of statistical
graphics. They compared the performance of animated and static transi-
tions for object tracking and value estimation tasks, finding significant
advantages for animated transitions.

Researchers have also categorized different types of transitions be-
tween statistical graphics. Heer & Robertson [11] propose seven cate-
gories, such as view transformation, substrate transformation, etc. Kim
et al. [16] identify atomic editing operations that can be combined to
define transitions. We use these prior taxonomic treatments to guide
the design of Gemini and establish a necessary expressive gamut.

Specific animation techniques have also been investigated. In prior
studies, participants often preferred staged animations (which break
animations into separate parts) over direct interpolation, although not
always with significant task performance benefits [11, 15]. Stagger-
ing techniques, which individually delay visual elements to decrease
occlusion, have also been examined, with no significant impact on
object tracking performance [5]. Among temporal distortion (pacing)
strategies, slow-in slow-out outperformed others in an object tracking
task [6]. Gemini supports these techniques so that users can explore a
broad spectrum of alternatives.

The perception of data point trajectories might also be improved
using bundling [7] and vector fields [34]. However, Gemini does not
currently support trajectory-related strategies, as they require low-level
specifications (spatial interpolation functions of mark elements) that
are not applicable to transitions other than those between scatter plots.

2.2 Event Structure In Perceptual Psychology
Zacks & Tversky review how people conceptualize events in percep-
tion [40]. They maintain that events are structured in two hierarchical
ways: partonomy (one event can be a part of another bigger event) and
taxonomy (one event is an instance of one category). For example, in
event partonomies, two event segments of “changing the color of visual
marks” and “filtering out the marks” are part of “the change of the
marks.” In event taxonomies, the former is a kind of “encoding change”
and the latter a kind of “data transformation.” On top of these hierar-
chical structures, people show better perception when communicating
at a basic level of the event segments. To align with this psychological
framing, we determined the basic level of events in Gemini (“steps”)
by conducting preliminary interviews. In addition, Gemini arranges

these events in a hierarchical structure (timeline or block) to support
event segmentation and programmatic enumeration.

2.3 Declarative Grammars for Visualization
Declarative grammars for specifying visualizations [3, 27–29, 35] pro-
vide several benefits by letting users think about “what” to visualize
rather than “how” to implement it. First, users can explore more visual
designs if the required implementation effort is reduced. In addition,
users can create more robust or scalable designs (e.g., dealing with data
size or supporting multiple platforms) because control flow and execu-
tion can be synthesized and optimized by a compiler. Most importantly,
a declarative grammar can provide a representation for programmatic
enumeration and search over a design space [16,37]. These benefits sim-
ilarly inspire Gemini. While Gemini uses start and end visualizations
specified using the Vega grammar, its approach could be readily applied
to other tools (e.g., ggplot2 [35]) that use visualization primitives based
on Wilkinson’s The Grammar of Graphics [36]: abstractions of data,
visual marks, encodings, and guide elements.

Every design tool must make trade-offs between expressiveness and
ease-of-use. Focusing on animated transitions, DataClip [1] uses a
typology of animation designs to help non-experts assemble transition
“clips.” It prioritizes ease-of-use but constrains expressiveness through
the use of pre-defined types and parameters. In contrast, D3 [4] targets
maximal expressiveness so that experts can create novel designs. D3
offers considerable control but requires that users master its transition
API and manage stages. In an intermediate position is gganimate [25],
which lets users animate ggplot2 [35] charts by appending animation
directives to the original chart specification. This approach is naturally
limited to transitions among states represented by a single visualization
specification, such as underlying data changes.

Most recently, Ge et al. introduce Canis [9], a declarative grammar
for animating dSVG-formatted charts. Canis uses low-level selections
using W3C Selector syntax [32] (similar to D3) and supports non-
hierarchical timeline compositions using constraints such as “start with
previous” and “start after previous.” Critically, Canis does not perform
automatic reasoning and recommendation over transition designs.

With Gemini, we target a different balance of expressiveness and
ease-of-use, supporting a wider gamut of designs, including multi-stage
transitions between diverse start and end states. We also target a higher-
level specification than D3 or Canis, intended to correspond more
intuitively with the perceptual structure of the animated transition. By
doing so, Gemini helps both computer systems and developers directly
refer to and configure perceptually salient units in the specifications.

2.4 Automated Visualization Design
APT [18] automates visualization design using importance-ranked in-
put data fields. It enumerates designs by assigning more effective
visual attributes to higher priority data fields while ruling out fields
that violate expressiveness rules. Other visualization systems employ
heuristics [19] or hand-tuned score functions [37, 38] to recommend
visualization designs. In sequencing a set of visualizations, Graph-
Scape [16] uses a hybrid approach that relies on linear programming
to calculate the weights of edit operations from heuristic constraints.
More recently, Moritz et al.’s Draco system [20] adapts the scoring
function based on a given knowledge base; Lin et al. extend this work
to Dziban [17], a system that uses the context of prior visualizations to
make suggestions aligned with users’ expectations. Gemini provides a
base representation enabling the programmatic enumeration and evalu-
ation of animated transitions. We illustrate Gemini’s recommendation
feature using a heuristic scoring function and discuss ways to support
advanced recommendation tactics suggested by these prior works.

3 PRELIMINARY INTERVIEWS ON ANIMATION DESIGN

To observe how people segment animated transitions and to gauge an
appropriate level of abstraction for Gemini, we conducted an informal
study of how people describe animated transition designs. We recruited
five people (3 female, 2 male) near our university campus who had at
least 2+ years of data visualization experience. We gave each participant
start and end states of an animated transition and asked them to draft

p <- ggplot(data, aes(date_num, profit, group = store, colour=store)) +
 geom_line()

Animation-related Lines
anim <- p +
 transition_filter(
 transition_length = 1,
 filter_length = 1,
 state == 0,
 state == 0 || state == 1
) +
 view_step(pause_length = 1, step_length = 1, nsteps = 2, include = FALSE)
animate(anim, duration=2)

Fig. 2. gganimate code to produce Fig. 1. Given a ggplot2 chart (p), ggan-
imate’s transition filter and view step are appended to animate the
lines between two states and a scale change, respectively.

an animation design, identifying specific graphic elements, changes
to those elements, and timing information. After receiving their first
draft, we asked participants to describe possible alternatives. Finally,
we showed them implemented animations for the stimuli and asked
them to characterize those. All sessions were conducted in person.

To cover multiple transition types and techniques (e.g., staging and
staggering), we chose three stimuli from interactive articles and a video
(available in supplemental material). These examples cover 5/7 of Heer
and Robertson’s transition types [11] by omitting Ordering and View
Transformation due to the limited number of recruited subjects. We an-
alyzed participants’ transcripts for words indicating timing constraints
and graphic components, then derived the following three insights about
appropriate abstraction levels:

I1. Participants referred to groups of marks by their shape (e.g., lines,
texts, points), role (e.g., “uncertainty band”), and/or backing
data (“NY points”). This observation implies that the grammar
should be able to select elements by their geometry, roles in the
visualization context, or data properties.

I2. Participants described changes to guides (axes or legends) both in
general terms (“expand the y-axis”) and by referring to specific
sub-elements (“render the x-axis title”).

I3. Participants included different staging and staggering elements.
Staged animations were described using constraints: synchroniz-
ing (“at the same time”) and concatenating (“then”, “after”).

4 THE GEMINI GRAMMAR: MOTIVATION AND DESIGN

Gemini is a declarative grammar for specifying animated transitions
between two (start and end) single view visualizations, defined using
the Vega grammar [28]. By “single view,” we refer to charts with
at most one x-axis and one y-axis. The Gemini compiler processes
a specified transition design (Fig. 1) and the provided start and end
states to produce a playable animation plan. When designing Gemini,
we considered three ways to specify animations: (1) extend a single
visualization specification, (2) define transformations that map a start
state to an end state, or (3) specify transitions relative to explicit start
and end states. We discuss each in turn.

