Downloaded 09/01/21 to 72.194.8.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

DANR: Discrepancy-aware Network Regularization

Hongyuan You, Furkan Kocayusufoglu, Ambuj K. Singh*

Abstract

Network regularization is an effective tool for incorpo-
rating structural prior knowledge to learn coherent mod-
els over networks, and has yielded provably accurate es-
timates in applications ranging from spatial economics
to neuroimaging studies. Recently, there has been an
increasing interest in extending network regularization
to the spatio-temporal case to accommodate the evolu-
tion of networks. However, in both static and spatio-
temporal cases, missing or corrupted edge weights can
compromise the ability of network regularization to dis-
cover desired solutions. To address these gaps, we
propose a novel approach—discrepancy-aware network
regularization (DANR)—that is robust to inadequate
regularizations and effectively captures model evolution
and structural changes over spatio-temporal networks.
We develop a distributed and scalable algorithm based
on alternating direction method of multipliers (ADMM)
to solve the proposed problem with guaranteed conver-
gence to global optimum solutions. Experimental re-
sults on both synthetic and real-world networks demon-
strate that our approach achieves improved performance
on various tasks, and enables interpretation of model
changes in evolving networks.

1 INTRODUCTION

Network regularization is a fundamental approach to en-
code and incorporate general relationships among variables,
which are represented as nodes and linked together by
weighted edges that describe their local proximity. A sig-
nificant amount of effort has been devoted to developing suc-
cessful regularizations [22, 8, 25] that take advantage of prior
knowledge on network structures to enhance estimation per-
formance for a variety of application settings, including im-
age denoising [19] and genomic data analysis [15].

We consider the general setting of network regulariza-
tion, now proposed as a convex optimization problem de-
fined on an undirected graph G(V, £) with node set V and
edge set &:

(1.1) miani(:ci) + A Z wik - 9(x;5,),
% (5,k)e€

where on each node 7, we intend to learn a local model
x; € R?, which in addition to minimizing a predefined

Department of Computer Science, University of California, Santa
Barbara ({hyou, furkan, ambuj} @ucsb.edu).

convex loss function f; : R? — R, carries certain relations
to its neighbors, defined by the function g : R¢ x R — R.

In this paper, we focus on the particular setting where
g(xi,zj) = ||&; — x;||2, also known as a sum-of-norms
(SON) regularizer. It assumes that the network is composed
of multiple clusters, suggesting that all nodes within a cluster
share the same consensus model (x; = - - - = x;). As the ob-
served data on each node may be sparse, the SON regularizer
allows nodes to "borrow” observations from their neighbors
to improve their own models, as well as to determine the net-
work cluster to which they belong. The SON objective was
first introduced in [13] for convex clustering problems and
used off-the-shelf sequential convex solvers. Chi & Lange
[3] adapt SON clustering to incorporate similarity weights
with an arbitrary norm and solve the problem by both al-
ternating direction method of multipliers (ADMM) or alter-
nating minimization algorithm (AMA) in a parallel manner.
More recently, Hallac et al. [8] point out that weighted SON
(named as Network Lasso) allows for simultaneous cluster-
ing and optimization on graphs, and is highly suitable for a
broad class of large-scale network problems.

In network regularization, a static weight assigned to an
edge determines how strictly the difference between models
on the corresponding nodes is being penalized, relative to the
other node pairs in the network. However, unlike few scenar-
ios in which network information is explicitly given, edge
weights are usually unavailable or even infeasible to obtain
in most real-world networks (e.g., gene regulatory networks
[17]). Moreover, due to possible measurement errors and in-
accurate prior knowledge, the assigned edge weights don’t
necessarily align with the underlying clustering structure of
networks as shown in [1, 10]. As a result, heavily relying on
the edge weights in determining how much penalty should
be applied to neighboring models may contaminate the dis-
covered solutions.

Similar intuition applies when we extend to the temporal
setting. Models on nodes of temporal networks usually
change at the level of groups over time. However, some
groups exhibit different evolution patterns than others [14].
Moreover, the grouping structures themselves may evolve
with time [12]. As static regularization cannot capture such
temporal evolution, a direct solution is to induce a time-
varying local consensus by employing the SON objective on
both spatial and temporal directions, but we face an more
drastic problem: how to assign weights between snapshots.

Copyright © 2020 by SIAM

208 Unauthorized reproduction of this article is prohibited

Downloaded 09/01/21 to 72.194.8.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

Consequently, a framework that is robust to missing or
corrupted edge weights in network-based regularization and
adapts to spatio-temporal settings is desired. Note that with-
out the assigned network weights, the setting in Eq. (1.1)
degrades to simply applying isotropic regularization for all
the edges. In this work, we propose a generic formula-
tion, called the discrepancy-aware network regularization
(DANR), which deploys a suitable amount of anisotropic
network regularization in both spatial and temporal aspects.
DANR infers models at each node per timestamp and can
learn evolution of models and transitions of network struc-
tures over time. We develop an ADMM-based algorithm
that adopts an efficient and distributed iterative scheme to
solve problems formulated by the DANR, and show that the
proposed solution obtains guaranteed convergence towards
global optimal solutions. By applying to both synthetic and
real-world datasets, we demonstrate the effectiveness of the
proposed approach on various network problems.

