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Abstract

Mangroves are encroaching into salt marshes throughout the world as a
result of environmental change. Previous studies suggest mangroves trap
sediment more efficiently than adjacent salt marshes, providing mangroves
greater capacity to adapt to sea level rise; this may occur by displacing salt
marshes. However, sediment transport in adjacent marsh-mangrove systems
and its role in mangrove encroachment upon salt marsh remain poorly
understood. Here we directly test the hypothesis that mangroves reduce the
ability of adjacent marsh to adjust to sea level rise by measuring sediment
transport across salt marsh platforms, with and without six meters of fringing
mangroves at the tidal creek edge. We find that salt marshes and mangroves
have equivalent sediment trapping efficiencies along the wetland edge.
Suspended sediment concentrations, mass accumulation rates, and long-term
accretion rates are not lower in salt marshes landward of mangroves than salt

marshes without fringing mangroves. Therefore, our work suggests that a



24  relatively narrow zone of mangroves does not impact salt marsh accretion, and
25  activities that limit mangrove encroachment into salt marsh, such as removal of

26  seedlings, will not improve the capacity of salt marsh to trap sediments.
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1. Introduction

Mangrove swamps and salt marshes are valuable and vulnerable
ecosystems that occupy intertidal environments around the world. They offer
similar ecosystem services such as storm surge protection, carbon
sequestration, and nursery habitat provision (Kelleway et al., 2017; Himes-
Cornell et al., 2018; Lefcheck et al., 2019). Both coastal wetland communities are
threatened by human impacts, especially reduced sediment supply and
anthropogenic sea level rise. One key difference between these wetland
communities is the latitudinal ranges they occupy, with mangroves dominating in
the tropics and salt marshes dominating coastlines in temperate zones. Where
these communities overlap around the world, marshes are often displaced by
mangroves, which themselves are range-limited by physical factors (Kangas and
Lugo, 1990; Guo et al., 2013; Saintilan et al., 2014).

Climate change tends to promote mangrove encroachment into salt marsh
(Saintilan and Wilton, 2001; Krauss et al., 2011; Osland et al., 2013; Saintilan et
al., 2014; Rogers and Krauss, 2019), however the drivers of mangrove
encroachment are regionally variable. For example, the predominant poleward
expansion of mangroves in the USA has been attributed to a reduction in the
number of winter freeze events (Osland et al., 2013; Cavanaugh et al., 2014).
However, Australia has a more cold-tolerant mangrove species distributed across
the entire mainland coast (Duke 2006; Rogers and Krauss, 2019). In addition,
mangroves in Australia typically occupy more seaward locations and lower

elevations than marshes (Clarke and Hannon, 1967; Rogers and Krauss, 2019;
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Owers et al. 2020). For example, a previous study in New South Wales (NSW)
Australia found shrubby mangroves occupied an elevation interquartile range of
0.188 m to 0.525 m compared to a salt marsh elevation interquartile range of
0.572 m to 0.737 m, relative to the Australian Height Datum (Owers et al. 2020).
Rising sea level can convert land suitable for salt marsh vegetation into habitat
for mangroves if the elevation of salt marsh does not increase at a rate
proportional to sea level rise (Rogers et al., 2005; Rogers and Krauss, 2019). As
a result, the primary direction of encroachment is landward rather than poleward
(Saintilan and Williams, 1999; Rogers and Krauss, 2019).

In some ecosystems, certain species are known to facilitate the
displacement of competitors. This conspecific or self-facilitation can occur
through many different mechanisms such as allelopathy (Rice 2012), shading
(Kangas and Lugo, 1990), and altering fire regimes (Brooks et al., 2004). In the
mangrove-salt marsh system of Australia, it remains unclear if the presence of
mangroves promotes further encroachment. A mechanism of mangrove self-
facilitation in this system could be sediment trapping. If creek-adjacent
mangroves trap sediment such that interior marshes receive less sediment, they
may be less capable of maintaining elevation relative to rising sea level. The
marsh may then lose elevation with respect to the tidal frame, which could
promote landward mangrove expansion. The expansion of the fringing mangrove
into salt marsh habitat could then trap more sediment creating a positive
feedback that results in prolific mangrove expansion into marsh communities.

