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ABSTRACT

The process of opinion formation is inherently a network process,
with user opinions in a social network being driven to a certain av-
erage opinion. One simple and intuitive incarnation of this opinion
attractor is the average 7T x of user opinions x; weighted by the
users’ eigenvector centralities 7;. This value is a lucrative target
for control, as altering it essentially changes the mass opinion in
the network. Since any potentially malicious influence upon the
opinion distribution in a society is undesirable, it is important to
design methods to prevent external attacks upon it.

In this work, we assume that the adversary aims to maliciously
change the network’s average opinion by altering the opinions
of some unknown users. We, then, state an NP-hard problem of
disabling such opinion control attempts via strategically altering
the network’s users’ eigencentralities by recommending a limited
number of links to the users. Relying on Markov chain theory,
we provide perturbation analysis that shows how eigencentrality
and, hence, our problem’s objective change in response to a link’s
addition to the network. The latter leads to the design of a pseudo-
linear-time heuristic, relying on efficient estimation of mean first
passage times in Markov chains. We have confirmed our theoretical
and algorithmic findings, and studied effectiveness and efficiency
of our heuristic in experiments with synthetic and real networks.
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1 INTRODUCTION

It is well-known that in the absence of the objective means for
opinion evaluation, people tend to evaluate their opinions by com-
parison with the opinions of others [15]. Thus, social networks
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impact the opinion formation process in the society. It is clearly de-
sirable that this process is natural and fair, with good ideas emerging
and spreading, and bad ideas declining and disappearing. However,
viral marketing experts may be interested in controlling the opinion
formation process with the goal of driving the opinion distribu-
tion to a certain business-oriented objective. One well-known way
of affecting opinion formation is influence maximization, whose
central idea is to strategically change the opinions of some net-
work users with the goal of maximizing the subsequent spread of
“right” opinions from these users throughout the network, or, more
generally, shifting the opinion distribution towards a desired state.
Naturally, the society would benefit from a mechanism preventing
such potentially malicious control of the opinion formation process.
Our work is dedicated to the design of one such mechanism—a link
recommendation algorithm that allows an online social network
platform to disable the effect of the attempts to control the opinion
distribution in the network.

The notion central to our work is that of the average opinion of
a social network, characterizing the mass opinion. For example, it
can measure to what extent, on average, people prefer one smart-
phone brand or one political party over the other. Based on the
well-established socio-psychological theories, such as Festinger’s
social comparison [15] and cognitive dissonance [16] theories, the
opinions of users in the network are attracted towards the average
opinion. However, the basic arithmetic average would not suffice,
as the opinions of more “central” users—such as celebrities—are
expected to contribute more to the entire network’s opinion. In-
stead, we use the following simple and intuitive definition of the
network’s average opinion

average opinion of the network = (m,x) = 71x

which is the sum of users’ quantified opinions x; weighted by the
corresponding users’ eigenvector centralities ;.

Clearly, the average opinion is a lucrative target for control, as
altering it essentially changes the mass opinion in the network. We
assume that there is an external adversary whose goal is, without
loss of generality, to maximize the average opinion (x, x). To that
end, the adversary influences some users in the network, changing
the opinion distribution x — X and, thus, the average opinion
(m,x) — (m,x) (Fig. 1b). Then, our goal—assuming we act on be-
half of the social network platform—is to respond to this attack,
and restore the average opinion to its original state (i, x). We, how-
ever, cannot directly influence user opinions; the only legitimate
opinion control tool available to us is link recommendation. We
strategically recommend a limited number of links to the networks’
users, thereby, affecting these users’ eigencentralities 7 — 7 and
restoring the original average opinion, (r,x) — (7,X) = (7, x)
(Fig. 1c).
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Figure 1: The adversary influences user opinions, x — X, increasing the average opinion (r,x) — (r,x), where r is a vector
of users’ eigencentralities. The network responds by adding links, reducing the average opinion (7, ), driving it back to its

original value (7, x).

The central goal of our work is to design a scalable algorithm
that, under the above described attack upon the opinion distribu-
tion, would identify the links whose recommendation to the social
network’s users would efficiently drive the maliciously altered av-
erage opinion back to its state prior to the attack, nullifying the
attack’s impact. Our specific contributions are:

> We define DIVER—a new NP-hard problem of disabling external
influence in a social network via edge recommendation.

> We provide novel perturbation analysis, establishing how the
network’s eigencentrality vector changes when an edge is added to
the network. This analysis leads to the definition of an edge score
fr(i, ) quantifying the potential impact of the addition of directed
edge (i, j) to the network upon DIVER’s objective.

> We show how to estimate edge scores fr in pseudo-constant
time in networks with skewed eigenvector centrality distribution,
such as scale-free networks.

> We provide a pseudo-linear-time heuristic for DIVER relying
on edge scores fr, and experimentally study its effectiveness and
efficiency on synthetic and real-world networks.