2 Problem Setting

2.1 Discrepancy-aware Network Regularization Since
existing network-based regularizers rely on known weights
on edges, the corresponding solutions get misled when the
edge weights are erroneous or unknown. Directly learning
the unknown edge weights by using the same regularizer as
Eq. (1.1) would lead to an optimization problem:

(22 min dfi@) A D wik ey — @,

i€V (4,k)eE

which yields the trivial all-zero solution of w and thus be-
comes unsatisfactory. Instead of imposing more sophisti-
cated model-based or problem-dependent regularization as
suggested in [27], we consider an alternative formulation that
explicitly accounts for discrepancies between models on ad-
jacent nodes:

23) min Y fi(@:) + A Rs(z, o)
e dev
Rs(@,a)=p Y wi @+ agp — @ell,+(1—p)llei,p
(4,k)eE

where we denote [|a[[1, = 32(; pyee [l@jkllp as the sum of
p-norms of all aj;’s. We set a penalty parameter A > 0
to control the overall strength of network regularization, and
a portion parameter 0 < p < 1 to control the emphasis be-
tween the two terms in Rg(x, o). We name this formulation
in Eq. (2.3) the discrepancy-aware network regularization
(DANR).

In the first term of Rg, we define a discrepancy-
buffering (DB) variable o, € R? to denote the preserved
discrepancy between local model parameters x; and x;.
More specifically, when an edge weight wjy, is given but po-
tentially imprecise or otherwise corrupted, aj; would com-
pensate for abnormally large differences between models

x; and xj, to reduce the magnitude of w;;-weighted edge
penalty term in Rg. The DB variable provides additional
flexibility to its associated models, allowing them to stay
adequately close to their own local solutions w.r.t. mini-
mizing local loss functions, and avoid over-penalized con-
sensus. When all w;;’s are not given, a;;’s enable solving
Eq. 2.3 under anisotropic regularizations even with homoge-
neous weights.

The second term of Rg is the ¢y ,-regularizer (with
1 < p < o0) [23] that ensures sparsity at the group level.
Note that we regard each variable vector o as a group
(|€] groups in total). The first key intuition here is that
the regularization on o helps to exclude trivial solutions,
that is a;r = @ — x;. Second, it allows us to identify
a succinct set of non-zero vectors oj;’s, compensating for
possible intrinsic discrepancies between two adjacent nodes.

To sum up, discrepancy-buffering variable o¢;;,’s are de-
signed to elaborately adjust network regularization strength
on all edges, and thus reduce negative effects of the un-
squared norm regularizer. We will show in later sections that
this modified formulation remains convex and tractable via
parallel optimization algorithms on large-scale networks.

2.2 Distributed ADMM-based Solution In this section,
we propose an ADMM-based algorithm for solving the ST-
DANR problem in Eq. (3.12) and present the convergence
and complexity of the proposed algorithm. The algorithm
can be easily adapted to the spatial-only DANR problem in
Eq. (2.3) by omitting temporal-related updates.

The ADMM method was originally derived in [6] and
has been reformulated in many contexts including optimal
control and image processing [20]. The method can be con-
sidered as combining augmented Lagrangian methods and
the method of multipliers [2]. It aims to solve optimization
problems with two-block separable convex objectives in the
following form of

2.4 min f(x) + g(2) st. Az + Bz =c¢

Observe that our proposed objective in Eq. (3.12) has a
separable convex objective function: it can be reorganized
into two-block separable convex objectives as in Eq. (2.4),
for which ADMM methods guarantee convergence to global
optimal solutions [5].

More precisely, to fit our problem into the ADMM
framework, we first define &={x,;}’¢" for model parameter
vectors on the given undirected network G, and define con-
sensus variables u = [{w;x, ux; } V" €€] as copies of x in the
spatial penalty term R s(x,). Then we rewrite Eq. (3.12) as
follows:

25) min D fias) + M = p)lled1p
T jev
F A Y wik [ugk + ok — wll,
(.k)€E

S.t. [Ujk,uk]'] = [Cl!j,mk]) (]v k) e

Copyright © 2020 by SIAM

209 Unauthorized reproduction of this article is prohibited

Downloaded 09/01/21 to 72.194.8.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

in which the first term corresponds to the f block in Eq. (2.4),
and the remaining terms correspond to the g block. The
equality constraints on Eq. (3.12) are used to force consensus
between variables x and u. Next, we derive the augmented
Lagrangian of Eq. (2.5):

= Z fi(ms) + A (1=)|

+ > (Alule,kllujk + ok — wkjlf2
Gk)er

(26) ﬁl)l (w,u7a7 6)

1,p

pP1 P1
+ By — g+ 85— 510501
+%m—%+mﬁ4ﬁ%@

where & = [{8}}, } 7K€€ are scaled dual variables for
each equality constramt on the elements of u. The param-
eters p; > 0 penalize the violation of equality constraints
in the spatial and temporal domain [18] respectively. The
iterative scheme of ADMM under the above setting can be
written as follows, with [denoting the iteration index:

2 = argmin £,, (z, (u, o, §))

2.7 (u, o¢)<l+1> = argmin L, (a:(lH)7 u, o, 5”))

u,x

6(l+1 _6(l)+((I+1) _ (l+l))

where @=[{x;, z;}""] is composed of replicated ele-
ments in x, and thus has a one-to-one correspondence with
elements in u.

Because the augmented Lagrangian in Eq. (2.6) has a
separable structure as well, we can further split the optimiza-
tion above over each univariate element in « and z. Next, we
provide details for each ADMM update step.

xz-Update. In the first update step of our ADMM updat-
ing scheme, we can decompose the problem of minimizing
x into separately minimizing acj for each node j :

237 Ny —uf) +65013)

kEN;

:c§l+1) = argmin (f] x;)
T

As above equation suggests, x; on node j first receives local
information from the corresponding consensus variables be-
longing to all of its neighbors £ € IV;, then updates its value
to minimize the loss function and remain close to neighbour-
ing consensus variables. Since all remaining regularizations
are quadratic, the x-update problem can be efficiently solved
whenever the loss function f; has certain properties, such as
strong convexity.