Mangrove expansion has been shown to be more rapid in areas with lower
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marsh accretion, which is consistent with this proposed mechanism (Rogers et
al., 2006).

Removal and containment of mangrove establishment has been proposed
to protect salt marsh, as well as improve recreation and property value (Harty
2009). In the Hunter Estuary in NSW, Australia, mangroves have been removed
to restore salt marsh habitat for migratory shorebirds (Reid 2019). Temperate
zone salt marsh is identified as an ecologically threatened community under both
federal and NSW state legislation (Commonwealth Environmental Protection and
Biodiversity Conservation Act 1999, NSW Threatened Species Conservation Act
1995), and sea level rise has been identified as a key threatening process
(Rogers et al., 2016). However, the geomorphological and ecological impact of
mangrove removal on salt marshes has yet to be established. Previous research
suggests that mangroves are more efficient at capturing sediment than marshes,
however this finding is inconsistent and confounded by differences in elevation
across sites (Rogers et al., 2005; Perry et al., 2009; Lovelock et al. 2014;
Kelleway et al., 2017). If superior sediment trapping of mangroves is attributable
to vegetation structure, then removing mangroves may allow for increased
sediment supply to the landward salt marshes. However, if observed differences
in sediment trapping are a result of relative position in the tidal frame, then
removing mangroves would not be expected to affect salt marsh sediment
supply. Further investigation is necessary before such an ambitious and

potentially ecologically-harmful project is undertaken.
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In this study, we aim to quantify how mangroves influence sediment
transport to a landward salt marsh by comparing two locations within a wetland
system. One location has creek-adjacent mangroves with landward salt marsh
and one has salt marsh abutting the creek edge, which represents a rare
occurrence in the region. We hypothesize that mangroves will decrease
suspended sediment concentration (SSC) more than salt marsh plants, leading
to reduced short and long-term vertical accretion of landward salt marsh. It is
anticipated that this study will provide crucial information to support decision
making and intervention both now and in the future as mangroves continue to

encroach upon salt marshes.

2. Methods

2.1 Study Site

We measured key indicators of sediment transport along two transects in
Currambene Creek, which enters Jervis Bay in NSW, Australia (Figure 1). The
estuary has a semi-diurnal tidal range of approximately 2 meters and supports
temperate coastal wetland communities characteristic of southeast Australia
(Clarke, 1993; Owers et al. 2016). The transects were positioned shore-normal
and progressed from the tidal creek to approximately 15 m into the marsh
interior, with and without fringing mangroves. The transect that traversed both
mangrove and salt marsh, henceforth termed ‘mixed transect’, was
approximately 650 m downstream of the marsh-only transect. The mixed transect

had a narrow fringe of Aegiceras corniculatum mangroves approximately <2 m

6
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tall and 6 m in width along the creek, and nearby Avicennia marina mangroves,
with extensive Sporobolus virginicus salt marsh landward. The marsh transect
only traversed salt marsh vegetation and featured S. virginicus adjacent to the
tidal creek. We conducted a topographic survey with a real-time kinematic GPS
(8 mm horizontal precision and 15 mm vertical precision) to ensure each site had
a similar elevation range (Figure 2). The mixed transect elevations decreased
gradually to the creek whereas the marsh transect—which was located on the cut
bank of a meander of Currambene Creek—had a scarp. The elevation range on
the wetland surface itself was similar for both transects (0.325 m to 0.483 m for
the mixed transect and 0.410 m to 0.462 m for the marsh transect, relative to the

Australian Height Datum).