2 PRELIMINARIES

We are given a sparse directed strongly connected aperiodic so-
cial network G(V,E), |[V| = n, |E| = O(n), having row-stochastic
adjacency matrix W € [0,1]", W1 = 1,1 = [1,...,1]T. The
edge/link weight w;; € [0, 1] reflects the relative extent to which
user i takes into account the opinion of user j while forming his
or her opinion, or, alternatively, the relative extent to which user i
trusts user j. Aperiodicity can be replaced by the requirement of
the network’s having at least one self-loop with a non-zero weight,
which translates into a natural requirement of having at least one
user who puts at least some trust in his or her own opinion.

The average opinion of the network is defined as (x,x) = 7 Tx,
where x € [0,1]" are opinions of the users, and 7 € R, ||z|l; = 1is
the {1-normalized dominant left eigenvector of W. From its defini-
tion, 7 is also the vector of eigencentralities of the network’s nodes,
and can also be viewed as the vector of no-teleportation PageRank
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scores, or the stationary distribution of the ergodic Markov chain
with state transition matrix W. Due to the latter, we may refer to
W as a Markov chain, and use the terms node (of a network) and
state (of a Markov chain) interchangeably. We will also require the
following characteristic of W if viewed as a Markov chain.
DEFINITION 1 (MEAN FIRST PASSAGE TIME). The mean first pas-
sage time (MFPT) m;j from state i to state j of a Markov chain is the
expected number of steps it takes the chain started at state i to reach
state j for the first time. m;; is the mean first return time (MFRT).
In general networks, m;; reflects how fast, on average, a random
walker started at node i passes node j for the first time, when the
walk is governed by transition likelihoods W. In social networks,
as defined above, m;j measures relative centrality or importance of
node j for node i’s opinion formation. The key difference of m;;
from w;; is that w;; reflects direct immediate influence exerted
through a single link, while m;; reflects aggregate influence accu-
mulated along all existing pathways in the network and qualified
with likelihoods of information spreading along each such pathway.
We will also need the following Theorem 1 and 2 immediately
following from Theorems 4.4.4 and 4.4.5 of Kemeny and Snell [21].
THEOREM 1 (MFRT AND EIGENVECTOR CENTRALITY). For any
state i of Markov chain W with an aperiodic strongly connected net-
work, mj; = 1/m;.
Thus, MFPT generalizes eigenvector centrality, providing both
absolute and relative node importance information.

THEOREM 2 (MFPT ONE-HOP CONDITIONING). For any states i and
J of Markov chain W with an aperiodic strongly connected network,

mij = 1+ Zk;tj WikMij.

3 PROBLEM STATEMENT AND HARDNESS

Given a directed social network, at each point in time, we—acting on
behalf of the social network platform—can observe its users’ opin-
ions. We assume that at some point the external adversary makes
an influence maximization attempt by targeting several users and
changing their opinions, with the goal of, without loss of generality,
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1 vector of all ones
diag(v) | diagonal matrix with vector v as the main diagonal
e; i’th column of the identity matrix
x (X) | user opinions (user opinions altered by the adversary)
w network’s row-stochastic adjacency matrix
w altered network’s row-stochastic adjacency matrix
0;j weight of directed edge (i, j) (candidate for addition)
7 () | ¢1-normalized left dominant eigenvector of W (of W)
mi; mean first passage time from state i to state j in chain W

Table 1: Notation Summary

maximizing the average opinion (7, x). In this work, we assume
no knowledge of which users have been attacked, relying only on
our ability to detect such attacks using existing methods. The latter
methods range from the anomalous event detection in a scalar time
series of average opinion values [7], to tracking whether the current
cumulative changes in user opinions follow a pattern prescribed by
the solution to an influence maximization problem, to network sens-
ing for outbreak detection [24], to opinion dynamics model-based
anomaly detection techniques [1]. In what follows, we assume that
attack detection—orthogonal to the issue of attack effect elimina-
tion that we focus on in the paper—has been successfully performed
using one of the mentioned techniques.

Having detected an external influence attempt, we are given the
opinion distribution x € [0, 1]” preceding the attack as well as the
externally altered opinion distribution x € [0, 1]". As a result of the
attack, the original average opinion (r, x) has changed to (7, X).
Our goal is to strategically add a limited number k of edges to the
network and, thereby, change 7 in such a way, that the resulting
average opinion (7, X) is as close as possible to its state (i, x) before
the attack, as it was illustrated in Fig. 1. Formally, the problem of
disabling external influence via edge recommendation is defined as

ey

DIVER(W. k. x, %) = arg ming; |(T(W), %) = (7. x)l.

where the perturbed row-stochastic adjacency matrix W differs
from W by k new edges whose weights 0;; we cannot control—
since they correspond to interpersonal trust that users decide upon
themselves—yet, can estimate using existing techniques [18], and,
hence, assume to be known. Notice that, as edge weights reflect
relative trust, after new edge addition to a user’s out-neighborhood,
the existing edges are proportionally downweighted, and W is kept
row-stochastic. For k = 1, after addition of directed edge (r, ¢) with
weight 0, W looks as follows (see Fig. 2):

W =W — 0, diag(e, )W + O,cerel, (2

where e; € {0,1}" is i’th element of the standard basis.