(u, a)-Update. We can further decompose the (z, a)-
update step in Eq. (2.7) into subproblems on each edge (and
its related variables w1, uy;, o1) as follows, which can be
solved in parallel:

I+1) (1) (41
2.8 ('u;k),ugej)O‘;k))

awmm(Mu—ummﬂm+xmwﬁww+aﬂ—uwm

P1 l ul

u(l P1 I+1
—ugi 85 5+ e —u

Notice that the sum of convex functions which are defined on
different sets of variables preserves the convexity. To min-
imize the objective with w;x, uy; and aj, simultaneously,
the convexity of Eq. (2.8) motivates us to adopt an alternat-
ing descent algorithm, which minimizes each component it-
eratively with respect to (w;, uk;) and o, while holding
the other fixed. In detail, we solve Eq. (2.9) and Eq. (2.10)
iteratively until convergence is achieved:

(2.9)

(§lk+1) uLlj"rl)) — argmin()\lulekﬂuj'k + ag,lk) _ ’u,kj||2
P1 I+1 5 1 P1 I+1 u(l
Pl — g+ 65013 + 2l — ey + 81113)

@10 ali*) = argmin((1 - el

+ gl + e —ufl;)
where I’ denoting the iteration index of alternating descent.
Further, we can utilize the analytic solution to speed up the
calculation of u;z and wy;:

LEMMA 2.1. Problem (2.9) has a closed-form solution:

ul ™Y = (1-0)a + 0b— 0a'l)

(ZJH) fa + (1 —-0)b+ OQ(Z)
where we denote a = w§z'+1) + 8%) = (l/‘”) + 51),
¢c = M1 — m)wjk, and 0 = ¢/(pilla — b + a H) for
simplification. Details in Appendix B.

d-Update. In the last step of our ADMM updating
scheme, we have fully independent update rules for each
scaled dual variable §7;, as follows:

@.11) 8 Y =630 4+ (@Y — Y
Finally, we present the pseudo-code of our DANR approach
in Appendix D.

Stopping Criterion and Global Convergence. For our
ADMM iterative scheme in Eq. (2.7), we use the norm of
primal residual r® = & — 4 and dual residual s =
p1(u® —u(+D) as the termination measure. The optimality
condition [2] of ADMM shows that if both residuals are
small then the objective suboptimality must be small, and
thus suggests ||[r]| < e A ||s?]|2 < €3 as a reasonable
stopping criterion. Convex subproblems in x-update and
(u, a)-update need iterative methods to solve as well. The
stopping criterion for these subproblems is naturally to keep
iteration differences below thresholds, i.e. in (u, a)-update,
we require |Au)||; < ¢ and |[Aa) ||, < €.

LEMMA 2.2. Our ADMM approach to solve the DANR

problem is guaranteed to converge to the global optimum.
Details in Appendix C.

Copyright © 2020 by SIAM

210 Unauthorized reproduction of this article is prohibited

Downloaded 09/01/21 to 72.194.8.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

Computational Complexity. Let V. denote the number
of iterations that ADMM takes to achieve an approximate so-
lution & with an accuracy of ¢,. Based on the convergence
analysis in [11], the time complexity scales as O(1/¢y),
which in our problem mostly depends on the properties of
cost functions f;;’s. Assume that all convex subproblems
in z-update and (u, «)-update are solved by general first-
order gradient descent methods that take NV, and N, itera-
tions to converge respectively, the overall complexity of the
algorithm is therefore O (N, (N, |V| 4+ No[E| + [£])).

3 Extension to Spatio-temporal Setting

The aforementioned shortcomings with pre-defined edge
weights accentuate when we consider temporal networks
since acquiring explicit temporal edge weights is usually
not feasible. Thus, discrepancy-buffering variables are also
crucial for the temporal setting.

Consider a temporal undirected network G consisting of
M sequential network snapshots {G1,Go,...,Gar}, where
each network snapshot G; contains a node set V; and an edge
set &. We denote w; . as the weight of spatial edge (ji, k)

between nodes j; and k; within snapshot G;, and w§’t+1 for
the weight of temporal edge (jt,j:+1) that links node j;
with j;11 across snapshots G; and G;;1 (shown in Fig.1).
On each node j;, a convex loss function f;; : R? = R is
given to measure the fitness of a local model parameterized
by z;; € RY. With sparse observations for all snapshots,
a straightforward task is to find jointly optimal models for
every node and every timestamp under the regularization
for both network topology and temporal evolution. We can
propose an extension of the DANR formulation to spatio-
temporal networks, referred as ST-DANR:
M

(3.12) min SN fia(@i)+a R (@, o)+ Ao R (x, B)

T jEV t=1

where we define the discrepancy-aware regularizers as:

M
Rs(m, o) =p1 Yy > (Wi llzse + ogre — Tholly)

t=1 (ji,kt)EEL

(3.13) + (1 = p1)l|ex]1,p (spatial penalty term)
M-1
Rr(@,B) =p2» > (Wi s+ Bii — Tjeiall2)
jEV t=1
(3.14) + (1 — p2)||B|l1,p (temporal penalty term)

As we are interested in the heterogeneous evolution of nodal
models across time, the chosen unsquared norms in spatial
and temporal regularization terms Rg(x, o) and Rr(z, 3)
enforce piecewise consensus in both spatial and temporal as-
pects, which indicates abrupt changes of regional models or
sudden transitions in network structures at particular times-
tamps, and also implies valid persistent models in the re-
maining segments of time [9]. Beside the spatial DB vari-
ables o in Rg(x, o), we define another set of tempo-
ral DB variables 3;; € R? in Ry (z, 3) to compensate for

211

W Gy

— t=2 — . = t=M

Figure 1: Overview of our problem setting in temporal networks.

inadequate regularizations caused by temporal fluctuations.
For example, when modeling housing prices in a city, 3; ¢
would tolerate anomalous short-term fluctuations in prices,
while large values of o ; might be found near boundaries
of disparate neighborhoods.