2.2 Suspended Sediment Concentrations

Optical back scatter turbidity sensors (RBR brand) were deployed along
the two transects to quantify sediment transport in the presence and absence of
fringing mangroves. On each transect, one sensor was located 30 cm above the
substrate within the tidal creek, and four sensors were located 7cm above the
bed on the marsh or mangrove surface (Figure 1). Sensors were deployed on the
mixed transect so that two were located within the mangrove vegetation and two
were in the salt marsh vegetation. Sensors along the marsh transect were
located at distances from the creek that correspond to the distances along the
mixed transect. All sensors recorded turbidity every 15 minutes from the end of

July/beginning of August to mid-September 2018. This record was divided into
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flooding and ebbing tides based on atmospheric-corrected pressure data from
the creek sensors (atmospheric data from Australian Bureau of Meteorology).
The pressure record was also used to remove any data points in which a given
sensor was not flooded. We also removed data points in which a sensor was
fouled or obstructed following Ganju et al. (2005). Turbidity was calibrated to
SSC via in situ sampling and laboratory calibration following Coleman and
Kirwan (2019), resulting in the equation SSC (mg/L) = 0.6421 * Sensor Turbidity

(NTU) (n=20, R2=0.9146, p<0.01).

2.3 Vegetation Biomass

To quantify plant biomass of both marsh and mangrove species, we
utilized non-destructive measurement techniques that have shown to be
statistically equivalent to harvest measurements (Owers et al. 2018a; Owers et
al. 2018b). Marsh biomass was measured via terrestrial laser scanning (Owers et
al. 2018a) in a 1 m? plot at each sensor location and at one additional plot
located 13 m farther landward. The calculation of biomass from the terrestrial
laser scans depends on statistical relationships previously determined for this
site (Owers et al., 2018a). For mangrove biomass, we measured height, crown
area, and stem circumference for all branches greater than 5 cm circumference
for all mangrove individuals within a 25 m? plot centered on the transect. These
measurements were used to calculate biomass using allometric equations
generated for A. corniculatum and A. marina at this study site (Owers et al.,

2018b). To compare between discrete, individual mangroves and plot-scale
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marsh biomass, we standardized mangrove biomass by calculating biomass per
square meter. This results in a single value of mangrove biomass per square

meter without an associated standard deviation.

2.4 Mass Accumulation and Trapping Efficiency

We deployed filter paper sediment traps to measure short-term mass
accumulation rates. The sediment traps consisted of pre-combusted, pre-
weighed 90 mm glass microfiber filter paper fixed to square ceramic tiles that
were staked to the marsh surface. Five replicate traps were deployed at each
sensor on the wetland surface at the end of July/beginning of August and
collected in mid-September (Figure 1). We then calculated the mass of the
accumulated sediment divided by the deployment length standardized to the filter
paper area to determine a mass accumulation rate (mg/cm?/day). Additionally,
we calculated sediment trapping efficiency ((g/cm?)/(mg/L)) as the mass
accumulation per unit area divided by the mean SSC at that corresponding
sensor.

For both mass accumulation rate and trapping efficiency, we constructed
linear mixed effect models with fixed effect variables of transect type (mixed or
marsh-only) and distance from the shoreline and random variables of vegetation
biomass and sediment trap replicate. Elevation was collinear with distance and
therefore not included as a separate variable within the model. This model can
be used to determine how mass accumulation and trapping efficiency vary with

distance and if the relationship with distance is different between the transects.
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No transformations of the data were needed, and the analysis was performed in
MATLAB. We determined which model was the best via the model-quality
estimator Akaike information criterion (AlC) and a parsimony analysis. We can
therefore test our hypothesis that more sediment is retained within the fringing
mangroves and less penetrates into the landward marsh compared to the marsh-
only transect. We would expect the fringing mangroves of the mixed transect to
have the highest mass accumulation rate and trapping efficiency while the
landward salt marsh of the mixed transect to have the lowest mass accumulation

rate.