In what follows, we will focus on deterministic edge addition, and
provide a straightforward probabilistic extension, fitting the friend
recommendation mechanism of popular online social networks, in
the Supplement [2].

@ (1 = Orc)wrj,
(1 =0rc)wyj,

Figure 2: Addition of edge (r, c) to the network.
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DIVER’s complexity comes along two dimensions—searching for
the best edge subset delivering the minimum of the objective, and
assessing the impact of a given subset of edges upon the objective.
While the latter can be done in polynomial time, the edge subset
search cannot and is the root cause of NP-hardness. In the following
Theorem 3, proven in the Supplement [2], we establish that, even
for the case of undirected networks, DIVER(W, k, x, X) is NP-hard.

THEOREM 3. DIVER is NP-hard for undirected networks.

The problem’s hardness is exacerbated by the fact that stan-
dard approximation techniques [28] are not applicable, as DIVER’s
objective function is not submodular.

4 RELATED WORK

While DIVER is a new problem, and there are no existing methods
for solving it, there is a range of problems—in extremal network
design as well as in the perturbation analysis of centrality measures
and stationary distributions of Markov chains—related to ours ei-
ther in the nature of the optimized objective or the methods and
analyses. In this section, we survey several groups of these works,
focusing on analytic problems (combinatorial extremal network
design is reviewed in the Supplement [2]).

4.1 Analytic Network Design

Here, we review network design problems, where a network’s topol-
ogy is altered to optimize some analytic property of that network.

Algebraic Connectivity: Ghosh and Boyd [17] studied the prob-
lem of maximizing the algebraic connectivity—the second small-
est eigenvalue Ay of the Laplacian—of an undirected unweighted
network via edge addition. The authors use convex relaxation to
formulate the problem as a semidefinite program (SDP), which is
feasible to solve for small networks. They also provide a greedy
perturbation heuristic that picks edges (i, j) based on the largest
value of (v; — v j)z—the squared difference of the Fiedler vector’s
components corresponding to each edge’s ends. The authors show
that, in case of simple Ay, value (v; — vj)2 gives the first-order
approximation of the increase in A if edge (i, j) is added to the
network. The authors also derive bounds on algebraic connectivity
under single-edge perturbation. More recently, this approach has
been employed by Yu et al. [34] for the design of an edge selection
heuristic that the authors have augmented with an extra objective—
neighborhood overlap-based user similarity (which likely correlates
with edge acceptance likelihood).

Spectral Radius: Van Mieghem et al. [32] study the problem of
minimizing the spectral radius of an undirected network via edge or
node removal. They prove NP-hardness of the problem, and show
that the edge selection heuristic that picks edges (i, j) with the
largest scores v;vj—where v is the dominant eigenvector—performs
well in practice. More recently, Saha et al. [30] addressed the same
spectral radius minimization problem and designed a walk-based
algorithm, relying on the link between the sum of powers of eigen-
values of a network and the number of closed walks in it, and
provided approximation guarantees for them. Zhang et al. [35]
studied spectral radius minimization for directed networks under
SIR model, and provided an SDP/LP-based solution, having high
polynomial time complexity.
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Eigenvalues and Their Functions: Tong et al. [31] target optimiza-
tion of the diffusion rate—expressed as the largest eigenvalue of
the adjacency matrix—through a directed strongly connected un-
weighted (see [9] for the weighted case) network via edge addition
or removal. Similarly to [32], the authors use first-order perturba-
tion theory to assess the effect of deleting k edges A qax —Xmax =
2 ujvj/{u,v) + O(k), where u and v are the left and right dominant
eigenvectors of the adjacency matrix, respectively. This analysis
inspires an edge selection heuristic, with the quality of edge (i, j) be-
ing defined as u;vj, similarly to v;v; edge score of [32]. Le et al. [23]
extend this result to the networks with small eigengaps. Chan et
al. [6] target optimization of natural connectivity—a network ro-
bustness measure defined, roughly, as an average of exponentiated
eigenvalues of the adjacency matrix—of an undirected network via
altering its topology. For edge addition, they focus on the edges
between high-centrality nodes.

4.2 Centrality Perturbation and Manipulation

These works study either how eigenvector centrality, or PageRank,
or the stationary distribution of a Markov chain changes when a
network’s structure is perturbed, or how to strategically manipulate
centrality by altering the network.

Strategic Centrality Manipulation: Avrachenkov and Litvak [3]
analyze to what extent a node can improve its PageRank by creat-
ing new out-edges. The authors derive equalities that result in a
conclusion that the PageRank of a web-page cannot be consider-
ably improved by restructuring its out-neighborhood. The authors
also derive an optimal linking strategy, stating that it is optimal
for a web-page to have only one outgoing edge pointing to a web-
page with the shortest mean first passage time back to the original
page. Similar conclusions can be drawn for eigenvector centrality
in an arbitrarily weighted network using Theorem 4 of our work.
De Kerchove et al. [14] generalize the results of Avrachenkov and
Litvak [3], studying maximization of the sum of PageRanks of a
subset of nodes via adding outgoing edges to them. Csaji et al. [13]
study the problem of optimizing the PageRank of a given node
via directed edge addition. The authors formulate the optimization
problem as a Markov decision process and propose a (non-scalable)
polynomial-time algorithm for it.