Adaptation to Streaming Data. In many applications,
observed network snapshots arrive in a streaming fashion.
Instead of recomputing all models on past snapshots when-
ever a new snapshot is observed, incorporating existing mod-
els to facilitate the new incoming snapshot is more efficient.
Assume that we have learned models {&; ; } jey for the 7-th
snapshot, we then read observations of the next m snapshots
indexed by 741, - -+ , 74 m and attempt to learn models for
them. To this intent, we deploy our ST-DANR formulation
in Eq. (3.12) on a limited time interval t = 7,--- ;7 + m,
and then integrate established model at ¢ = 7 by fixing
{z;+}jev ={&,,+}jev and solving the remaining variables
{a:j,t}ézvl’”"ﬂ“m in the corresponding problem. Note
that in our setting, temporal messages are only transferable
through consecutive snapshots, meaning that fixing the 7-th
snapshot is the same as fixing all past snapshots.

Lastly, we point out that distributed ADMM-based so-
lution for DANR (§2.2) can be adapted to ST-DANR, for ei-
ther batch formulation (Eq. (3.12)) or streaming-case formu-
lation, which readers can refer to in Appendix E.

Temporal Evolutionary Patterns. In this work, we
consider the unsquared edge penalty term ||, + B, —
xj++1|]2 in Ry since it enforces temporal reconstruction,
indicating sharp transitions or change points at particular
timestamps. Similar to the spatial case, there could be mul-
tiple available alternatives to enforce different types of evo-
lutionary patterns [9]. For example, replacing the unsquared
norm with squared norm form ||z;+ + 8j+ — @;41(|3 will
yield smoothly varying models along consecutive snapshots,
and has been well studied in [24, 4].

4 EXPERIMENTS

In this section, we present an experimental analysis of the
proposed method (DANR) and evaluate its performance on
classification and regression tasks. First, we employ a syn-
thetic dataset (§4.1) and two housing price datasets (BAY and
SAC in §4.2) to demonstrate the set of scenarios and applica-

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 09/01/21 to 72.194.8.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

tions that are particularly good fit for DANR. In addition to
an improvement on the estimation task, DANR learns fine-
grained neighborhood boundaries and reveals interesting in-
sights into the network’s heterogeneous structure. Lastly, in
order to validate the efficacy of ST-DANR in the temporal
setting, we conduct experiments with the geospatial and tem-
poral database of Northeastern US lakes (§4.3), from which
we aim to estimate the water quality of lakes over 10 years.

Baseline Algorithms. In spatial network scenarios
(84.1 & §4.2), we compare DANR against three baselines:
network lasso (NL) [8], robust multi-task feature learning
(rMTFL) [7], factorized multi-task learning (FORMULA)
[26]. In spatial-temporal network scenarios (§4.3), we com-
pare ST-DANR with two widely-applied temporal regulariz-
ers in the literature, which are detailed in §4.3.

Parameters Setting. For both NL and DANR, we
tune A parameters from 1073 to 102 where A\"*! = 1.3\™.
Concerning the DANR, for each value of \, we further tune
p parameters from 0.3 to 1, where "1 = ;™ +0.02. Lastly,
we set p = 3. We follow the same strategy for both spatial
(DANR) and spatio-temporal (ST-DANR) variants of the
proposed method. For all penalty parameters in rMTFL and
FORMULA, we tune them in the same way as A in DANR.
In addition, we vary the number of factorized base models
in FORMULA from 1 to 50 to achieve its best performance.
For each dataset, we standardize all features and response
variables to zero mean and unit variance.

4.1 Node Classification with Limited Data Following
previous work [8], we first experiment with a synthetic net-
work in which each node attempts to solve its own sup-
port vector machine (SVM) classifier, but only has a lim-
ited amount of data to learn from. We further split the nodes
into clusters where each cluster has an underlying model,
i.e., nodes in the same cluster share the same underlying
model. Our aim is to learn accurate models for each node
by leveraging their network connections and limited obser-
vations. Note that the neighbors with different underlying
models provide misleading information to each other, which
potentially harms the overall performance. Therefore, we
later investigate the robustness of the DANR with a varying
ratio of such malicious edges.

Synthetic Network Generation. We create a network
of 100 nodes, split into 5 ground-truth communities C!,
C?, .-, C5. Each of these communities consists of 20
nodes. We denote the community of a node ¢ with C;;. Next,
we form the network connections by adding edges between
nodes based on the following criterion: The probability
of adding an edge between any node pair (i,5) is 0.5 if
C; = ()}, ie., the edge connects nodes from the same
community (intra-community edge). Otherwise, we set the
probability as 0.02 if C; # (), i.e., the edge connects
nodes from different communities (inter-community edge).

The resulting synthetic network Go(V,E) has 100 nodes
and 574 edges, with 82% of them being intra-community
edges. Each ground-truth community C* has an underlying
classifier model X* € R'°, drawn independently from a
normal distribution of zero mean and unit variance, where
k € [1,---,5]. Next, we generate 5 random training
example pairs (w,y) per node, where w € R'* denotes an
observation and y € {—1, 1} denotes the ground-truth value
to estimate. The ground-truth value y for each observation
w is then computed using the underlying classifier of the
community that a node belongs to:

4.15) y = sign(w? X* + 1)

where X* € R0 represents the corresponding weight of the
classifier w.r.t. observations, while 7 is the noise. All obser-
vations and noises are drawn independently from a normal
distribution for each data point. Note that 5 observations are
insufficient to accurately estimate a model ; € R'°. Hence
for this setting, the network connections play an important
role as nodes can “borrow” training examples from its neigh-
bors to improve their own models.