2.5 Sediment Properties and Accretion Rates

To measure long-term accretion rates and sediment properties, we
collected two sediment cores from each site. One core was located 1 m from the
shoreline and the other 7 m from the shoreline, corresponding with sensor
locations (Figure 1). Cores were sectioned into 1 cm increments over the first 20
cm. We calculated bulk density for each section by determining the mass of a 1
cm diameter x 1 cm height cylindrical subsample dried at 100°C until a constant
mass was achieved. Dry subsamples were then ground and combusted at 500°C
for 8 hours to determine loss on ignition for organic matter content in accordance
with Ball (1964). We calculated percent sand, silt, and clay of each 1 cm
increment in the top 20 cm using a Malvern Mastersizer 2000. Finally, we
calculated accretion rates using radioisotope geochronology. Dating recent

sediments usually relies on the determination of the vertical distribution of
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unsupported or ‘excess’ 2'Pb (half-life 22.3 years), a naturally occurring fallout
radionuclide, which then allows ages to be ascribed to sedimentary layers based
on the known decay rate of 2'°Pb (Appleby and Oldfield, 1992). Briefly, total 2'°Pb
was measured by alpha spectroscopy following Nittrouer et al. (1979) where ca.
1.5 g of sediment was spiked with 2°°Po followed by partial digestion with 8 N
nitric acid (HNO3) by microwave heating. We electroplated 2°°Po and ?'°Po onto
nickel planchets in a dilute acid solution. The supported 2'°Pb activity for this core
was assumed to be equal to the uniform background activity found at depth
(Nittrouer et al., 1979). The 2'%Pb-derived accretion rates are based on the
constant rate of supply (CRS) model (Appleby and Oldfield, 1992; Corbett and
Walsh, 2015). The average accretion rates calculated over the past 50 years for

each core were then statistically compared to one another.

3. Results

3.1 Suspended Sediment Concentrations

The spatial pattern of average SSC for the entire record and when flood or
ebb tides were isolated was similar between the two transects, despite different
wetland edge morphology (Figure 3). The concentrations were low with an
average of 1.1 mg/L along the mixed transect and 0.9 mg/L along the marsh
transect. Concentrations were generally highest in the creek and decreased
rapidly with distance into the wetland (Figure 3). The notable exception to this

pattern was a substantial increase in SSC at the landward sensor of the fringing
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mangroves of the mixed site. This increase did not appear to affect the amount of
sediment reaching the marsh. On the flooding tide, the first marsh sensor of the
mixed transect had an average SSC that was 43% less than the creek sensor,
which translates to a 43% decrease in the SSC of water passing through the
fringing mangroves. Over the corresponding distance along the marsh transect,
there was a 74% decrease in SSC. Spatial patterns are similar on flood tides (b)

and ebb tides (c).

3.2 Vegetation Biomass

Vegetation biomass was similar between transects. The average biomass
of mangrove and marsh plants at the mixed transect (4.84 kg/m? + 2.40) was not
significantly different than the average biomass of the marsh-only transect (4.70
kg/m? + 2.00; Student’s t-test, p=0.92). Similarly, the average biomass of the
marsh portion of the mixed transect (4.31 kg/m? + 2.9) was not significantly
different than the average biomass at the corresponding locations in the marsh-
only transect (5.34 kg/m? £ 1.35; Student’s t-test, p=0.60). The mangrove

biomass was 5.91 kg/m? while the marsh edge biomass was 3.96 + 2.39 kg/m?.

3.3 Mass Accumulation and Trapping Efficiency

Mass accumulation rate and sediment trapping efficiency increased with
distance from the shore at both the mixed and marsh-only transects (Figure 4).
Mass accumulation rate ranged from 0.07 to 0.21 (mg/cm?/day) and sediment

trapping efficiency ranged from 2.24 to 12.3 (g/cm?)/(mg/L). Based on the model
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AIC and parsimony, the best linear mixed effect model for mass accumulation
was Mass Accumulation~ Distance + (1|Trap Replicate) and for trapping
efficiency was Trapping Efficiency~ Distance + (1|Trap Replicate). Distance from
the shore was a significant predictor for both mass accumulation rate and
sediment trapping efficiency (regression coefficient 3=0.0085 +0.0034, p<0.05;
3=0.72 £0.19, p<0.001), whereas transect was not (Figure 4). That is, for a given
distance from the shoreline, mass accumulation rate and sediment trapping
efficiency are not different between the mixed transect and the marsh transect

(B=-0.021 £0.024, p=0.39; B=1.61 £1.50, p=0.29, Figure 4).