Centrality Perturbation Analysis: Cho and Meyer [11] provide
coarse bounds of type |7; — 7;|/7; < ||Ellco max;zj m;j/2 for the sta-
tionary distribution of a generally perturbed Markov chain, where
E is an additive perturbation of the state transition matrix. Chien
et al. [10] provide an efficient algorithm for incremental compu-
tation of PageRank over an evolving edge-perturbed graph, with
the analysis’ drawing upon the theory of Markov chains. The key
idea of their algorithm is to contract the network and localize its
part where the nodes are likely to have changed their PageRank
scores under the perturbation. Langville and Meyer [22] provide
exact equalities for the change in the stationary distribution of a
perturbed Markov chain using group inverses. They address the
problem of updating the stationary distribution under multi-row
perturbation via exact and approximate aggregation, similarly to
what Chien et al. [10] did for PageRank. Hunter [19] addresses
the same problem of establishing equalities for the change in the
stationary distribution, yet, provides an answer that does not in-
volve group inverses and, instead, uses mean first passage times in
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a Markov chain; our perturbation analysis in Sec. 5.2 builds upon
this result. Como and Fagnani [12] provide an upper bound on the
perturbation of the stationary distribution of a Markov chain in
terms of the mixing time of the chain as well as the entrance time
to and the escape likelihood from the states with perturbed out-
neighborhoods. Bahmani et al. [5] address the problem of updating
PageRank algorithmically. The proposed node probing-based algo-
rithms provide a close estimate of the network’s PageRank vector
by crawling a small portion of the network. More recently, Li et
al. [26] and Chen and Tong [8] addressed a general problem of up-
dating eigenpairs of an evolving network. Chen and Tong provide
a linear-time algorithm for tracking top eigenpairs.

5 STRATEGIC EDGE ADDITION
Since, due to Theorem 3, DIVER optimization problem

(1)

is NP-hard, we need to design a heuristic for it. Our general ap-
proach, formalized in Sec. 5.5, is as follows. We will assess candidate
edges with respect to how much their addition to the network de-
creases term (7, x) of (1), and then iteratively add the most promis-
ing edges to the network until satisfied with the objective’s value.
Hence, our foremost concerns now are: (a) the selection of a
small number of candidate edges to assess; and (b) the subsequent
assessment of the potential impact of these edges’ addition to the
network upon the network’s eigenvector centrality and, thus, the
objective. These concerns are addressed in what follows.

DIVER(W. k. x,%) = arg ming; [(7(W). %) - (z.x)l.

5.1 Candidate Edge Selection

The above described general approach involves assessing candidate
edges individually. However, the number of absent edges in a sparse
network is O(n?), and inspecting all of them is unfeasible for large
networks. Hence, we will focus on a small number of candidate
edges, outgoing from ngrc < n network nodes. This implies that a
small number of nodes are being the sources of most—or, at least,
a large number of—“good” candidate edges. Intuitively, the nodes
having the largest (eigenvector) centrality should be those edge
sources; the changes in their out-neighborhoods should have the
largest impact upon the centrality distribution in the network, as
Fig. 3 suggests. This intuition will find formal support in Corollary 1
in the following Sec. 5.2.

il li
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Ty
Figure 3: Dependence of the average opinion’s reduction
fr(r,c) = (x,x)— (7, x) after addition of edge (r,c), 6, = const
to a scale-free network (n = 100,y = —2.5) upon the eigenvec-
tor centrality 7, of the edge’s source node.
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Thus, to make sure that addition of candidate edges to the net-
work has a large impact—either positive or negative—upon the av-
erage opinion, we can limit ourselves to considering only candidate
edges outgoing from high-centrality nodes. Fortunately, the num-
ber of such nodes in real-world social networks is small, and most
nodes are at the periphery, which justifies our choice of ng,. < n.

5.2 Eigenvector Centrality Under
Single-Edge Perturbation

In order to tackle DIVER (1), we need to understand how the ad-
dition of a single edge w,c = 0, € (0,1) from node r to node ¢
changes the network’s eigenvector centrality 7 — 7. We assume
that edge (r,¢) is originally absent (w,c = 0) and use the same
single-edge perturbation model as before (see Fig. 2):

W=W -0 diag(e, )W + Orcere] . (2)

In our subsequent perturbation analysis, we will make the following
Assumption 1 to improve readability of our theorems.

AssSUMPTION 1 (RATIONAL SELFISHNESS). Users are rationally
selfish in that for any useri, Vj # i : wi; > wjj. Thus, each user trusts
his or her own opinion more than that of any other individual user.

The following Theorem 4 states how the eigencentrality vector
changes under a single-edge perturbation (2).

THEOREM 4 (SINGLE-EDGE PERTURBATION). Under Assumption 1,
for a single-edge perturbation (2) of a strongly connected aperiodic net-
work with adjacency matrix W, the network’s eigenvector centrality
changes as

Orc(mej(1—6{j,c}) —mpj + 1)
Mpr + Opc(mer — mpy + 1)

) ®)

7w =i (11—

where m;j is the mean first passage time from state i to j of Markov
chain W, and § is Kronecker delta. In particular,

7y = 1[mpr + Orc(mer — mpr +1)]. 4
The proof will rely on the following Theorem 5 due to Hunter [19],
provided for reference below.

