AV B LITL) YTV SN DAt & VY VLL AR \A s Ao g | 2 s

A UNIFIED APPROACH TO TRANSLATE
CLASSICAL BANDIT ALGORITHMS TO STRUCTURED BANDITS
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ABSTRACT

We consider a finite-armed structured bandit problem in which
mean rewards of different arms are known functions of a com-
mon hidden parameter §*. This problem setting subsumes
several previously studied frameworks that assume linear or
invertible reward functions. We propose a novel approach
to gradually estimate the hidden 6* and use the estimate to-
gether with the mean reward functions to substantially reduce
exploration of sub-optimal arms. This approach enables us
to fundamentally generalize any classic bandit algorithm in-
cluding UCB and Thompson Sampling to the structured bandit
setting. We prove via regret analysis that our proposed UCB-C
and TS-C algorithms (structured bandit versions of UCB and
Thompson Sampling, respectively) pull only a subset of the
sub-optimal arms O(log T") times while the other sub-optimal
arms (referred to as non-competitive arms) are pulled O(1)
times. As a result, in cases where all sub-optimal arms are non-
competitive, which can happen in many practical scenarios,
the proposed algorithms achieve bounded regret.

Index Terms— Multi-Armed Bandits, Sequential decision
making, Online learning, Statistical learning, Regret bounds

A full version of this paper with full proofs and more details
is accessible at:
https:/fieeexplore.ieee.org/abstract/document/9276444 [1].

1. INTRODUCTION

The Multi-armed bandit problem [2] (MAB) falls under the um-
brella of sequential decision-making problems. It has numer-
ous applications in medical diagnosis, system testing, schedul-
ing in computing systems, and web optimization, to name a
few. In the classical K-armed bandit formulation, a player is
presented with K arms. At each time step ¢, she decides to pull
an arm k € C and receives a random reward Ry, with unknown
mean . The goal of the player is to maximize their cumu-
lative reward (or equivalently, minimize cumulative regret).
In order to do so, the player must strike a balance between
estimating the unknown rewards by pulling all the arms (explo-
ration) and always pulling the current best arm (exploitation).
The seminal work [2] proposed the UCB (upper confidence
bound) algorithm that balances the exploration-exploitation
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Fig. 1: Movie recommendation application of the structured
bandit framework studied in this paper. The context 6 (for
example, the age of the user) is unknown because the user is
not signed in. But if a user gives a high rating the first movie
(Frozen) one could infer that the age 6 is small, which in turn
implies that the user will give a high rating to the third movie.

tradeoff in the MAB problem. Subsequently, several algo-
rithms such as UCB1 [3], Thompson Sampling (TS) [4] and
KL-UCB [5] were proposed and analyzed for the classical
MAB setting. In this work, we study a setting in which re-
wards corresponding to different arms are related to each other
through a hidden parameter 6; see Section 2 and Figure 2. We
develop an approach that leverages this reward structure and
reduces exploration in UCB, TS, KL-UCB, etc., and conse-
quently achieves a significantly lower cumulative regret.

There are many practical applications where multi-armed
bandit algorithms can be useful. For instance, let us consider
the example of ad selection, where a company needs to decide
which version of the ad it needs to display to the user. It has
different versions for the same ad and depending on which ad
is displayed the user engagement (in terms of click probability
and time spent looking at the ad) is affected. In order to
maximize user engagement, the company needs to identify
the most appealing ad for the user in an online manner and
this is where multi-armed bandit algorithms can be helpful.
However, classical MAB algorithms are typically based on
the (implicit) assumption that rewards from different arms are
independent of each other. This assumption is unlikely to hold
in reality since the user choices corresponding to different
versions of an ad are likely to be related to each other; e.g., the
choices corresponding to different versions may depend on the
age/occupation/income of the user.

Contextual bandits [6] consider that the player also ob-
serves the context feature (e.g., their age, occupation, income
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Common Hidden
Parameter

Fig. 2: Structured bandit setup: mean rewards of different arms
share a common hidden parameter. This example illustrates
a 3-armed bandit problem with shaded regions indicating the
values of 6 for which the particular arm is optimal.

information) of the user to whom ad is displayed. By trying
to learn a mapping from feature information to the most ap-
pealing arm, contextual bandit algorithms prove useful for
the application of targeted advertising. However in several
use cases, observing contextual features leads to privacy con-
cerns and contextual features may not be visible for the users
who are signed in anonymously to protect their identity. In
other cases, contextual information may be costly to obtain.
The structured bandit setting considered in this paper can be
viewed as a hidden context problem, where the objective is
to do targeted advertising for a user without observing their
features, as illustrated in Figure 1. Apart from ad selection, the
structured bandit model also has applications in dynamic pric-
ing (described in [7]), cellular coverage optimization (by [8]),
drug dosage optimization (discussed in [9]).