3.4 Sediment Properties and Accretion Rates

Sediment properties were generally consistent between the top 20 cm of
cores from all locations (Figure 5). The site with the lowest average bulk density
of the top 20 cm was located in the fringing mangroves of the mixed transect
(1.11 g/lcm3, range of 0.55 g/cm3, Figure 5) and the site with the highest average
bulk density was 7 m from the shore at the marsh-only transect (1.28 g/cm3,
range of 0.65 g/cm?3). Inter-site variability of average bulk density was less than
the variability in bulk density with depth in a given core. Average organic matter
content in the top 20 cm was very low in all cores, with no core having greater
than 5% by mass. The cores from the fringing mangroves had the coarsest grain
size (54% sand, range of 24%) and the corresponding location in the marsh site

was the finest (34% sand, range of 31%, Figure 5). The interior marshes had an
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average sand content of 46% (range of 18%) and 40% (range of 32%) for the
mixed and marsh-only transects, respectively (Figure 5).

Long-term accretion rates were higher along the mixed transect compared
to the marsh-only transect and in the interior compared to the edge. The
accretion rates averaged over the last 50 years for all cores were significantly
different from one another (ANOVA, F(3,29)=5.59, p<0.05). The mangrove
portion of the mixed transect accreted significantly faster than the marsh edge at
the marsh-only transect (2.1 mm/yr compared to 1.1 mm/yr, Student’s t-test,
p<0.05). Similarly, the marsh portion of the mixed transect accreted significantly
faster than the marsh interior at the marsh-only transect (2.6 mm/yr compared to
1.6 mm/yr, Student’s t-test, p<0.05). Within a single transect, the edge and the
interior did not have statistically different accretion rates (Student’s t-test, p=0.21
and p=0.25 for the mixed and marsh-only transects, respectively). Accretion rates
generally increased through time; rates in the most recent 20 years are faster
than any other time in the past 100 at all sites except the marsh interior of the

marsh-only transect (Figure 6).

Discussion

The presence of mangroves does not appear to alter sediment supply to
the landward marshes. The percentage of sediment passing through the fringing
mangroves and into the marsh (57%) was actually greater than the percentage
that passed through the corresponding location at the marsh-only transect (26%;

Figure 3). Similarly, the mass accumulation rate and long-term accretion rate of
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the marsh at the mixed transect was not significantly lower than the
corresponding location at the marsh-only transect (Figure 4).

There was a noticeable increase in SSC in the landward portion of the
mangrove fringe. However, this increase was present in both flood and ebb tides
and the mass accumulation rate at that sensor was not elevated. This suggests
the increase is not indicative of significant sediment deposition and instead
represents sediment simply passing through a localized, more dynamic
sedimentary environment (Figure 3 and 4). The sediment concentrations,
accumulation, and accretion rates are extremely low in this system. It is possible
that our inability to detect a difference between the marsh components between
the two transects may be partially attributable to these low values. Additionally, it
is possible that a wider fringe of mangroves could exaggerate differences in
sediment supply to the marsh components of the transect. However, all three of
the sediment-based metrics were actually higher in the marsh component of the
mixed transect than the corresponding location at the marsh-only transect. These
results suggest that mangrove do not promote further encroachment into salt
marsh via limiting sediment transport to interior marshes.