Optimization Problem. The objective function f; on
each node is formulated by the soft margin SVM objective,
where node ¢ estimates its model (i.e. separating hyperplane)
x; € R using its five training examples (w, y) as follows:

1 2
min (im?mi +C>a) styP@iw®)>1-6), >0
=1

where ;s are slack variables that accounts for non-separable
data. The constant C' controls the trade-off between mini-
mizing the training error and maximizing the margin. We set
C t0 0.75, which we empirically find to perform well.

Test Results. In following subsections, we first thor-

oughly inspect DANR and its prototype method NL on syn-
thetic network G, in order to show the benefits of intro-
ducing discrepancy-buffering variable a. Later in §4.1.2,
we evaluate the performance and robustness of DANR and
all three baseline methods under more noisy scenarios. To
assess the performance, prediction accuracies are computed
over a separate set of 1000 test pairs (10 per node). The test
pairs are again randomly generated using Eq. (4.15).
4.1.1 Effect of Discrepancy-Buffering Variables. We
compare DANR with NL and report the prediction accuracy
with varying A values in Figure 2. Recall that the proposed
method introduces the ;4 parameter which is coupled with the
A parameter. Therefore in order to have an adequate compar-
ison between DANR and NL, we modify our A parameter to
be A = \ /. Doing so ensures that both methods apply the
same amount of penalty to their network regularization terms
(See Eq. 2.2 and 2.3). For each value of A, we vary p from
0.3 to 1 and report the highest accuracy achieved.

We first briefly mention the desired behaviors of the
NL method and later accentuate its drawbacks. As shown
by Figure 2, for small A values, the problem reduces to
solving the local optimization problem where each node

Copyright © 2020 by SIAM

212 Unauthorized reproduction of this article is prohibited

Downloaded 09/01/21 to 72.194.8.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

o
]
=]

o
b
a

Prediction Accuracy
=} =)
o ~
o =]

o
=]
o

10-* 10-2 10-% 10° 10% 10°
A
Figure 2: Prediction accuracy comparison with varying A values.
h=10" A= 10!
0.80 0.80

o
E
)
£l

AN = =

=)
E
Prediction Accuracy
o
El

a
5 2

Prediction Accuracy

)
&

B

=

el
)
&

o

o
&
o

03 04 05 06 07 08 09 10

1
Figure 3: Effect of u on the prediction accuracy, with a fixed \.

03 04 05 06 07 08 09 10

estimates its model solely based on its limited observations.
This achieves 61.3% accuracy on the test set. Furthermore,
as A increases, the NL penalty enforces nodes to form
clusters, where nodes in the same cluster share the same
model. This behavior firmly improves the test performance
with prediction accuracy rising to 75.3%. Right after the
peak performance is reached however, a slight increase in
A causes a sudden drop in the performance and the problem
reduces to solving the global optimization problem over the
entire network. Therefore when A > Agpiticar, the problem
converges to a common model for all the nodes in the
network |, i.e., #; = x; for Vi,j € V. This further drops
the prediction accuracy to 56.4% on the test set.

The observed rapid drop in performance implies that the
NL method is highly sensitive to the A parameter. There is
only a narrow window of A values that result in a proper
clustering of the network. As a result, one needs to exces-
sively tune the A parameter around A,.;zi0q; to find its opti-
mal value. In addition, such clustering performance is also
highly affected by the volume of “malicious” (inter-cluster)
edges in the network, as shown in §4.1.2.

From Figure 2, we can observe that the DANR approach
exhibits improved performance thanks to its discrepancy-
buffering variables, «, which allow our regularization term
to better exploit the good edges while providing additional
tolerance towards bad edges. As a result, DANR achieves
79.1% accuracy on the test set, outperforming the best
baseline method by 3.8%. Another important observation
is that DANR provides a much wider window for selecting
near-optimal A than the baseline approach. That being
said, we now analyze how the p parameter couples with
the A parameter, and further present its effect on DANR’s
performance. Figure 3 displays the prediction accuracy vs.
1, with a fixed A = 10° and 10'. Intuitively, as A increases,
the optimal value of p also increases. The reason behind is
that as A increases, the more non-zero discrepancy-buffering

213 Unauthorized reproduction o

variables (parameterized by (1 — p)) are needed to persist the
accurate clustering formation since high values of A forces
global consensus over the network.

080

—— DANR
- NL

=== MTFL

= === FORMULA

o
=3
w

o
=3
-3
#
#

o]
5
- ~
-

E 075 .-y
c Sy
=REL g
= Sass
= SR,
T oss T
g ™

050

055 L

0.0 01 0.2 0.3 04 0.5 0.6

. L Noise
Figure 4: Prediction accuracy co'mpanson with varying noise.

4.1.2 Robustness to Malicious Edges. Note that the ratio
of inter-community edges in the earlier synthetic network
Gg is 18%. Here we use term noise for the ratio of
such malicious edges in the network. Taking into account
that the amount of noise is critical in learning accurate
models for nodes in a network, we now investigate the
efficacy of DANR w.r.t. varying noise. First, we remove
all inter-community edges and later iteratively add malicious
edges to the network. Then we solve the same problem
with the noise varying from O to 0.6, and report prediction
accuracies of all methods in Figure 4. As shown, the
performance of DANR, NL and FORMULA drops in the
absence of noise. Meanwhile the pure multitask method
rMTFL maintains the same low accuracy, since it doesn’t
utilize the network information. However, as we increase
the noise, DANR starts to outperform NL and FORMULA,
where the gap between the models’ performances becomes
larger at a higher ratio of malicious edges. This confirms
that compared to the baseline methods, the DANR exhibits
more robust performance in noisy settings thanks to its
discrepancy-buffering variables.

