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ABSTRACT
The process of opinion formation is inherently a network process,

with user opinions in a social network being driven to a certain av-

erage opinion. One simple and intuitive incarnation of this opinion

attractor is the average π⊺x of user opinions xi weighted by the

users’ eigenvector centralities πi . This value is a lucrative target
for control, as altering it essentially changes the mass opinion in

the network. Since any potentially malicious influence upon the

opinion distribution in a society is undesirable, it is important to

design methods to prevent external attacks upon it.

In this work, we assume that the adversary aims to maliciously

change the network’s average opinion by altering the opinions

of some unknown users. We, then, state an NP-hard problem of

disabling such opinion control attempts via strategically altering

the network’s users’ eigencentralities by recommending a limited

number of links to the users. Relying on Markov chain theory,

we provide perturbation analysis that shows how eigencentrality

and, hence, our problem’s objective change in response to a link’s

addition to the network. The latter leads to the design of a pseudo-

linear-time heuristic, relying on efficient estimation of mean first

passage times in Markov chains. We have confirmed our theoretical

and algorithmic findings, and studied effectiveness and efficiency

of our heuristic in experiments with synthetic and real networks.

CCS CONCEPTS
• Theory of computation → Social networks; Network opti-
mization; Random walks and Markov chains.
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1 INTRODUCTION
It is well-known that in the absence of the objective means for

opinion evaluation, people tend to evaluate their opinions by com-

parison with the opinions of others [15]. Thus, social networks
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impact the opinion formation process in the society. It is clearly de-

sirable that this process is natural and fair, with good ideas emerging

and spreading, and bad ideas declining and disappearing. However,

viral marketing experts may be interested in controlling the opinion

formation process with the goal of driving the opinion distribu-

tion to a certain business-oriented objective. One well-known way

of affecting opinion formation is influence maximization, whose

central idea is to strategically change the opinions of some net-

work users with the goal of maximizing the subsequent spread of

“right” opinions from these users throughout the network, or, more

generally, shifting the opinion distribution towards a desired state.

Naturally, the society would benefit from a mechanism preventing

such potentially malicious control of the opinion formation process.

Our work is dedicated to the design of one such mechanism—a link

recommendation algorithm that allows an online social network

platform to disable the effect of the attempts to control the opinion

distribution in the network.

The notion central to our work is that of the average opinion of

a social network, characterizing the mass opinion. For example, it

can measure to what extent, on average, people prefer one smart-

phone brand or one political party over the other. Based on the

well-established socio-psychological theories, such as Festinger’s

social comparison [15] and cognitive dissonance [16] theories, the

opinions of users in the network are attracted towards the average

opinion. However, the basic arithmetic average would not suffice,

as the opinions of more “central” users—such as celebrities—are

expected to contribute more to the entire network’s opinion. In-

stead, we use the following simple and intuitive definition of the

network’s average opinion

average opinion of the network = ⟨π ,x⟩ = π⊺x

which is the sum of users’ quantified opinions xi weighted by the

corresponding users’ eigenvector centralities πi .
Clearly, the average opinion is a lucrative target for control, as

altering it essentially changes the mass opinion in the network. We

assume that there is an external adversary whose goal is, without

loss of generality, to maximize the average opinion ⟨π ,x⟩. To that

end, the adversary influences some users in the network, changing

the opinion distribution x → x̃ and, thus, the average opinion

⟨π ,x⟩ → ⟨π , x̃⟩ (Fig. 1b). Then, our goal—assuming we act on be-

half of the social network platform—is to respond to this attack,

and restore the average opinion to its original state ⟨π ,x⟩. We, how-

ever, cannot directly influence user opinions; the only legitimate

opinion control tool available to us is link recommendation. We

strategically recommend a limited number of links to the networks’

users, thereby, affecting these users’ eigencentralities π → π̃ and

restoring the original average opinion, ⟨π , x̃⟩ → ⟨π̃ , x̃⟩ ≈ ⟨π ,x⟩
(Fig. 1c).
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Figure 1: The adversary influences user opinions, x → x̃ , increasing the average opinion ⟨π ,x⟩ → ⟨π , x̃⟩, where π is a vector
of users’ eigencentralities. The network responds by adding links, reducing the average opinion ⟨π̃ , x̃⟩, driving it back to its
original value ⟨π ,x⟩.