2. PROBLEM FORMULATION

Consider a multi-armed bandit setting with X arms K =
{1,2,..., K}. Ateach round ¢, the player pulls arm k; € K
and observes the reward Ry, . The reward Ry, is a random vari-
able with mean p, (0) = E [Ry, |0, k:], where 0 is a fixed, but
unknown parameter which lies in a known set O, as illustrated
in Figure 2.

We denote the unknown true value of § by 6*. There are
no restrictions on the set ©; it can be countable or uncountable.
Although we focus on scalar 6 in this paper for brevity, the
proposed algorithms and regret analysis can be generalized
to the case where we have a hidden parameter vector 6 =
[01,62,...0.]. The mean reward functions py(0) = E[Ry|6)
for k € IC can be arbitrary (no linearity or continuity con-
straints) functions of 6. While 4 (6) are known to the player,
the conditional distribution of rewards, i.e., p(Ry|0) is not
known (which are assumed to be known in the work of [10,11]).
Instead, we only assume that the rewards R, are sub-Gaussian
with variance proxy o2, i.e., E[exp (s (Ry — E[R]))] <
exp ( ) Vs € R, and o is known to the player. Both as-

sumptions are common in the MAB literature [12].
The objective of the player is to select arm k; in round
t so as to maximize her cumulative reward Zthl Ry, after
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Fig. 3: Tllustration of the three steps of our proposed algorithm.

T rounds. If the player had known the hidden 6*, then she
would always pull arm k* = arg maxgex px(0*) that yields
the highest mean reward at # = 0*. We refer to this arm
k*as the optimal arm. Maximizing the cumulative reward is
equivalent to minimizing the cumulative regret, defined as,

Reg(T) 23 (e (6%) — e, (0) = 3

t=1 kstk*

(T)Ag, (1)

where ny(T) is the number of times arm k is pulled in 7T slots
and Ay = - (0%) — py(0%) is the sub-optimality gap of arm
k. cumulative regret is in turn equivalent to minimizing ny(7),
the number of times each sub-optimal arm k # k* is pulled.

Remark 1 (Connection to Classic Multi-Armed Bandits). The
classic multi-armed bandit setting, which does not explicitly
consider a structure among the mean rewards of different arms,
is a special case of the proposed structured bandit frame-
work. It corresponds to having a hidden parameter vector
g = (61,02, ...,0K) and the mean reward of each arm be-
ing px = 0. In fact, our proposed algorithm described in
Section 3 reduces to standard UCB or Thompson sampling
( [2,3]) in this special case.

The proposed structured bandit subsumes several previ-
ously considered models as we make no assumption on the
functions (). In the scenario, where p(6) is a linear func-
tion, our framework covers the setup of [13, 14]. When px(6)
is known to be invertible and Holder continuous, our frame-
work subsumes the model of Global and Regional bandits [7,9].
For a situation where p,(0) = g(zf6) with known g and xj,
for each arm k, our framework captures the generalized linear
bandit [15] and linear bandit [16] setup. See the full paper for
a detailed comparison with these works.

3. PROPOSED ALGORITHM: ALGORITHM-C

We now propose the following three-step algorithm called
ALGORITHM-C. At each round ¢ + 1, the algorithm performs
the following three steps:

Step 1: Constructing a confidence set, ©,. From the sam-
ples observed till round ¢, we define the confidence set as:

2a02logt
g}. 2)

ét:{O:VKGIQ I (0) = ()] <4 [ =05



Here, fi(t) is the empirical mean of rewards obtained from
the ny(t) pulls of arm k. For each arm k, we construct a
confidence set of § such that the true mean p(6) is within
2a0? logt
nk(t)
by the error bars along the y-axis in Figure 3(a), with the
corresponding confidence sets shown in grey for each arm.
Taking the intersection of these K confidence sets gives us ©,

wherein 6 lies with high probability, as shown in Figure 3(b).

an interval of size from fig(t). This is illustrated

Step 2: Finding the set C; of @t-Competitive arms. We let
C; denote the set of ©;-Competitive arms at round ¢, where,

Definition 1 (é)t-Competitive arm). An arm k is said to be
ét-Competitive if its mean reward is the highest among all
arms for some 0 € ©,; ie., 30 € O, such that uk(0) =
maxgeic fte(0).

Definition 2 ((:)t—Non—competitive arm). An arm k is said
10 be ©-Non-competitive if it is not ©4-Competitive; i.e., if
pr(0) < maxgeic e (0) for all 6 € ©y.