Animation specifications can extend existing visualization specifi-
cations, as in gganimate [25]. As Fig. 2 shows, authors can append
animation directives to existing ggplot2 code to specify the transition in
Fig. 1. In this approach, the animation design context closely matches
the visualization context and is similar to the animation model of CSS
Transitions for Web design [33]. However, it limits expressible tran-
sitions to variations of a single visualization specification, typically
data changes under static visual encodings. Since we aim for a broader
spectrum of transitions, we do not use this approach.

An alternative is to specify transformations that turn a starting vi-
sualization state into an end state. Rather than define explicit start and
end states separately, the end state is implicitly defined by the trans-
formations applied. For instance, in order to zoom, D3 [4] users can:
create new x and y scales; select the existing axes, grids, and mark
elements; and assign the new scales to change the elements to final
states (Fig. 3). This approach requires the definition of all specific

x.domain(d3.extent(data, d => parseTime(d.date)));
y.domain([0, d3.max(data, d => d.profit)]).nice();

const t = d3.transition().duration(900);
const xAxisChange = d3.select(".xAxis")
 .transition(t)
 .call(d3.axisBottom(x))
 .end();
const xAxisGridChange = d3.select(".grid.x")
 .transition(t)
 .call(d3.axisBottom(x).tickSize(-height).tickFormat(""))
 .end();
const yAxisChange = d3.select(".yAxis")
 .transition(t)
 .call(d3.axisLeft(y).ticks(5))
 .end();
const yAxisGridChange = d3.select(".grid.y")
 .transition(t)
 .call(d3.axisLeft(y).ticks(5).tickSize(-width).tickFormat(""))
 .end();
const lineScaleChange = svg.selectAll(".line")
 .transition(t)
 .attr("d", d => valueline(d.values));

await Promise.all([xAxisChange, xAxisGridChange, yAxisChange,
yAxisGridChange, lineScaleChange]);

const newGrouped = d3.nest().key(d => d.store).entries(data);
const t2 = d3.transition().duration(900).delay(200);
svg.selectAll(".line")
 .data(newGrouped)
 .transition(t2)
 .attr("d", d => valueline(d.values));

Fig. 3. D3 implementation of Fig. 1. D3 requires transformations that
map the starting visualization state to the end state.

manipulations necessary to produce both the animation and end state.
It thereby interleaves animation and visualization design: one must
redefine an independent target state, in terms of desired transitions.

A third approach is to provide explicit start and end states and then
describe desired transitions between them. This strategy separates
a design into three specifications: two for visualization states and
one for the transition. As a result, the transition specification can be
more succinct, as it needs only to orchestrate the changes to get to
the end state without implicitly specifying the end state, as in D3’s
transformation approach. However, to tailor animations there must be
a way to refer to chart elements across the start and end states, and so a
compiler must identify corresponding elements.

Gemini follows this third approach: we aim to support an authoring
scenario in which designers (or systems) have explicit start and end
visualization states (or “keyframes”). This approach allows design-
ers to focus on these states before introducing animation concerns,
and accords with existing tools. For example, visual analysis tools
(e.g., Tableau, Voyager [37]) already define visualization states using
separate, declarative specifications and so are more amenable to this
approach. This approach can support a keyframe-authoring paradigm
for animating data graphics, which designers reportedly prefer [30].

We now describe the Gemini grammar in detail. A Gemini specifica-
tion uses two primary abstractions: the step, a basic unit of animation,
and the timeline, which composes units.

4.1 Step: Unit Transitions
A step is a unit transition that interpolates changes to a selected graphic
component according to specified timing parameters. The numbered
code blocks in Fig. 1 are examples. Using steps, a complex transition
can be split into digestible pieces. Formally, a step is a four-tuple:

step := (component,change, timing,enumerator)

4.1.1 Step Component
The step component indicates the group of visual elements to be
changed. There are mark, axis, or legend components, which can
be selected by name. This high-level of abstraction partially satisfies

{
 "timeline": {
 "concat": [
 {
 "sync": [
 {
 "component": {"mark": "marks"},
 "change": {
 "encode": {
 "update": {
 "xc": {"signal": "datum.in_sf ? 0 : width"},
 "width": {"value": 5},
 "height": {"value": 5}
 }
 },
 "marktype": false
 },
 "timing": {"duration": {"ratio": 0.5}, "staggering": "byElev"}
 },
 {"component": {"axis": "x"}, "timing": {"duration": {"ratio": 0.5}}}
]
 },
 {
 "sync": [
 {
 "component": {"mark": "marks"},
 "timing": {"duration": {"ratio": 0.5}, "staggering": "byElev"}
 },
 {"component": {"axis": "x2"}, "timing": {"duration": {"ratio": 0.5}}}
]
 }
]
 },
 "staggerings": [
 {"name": "byElev", "by": "elevation", "order": "ascending", "overlap": 0.99}
],
 "totalDuration": 2000
}

1.1

Start End
1 2

1.2

2.1

2.2

�b�E\(OHY�`

�UDWLR��b���```

�b�JDS��b����`

�

��

���

���

���

(O
HY

DW
LR
Q

6)
1<

/RFDWLRQ

�

��

���

���

���

(O
HY

DW
LR
Q

6) 1
<

/RFDWLRQ

6)
1<

/RFDWLRQ

� ����� ����� ����� ����� �����
3ULFH���VTIW

�

��

���

���

���

(O
HY

DW
LR
Q

6)
1<

/RFDWLRQ

Location

Location

SF NY

0

50

100

150

200

El
ev

at
io
n

�

��

���

���

���

(O
HY

DW
LR
Q

6)
1<

/RFDWLRQ

�

��

���

���

���

(O
HY

DW
LR
Q

6) 1
<

/RFDWLRQ

6)
1<

/RFDWLRQ

� ����� ����� ����� ����� �����
3ULFH���VTIW

�

��

���

���

���

(O
HY

DW
LR
Q

6)
1<

/RFDWLRQ

Price/sqft

Location

0

50

100

150

200

El
ev

at
io
n

0�

��

���

���

���

(O
HY

DW
LR
Q

6)
1<

/RFDWLRQ

�

��

���

���

���

(O
HY

DW
LR
Q

6) 1
<

/RFDWLRQ

6)
1<

/RFDWLRQ

� ����� ����� ����� ����� �����
3ULFH���VTIW

�

��

���

���

���

(O
HY

DW
LR
Q

6)
1<

/RFDWLRQ

50

100

150

200

El
ev

at
io
n

Location

Fig. 4. A Gemini specification example for the first part of the ani-
mated transition in R2D3 Part 1 [39]. The dot plots ("elevation" vs
"in sf" (=‘Location’)) are transformed to a scatter plot ("elevation" vs
"price per sqft"). 1.1 specifies the encoding of the point marks to
describe the intermediate state, and the mark steps (1.1 and 2.1) are
staggered to move the points with lower "elevation" first.

observations from our study, where users select groups of guide ele-
ments and marks with the same geometry (I1). Gemini can also control
more nuanced components, for example by staggering marks by data
fields, or referencing sub-elements of guide elements (e.g., ticks, labels,
title). In addition, a view component refers to the overall frame (e.g.,
chart sizing), and a pause (see 2 in Fig. 1) induces delays.

4.1.2 Step Change

An animated change to a component is defined as a five-tuple:

change := (data,encode,scale,signal,mark-type)

The data entry indicates changes to the data backing a mark component,
including inserts, removes, updates, and aggregations of the data. For
example, 3 in Fig. 1 performs a data change: it inserts new data from
the end state, extending the domain of the line marks. Data changes are
applicable only to mark components.