Mangrove encroachment is an international phenomenon with numerous
regionally-specific drivers (Saintilan and Wilton, 2001; Krauss et al., 2011;
Osland et al., 2013; Cavanaugh et al., 2014; Saintilan et al., 2014; Rogers and
Krauss, 2019). In regions where changing temperatures drive mangrove
encroachment, such as North America (Osland et al., 2013; Cavanaugh et al.,

2014), we would not expect the sediment dynamics explored in this work to be a

15



323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

mechanism of encroachment. More broadly though, our work suggests
mangroves and salt marsh species have similar abilities to capture sediment.
This study is therefore informative in the implications of temperature-driven
encroachment, suggesting that the change in vegetation species will not result in
a major change in sediment dynamics. Our study is of course most relevant to
regions where sea level rise is the main driver of mangrove encroachment. Even
in these regions, other factors can play a role in encroachment, such as rainfall
(Duke et al., 2019; Rogers and Krauss, 2019), hysteresis (Duke et al. 2019), and
nutrients (Lovelock et al. 2007). These additional drivers can alter the elevation
of the mangrove-marsh ecotone. While it is possible that sediment dynamics may
influence encroachment more in other environments with similar vegetation
zonation, we found no indication that mangrove fringes prevent more sediment
from reaching interior locations than corresponding widths of salt marsh.

While previous work suggests that mangroves have higher accretion rates
than salt marsh and may be more resilient to sea level rise, the underlying
mechanism remains unclear (Rogers et al., 2005; Lovelock et al. 2014; Kelleway
et al., 2017). Some of the accretion difference may be attributable to the position
of mangroves lower in the tidal frame than salt marsh, particularly in Australia
(Kelleway et al., 2017). Wetlands lower in the tidal frame tend to have greater
sediment accumulation rates because they are inundated for longer durations
(Friedrichs and Perry, 2001; FitzGerald et al., 2008; Kirwan et al., 2016). For

example, mangroves in North America are not consistently lower in elevation
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than marshes and do not have consistently higher accretion rates (Perry et al.,
2009; Bianchi et al., 2013; McKee and Vervaeke, 2017).

In our study, mangroves occurred at an elevation range that encompassed
the elevation range of the salt marsh (Figure 2), and mass accumulation rates
were not different between mangroves and salt marshes at similar distances from
the creek edge (Figure 4). This suggests that previous differences in
accumulation rates between vegetation types may instead depend on relative
elevation rather than vegetation type. However, there were differences in long-
term accretion rates between vegetation types with higher rates in the
mangroves than marshes at corresponding locations (Figure 6a). The greater
surface elevation gain in mangrove may also be influenced by the greater
contribution of mangrove organic matter to substrates than salt marsh (Rogers et
al., 2005; Kelleway et al., 2017), and this contribution may not be detectable in
surface accretion. Mangroves may therefore be more capable than salt marsh at
building elevation to keep pace with rising sea level due to belowground rather
than aboveground processes. The differential response to sea level rise caused
by belowground elevation building could therefore be a driving factor of
mangrove encroachment.

Mangrove vegetation may also attenuate waves to a greater extent than
salt marsh vegetation, however this remains uncertain (Gedan et al., 2011;
Kelleway et al., 2017). Direct comparisons of wave attenuation between salt
marsh and mangroves are limited and often do not account for other

environmental factors (Kelleway et al., 2017). However, previous research has
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shown vegetation composition and structure are important factors in the
efficiency of dissipating energy from incoming flows (Montgomery et al. 2018).
While more research is needed, the greater aboveground biomass, structural
complexity, and rigidity of mangroves could theoretically make them more
capable of wave attenuation than salt marsh assemblages (Kelleway et al.,
2017). Mangroves may therefore protect the landward marshes and aid the
stability of the entire mixed marsh-mangrove system.

Our finding that fringing mangroves do not disrupt sediment delivery to
interior marshes is inconsistent with mangrove removal as an effective salt marsh
management strategy. Removal of mangroves have been considered by various
local and state governments in Australia due to concerns that sea-level-driven
mangrove encroachment will displace ecologically vulnerable salt marshes (Harty
2009). For example, several stakeholders have proposed mangrove removal for
Lake lllawarra (NSW, Australia) if it is shown that mangroves have a detrimental
impact on salt marsh (Lake lllawarra Coastal Management Plan, 2019; Rogers
personal observations). The efficacy of removing mangroves to preserve salt
marsh has not been demonstrated. In our study, the presence of mangroves had
little effect on rates of sediment accumulation in adjacent marshes and will be
unlikely to have a detectable influence on the capacity of salt marsh to adapt to
sea level rise.