If an arm is @t-Non-competitive, then it cannot be optimal

if the true parameter lies inside the confidence set ©,. These
ét—Non—competitive arms are not considered in Step 3 of the
algorithm for round ¢ + 1. However, these arms can be C:)t-
Competitive in subsequent rounds. For example, in Figure 3(b),
the mean reward of Arm 3 (the green colored arm) is strictly
lower than the two other arms for all 0 € (:)t. Hence, this arm
is declared as @t—Non—competitive and only Arms 1 and 2 are
included in the competitive set C;. In the rare case when (:)t is
empty, we let C; = {1,..., K} (i.e., it contains all arms) and
go directly to step 3 below.
Step 3: Pull an arm from the set C; using a classic ban-
dit algorithm. At round ¢ + 1, we choose one of the @t—
Competitive arms using any classical bandit ALGORITHM
(for e.g., UCB, Thompson sampling, KL-UCB). For instance
UCB-C selects

kiy1 = argmax I (),
keCy

where I (t) = fx(t) + 1/% is the UCB index [3].
The ability to employ any bandit algorithm in its last step is an
important advantage of our algorithm. In particular, Thompson
sampling has attracted a lot of attention [4, 17, 18] due to its
superior empirical performance over UCB.

Remark 2 (Comparison with UCB-S proposed in [19]).
The paper [19] proposes an algorithm called UCB-S for
the same structured bandit framework considered in this
work. UCB-S constructs the confidence set O, in the same
way as Step 1 described above. It then pulls the arm
k = argmaxgex supycg, Hk(0). Taking the supremum
of ni(0) over 8 makes UCB-S sensitive to small changes
in uk(0) and to the confidence set ©,. Our approach of
identifying competitive arms is more robust, as observed
in Section 4. Moreover, the flexibility of using Thompson

Sampling in Step 3 results in a large regret improvement over
UCB-S. As noted in [19], the approach used to design UCB-S
cannot be directly generalized to Thompson Sampling and
other bandit algorithms.

4. REGRET ANALYSIS AND INSIGHTS

In this section, we evaluate the performance of the UCB-
C and TS-C algorithms through a finite-time analysis of
the expected cumulative regret defined as E [Reg(T)] =
Eszl E [nk(T)] A, (See (1)). We derive E [n(T)] sepa-
rately for competitive and non-competitive arms and show that
itis O(1) for non-competitive arms.

4.1. Competitive and Non-competitive Arms

In Section 3, we defined the notion of competitiveness of arms
with respect to the confidence set ©, at a fixed round t. For our
regret analysis, we need asymptotic notions of competitiveness
of arms, which are given below.

Definition 3 (Non-competitive and Competitive Arms). For
any € > 0, let

O ) = {0 [ (0) — ju-(O) < e} 3

An arm k is said to be non-competitive if there exists an € > 0
such that k is not the optimal arm for any 6 € ©*(©); i.e., if
1k (0) < maxpec pue(0) for all § € ©*(). Otherwise, the arm
is said to be competitive; i.e., if for all e > 0, 30 € ©*(©) such
that pg(0) = maxeeic pe(6). The number of competitive arms
is denoted by C'(6*).

Since the optimal arm k™ is competitive by definition, we have
1 < C(6*) < K. We can think of ©*(9) ag a confidence set
for 6 obtained from the samples of the best arm £*. We note
that the number of competitive C'(6*) arms is a function of the
unknown parameter 6* and the mean reward functions 5 (6).

4.2. Upper Bounds on Regret

Definition 4 (Degree of Non-competitiveness, €). The degree
of non-competitiveness €;, of a non-competitive arm k is the
largest € for which p,(0) < maxcx pe(0) for all § € ©*(€),
where ©*(9) = {0 : |y« (0*) — - (0)| < €}. In other words,
€y, is the largest € for which arm k is ©*(9)-non-competitive.

Our first result shows that the expected pulls for non-
competitive arms are bounded with respect to time 7'

Theorem 1. If an arm k is non-competitive with degree e,
then the number of times it is pulled by UCB-C is upper

bounded as
XT: ’ i 2—«
K

t=Kto

where, @

T
E[ny(T)] < Kto+ Y 2Kt~ + K?
t=1

=0(1) fora >3,

Kao?1
to = inf {T > 2 Apiny € > 44/ 2007087 OgT}; Apin = min Ay
T kek
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Fig. 4: Arm 2 is optimal for * € [0, 1], Arm 3 is optimal for
0* € [1,2.5] and Arm 1 is optimal for 0* € [2.5, 6]. The figure
on the right illustrates the number of competitive arms for
different values of 6 through shaded regions grey (C(6) = 1),
yellow (C(6) = 2) and white (C(0) = 3).