THEOREM 5 ([19, THEOREM 4.4]). Let multiple perturbations occur
inr’th row of W. Let ¢; = Wr,— — Wy, the minimal negative per-
turbation happen at state a, with e, = —-m = min{¢; | 1 < j < n};
the maximal positive perturbation occur at state b with e, = M =
max {€j | 1 < j < n}. Also, let P be the set of positive perturbation
indices, excluding b, and N be the set of negative perturbation indices,
excluding a. Then,

maftr[Mmpa + Y €xmpg] ifj=a,
kePUN
~ _mpme[-mmgp + Y empp] ifj=b,
Tj — 7 = kePUN
mr[=mmgj + Mmy; + 3 epmy;] ifj #a,b.
kePUN
k#j

Proor (THEOREM 4). Let us apply Theorem 5 to our case of a
single-edge perturbation (2). We are adding edge (r, ¢) with weight
0r¢ to the network. Due to the form (2) of our single-edge pertur-
bation, the only positive perturbation occurs at the added edge’s
destination node ¢, so b = ¢, éc = M = 0,¢, and P = &. For all
the other out-neighbors i of the new edge’s source node r, the
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corresponding perturbations €; = —6,.w,; are negative. Due to
Assumption 1, Vi # r : wyr > w4, so the minimal negative pertur-
bation occurs at i = r, and, thus,a = rand ¢, = —m = =0, cwyr.

Let us first show the validity of (3) in case of j = r, that is, (4).
According to Theorem 5,

Ty = Ty = Tp Ty [ercmcr + Z (_ercwrk)mkr]
kePUN
= (as Wre = 0) = Opcry 7ty [mcr - Z ermkr]-
k#r
Using the one-hop conditioning Theorem 2, the obtained expression
can be written as

Ty — Ty = erc”rrfr [mcr - Mpr + 1]
& 7y = 7y [(1+ Opertp[mer — mpy + 1]).

Dividing the numerator and denominator in the right-hand side of
the obtained expression by 7, > 0 (positivity comes from Perron-
Frobenius theorem [27, Sec. 8.2]) and using 1/7, = m;, (Theo-
rem 1), we obtain (4).

Let us similarly deal with the case j # r, c. From Theorem 5,

T =T = ”jﬁr[ = Opcwrrmyj + Opcmej + Z (_ercwrk)mkj]

kePUN
k#j
= Opcmjmy [mcj - WrrMyj — Z ermkj]
k#r,c,j
= (as wre = 0) = Opcmjmy [mcj - Z ermkj]
k#j

© (from Theorem 2) & 7j = mj[1 — Opc 7y (mcj — mypj + 1)].

Substituting (4) in the obtained expression, we get (3) for j # c. The
proof for j = c is similar and, thus, is omitted. O

The following Corollary 1—justifying Sec. 5.1’s focus on top-
centrality edge source nodes—immediately follows from equation (3)
of Theorem 4 used together with Theorem 1.

CoROLLARY 1. Under perturbation (2) of the network with a sin-
gle edge (r,c), 6, > 0, it holds that lim,, 07 = 7, and, thus,
limnr—>0 fr(r,c) = hmn,—)O (. x) = (7, x)) = 0.

5.3 Average Opinion of the Network Under
Single-Edge Perturbation

To solve DIVER, we are interested in adding candidate edges that
would result in a large reduction f(r,c) = (r,x) — (7, x) of the
average opinion. While Theorem 4 states how different components
of the eigencentrality vector change under a single-edge pertur-
bation (2), the following Theorem 6 characterizes the impact of
such perturbation upon the value of f(r, c). The proof of the theo-
rem is immediately obtained by substituting (3) of Theorem 4 into
fr(ric) = (r —7,%).

THEOREM 6. Under the rational selfishness Assumption 1, the re-
duction fr(r,c) = (m,x) — (7, x) of the average opinion caused by a
single-edge perturbation (2) of W is

5 mj(me; - (1= 8LJ.eh) =y + D
fn(r’c) = erc]_

©)

Mrr + Opc(Mre — mpr + 1)
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Essentially, Theorem 6 provides us with an edge score f(r, c),
whose use for candidate edge selection comprises our heuristic for
DIVER. Unfortunately, f;’s computation is rather challenging, and
is addressed in the following section.

5.4 Efficient Computation of Edge Scores

Computation of candidate edge scores f is challenging for two rea-
sons. Firstly, expression (5) involves summation over all n network
nodes. Since there are O(ng,.n) candidate edges—with ng,e < n
sources and n destinations—it would result in at least a quadratic-
time heuristic for DIVER that would not scale. Secondly, expres-
sion (5) involves mean first passage times, whose direct computation
is very expensive. We address these challenges separately below.