In Vega, datasets are defined by data sources and transformations.
Assuming that the start and end states use the same data sources, Gemini
identifies data changes by comparing the data transformations. If the
dataset is aggregated (or disaggregated), Gemini binds the aggregated
values to the raw data so that the raw data can exit (or enter) while
being interpolated to (or from) the aggregated values. If no aggregation
occurs, Gemini directly joins datasets. If the datasets are grouped
by the same data fields, Gemini uses the grouping fields as join keys.
Otherwise, it takes user-provided fields or data list indices as defaults.
Akin to D3’s data join [4], Gemini internally classifies the joined data
into an enter set (newly introduced data), update set (persistent data),
or exit set (stale data). Joins for these sets can be deferred in order to
separate those changes into different animation stages.

The encode entry controls changes to a component’s visual encod-
ings. By default, Gemini interpolates between start and end visualiza-
tions. For entering and exiting data, the default transition is to fade
marks in or out. Encoding changes can be separated into different
steps. Further, Gemini lets users directly specify temporary encodings
to define intermediate states. For example, 1.1 in Fig. 4 shrinks marks
toward the sides before settling them into their final positions. For
guide components, encode changes can separately target sub-elements
to enable fine-grained control (I2). Particularly for the enter set, initial
encodings can be set to match the given start state encoding.

The scale entry defines changes to the scales applied to the compo-
nent. A subset of scales can change between the start and end visualiza-
tions. For guide components (e.g., axes and legends), scale changes can
produce new data for sub-elements, such as axis ticks/gridlines/labels,
and legend symbols/labels. Especially for axis components, new data
replace old data without joining (i.e., the old ones fade out, and the
new ones fade in) when the dimension of the scale’s domain changes
(e.g., price($) to square feet(f t2)) By default, Gemini automatically
detects the change by comparing backing data fields of the correspond-
ing scales in the visualizations specs. A change of dimension (or lack
thereof) can also be explicitly indicated by users.

The signal entry refers to changes in Vega signals (dynamic vari-
ables) and can be controlled in the same way as scales. The mark-type
entry signifies changes to the geometry of the marks.

By default, Gemini assumes that all changes should be applied con-
currently, resulting in a direct interpolation. More elaborate animations
can be achieved by specifying more nuanced stages. For example, the
1.3 block in Fig. 1 suppresses the data change, deferring that change

until after the chart scales up (3).

4.1.3 Step Timing

Every step requires timing to schedule changes in a component. This
element consists of four properties:

timing := (duration,delay,ease,staggering)

The duration entry specifies the length of the step, either as an absolute
value in milliseconds or as a fraction of the total duration. The delay
entry is specified similarly and imposes a delay before enacting the
change. The duration should be provided. If either duration or delay
if expressed as a fraction, the total duration should be specified at the
root level. The ease property selects a temporal distortion between the
progress of the change and the elapsed time [6]. Matching D3 [4], the
default ease value is cubic slow-in slow-out pacing.

Staggering is applied to step timing by referring to a named stag-
gering specification defined at the root level (1.1 , 2.1 in Fig. 4). We
place staggering definitions at the root level so they can be shared by
multiple components. Gemini extends Chevalier et al.’s [5] definition
of staggering to include five properties:

staggering := (data f ield,order,overlap,ease,staggering)

The data field and order entries determine grouping and staggering
order per element. The overlap parameter controls the temporal overlap
between the consecutive elements using the ratio:

overlap =
end(elemi)− start(elemi+1)

end(elemi)− start(elemi)

where start and end are the element’s start and end times. The ratio
indicates how much an element’s change overlaps with its preceding
element. The overlap should be less than or equal to 1.0. Fig. 5 shows
how overlap changes are staggered. The ease parameter determines
how the duration is distributed to each element. As shown in the top-
right of Fig. 5, fast-out easing can be used to assign a smaller amount of
time to later elements, emphasizing changes for the first few items and
then overlapping subsequent movement. Gemini also supports nested
staggering for elements in a subgroup (Fig. 5, the bottom-right).

Timing of Elements Across Staggerings

by: "id", overlap: 1

by: "id", overlap: 0.25

by: "id", overlap: -1, ease: "quadOut"

by: "color", overlap: 1,
staggering:
 by: "id", overlap: 0

Pr
og

re
ss

0.25 d
d

Time

Pr
og

re
ss

Time

Pr
og

re
ss

Time

Pr
og

re
ss dd

Time

Fig. 5. Timing of elements in staggered animations. Points represent
individual elements, and lines indicate progress over time. The overlap
parameter controls the intervals between consecutive elements, while
ease distributes the duration of the step across the elements.

{ "component": …, "enumerator": "e" } { "concat": […], "enumerator": "e" }

Pr
og

re
ss

d1

d2

d3

d4

Time

Timings of Step and Concat Enumerators

Concat Enumerator Step Enumerator

Pr
og

re
ss

d1

d2

d3

d4

Time

Fig. 6. Example timing of an enumerator applied to a step (left) or
a concat block (right). The enumerator consecutively joins data sets
(d1→ d2...). Step enumerators iterate the changes within a single step’s
timing. Concat enumerators iterate changes as multiple steps.

4.1.4 Step Enumerator

enumerator := (f ilter,step-size|[value1, ...])

An enumerator defines a series of data changes (e.g., values for specific
years) so that it can express consecutive data changes (e.g., showing
one year at a time). When an enumerator is added to a step, Gemini
produces a corresponding Vega filter transform and calculates data
sets by replacing the filter expression’s right-hand side value with
enumerated values. These filtering values are derived from the start and
end states with a given step-size, or provided as an array of values. The
calculated data sets are consecutively joined, and these iterations are
distributed within a single step (left of Fig. 6). This approach is Vega-
specific, as Vega filter transforms are used to obtain data set selections
at a specific moment. Fig. 7 shows an example that uses an enumerator
(1 and 2) to depict trajectories of three points over time.

4.2 Timeline: Orchestrating Steps

Animations can be staged by composing steps into a timeline. A time-
line entry (or block) consists of either a step or one of the composition
operations sync and concat. The sync operation synchronizes an array
of blocks at the start or the end based on the at property (default is
start). The concat operation plays an array of blocks in a sequence. For
example, the timeline of Fig. 1 executes 1.1 , 1.2 , 1.3 at the same
time, but it runs 2 and 3 step-by-step. Formal representations for
block and composition operations are:

block := step |sync |concat
sync := ([block1, ...], at)

concat := ([block1, ...], enumerator, autoScaleOrder)

These operations align with our study observations that interviewees
tended to describe animation stages using temporal constraints (I3).

In addition to explicit composition, Gemini provides timeline flexi-
bility via enumerators and autoScaleOrder. Enumerators for a concat
block have the same syntax as step enumerators, although they iterate
block-by-block with a divided duration equal to the original duration.
Fig. 6 illustrates the difference between these enumeration styles.

{
 "timeline": {
 "sync": [
 {
 "component": {"mark": "circle"},
 "change": {"data": ["Country"]},
 "enumerator": "until”,
 "timing": {"duration": {"ratio": 1}, "staggering": "stg"}
 },
 {
 "component": {"mark": "line"},
 "enumerator": "until",
 "timing": {"duration": {"ratio": 1}, "staggering": "stg"}
 }
]
 },
 "totalDuration": 6000,
 "enumerators": [
 {"name": "until", "filter": "untilYear", "stepSize": 1}],
 "staggerings": [
 {"name": "stg", "overlap": 0.8, "by": "Country", "order": "ascending"}
]
}

2

Start End
1
2 …until (84’’ → 85’’) 1

2 until(85’’ → 86’’) 1
2 until(13’’ → 14’’)

1

Fig. 7. Gemini specification for moving points along temporal trajectories
(c.f., [8]). The same enumerator is applied to iterate 1 and 2 . These
steps are staggered so that each point starts and ends individually.