4.2 Spatial: Housing Rental Price Estimation In this
section, our goal is to jointly (i) estimate the rental prices
of houses by leveraging their geological location and the set
of features; (ii) discover boundaries between neighborhoods.
The intuition is that the houses in the same neighborhood
often tend to have similar pricing models. However, such
neighborhoods can have complex underlying structures (as
described later in this section), which imposes additional
challenges in learning accurate models.

Dataset. We experiment with two largely populated ar-
eas in Northern California: the Greater Sacramento Area
(SAC) and the Bay Area (BAY). The anonymized data is pro-
vided by the property management software company App-
folio Inc, from which we further sample houses with at least
one signed rental agreement during the year 2017. The re-
sulting dataset covers 3849 houses in SAC and 1498 houses
in BAY. Concerning the houses that have more than one
rental agreement signed during 2017, we average the rental

Copyright © 2020 by SIAM
tptﬁs article is prohibited

Downloaded 09/01/21 to 72.194.8.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

prices listed in all the agreements. Each house holds the
information about its location (latitude/longitude), number
of bedrooms, number of bathrooms, square footage, and the
rental price. We regard these areas (SAC and BAY) as two
separate datasets for the remainder of this section. We also
randomly split 20 % of the houses in each dataset for testing.

Network Construction. After excluding test houses
from both datasets, we construct two networks (one for each
dataset) based on the houses’ locations. An undirected edge
exists between node ¢ and j, if at least one of them is in
the set of 10 nearest neighbors of the other. (Note that
node j being one of the 10 nearest neighbors of ¢ doesn’t
necessarily imply that node ¢ is also in the set of nearest
neighbors of j.) In the resulting networks, the average degree
of anode is 12.16 for SAC and 12.04 for BAY. Additionally,
we construct two versions of these networks, weighted and
unweighted. While the weighted network has edge weights
inversely proportional to the distances between houses, the
unweighted network ignores the proximity between houses,
and thus weights on all the edges are 1.

Optimization Problem. The model at each house esti-
mates its rental price by solving a linear regression problem.
More specifically, at each node ¢ we learn a 4-dimensional
model x; = [a;,b;,¢;,d;]. @ simply represents the coef-
ficients of each feature, which later is used to estimate the
rental price p; as follows:

Di = a; - (#bedrooms) + b; - (#bathrooms)

~+c;i - (square footage) + d;,

where d; is the bias term. The training objective is

min 3715~ pill3 + ¢ i3 + A Rs(w, o)
T dev
where Rg represents the proposed network regularization
term (see Eq. 2.3), while c is the regularization weight to
prevent over-fitting.

Test Results. Once training converges, we predict the
rental prices on the test set. To do that, we connect each
house in the test set to its 10 nearest neighbors in the training
set. We then infer the new model x; by taking the average of
the models on its neighbors: @; = (1/|N(j)) Xpen(;) Tk
The model x; is further used to estimate the rental price of

Figure 5: Examples of complex neighborhood structures captured
by the DANR. In left, the house shown in yellow resides at the
border of three different area codes. In right, the creek side house
(colored in blue) differs from all of its neighbors, possibly due to
its appealing location.

the corresponding house. Alternatively, one can also infer x;
by solving ming, >, ¢ v(;) @5 — @} [|2, while keeping the
models on neighbors fixed. However, we empirically find
that simply averaging the neighbors’ models performs better
for both methods in this particular setting. We compute
Mean Squared Error (MSE) over test nodes to evaluate the
performance.

Method BAY SAC

Local estimation (A = 0) 0.5984 0.6250
Global estimation (A > A¢riticar) 0.4951 0.5403
rMTFL 0.4774 0.4115
FORMULA (unweighted) 0.4446 0.3503
FORMULA (weighted) 0.4181 0.3379
Network Lasso (unweighted) 0.4392 0.3273
Network Lasso (weighted) 0.4173 0.3022
DANR (unweighted) 0.4106 0.2978

Table 1: MSE for housing rental price prediction on test set.

Table 1 displays the test results of eight different settings
on both datasets. As shown, local & global estimations
and rMTFL method produce high errors for both datasets.
We further apply FORMULA and Network Lasso (NL)
methods to both weighted and unweighted versions of the
networks, while the proposed method is only applied to
the unweighted version. Notice that the network weights
are irrelevant for the local & global estimation settings
and the rMTFL method. Intuitively, both FORMULA and
NL performs better on the weighted setting compared to
the unweighted setting for both datasets. As shown, the
rental price estimation errors achieved by the NL are 0.4173
(weighted) vs. 0.4392 (unweighted) for BAY and 0.3022
(weighted) vs. 0.3273 (unweighted) for SAC. These results
suggest that the pre-defined weights on these networks help
to learn more accurate models on houses.

However, we further argue that although such pre-
defined weights improve the overall clustering performance,
they don’t account for more complex clustering scenarios,
e.g., two nearby houses falling into different school dis-
tricts or some houses having higher values compared to
their neighbors due to geography, e.g., having a view of
the city. That being said, DANR outperforms all the other
baselines and achieves the smallest errors for both datasets;
0.4106 for BAY and 0.2978 for SAC. Especially, the DANR
(unweighted) even outperforms the weighted version of the
baseline approaches by a notable margin. This reveals that
the DANR indeed accounts for such heterogeneities in data
and provides enhanced clustering of the network.

Figure 5 shows examples of two complex scenarios that
are captured by the DANR from the SAC network. We use a
color code to represent the clusters in the network, where the
same colored houses (i, j) are in consensus on their models
(x; = x;). In the left subfigure, the house shown in yellow
uses a different model than all of its neighbors. Interestingly,

Copyright © 2020 by SIAM

214 Unauthorized reproduction of this article is prohibited

Downloaded 09/01/21 to 72.194.8.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

(a) 2000

(b) 2002

(c) 2004

Figure 6: Evolution of clustering captured by the ST-DANR over years.

it resides at the border of three different area codes. The
area code for this house is 95864, while the area code on its
west is 95825 and 95826 on its south-east. Additionally, we
observe similar heterogeneous behaviors in some houses that
are near creeks, lakes, and rivers. As an example, Figure 5
(right) displays a creek side house (colored in blue), which
again uses a different underlying model from its neighbors.