5.4.1 Focus on a Small Number of Nodes. Our first concern is that
expression (5) for f; contains summation over all n nodes. Intu-
itively, not all network nodes contribute equally to the value of (5).
Indeed, in networks with skewed eigencentrality distribution, such
as scale-free networks, fy is largely determined by a small number
of top-centrality nodes. This is illustrated in Fig. 4, that shows the
relationship between the exactly computed f; and its approxima-
tions, with different numbers of scale-free network nodes being
used in f5’s computation. We can see that, even when we use only
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< by f (r,c) . .ﬁﬁ‘
£ 0.051 ¢ q00% .8 ¢
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< st et
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Exact fr(r,c)

Figure 4: Comparison of exact and approximate candidate
edge scores f in a scale-free network (n = 100,y = —2.5).

10% of nodes, the relative order of f; for different candidate edges
is close to the original, and it is still easy to identify candidate edges
(r, c) with the largest values of f(r, c).

Thus, to efficiently compute f(r,c), we will use only those
Jj in (5) corresponding to a constant number, e.g., ngrc, of top-
centrality nodes in the network, in addition to j € {r, c}.

5.4.2  Efficient Computation of Mean First Passage Times. In the
previous section, we have considerably simplified computation of
fr(r,c) by leaving only O(ns,c) summands in expression (5). Now,
our concern is to actually compute the values of the mean first
passage times m;; remaining in (5).

The classic method for exact MFPT computation [21, Theorem
4.4.7] involves computing the fundamental matrix Z = (I - W +
]l;t"')_1 of Markov chain W, and defines MFPTs as

M = {m;;} = (I - Z + 117 diag(2)) diag ™" (r).
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Figure 5: Root mean square error of MFPT estimates in a
scale-free network (n = 100,y = —2.5) using walks of differ-
ent length.

Computation of the fundamental matrix involves a cubic-time ma-
trix inversion and would not scale. In [20], Hunter surveys alterna-
tive methods for MFPT computation, but all of them share the same
high complexity. Most importantly, however, all existing methods
target computation of all O(n?) MFPTs between all network nodes.

Let us notice that expression (5) for f;; uses MFPTs either from or
to high-centrality nodes: r are top-centrality according to Sec. 5.1;
j are top-centrality according to Sec. 5.4.1. There are ng,cn < n?
such MFPTs, where ng,. is the number of candidate edge source
nodes r.

We propose to estimate the MFPTs between a small number of
nodes by performing a finite random walk over the network and
tracking first passage times between its nodes. The walk starts at an
arbitrary node and proceeds for a predefined number of steps follow-
ing the transition probabilities defined by the adjacency matrix W,
viewed here as the state transition matrix of a Markov chain. While
performing the walk, we accumulate the passage times between
nsrc candidate edge sources and n candidate edge destinations, and
compute the means when the walk is complete. This approach to-
wards MFPT estimation is similar to the k-Step Markov Approach
that White and Smyth [33, Sec. 6.4] used for estimation of their
MFPT-based relative importance of network nodes.

The key questions here are whether the proposed method will
produce good estimates of MFPTs to and from high-centrality nodes
and, if so, how long the random walk should be. We answer these
two questions via empirical analysis.

The first insight is that MFPTs to and from high-centrality nodes
converge very fast, since the walk visits such nodes most often.
This is illustrated in Fig. 5, according to which the error of MFPT
estimates m;; noticeably varies with the walk’s length when both i
and j are low-centrality, and is uniformly low if at least one of i and
Jj is high-centrality. This insight echoes the result of Avrachenkov et
al. [4], who show that PageRank of high-centrality nodes estimated
via Monte Carlo simulation converge very fast.

Now, we empirically study the question of how long the random
walk should be to obtain sufficiently good estimates of MFPTs to
and from top-centrality nodes in a scale-free network. The results
are reported in Fig. 6, that shows how many steps a random walk
should perform in order for 5% of MFPTs to and from top 5% high-
centrality nodes to converge within 5% of their true values, while
the network’s size n and scale-free exponent y vary. For each pair
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Length of random walk

Figure 6: Dependency of the length of a random walk—used
for estimating MFPTs to and from top-centrality nodes—on
the size and density of the scale-free network.

(n,y), 100 networks are generated, and the mean walk lengths are
reported. The results are reported for 3 specific scale-free exponents,
y € {-2.9,-2.5,-2.1}. The length of the random walk does not
depend on the scale-free exponent, and depends upon the network’s
size n as (0.197n — 2.248) - 10%. This result allows to make the
following statement.

PROPOSITION 1 (RANDOM WALK LENGTH). In scale-free networks,
the length of a random walk sufficient for convergence of O(n) MFPTs
to and from O(1) top-centrality nodes is O(n) (in contrast to O(n>) cost
of the direct computation of all MFPTs via the fundamental matrix
method).

5.5 Solving DIVER

In this section, we gather all our results, formally state a heuristic
for solving DIVER, and analyze its complexity.

Algorithm 1 Heuristic for DIVER

Input: W—sparse row-stochastic irreducible adjacency matrix of
the network; k—number of new edges to add; ngs,.—maximal
number of new edges’ sources.