{
 "timeline": {
 "concat": [
 {
 "component": {"mark": "marks"},
 "change": {"scale": false},
 "timing": {"duration": 1000}
 },
 {
 "sync": [
 {"component": {"axis": "y"}, "timing": {"duration": 1000}},
 {
 "component": {"mark": "marks"},
 "change": {"data": false},
 "timing": {"duration": 1000}
 }
]
 }
],
 "autoScaleOrder": ["marks"]
 }
}

AsMd

As

As Md

re-ordered

Ms Ms

Ms

Md

�

�

��

(O
HY

DW
LR
Q

$ %

6WRUH

�

�

��

(O
HY

DW
LR
Q

$ %

6WRUH

�

�

��

��

(O
HY

DW
LR
Q

$ %
6WRUH

�

�

��

(O
HY

DW
LR
Q

$ %

6WRUH

�

�

��

(O
HY

DW
LR
Q

$ %

6WRUH

�

�

��

��

(O
HY

DW
LR
Q

$ %

6WRUH

�

�

��

��

(O
HY

DW
LR
Q

$ %

6WRUH

�

�

��

(O
HY

DW
LR
Q

$ %

6WRUH

�

�

��

��

(O
HY

DW
LR
Q

$ %

6WRUH

�

�

��

(O
HY

DW
LR
Q

$ %

6WRUH

�

�

��

(O
HY

DW
LR
Q

$ %

6WRUH

�

�

��

��

(O
HY

DW
LR
Q

$ %

6WRUH

�

�

��

(O
HY

DW
LR
Q

$ %

6WRUH

�

�

��

(O
HY

DW
LR
Q

$ %

6WRUH

�

�

��

��

(O
HY

DW
LR
Q

$ %

6WRUH

�
�
�
�
�
�
�
�
�
��
��
��

^
bb�PHWD��b^�QDPH��b�:LWKRXWbDXWR6FDOH2UGHU�`�
bb�WLPHOLQH��b^
bbbb�FRQFDW��b>
bbbbbb^
bbbbbbbb�FRPSRQHQW��b^�PDUN��b�PDUNV�`�
bbbbbbbb�FKDQJH��b^�VFDOH��bIDOVH`�
bbbbbbbb�WLPLQJ��b^�GXUDWLRQ��b����`
bbbbbb`
bbbb@
bb`
` �

�

��

(O
HY

DW
LR
Q

$ %

6WRUH
�

�

��

(O
HY

DW
LR
Q

$ %

6WRUH

A B

Fig. 8. Gemini specification for updating the values of bars. The concat
block with autoScaleOrder automatically swaps the order of its two
stages, ({Md} and { As ,Ms }), to prevent overflow on the vertical scale.

The autoScaleOrder parameter ensures that the named components’
data does not exceed its scale domains by sorting the children blocks of
the concat. Fig. 8 A and B show an example that updates quantitative
values of a bar chart (Md), adjusting the scale (As , Ms) according to
the new values. If the values decrease (A), the animation updates the
values before changing the scale (Md → As , Ms); otherwise, the old
data may overflow the new, smaller scale. If the values increase (B),
the scale changes before the data updates (As , Ms → Md); otherwise,
the new data can overflow the old scale. The autoScaleOrder property
lets a single Gemini spec handle these data-dependent cases.

Users can specify autoScaleOrder using the name of a mark compo-
nent. The Gemini compiler then generates all permutations of concat

Across Components
RankingChange Detection

Per Component
Enumeration

line

data scale.x scale.y

data scale.x scale.y

…

xAxis
scale

scale

yAxis
scale

scale

data scale.yscale.x

!

∵ The line overflows
the y scale.

(b) Step Sequences
…

Outputs
Gemini Specs

#1.
cost: 0.1

#2.
cost: 0.22

data scale.x
scale.y

line

scale
xAxis

scale
yAxis

(a) Changes
Start Vis. Spec
(in Vega)

End Vis. Spec
(in Vega)

Recom.
Options

N: 2,
totalDuration: 2000
…

Inputs

line

xAxis

yAxis

…

!

∵ Only has one stage.

(c) Timelines

Fig. 9. The Gemini recommendation workflow. The system takes as input the start and end visualization states of a transition along with user-provided
options, such as the number of animation stages and whether axes maintain their domain dimensions. The system processes the inputs in three
steps: (a) it detects changes in each component, (b) it enumerates candidate timelines by combining detected changes while pruning according to
expressiveness constraints, and (c) it evaluates and ranks the timelines using its heuristic cost function.

children blocks that use the specified marks (e.g., Md and the sync of
As , Ms), and picks one without scale overflow. If the compiler cannot
find one, it returns a warning message and uses the original order.

5 RECOMMENDING ANIMATED TRANSITIONS

Leveraging its grammar, Gemini can recommend animation designs
by systematically enumerating and ranking transitions. This pro-
cess can be parameterized using design options, such as the num-
ber of transition stages (N) and the total duration. Gemini gen-
erates suggestions in three steps (Fig. 9): change detection, enu-
meration, and ranking. Our current implementation supports tran-
sitions between Vega specifications compiled from single-view Vega-
Lite charts. The live version of this implementation is available at
https://uwdata.github.io/gemini-editor/.

5.1 Change Detection

Gemini’s recommendation system first analyzes differences between
input visualizations. It pairs the marks, scales, axes, and legends by
their names. Scale domain values, such as numeric ranges and sets of
nominal values, are compared to determine whether changes occurred.
For changes that Gemini finds hard to detect, users can provide direct
input; for example, if the join keys of the data changes or if the domain
dimension of a scale changes.

Detected changes are grouped per component, as in Fig. 9 (a). Each
change is one of the change types supported by the Gemini grammar
(data, scale, encode, mark-type, signal) and contains meta information,
such as initial and final states of the corresponding component, and
whether the component expands or shrinks the width and height of
the chart. Gemini separates the encode changes of mark components
into high-level channels (x, y, color, shape, size, opacity, text) so that
generated animations can stage these encode changes separately.

5.2 Timeline Enumeration

Gemini enumerates candidate timelines by combining detected changes.
The enumeration is processed in two steps. First, for each component,
Gemini enumerates sequences consisting of N sets of changes, where N
is the target number of animation stages. Gemini prunes sequences in-
ducing illegal intermediate encodings or data overflow, as shown in Ta-
ble 1. For example, consider a transition that expands a line chart so that
data and scales of the marks (lines) change as shown in Fig. 9 (or Fig. 1).
The mark component (line) has three changes, scale.x, scale.y, and
data. These three changes can be combined into a two-stage animation
in 8 (= 23) ways. Among the possible sequences, Gemini filters out the
three that cause overflow ([{data}, {scale.x, scale.y}], [{data,
scale.x}, {scale.y}], [{data, scale.y}, {scale.x}]) by expand-
ing the data before expanding both scales. The sets in each resulting
sequence correspond to steps in the Gemini grammar.

Table 1. Constraints for pruning enumerated step sequences. Sequences
violating any of the constraints are excluded.

Constraint Description

Unavailable
Scale

Any scale that is not available, e.g., changing a point mark’s
encoding to have color using a color scale but without the
scale change introducing the color scale.

Unavailable
Data Field

Any data field that is not available, e.g., changing data to ag-
gregate without changing the encoding so the prior encoding
refers to an old data field not in the newly aggregated data.

Unavailable
Encoding

Any visual attribute that is not supported by its mark-type,
e.g., changing the mark-type from point to rectangle without
changing the encoding, such that the rectangle mark does not
have encodings for width or height.

Overflow Data overflows any domain of the scales used in the encoding,
e.g., changing a bar chart’s data to include 3 more categories
without changing the corresponding categorical scale so newly
introduced categories cannot be represented.