We now show that E [n,(T)] is O(log T') for competitive arms.

Theorem 2. The expected number of times any sub-optimal
arm is pulled by UCB-C Algorithm is upper bounded as

T
log1 2a
< 2 -«
E [ny(T)] < 8ac : + Y + t§:1 2Kt

=0(logT) fora>2, 5)

Plugging the results of Theorem 1 and Theorem 2 in (1) yields
the bound on the expected regret in Theorem 3 '

Theorem 3 (Expected Regret Scaling). The expected regret
of the UCB-C and TS-C algorithms has the following scaling
with respect to the number of rounds T':

E [Reg(T)] < (C(6") — 1) O(log T) + O(1) ~ (6)

where C(0*) is the number of competitive and 0* is the true
value of the common unknown parameter.

4.3. Discussion on Regret Bounds

Reduction in the Effective Number of Arms. The classic
multi-armed bandit algorithms, which are agnostic to the struc-
ture of the problem, pull each of the (K — 1) sub-optimal
arms O(log T') times. In contrast, our algorithms UCB-C and
TS-C pull only a subset of the sub-optimal arms O(logT')
times, with the rest (i.e., non-competitive arms) being pulled
only O(1) times. When C'(6*) = 1, all sub-optimal arms are
pulled only O(1) times, leading to a bounded regret. Cases
with C(0*) = 1 can arise quite often in practical settings.
For example, when functions are continuous or © is count-
able, this occurs when the optimal arm k* is invertible, or
has a unique maximum at z+ (6*), or any case where the set
O0* = {0 : pp-(0) = - (0%)} is a singleton. These cases
lead to having all sub-optimal arms non-competitive, whence
both UCB-C and TS-C achieve bounded (i.e., O(1)) regret.

Empirical performance of ALGORITHM-C. In Figure 5 we
compare the regret of ALGORITHM-C against the regret of

'A corresponding result of C-TS is available in our full paper. Additional
Simulations and Experiment on real-world Movielens recommendation dataset
are available in our full paper
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Fig. 5: Cumulative regret of ALGORITHM-C vs. ALGORITHM
(UCB in row 1, TS in row 2 and KL-UCB in row 3) for the
setting in Figure 4. The value of C'(6*) = 1 in the st column,
C(6*) = 2 in 2nd and C(0*) = 3 in 3rd column.

ALGORITHM (UCB/TS/KL-UCB). We plot the corresponding
cumulative regret attained under ALGORITHM-C vs. ALGO-
RITHM of the example shown in Figure 4 for three different
values of 6* : 0.5,1.5 and 2.6. Refer to Figure 4 to see that
C =1, 2 and 3 for * = 0.5,1.5 and 2.6, respectively. Due
to this, we see that ALGORITHM-C achieves bounded regret
for #* = 0.5, and reduced regret relative to ALGORITHM
for * = 1.5 as only one arm is pulled O(log T") times. For
0* = 2.6, even though C' = 3 (i.e., all arms are competi-
tive), ALGORITHM-C achieves empirically smaller regret than
ALGORITHM. We also see the advantage of using TS-C and
KL-UCB-C over UCB-C in Figure 5 as Thompson Sampling
and KL-UCB are known to outperform UCB empirically. For
all the simulations, we set « = 3, 5 = 1. Rewards are drawn
from the distribution N (uy(0*),4), i.e, o = 2. We report
average regret after conducting 100 independent experiments.
Performance comparison with UCB-S. In the first row of
Figure 5, we also plot the performance of the UCB-S algorithm
proposed in [19], alongside UCB and UCB-C. UCB-S tends
to favor pulling arms that have the largest mean reward for
6 € ©*(©) (Remark 2). This bias renders the performance of
UCB-S to depend heavily on 8*. When 6* = 0.5, UCB-S has
least regret among the three algorithms compared in Figure 5,
but when * = 2.6 it gives even worse regret than UCB.

5. CONCLUDING REMARKS

We studied a structured bandit problem in which the mean
rewards of different arms are related through a common hid-
den parameter. Our problem setting makes no assumptions on
mean reward functions, due to which it subsumes several pre-
viously studied frameworks [7,9, 13]. Our proposed approach
extends any classical bandit algorithm to the structured bandit
setting. Rigorous evaluation of UCB-C and TS-C reveal that
the designed algorithm pulls only C'(6*) — 1 of the K — 1
sub-optimal arms O(log T") times and all other arms are pulled
only O(1) times. An open direction is to study the problem of
best-arm identification in the considered problem setting.
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