4.3 Spatio-Temporal: Water Quality Estimation of
Northeastern US Lakes We now evaluate our method in
spatio-temporal setting, where the aim is to dynamically es-
timate the water quality of Northeastern US lakes over years.
We follow the same procedure in §4.2, but have an addi-
tional temporal regularization term in our objective that al-
lows nodes to obtain signals from past snapshots of the net-
work, along with their neighbors in the current snapshot.
Dataset and Network. We experiment with the geospa-
tial and temporal dataset of lakes in 17 states in the North-
eastern United States, called LAGOS [21]. The dataset holds
extensive information about the physical characteristics, var-
ious nutrient concentration measurements (water quality),
ecological context (surrounding land use/cover, climate etc.),
and location of lakes; from which we select the following
available set of features: {max depth, surface area, eleva-
tion, annual mean temperature, % of agricultural land, %
of urban land, % of forest land, % of wetland}. The water
quality metric to estimate is the summerly mean chlorophyll
concentration of the lakes. We represent the feature vector
with w € R® and the water quality score with y € R.
During our experiments, we consider a 10-year period
between 2000 and 2010. Due to sparsity in the data, we
allow 2 years range between the two consecutive snapshots
of the network. This results in total of 1039 lakes with all the
aforementioned features and the water quality measurements
available for each of the selected years. After randomly
splitting 20% of the lakes for testing, we build our network
by using the latitude/longitude information of lakes, where
each lake (node) is connected to 10 nearest lakes.
Optimization Problem. After constructing the net-
work, we now aim to dynamically estimate the water quality
(yi,+) of lakes by using their feature vectors (w; ;). More for-
mally, for each year ¢ € [2000,2002, - - - ,2010], we learn a
model x; ; € R® per node by solving the following spatio-

temporal problem in a streaming fashion: (4.16)
min Z f@it, Wi, yit) + A1 - ng(iL‘, a) + s - Rg“(mv B)

where Zfe‘is the linear regression objective and Rg is the
DANR term applied on the spatial edges. R is the temporal
regularization term, for which we consider two formulations
as described next.

Test results. For each year, we first solve the spatial
problem (Eq. (4.16) without the temporal term R) and re-
port the Mean Squared Errors in Table 2. Note that the test
nodes are again inferred by averaging the neighbors’ models
in the current snapshot. Later, in order to successfully as-
sess the improvements gained by the temporal discrepancy-
buffering variables (3), we solve the above spatio-temporal
problem with three different temporal regularizers:
DANR+T-SON: DANR with temporal sum-of-norms regu-
larizer where RY.(x,-) = 3y, [|®i,e — T p—1|2
DANR+T-SOS: DANR with temporal sum-of-squares reg-
ularizer where RY.(x,-) = >,y | — i1]l3
ST-DANR: Spatio-temporal discrepancy-aware network
regularizer where R%.(z, 8) = pia - Yy |@i — Tip—1 +
Bitllz + (1 —p2) - [1Bll1p

DANR+T-SON and DANR+T-SOS approaches simply
apply two widely adopted temporal regularizers on the tem-
poral edges (the sum-of-norms regularizer [16] and sum-of-
squares reqularizer [4, 24] respectively), while ST-DANR
includes the discrepancy-buffering variables on both spatial
and temporal edges. Recall that we solve the Eq. (4.16)
in a streaming fashion for simplicity, i.e., each snapshot of
the network solves the problem while holding the models
learned on the previous snapshot (if available) fixed. Poten-
tially, the performance can further be improved by allowing
updates on the previous snapshots.

As we can see from the Table 2, leveraging the tempo-
ral connections between the two consecutive snapshots sig-
nificantly improves the performance. The DANR+T-SON
outperforms the DANR by 8%-14%, while DANR+TSOS
outperforms the DANR by 10%-15%. Moreover, the ST-
DANR consistently outperforms both baselines for all the
years. This confirms that the proposed formulation accounts
for the heterogeneous nature of the temporal networks where
some group of nodes exhibits different evolution patterns
than the others.

Copyright © 2020 by SIAM

215 Unauthorized reproduction of this article is prohibited

Downloaded 09/01/21 to 72.194.8.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

Method [2000 2002 2004 2006 2008 2010
0.8479 0.9033 0.6384 0.6722 0.4556 0.4113
~+T-SON [N/A 0.8308 0.5744 0.6061 0.4109 0.3517

+T-SOS | N/A 0.8045 0.5618 0.6045 0.3978 0.3476

ST-DANR | N/A 0.8037 0.5604 0.5866 0.3844 0.3311

Table 2: MSE for water quality estimation over years.

Figure 6 further displays the models (color-coded)
learned on three consecutive snapshots, corresponding to
years 2000, 2002 and 2004. In 2000, the formed clusters
don’t go much beyond the boundaries of the states, resulting
in coarse clustering of the network. Yet some states such as
Missouri and Iowa are grouped into one cluster (shown in
green). This suggests that accurately estimating the chloro-
phyll concentration of lakes based on the selected set of fea-
tures is indeed challenging. Specifically, the estimation prob-
lem depends on several other external factors that potentially
affect the volume of plants and algae in lakes; cultural eu-
trophication, nutrient inputs from human activities to name a
few [21]. However, as it can be seen from the models learned
in 2002 and 2004, the clustering performance improves once
we allow temporal regularization to synchronize models be-
tween two consecutive snapshots, which is analogous with
the reduction in errors over years as reported in Table 2.
Overall, we observe a split of clusters over time, e.g., in
Wisconsin, Minnesota, Iowa and New England. Addition-
ally, a dark brown cluster in south Missouri begins to appear
in 2002 and further spreads north in 2004. This indicates
that by leveraging the temporal connections, the ST-DANR
learns improved models and clustering while allowing for
heterogeneity in group level evolutions of nodes.