Gemini, in turn, iteratively picks one of the resulting sequences per
component and combines selections, while excluding combinations hav-
ing an empty stage. For instance, if Gemini enumerates two components
(A,B) involving one change for 2-stage designs (change(A) = {a},
change(B) = {b}, N = 2), it first enumerates step sequences (seq(A)
= { [{a}, ∅], [∅, {a}] }, seq(B) = { [{b}, ∅], [∅, {b}] }). Then
Gemini enumerates complete sequences ([{a}, {b}], [{b}, {a}]) while
excluding those with an empty stage ([{a,b}, ∅], [∅, {a,b}]). Gemini
then reviews the combined sequences and inserts view changes that
expand and shrink the width or height of the chart. An expanding view
step is inserted in the first stage that expands the chart, and a shrinking
view step is inserted on the last stage that shrinks the chart. Gemini
evenly distributes the user-specified total duration across the stages and
leaves further customization to users.

5.3 Transition Ranking
Gemini evaluates all enumerated timelines using a scoring function
that attempts to quantify the complexity of a Gemini animation spec-
ification. We define “complexity” as a proxy measure of how much
the interpretation cost exceeds an assumed capacity: “cost” models
the effort viewers must expend to identify animation changes, while
“capacity” refers to how much cost viewers can tolerate. Gemini uses a
heuristic function to rank enumerated timelines in ascending order of
complexity (lower is better). We make the following assumptions:

1. Cost and capacity: Each change type has a positive cost, and
people have a positive capacity per stage.

2. Capacity as a function of duration: Capacity monotonically in-
creases with the duration of a stage.

https://uwdata.github.io/gemini-editor/

Table 2. Bundling effect conditions (B). The first three conditions maintain
valid data graphics during the transition [11]; the second one applies the
Gestalt common fate effect. The last two conditions encourage bundling
of spatial or non-spatial changes.

Condition Effect

Apply scale changes with different domain dimensions while not
changing the corresponding encodings, e.g., new “temperature”
scale applied on the old encoding to “precipitation” data field.

Penalty

Change the x(/y) scale of the mark and x(/y)-axis together. Discount

Change the non-spatial scale (color, size, shape, opacity) of the
mark and the corresponding legend together.

Discount

Change x and y scales of marks together but do not change their
domain dimensions.

Discount

Change non-spatial scales of marks together. Discount

3. Bundling effects: Some animated changes may become easier or
harder to perceive if they are synchronized.

The first assumption aligns with prior work that finds that too many
changes at once are hard to follow [11, 41]. We model capacity as a
monotonically increasing function of animation duration by hypothe-
sizing that people can identify more changes as they can track slower
objects with more time to process them. Finally, we assume bundling
effects, which penalize or discount the cost of specific bundles of syn-
chronized changes. For example, if the scale of the y-axis and the
mark component’s y-scale change together, viewers may perceive this
as one bundled change (“vertical change”) by Gestalt common fate.
This approach may be more effective than presenting them separately
without synchronization. Specifically, the complexity function is:

Complexity = ∑
s∈Stages

max(0,W (s)−C(duration(s))+B(s))

where W (s) = ∑
x∈change(s)

w(x)

W , C, and B represent the total weighted step cost, capacity, and
bundling effect of a stage, respectively. We assign step costs W to
follow the edit operation costs of GraphScape [16]. For example,
w(mark-type) < w(data) means that edit operations in the Mark cat-
egory are cheaper than Add/Remove/Modify Filter and Aggregate
operations in the Transform category. We determined the bundling
effects in Table 2 in reference to existing design principles [11]. The
precise values of the costs and the bundling effects are available as
supplemental material. Lastly, we model capacity as a sigmoid function
whose output converges to a ceiling as its input increases. We initially
fit the parameter of the sigmoid to reflect the scale of the costs and
our empirical observations: C(t) = 0.8

1+exp(−(t−800)/300) +0.2, where t
is in ms. These parameters can be adjusted to align with other design
guidelines or preferences.

5.3.1 Formative Crowdsourced Study
To test and refine our recommendation logic, we conducted an online
experiment. We recruited 53 people (26 females, 26 males, 1 declined to
state) from Amazon Mechanical Turk and asked them to rank animated
transitions recommended by Gemini in terms of how well they represent
the transition in a clear and logical way. Then, we compare the collected
users’ rank to Gemini’s cost function.

We gave 5 Gemini-recommended animation designs to each subject
for each of 4 transitions covering 6 of the 7 transition categories of Heer
& Robertson’s transition taxonomy [11]. Of the 7, View Transformation,
which moves camera positions, is omitted since it is unusual in statisti-
cal graphics, and scale changes can depict similar effects (e.g., zooming
and panning). We picked the following 5 designs per transition: the
single-stage design (s1r1), the best 2-stage design (s2r1), the median-
ranked 2-stage design (s2r2), the worst-ranked 2-stage design (s2r3),
and the best 3-stage design (s3r1). All animations were 2 seconds long,
and this duration was evenly distributed to the stages. As an example,

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

Start

s1r1

s2r1
s2r2
s2r3

s3r1

The points are
filtered out.

The points are filtered out.
The points’ y-scale changes. The points are filtered out.

The points’ y-scale changes.
The x-axis changes.

The points are filtered out. The x-axis changes.
The points’s x-scale changes.

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

� ����� ����� ����� �����
6TXDUH�)RRW

�

�����

�����

�����

�����

3U
LF
H�
��6

TX
DU
H�
)R

RW

1HZ�<RUN
6DQ�)UDQFLVFR

/RFDWLRQ

End

Fig. 10. Gemini-generated animation designs for the Filtering Points
stimulus of the formative study. The scatter plots represent house price
data in two locations, and the transition filters out houses with 3+ beds.
The other stimuli are available in the supplemental material.

�

�

�

�

�
$Y

J�
�8
VH
U�5

DQ
N

%H
IR
UH
�7
XQ

LQ
J

�

�

�

�

�

$Y
J�
�8
VH
U�5

DQ
N

$I
WH
U�7

XQ
LQ
J

)LOWHULQJ�3RLQW ([SDQGLQJ�/LQH 6RUWLQJ�	�8SGDWLQJ�%DUV $JJUHJDWLRQ

� � � � �
*HPLQL�5DQN

� � � � �
*HPLQL�5DQN

� � � � �
*HPLQL�5DQN

� � � � �
*HPLQL�5DQN

V�U� V�U� V�U� V�U� V�U�
'HVLJQV

Filtering Points Expanding Lines

Fig. 11. The Gemini rank against the average ranks by the subjects
across the stimuli. The line shows the bootstrapped 95% confidence
interval of the ranks. We tuned Gemini costs to better align with the
observed rankings by promoting the single-stage design (s1r1) and
demoting the 3-stage design (s3r1). We note that s2r1 and s3r1 for
Expanding Lines were tied for the top Gemini rank prior to tuning.

one stimulus is shown in Fig. 10. The participants ranked the 5 designs
of each stimulus at a time. The order of the stimuli and the order of the
designs within a stimulus were randomized. Participants were required
to play each animation at least twice before ranking them. We also
asked subjects to describe what features of the best and worst designs
informed their ranking. Participants were compensated $2.50 USD.

Our analysis excludes responses of participants who submitted irrele-
vant rationale text (e.g., “Pixar is best known for CGI-animated...”). To
determine significant differences among the designs in each stimulus,
we use the Friedman rank-sum test with post hoc pairwise comparisons.
We report a user-preference A over B as A > B when the pair has a
significant difference (p < 0.05).