Output: sequence (r1,c1), (r2,¢c2), ... of new edges to add

1: Compute eigencentrality 7 (dominant left eigenvector of W)
2: Define candidate edge sources: R « ng,. top-centrality nodes
3: Estimate MFPTs {m;;} to and from each r € R

4 forreR ce{l,...,n} do
5. Estimate fr(r, ¢) using O(ns,.) top-centrality nodes
6: end for

7: S « candidate edges (r, ¢) having top-k scores fr(r,c)
8: return S

THEOREM 7. Time-complexity of Algorithm 1 is O(n(gap(W) +
n%,c)+nsrC log ngrc+klogk), where gap(W) is the number of matrix-
vector multiplications the power method uses to compute the dominant
left eigenvector of W.

Proor. In step 1 of Algorithm 1, we compute the dominant left
eigenvector 7 of W using the power method, performing gap(W)
matrix-vector multiplications, each of which has a linear time
complexity for sparse W. Thus, this step’s complexity is T} =
O(gap(W)n). The cost of selecting top ng,. elements out of n at
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Step 2 is To = O(n + ngrc log(ngrc)). In step 3, following Sec. 5.5.2
and, in particular, Proposition 5.1, we estimate MFPTs via a O(n)-
long finite random walk, so this step’s cost is T3 = O(n). At steps 4-
6, we compute ng,.n edge scores fr. Following the method of
Sec. 5.5.1, each f5(r,c) is computed in time O(ng,¢), bringing time
complexity of steps 4-6 to Ty—g = O(n?,.n). Finally, selection
of top k out of ngrcn items at step 7 is performed in time T; =
O(ngren + klogk). If we collect the expressions for Ty, . .., Ty, we
get T = O(n(gap(W) + n%rc) + ngre logngre + klogk). O

In Theorem 7, the number gap(W) of iterations it takes the
power method to converge depends on W’s spectral gap Az/A1,
but, in practice, gap(W) usually can be assumed to be a reasonably
small constant [4]. Thus, assuming that gap(W) is bounded, as well
as noticing that we choose both ng,. and k to be small, that is,
ngre < nand k < n, it immediately follows from Theorem 7 that
Algorithm 1 is computable in time O(n).

6 EXPERIMENTAL RESULTS

In this section, we experimentally study Algorithm 1’s performance
on synthetic and real-world networks. We start with experimental
setup, and, then, study performance of our heuristic. Additional ex-
periments studying our heuristic’s effectiveness, efficiency, as well
as robustness to network noise can be found in the Supplement [2].

6.1 Experimental Setup

6.1.1 Networks. We have experimented with three synthetic and
three real-world networks:

> SF(n,y): a scale-free network with n nodes and scale-free
exponent y, built using a greedy generator that constructs a directed
graph trying to match a given degree distribution!.

> BA(n, my;pks): a Barabasi-Albert network on n nodes with a
seed SF(0.01n, —2.5) and my;,; edges created per node / iteration.

> ER(n, Pegge): an Erdés—Rényi network with the edge proba-
bility P44, being an example of a “non-scale-free-like” network,
on which our heuristic and baselines perform poorly.

> Karate: Zachary’s Karate Club network.

> Facebook: a 4k-node part of Facebook graph [25].

> Epinions: a 32k-node part of the mutual trust network epin-
ions.com [29].

Network V] |E| Sx Sa K, Kg
SF(1024, —2.5) | 1024 3.9k 5.30 | 9.37 54.88 134.56
BA(1024, 3) 1024 7.9k 7.51 | 7.46 | 103.34 84.26

ER(1024, 0.25) | 1024 | 261k | 0.04 | 0.10 2.95 3.01
Karate 34 190 1.09 | 2.00 3.24 6.30
Facebook 4039 | 181k | 4.24 | 4.52 19.67 57.56
Epinions 32k 476k | 9.87 | 9.02 | 130.01 | 160.64

Table 2: Summary of networks.

The characteristics of these networks are summarized in Table 2,
where S;; and K; are skewness and kurtosis, respectively, of the un-
weighted network’s eigencentrality distribution, and S; and K are
the same metrics of the same network’s total (in- plus out-) degree
distribution. All the networks except Facebook are directed. If the
original network was not strongly connected, we replace it with its
largest strongly connected component. We also add all self-loops—
since each user in our case is supposed to have some amount of

!EvaluateGraphCreateRandomGraph.cpp of Complex Networks Package.
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Figure 7: Solving DIVER over synthetic and real-world networks.

trust in her or his own opinion—and draw edge weights uniformly as per Theorem 7, and lower values of X correspond to a higher
at random, while maintaining self-weight dominance—as per As- computational efficiency, yet, to a lower effectiveness (more new
sumption 1—and rescaling the weights in each out-neighborhood edges are spent to recover the original average opinion).

to make sure the resulting adjacency matrix is row-stochastic. > BASE(rnd): the worst-case baseline, that selects new edges

uniformly at random. It is expected to keep the average opinion at
about the same level.