5 CONCLUSIONS

We propose discrepancy-aware network regularization
(DANR) approach for spatio-temporal networks. By intro-
ducing discrepancy-buffering variables, the DANR automat-
ically compensates for inaccurate prior knowledge encoded
in edge weights, and enables modeling heterogeneous tem-
poral patterns of network clusters. We develop a scalable al-
gorithm based on alternating direction method of multipliers
(ADMM) to solve the proposed problem, which enjoys ana-
Iytic solutions for decomposed subproblems and employs a
distributed update scheme on nodes and edges. Our experi-
mental results show that DANR successfully captures struc-
tural changes over spatio-temporal networks and yields en-
hanced models by providing robustness towards missing or
inaccurate edge weights.

6 ACKNOWLEDGMENTS

The work was supported in part by the National Science
Foundation under grant I1S-1817046.

References

216

[1] L. ANSELIN, Issues in the specification and interpretation of
spatial regression models, Agricultural economics, 27 (2002).

[2] S. BOYD ET AL., Distributed optimization and statistical
learning via the alternating direction method of multipliers,
Foundations and Trends(®) in Machine Learning, 3 (2011).

[3] E. C. CHI ET AL., Splitting methods for convex clustering,
Journal of Computational and Graphical Statistics, 24 (2015).

[4] X.-H. DANG ET AL., Subnetwork mining with spatial and
temporal smoothness, in SDM, 2017.

[5] J. ECKSTEIN ET AL., On the douglasrachford splitting
method and the proximal point algorithm for maximal mono-
tone operators, Mathematical Programming, 55 (1992).

[6] D. GABAY AND B. MERCIER, A dual algorithm for the solu-
tion of nonlinear variational problems via finite element ap-
proximation, Computers & Mathematics with Applications.

[7]1 P. GONG, J. YE, AND C. ZHANG, Robust multi-task feature
learning, in ACM SIGKDD, 2012.

[8] D. HALLAC ET AL., Network lasso: Clustering and optimiza-
tion in large graphs, in ACM SIGKDD, 2015.

[9] D. HALLAC, Y. PARK, S. BoYD, AND J. LESKOVEC,
Network inference via the time-varying graphical lasso, 2017.

[10] R. HARRIS, J. MOFFAT, AND V. KRAVTSOVA, In search of
'w’, Spatial Economic Analysis, 6 (2011), pp. 249-270.

[11] B. HE AND X. YUAN, On non-ergodic convergence rate of
douglas—rachford alternating direction method of multipliers,
Numerische Mathematik, 130 (2015), pp. 567-577.

[12] Q. HO ET AL., Evolving cluster mixed-membership block-
model for time-evolving networks, in AISTATS, 2011.

[13] T. D. HOCKING ET AL., Clusterpath an algorithm for clus-
tering using convex fusion penalties, in ICML, 2011.

[14] M. KiM AND J. LESKOVEC, Nonparametric multi-group
membership model for dynamic networks, in NIPS, 2013.

[15] C. L1 AND H. L1, Network-constrained regularization and
variable selection for analysis of genomic data, Bioinformat-
ics, 24 (2008), pp. 1175-1182.

[16] F. LINDSTEN ET AL., Clustering using sum-of-norms regu-
larization, in Statistical Signal Processing Workshop, 2011.

[17] Y.-Y. LI1u, J.-J. SLOTINE, AND A.-L. BARABASI, Control-
lability of complex networks, Nature, 473 (2011), p. 167.

[18] R. NISHIHARA ET AL., A general analysis of the convergence
of admm, in ICML, 2015, pp. 343-352.

[19] J. PANG ET AL., Graph laplacian regularization for image
denoising, IEEE Transactions on Image Processing, (2017).

[20] Y. PENG ET AL., Robust alignment by sparse and low-rank
decomposition for linearly correlated images, PAMI, (2012).

[21] P. A. SORANNO ET AL., Lagos-ne, GigaScience, 6 (2017).

[22] R. TIBSHIRANI ET AL., Sparsity and smoothness via the
fused lasso, Journal of the Royal Statistical Society, (2005).

[23] J. E. VOGT AND V. ROTH, A complete analysis of the {1
group-lasso, in ICML, 2012.

[24] H. WANG, F. NIE, AND H. HUANG, Low-rank tensor com-
pletion with spatio-temporal consistency, in AAAI, 2014.

[25] Y.-X. WANG, J. SHARPNACK, A. J. SMOLA, AND R. J.
TIBSHIRANI, Trend filtering on graphs, in AISTATS, 2015.

[26] J. XU ET AL., Factorized multi-task learning for task discov-
ery in personalized medical models, in SDM, 2015.

[27] H.-F. YU ET AL., Temporal regularized matrix factorization
for high-dimensional time series prediction, in NIPS, 2016.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

	INTRODUCTION
	Problem Setting
	Discrepancy-aware Network Regularization
	Distributed ADMM-based Solution

	Extension to Spatio-temporal Setting
	EXPERIMENTS
	Node Classification with Limited Data
	Effect of Discrepancy-Buffering Variables.
	Robustness to Malicious Edges.

	Spatial: Housing Rental Price Estimation
	Spatio-Temporal: Water Quality Estimation of Northeastern US Lakes

	CONCLUSIONS
	ACKNOWLEDGMENTS