The charts on the top row of Fig. 11 show the experimental Gemini-
evaluated ranks against the average of the subjects’ ranks per stimu-
lus. Overall, Gemini underestimates user preferences for single-stage
transitions (s1r1 > *), while over-estimating preferences for 3-stage
transitions (s3r1 < s1r1, s2r1). Participants most favored s1r1 designs
since they are smooth and slow. Some preferred s3r1 designs the least
because they show too many animation effects.

The first stimulus (Filtering Points) filters out the data points and

adjusts the x and y scales to the remaining data, exemplifying Filter &
Substrate Transformation transition types [11]. Similarly, the second
stimulus (Expanding Lines) expands lines along the time axis while
expanding the domain of the two scales (Timestamp & Substrate Trans-
formation). In both stimuli, the animations staging the horizontal and
vertical scale changes were less preferred than the ones synchronizing
them in one stage (s1r1, s2r1 > s2r2, s2r3, s3r1, except s2r1 > s2r3
in Expanding Lines). This observation aligns with Gemini bundling
effects that discount the cost when the x and y scales change together
(the fourth item in Table 2).

The third stimulus (Sorting & Updating Bars) sorts vertical bars and
updates their values by substituting the data field (Order & Schema
Change). Only the s1r1 animation is preferred over other animations
(s1r1 > *). Among the other less-favored four, s3r1 and s2r3 are the
least favored (though not significantly so) because they sort the bars and
x-axis labels separately. This preference corresponds with a Gemini
bundling effect that discounts the cost when the axis and mark change
the same scale (the second item in Table 2).

The last stimulus (Aggregation) aggregates the averages of the data
points per group and transforms them into bars (Visualization Change).
For this transition, participant preferences diverged without significant
differences except for s1r1 > s2r3. Notably for s2r3, subjects reported
that the rising bars without the corresponding y-axis change at the last
stage seemed manipulated.

Based on the surveyed ranking, we manually adjusted the parameters
of the capacity function by decreasing the intercept, increasing the ceil-
ing value, and shifting along the x-axis: C(t) = 1.4

1+exp(−(t−1200)/300) .
By doing so, the curve starts from the lower value and rises up to
the higher ceiling value. It increases the capacity of the stages with
t >∼ 1,373 while reducing it for the other shorter stages. As a result,
Gemini recommendations promote the single-stage animation design
(2000ms per stage) and demote the 3-stage designs (667ms per stage).
The tuned ranks more strongly correlate (though not perfectly) with
the observed user ranks, as shown in the bottom row of Fig. 11. Fur-
ther systematic and data-driven tuning is a promising future work area
relative to our manual adjustment.

6 EVALUATION: REPLICATING USER-CREATED D3 ANIMATED
TRANSITIONS USING GEMINI

We conducted a user study in which we collected manually authored
animated transitions by designers using D3, and attempted to replicate
them using Gemini recommendations. We chose D3 as it is a popular
and expressive tool for creating animated visualizations.

Although evaluation studies typically compare user experiences
with a proposed tool and other baseline tools, we instead take an
experimenter-replication approach for multiple reasons: 1) the baseline
tool (D3) has unequal amount of resources (e.g., API documentation,
tutorial, examples) for users, and 2) our primary purpose at this juncture
is to assess whether Gemini can express and recommend what users
want to design, rather than whether the Gemini grammar improves
the user experience. Accordingly, we do not make any direct claims
regarding user experience. We can, however, verify expressiveness by
assessing whether the replications express authors’ original designs,
and the recommendation quality is implied by the amount of required
edits to the recommendations to replicate participants’ designs.

6.1 Study Design
We recruited 8 (4 female, 4 male) D3 users with data visualization
design experience. Seven participants were graduate students study-
ing Human-Computer Interaction (P8) or data visualization. One (P3)
worked at an IT company in a data visualization-related role. Partici-
pants used D3 for 2+ years (µ = 4.5), though they reported that they
do not currently use D3 daily. P3 participated remotely, while the
others spent at least 45 minutes in the presence of the first author. After
the session, subjects were allowed to complete the task remotely. All
subjects waived compensation for the study except for P8, whom we
compensated with a $15 USD gift card.

We gave each participant D3 code for the start and end visualizations
for one of the four transitions used in our formative (tuning) study.

We asked them to design and implement 1+ animation of the given
transitions in D3. They used their own laptops and were allowed to
access any resources for the task (e.g., Internet search). After finishing
the task, the subjects sent the first author their code with text reports
about their prior D3 experience and completion time for each animation.

After collecting all submissions, we noted suspicious aspects that
may not have been what the participants intended. These parts were
identified by 1) differences between the final states of the subjects’ ani-
mations and the given end visualization, and 2) static changes without
any animation effect. We reached out to each participant to confirm
if the suspicious parts were indeed mistakes. After confirmation, we
replicated the submissions without mistakes by editing one of the top 3
Gemini recommendations. Finally, we confirmed with participants that
our replications matched their original intent.

6.2 Results
Table 3 summarizes the results. Participants crafted a total of 11 anima-
tions for the given transitions. The self-reported average completion
time for their first animation design was 77 minutes (t ∈ [40,150]).
The manually authored D3 animations, the top 3 Gemini recom-
mendations, and the Gemini replications derived from the recom-
mendations are available in the supplemental material and https:
//uwdata.github.io/gemini-d3-study/. Based on the results,
we now assess the expressiveness of the Gemini grammar and the
utility of Gemini suggestions.

6.2.1 Expressiveness
Using Gemini, we successfully replicated 9 of 11 (82%) participant
designs, as corroborated by the participants. Regarding the two repli-
cation failures, P5-1 was partially created, but P4-3 was not. P5-1
vertically squeezes and stretches the bars and the y-axis toward the
bottom line by SVG scale transformation while fading in and out. Since
the Gemini grammar cannot apply this geometric scaling, we achieved
the vertical scaling by changing the position encoding of all compo-
nents except for the y-axis title, which just faded out and in without
moving. P5 confirmed that our replication was similar to the original
intent except for the title. P4-3 meticulously stages the horizontal and
vertical expansions of each component so that the y-scale expands when
the expanding lines reach the ceiling. This staged animation requires
low-level individual timing of x- and y-scales of the line, which is not
supported by the Gemini grammar due to its high-level abstraction.

6.2.2 Gemini Recommendations as Starting Points
We found that most authored animations can be derived from Gemini
recommendations without significant modifications. Among the 10
expressible user-created animations, 5 can be replicated from one of
the top 3 Gemini recommendations by adjusting timing only, such
as the duration and delay of steps (P1-1, P3-1, P4-1) or staggering
(P2-1, P6-1). Moreover, P4-2, P5-1, and P7-1 can be achieved by
editing the recommendations by modifying the existing steps with
minor edits (P4-2) or inserting a new stage with one or two steps to
elaborate the recommended flow (P5-1, P7-1). Interestingly, P4-2
matches a design rejected by Gemini’s recommender due to overflow.
In other words, Gemini could recommend this design if we relaxed
our expressiveness constraints (Table 1). On the other hand, P8-1 and
P8-2 require significant effort to express in Gemini, requiring edits to
the given visualization specifications to append extra marks and data
transformations (P8-1, P8-2) and a parallel staging structure to overlap
the animations of different components (P8-2).

6.2.3 User Performance in Crafting Animation with D3
Collecting the user-crafted animations and self-reports reveals the effort
participants spent on their designs. First, all participants report spending
40+ minutes (µ = 77) to arrive at an initial design, which includes the
time for running and understanding the given D3 code, ideation, and
implementation. Moreover, 7 of 11 designs exhibited mistakes. The
mistakes in P1-1, P2-1, P3-1, and P7-1 were made because the authors
overlooked differences, and the ones in P6-1, P8-1, and P8-2 were due
to time constraints (i.e., the authors did not want to spend additional

https://uwdata.github.io/gemini-d3-study/
https://uwdata.github.io/gemini-d3-study/

Table 3. Replicating user-created D3 animations in Gemini. Subjects spent 40–150 minutes to animate the given transitions in D3. Of 11 animations,
3 exactly match the top-3 Gemini recommendations, and 5 can be derived from the recommendations by adjusting timing parameters only.