> BASE(Oyc(nr — 7c)(Xr — X¢)): this baseline attempts to effec-
tively reduce the average opinion (r, X) by adding heavy-weight
edges from higher-centrality nodes r having larger opinion values
to lower-centrality nodes ¢ having lower opinion values, thereby,
reducing the contribution of 7,%, and increasing that of z.x; to
the value of (7, x). This baseline—similarly to DIVER—ranks only
the candidate edges outgoing from ng,. top-centrality nodes, and,
hence, is computable in pseudo-linear time (“pseudo” since it uses
7). The main qualitative difference of this baseline from DIVER is
that it uses only absolute centrality information s;, while DIVER

6.1.2  Opinions and Attack Upon Them. The user opinions x are
drawn uniformly at random from [0, 1]". To simulate an attack and
create a new opinion distribution x, 0.1n users (5 for Karate net-
work) are chosen uniformly at random, and their opinions change to
1, while the opinions of other users stay intact. We assume that the
social network platform has successfully detected the attack, having
recognized that an abnormal change has happened to x, but having
no information about the location of the attack. Now, knowing both
x and X, the goal is to recommend links to the users, restoring the
network’s average opinion. To that end, we will compare several
methods described in the following section.

6.1.3 Methods. We experiment with several versions of our heuris- takes into account both absolute and relative “centrality” m;;.

tic, as well as two baselines. Note that there is no state of the art,

as no existing method can solve our optimization problem. 6.1.4 Evaluation. For all these methods, we assess their perfor-
> DIVER: uses Algorithm 1 with f;; being computed using all mance based on how many candidate edges a method uses to restore

rather than O(1) top-centrality nodes, and estimates MFPTs using the original average opinion.

the procedure of Sec. 5.4.2. The heuristic adds k edges at a time,
improving the distribution of eigencentralities 7 either until the

6.2 Solving DIVER

average opinion (7, x) gets close enough to its original state (r, x), In this section, we solve DIVER using the previously described
or a maximum of kj,qx new edges is reached. The number ngy. of networks and methods. All these methods add k = 10 edges at a
top-centrality nodes considered in computation is 20 for synthetic, time, improving the distribution of eigencentralities 7 either until
10 for Karate, 40 for Facebook, and 200 for Epinions networks. the average opinion (7, x) gets close enough to its original state
This version of Algorithm 1 has quadratic time complexity, and (m,x), or a maximum of kp,qx = 200 new edges is reached. The
represents “the best case” behavior of DIVER heuristic. results are displayed in Fig. 7.

> DIVER(f; ~ X%), X € {10,20,30}: similar to DIVER above, We can see that our heuristic works well on all scale-free-like
except that Algorithm 1 estimates f;; using only a fraction X of all networks, disabling attacks by adding 20-60 candidate edges. In
the nodes. The time complexity of these methods is pseudo-linear, case of ER network, the quality of all absent edges is uniformly
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low, which naturally leads to all the methods’ performing uni-
formly poorly. For the case of Karate network—which, similarly
to ER network, has rather low skewness and kurtosis of eigen-
centrality and degree distributions as per Table 2—performance
of DIVER heuristic degrades rather fast with the number of nodes
used in computation of fy; for example, using 30% of nodes to
compute f7, it takes DIVER(f; ~ 30%) twice as many new edges
as DIVER to restore the average opinion. We also see that baseline
BASE(Oyc(mry — 7c)(Xr — X)) performs well only on BA network,
and underperforms on all the other networks. Notice, however, that
during the first one-two iterations of edge addition, this baseline
performs almost as well as DIVER does, as both methods add edges
outgoing from very high-centrality nodes, which appear to be the
best according to both the absolute centrality-based assessment of
the baseline, and the relative centrality-based assessment of DIVER.
However, during the subsequent iterations, the relative centrality
information starts playing a crucial role for edge addition impact
assessment, and the baseline’s performance rapidly degrades, while
DIVER continues to perform well.

7 CONCLUSION

In this work, we formulated DIVER—a new problem of strategically
recommending links in a social network to disable the effect of
malicious external control of user opinions. Due to NP-hardness of
this problem, we focused on designing a heuristic for it. To that end,
relying on the theory of Markov chains, we provided a perturba-
tion analysis, formally answering the question of how the network
nodes’ eigencentralities and, thus, DIVER’s objective change when
a edge is added to the network. This analysis led to the definition of
candidate edge scores that quantify the potential impact of candi-
date edges, allowing to add them to the network in a greedy fashion.
We also provided insights into how to compute these edge scores in
scale-free-like networks in pseudo-constant time, which resulted in
a pseudo-linear-time heuristic for DIVER. One of these insights is
related to efficient estimation of mean first passage times in Markov
chains. We confirmed our theoretical and algorithmic findings in
experiments with synthetic and real-world networks. In particular,
we showed the importance of taking into account relative node
centrality information when dealing with strategic manipulation
of absolute centrality. Future work includes adapting DIVER to the
optimization of the opinion distribution rather than the average
opinion, deriving formal convergence bounds for MFPT estimation,
and evening the quality of MFPT estimates by biasing the random
walk. Finally, and more importantly for the society, we should study
how to ensure that link recommendation is not misused by online
social network platforms as a tool for malicious opinion control.
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