Our findings are consistent with previous studies that suggest mangroves
have greater capacity than marshes for sustained surface accretion given long-

term sea level rise (Rogers et al., 2005; Saintilan and Rogers, 2006). Given the
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higher rates of long-term accretion (Figure 6a), the potential of mangroves to
attenuate waves better than marshes (Kelleway et al., 2017), and the greater
contribution to belowground organic matter (Rogers et al. 2005), the removal of
mangroves may have a net negative impact on the ability of the wetland system
to respond to sea level rise. Mangrove encroachment has been described as a
symptom of other environmental change processes (Harty 2009). Mangrove
removal is an ineffective management strategy that does not address the
underlying cause of vegetation shifts (Harty 2009). There is an effective
prioritization of salt marsh management over mangrove management (Harty
2009), however both vegetation communities offer valuable ecosystem services
on their own (Kelleway et al., 2017; Himes-Cornell et al., 2018; Lefcheck et al.,
2019) and synergistically (Saintilan et al. 2007). Other management strategies,
such as limiting development into coastal wetlands or allowing for upland
migration, will likely be more effective at protecting both salt marsh and
mangroves (Evans and Williams, 2001; Kirwan et al., 2016; Schieder et al.,

2018).

Conclusion

We found that fringing mangroves had no negative effects on sediment
supply, mass accumulation rate, or long-term accretion rates of a landward salt
marsh. These results suggest that mangrove expansion does not lead to
sediment deficits in adjacent salt marshes, and that removing mangroves would

not aid salt marsh capacity to respond to sea level rise. Previous work suggests
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mangroves may be more capable than marshes at responding to sea level
changes and reducing erosion from waves and storms. Thus, our work suggests
that the removal of mangroves to protect ecologically threatened marshes may

have a negative impact on the marsh and wetland system as a whole.
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581

Figure 1. (a.) Site maps showing the location of Currambene Creek (yellow box) on the map of
Australia (b.) and each transect with respect to Currambene Creek (white circle). (c.) At the
marsh-only transect (d.) and the mixed transect , black circles represent locations of sediment
tiles and the sensors on the wetland surface. The white point represents the sensor in the creek
and blue squares represent the core locations. The white line indicates the GPS transects.
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584 Figure 2. (a.) Elevation profiles for the mixed site (blue) and marsh-only site (red), where points
585 outlined in black indicate sensor locations. The black dashed line indicates the boundary between
586 mangroves and marsh at the mixed transect. (b.) Time series of water level measured in the

587 creek sensor. Horizontal, green dashed lines indicate the minimum and maximum elevations of
588  the sensors on the wetland platform.
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Figure 3. Spatial patterns of SSC across the wetland platform, where distance from edge refers to
the distance from a tidal creek. (a) SSC averaged over the entire period of record declines with
distance except for localized high concentrations within the fringing mangroves. (b) Average SSC
for flooding tides only, where the colored dashed line indicates the percent decrease in creek
SSC over the width of the fringing mangroves and (c) Average SSC for ebbing tides only, where
the black dashed line indicates the boundary between mangroves and marsh at the mixed
transect.
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645 of replicate plots. The dashed line indicates the boundary between mangroves and marsh at the mixed
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652 Figure 5: Bulk density and percent sand content for sediment cores at (a.) the fringing mangroves of the
653 mixed transect, (b.) the adjacent marsh at the mixed transect, (c.) the edge site of the marsh-only

654 transect, and (d.) the interior marsh of the marsh-only transect.
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662 Figure 6: Accretion rate through time based on CRS Pb-210 radiochronology divided into (a.) the wetland
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