Stimulus Subject-Design Completion Time (min) Identified Mistakes Replicable Required Edits
(except for duration & delay changes)

Filtering
Points

P1-1 60 The marks instantly disappear. Yes None.
P2-1 40 The symbols of the legend moves. Yes Add staggering to the first mark step.

Expanding
Lines

P3-1 60 The lines shrink with some delay
(200ms) comparing to the axes.

Yes None.

P4-1 45 None. Yes None.
P4-2 +15 from P4-1 None. Yes Swap x- and y-axis steps, edit the first mark

step to synchronize x-axis and data updates.

P4-3 +30 from P4-2 None. No Not applicable.

Sorting &
Updating
Bars

P5-1 150 None. Partially Insert a stage to shrink the bars and the y-axis
before updating the data.

P6-1 130 Axis changes instantly at the end. Yes Add staggering to mark and x-axis.

Aggregating

P7-1 55 The y-axis title does not change. Yes Insert a 0 ms stage introducing the bars at
aggregated value positions. Change the first
mark step to keep prior x-scale.

P8-1 79 The y axis does not change, the y
scale of the marks does not change,
and the width of bars get halved.

Yes Significant edits are required, including
appending extra marks to the start and end
visualization specs.P8-2 +22 from P8-1 Yes

time.). All mistakes are avoided by Gemini’s recommendations, which
are generated in under 1 minute on a laptop computer.

6.2.4 Implications

These findings imply that Gemini provides reasonable expressiveness
and reliable recommendations with which designers can start authoring
and exploring animation designs. For example, by employing Gemini,
animated transition authoring tools could provide recommendations to
facilitate the authoring process with initial designs.

7 FUTURE WORK AND CONCLUSION

We presented Gemini, a declarative grammar and recommender sys-
tem for authoring animated transitions between single-view statistical
graphics. The high-level declarative format of the Gemini grammar
provides a representation with which software can generate and ex-
plore animated transition designs. To evaluate Gemini, we replicated
user-created animated transitions by modifying one of the top Gemini
recommendations. Through these replications, we found that Gemini
can provide reliable starting points for the authoring process. The
Gemini compiler, recommender system, and examples are available as
open-source software at https://github.com/uwdata/gemini.

There remain challenges for effectively using Gemini. Our evalua-
tion results imply that Gemini suggestions can serve as reliable starting
points for user-desired animation designs. However, an outstanding
issue is the user interface for specifying visualization states and edit-
ing Gemini specifications. While existing APIs [17, 27] and graphical
tools [26, 29, 37, 38] support authoring of visualization states, new in-
terfaces are needed for animation specification. Future interfaces can
lower the threshold for interacting with Gemini specifications (e.g.,
how graphical tools like Lyra [26] assist creating Vega visualizations)
while enabling generation and review of recommendations.

In addition to user interface concerns, richer recommendations could
facilitate design exploration. The current implementation of the recom-
mendation system is a proof-of-concept that is limited to transitions be-
tween single view charts without layers. Additional types of transitions
can be supported by increasing the expressiveness of the Gemini gram-
mar. Recommendations could also be made finer-grained; for example,
data changes can be divided into more specific units (e.g., aggregation,
binning, filtering) by examining the data transformations of the start
and end visualization states. Gemini could then apply more detailed
guidelines for evaluation. Moreover, knowledge-based recommenda-
tion methods [17, 20] are more scalable in terms of handling evaluation
factors (or changes) than our current heuristic methods. Open chal-

lenges include how to further formalize animation guidelines [11, 31]
and our complexity measure within constraint programming systems.

Finally, to obtain more elaborate staged animations, it seems promis-
ing to recommend intermediate visualization states (“keyframes”) and
then cascade Gemini animations. For example, when points move
from a scale domain of [0,1] to [11,12], it might be preferable to
designate an intermediate state using a domain of [0,12] before mov-
ing the points, letting viewers see the 10-plus-length movements of
the points. One way to recommend intermediate states is to leverage
GraphScape [16] to explore and rank transition paths. After selecting
a transition path with proper intermediate visualization states, Gemini
could generate animated transitions for each hop (transition) on the path,
then combine them into a final animation. For instance, the transition
mentioned earlier (S−→ E) can be divided into three Gemini animated
transitions with a path including two intermediate states: (S−→ S[0,12]),
(S[0,12] −→ E[0,12]), (E[0,12] −→ E), where S[0,12] and E[0,12] are the start
and end states on a [0,12] domain. With such extensions, Gemini could
help facilitate a mixed-initiative keyframe authoring paradigm [30].

As noted, the expressiveness of Gemini is limited to transitions
among single view charts. To express transitions for more varied
charts (e.g., multi-view, pie, trail, and geographic charts), the grammar
needs to be extended to support new components such as headers
and mark groups, reference geographic projections, and support shape
interpolation (e.g., pie to bar). In addition, the Gemini grammar cannot
assign separate timings across changes within a step (as we failed to
replicate for P4-3). One way to support such nuanced timing is to
allow the grammar to assign separate timings for low-level component
properties (e.g., individual timings for each scale for a mark).

Regarding the Gemini implementation, remaining challenges involve
the computational complexity stemming from data and step count sizes.
The compiler and recommender system join data and enumeration
sequences that combinatorially increase with the number of stages. For
example, on the first author’s personal laptop, compiling a Gemini
spec for random movements of 5,000 points took 300-500 ms (versus
10-60 ms in D3), and the compiled animation played 300-600 ms (0-60
ms in D3) longer than the specified duration (5000 ms). In addition,
the recommendation feature takes more than one minute to produce
recommendations with N = 4 stages. Future compiler optimizations —
such as indexing for data joins and dynamic programming to enumerate
and evaluate the timelines — can improve the performance.

ACKNOWLEDGMENTS

We thank Arvind Satyanarayan, Dominik Moritz, & Kanit Wongsupha-
sawat for their feedback. NSF award IIS-1907399 supported this work.

https://github.com/uwdata/gemini

REFERENCES

[1] F. Amini, N. H. Riche, B. Lee, A. Monroy-Hernandez, and P. Irani. Author-
ing data-driven videos with dataclips. IEEE Transactions on Visualization
and Computer Graphics, 23(1):501–510, Jan 2017. doi: 10.1109/TVCG.
2016.2598647

[2] B. B. Bederson and A. Boltman. Does animation help users build mental
maps of spatial information? In Proceedings 1999 IEEE Symposium
on Information Visualization (InfoVis’99), pp. 28–35, Oct 1999. doi: 10.
1109/INFVIS.1999.801854

[3] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.
IEEE Transactions on Visualization and Computer Graphics, 15(6):1121–
1128, Nov 2009. doi: 10.1109/TVCG.2009.174

[4] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
Dec 2011. doi: 10.1109/TVCG.2011.185

[5] F. Chevalier, P. Dragicevic, and S. Franconeri. The not-so-staggering effect
of staggered animated transitions on visual tracking. IEEE Transactions
on Visualization and Computer Graphics, 20(12):2241–2250, Dec 2014.
doi: 10.1109/TVCG.2014.2346424

[6] P. Dragicevic, A. Bezerianos, W. Javed, N. Elmqvist, and J.-D. Fekete.
Temporal distortion for animated transitions. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’11,
pp. 2009–2018. ACM, New York, NY, USA, 2011. doi: 10.1145/1978942.
1979233

[7] F. Du, N. Cao, J. Zhao, and Y.-R. Lin. Trajectory bundling for animated
transitions. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, CHI ’15, pp. 289–298. ACM, New York,
NY, USA, 2015. doi: 10.1145/2702123.2702476

[8] M. Fisher and A. Taub. Is there something wrong with democracy?
Video, January 2018. Retrieved April 06, 2020 from https://youtu.
be/qdK5uK7B0Lo?t=70.

[9] T. Ge, Y. Zhao, B. Lee, D. Ren, B. Chen, and Y. Wang. Canis: A high-level
language for data-driven chart animations. Computer Graphics Forum,
39(3):607–617, 2020. doi: 10.1111/cgf.14005

[10] C. Gonzalez. Does animation in user interfaces improve decision making?
In Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems, CHI ’96, pp. 27–34. ACM, New York, NY, USA, 1996. doi:
10.1145/238386.238396

[11] J. Heer and G. Robertson. Animated transitions in statistical data graphics.
IEEE Transactions on Visualization and Computer Graphics, 13(6):1240–
1247, Nov. 2007. doi: 10.1109/TVCG.2007.70539

[12] J. Hullman, E. Adar, and P. Shah. Benefitting infovis with visual dif-
ficulties. IEEE Transactions on Visualization and Computer Graphics,
17(12):2213–2222, Dec 2011. doi: 10.1109/TVCG.2011.175

[13] J. Hullman, P. Resnick, and E. Adar. Hypothetical outcome plots outper-
form error bars and violin plots for inferences about reliability of variable
ordering. PLOS ONE, 10(11):1–25, 11 2015. doi: 10.1371/journal.pone.
0142444

[14] A. Kale, F. Nguyen, M. Kay, and J. Hullman. Hypothetical outcome
plots help untrained observers judge trends in ambiguous data. IEEE
Transactions on Visualization and Computer Graphics, 25(1):892–902,
Jan 2019. doi: 10.1109/TVCG.2018.2864909

[15] Y. Kim, M. Correll, and J. Heer. Designing animated transitions to convey
aggregate operations. Computer Graphics Forum, 38(3):541–551, 2019.
doi: 10.1111/cgf.13709

[16] Y. Kim, K. Wongsuphasawat, J. Hullman, and J. Heer. Graphscape: A
model for automated reasoning about visualization similarity and sequenc-
ing. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems, CHI ’17, pp. 2628–2638. ACM, New York, NY, USA,
2017. doi: 10.1145/3025453.3025866

[17] H. Lin, D. Moritz, and J. Heer. Dziban: Balancing agency & automation
in visualization design via anchored recommendations. 2020.

[18] J. Mackinlay. Automating the design of graphical presentations of rela-
tional information. ACM Transaction on Graphics (TOG), 5(2):110–141,
Apr. 1986. doi: 10.1145/22949.22950

[19] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic presenta-
tion for visual analysis. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1137–1144, Nov 2007. doi: 10.1109/TVCG.2007.70594

[20] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and
J. Heer. Formalizing visualization design knowledge as constraints: Ac-
tionable and extensible models in draco. IEEE Transactions on Visualiza-
tion and Computer Graphics, 25:438–448, 2018.

[21] B. Ondov, N. Jardine, N. Elmqvist, and S. Franconeri. Face to face:
Evaluating visual comparison. IEEE Transactions on Visualization and
Computer Graphics, 25(1):861–871, Jan 2019. doi: 10.1109/TVCG.2018.
2864884

[22] G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko. Effectiveness
of animation in trend visualization. IEEE Transactions on Visualization
and Computer Graphics, 14(6):1325–1332, Nov. 2008. doi: 10.1109/
TVCG.2008.125

[23] G. G. Robertson, K. Cameron, M. Czerwinski, and D. C. Robbins. An-
imated visualization of multiple intersecting hierarchies. Information
Visualization, 1:50–65, 2002.

[24] G. G. Robertson, J. D. Mackinlay, and S. K. Card. Cone trees: Animated 3d
visualizations of hierarchical information. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’91, pp. 189–
194. ACM, New York, NY, USA, 1991. doi: 10.1145/108844.108883

[25] D. Robinson and T. L. Pedersen. gganiamte, 2018. [Online; accessed
15-September-2019].

[26] A. Satyanarayan and J. Heer. Lyra: An interactive visualization design
environment. Computer Graphics Forum, 33(3):351–360, 2014. doi: 10.
1111/cgf.12391

[27] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite:
A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, Jan 2017. doi: 10.1109/TVCG.
2016.2599030

[28] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive vega: A
streaming dataflow architecture for declarative interactive visualization.
IEEE Transactions on Visualization and Computer Graphics, 22(1):659–
668, Jan 2016. doi: 10.1109/TVCG.2015.2467091

[29] C. Stolte, D. Tang, , and P. Hanrahan. Polaris: a system for query, analysis,
and visualization of multidimensional relational databases. IEEE Transac-
tions on Visualization and Computer Graphics, 8(1):52–65, Jan 2002. doi:
10.1109/2945.981851

[30] J. Thompson, Z. Liu, W. Li, and J. Stasko. Understanding the design space
and authoring paradigms for animated data graphics. Computer Graphics
Forum, 39(3):207–218, 2020. doi: 10.1111/cgf.13974

[31] B. Tversky, J. B. Morrison, and M. Bétrancourt. Animation: can it
facilitate? International Journal of Human-Computer Studies, 57(4):247–
262, 2002. doi: 10.1006/ijhc.2002.1017

[32] W3C. W3c recommendation. 21 February 2013.
[33] W3C. W3c working draft. 11 October 2018.
[34] Y. Wang, D. Archambault, C. E. Scheidegger, and H. Qu. A vector

field design approach to animated transitions. IEEE Transactions on
Visualization and Computer Graphics, 24(9):2487–2500, September 2018.
doi: 10.1109/TVCG.2017.2750689

[35] H. Wickham. A layered grammar of graphics. Journal of Computational
and Graphical Statistics, 19(1):3–28, 2010. doi: 10.1198/jcgs.2009.07098

[36] L. Wilkinson. The Grammar of Graphics. Springer, 2005.
[37] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and

J. Heer. Voyager: Exploratory analysis via faceted browsing of visualiza-
tion recommendations. IEEE Transactions on Visualization and Computer
Graphics, 22(1):649–658, Jan 2016. doi: 10.1109/TVCG.2015.2467191

[38] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. Mackinlay, B. Howe, and J. Heer. Voyager 2: Augmenting visual
analysis with partial view specifications. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, CHI ’17, pp.
2648–2659. ACM, New York, NY, USA, 2017. doi: 10.1145/3025453.
3025768

[39] S. Yee and T. Chu. A visual introduction to machine learning, 2015.
[Online; accessed 06-April-2020].

[40] J. M. Zacks and B. Tversky. Event structure in perception and conception.
Psychological bulletin, 127(1):3, 2001.

[41] D. E. Zongker and D. H. Salesin. On creating animated presentations. In
Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, SCA ’03, p. 298–308. Eurographics Association,
Goslar, DEU, 2003.

https://youtu.be/qdK5uK7B0Lo?t=70
https://youtu.be/qdK5uK7B0Lo?t=70

	Introduction
	Related Work
	Animated Transitions
	Event Structure In Perceptual Psychology
	Declarative Grammars for Visualization
	Automated Visualization Design

	Preliminary Interviews on Animation Design
	The Gemini Grammar: Motivation and Design
	Step: Unit Transitions
	Step Component
	Step Change
	Step Timing
	Step Enumerator

	Timeline: Orchestrating Steps

	Recommending Animated Transitions
	Change Detection
	Timeline Enumeration
	Transition Ranking
	Formative Crowdsourced Study

	Evaluation: Replicating User-created D3 Animated Transitions Using Gemini
	Study Design
	Results
	Expressiveness
	Gemini Recommendations as Starting Points
	User Performance in Crafting Animation with D3
	Implications

	Future Work and Conclusion