The central goal of our work is to design a scalable algorithm

that, under the above described attack upon the opinion distribu-

tion, would identify the links whose recommendation to the social

network’s users would efficiently drive the maliciously altered av-

erage opinion back to its state prior to the attack, nullifying the

attack’s impact. Our specific contributions are:
▷We defineDIVER—a new NP-hard problem of disabling external

influence in a social network via edge recommendation.

▷ We provide novel perturbation analysis, establishing how the

network’s eigencentrality vector changes when an edge is added to

the network. This analysis leads to the definition of an edge score

fπ (i, j) quantifying the potential impact of the addition of directed

edge (i, j) to the network upon DIVER’s objective.

▷ We show how to estimate edge scores fπ in pseudo-constant
time in networks with skewed eigenvector centrality distribution,

such as scale-free networks.

▷ We provide a pseudo-linear-time heuristic for DIVER relying

on edge scores fπ , and experimentally study its effectiveness and

efficiency on synthetic and real-world networks.

2 PRELIMINARIES
We are given a sparse directed strongly connected aperiodic so-

cial network G(V ,E), |V | = n, |E | = O(n), having row-stochastic

adjacency matrixW ∈ [0, 1]n×n ,W1 = 1, 1 = [1, . . . , 1]⊺. The

edge/link weightwi j ∈ [0, 1] reflects the relative extent to which

user i takes into account the opinion of user j while forming his

or her opinion, or, alternatively, the relative extent to which user i
trusts user j. Aperiodicity can be replaced by the requirement of

the network’s having at least one self-loop with a non-zero weight,

which translates into a natural requirement of having at least one

user who puts at least some trust in his or her own opinion.

The average opinion of the network is defined as ⟨π ,x⟩ = π⊺x ,
where x ∈ [0, 1]n are opinions of the users, and π ∈ Rn

+, ∥π ∥1 = 1 is

the ℓ1-normalized dominant left eigenvector ofW . From its defini-

tion, π is also the vector of eigencentralities of the network’s nodes,

and can also be viewed as the vector of no-teleportation PageRank

scores, or the stationary distribution of the ergodic Markov chain

with state transition matrixW . Due to the latter, we may refer to

W as a Markov chain, and use the terms node (of a network) and

state (of a Markov chain) interchangeably. We will also require the

following characteristic ofW if viewed as a Markov chain.

Definition 1 (Mean first passage time). The mean first pas-
sage time (MFPT)mi j from state i to state j of a Markov chain is the
expected number of steps it takes the chain started at state i to reach
state j for the first time.mii is the mean first return time (MFRT).

In general networks,mi j reflects how fast, on average, a random

walker started at node i passes node j for the first time, when the

walk is governed by transition likelihoodsW . In social networks,

as defined above,mi j measures relative centrality or importance of
node j for node i’s opinion formation. The key difference ofmi j
from wi j is that wi j reflects direct immediate influence exerted

through a single link, whilemi j reflects aggregate influence accu-

mulated along all existing pathways in the network and qualified

with likelihoods of information spreading along each such pathway.

We will also need the following Theorem 1 and 2 immediately

following from Theorems 4.4.4 and 4.4.5 of Kemeny and Snell [21].

Theorem 1 (MFRT and eigenvector centrality). For any
state i of Markov chainW with an aperiodic strongly connected net-
work,mii = 1/πi .

Thus, MFPT generalizes eigenvector centrality, providing both

absolute and relative node importance information.

Theorem 2 (MFPT one-hop conditioning). For any states i and
j of Markov chainW with an aperiodic strongly connected network,
mi j = 1 +

∑
k,j wikmk j .

3 PROBLEM STATEMENT AND HARDNESS
Given a directed social network, at each point in time, we—acting on

behalf of the social network platform—can observe its users’ opin-

ions. We assume that at some point the external adversary makes

an influence maximization attempt by targeting several users and

changing their opinions, with the goal of, without loss of generality,

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

678



1 vector of all ones

diag(v) diagonal matrix with vector v as the main diagonal

ei i ’th column of the identity matrix

x (x̃ ) user opinions (user opinions altered by the adversary)

W network’s row-stochastic adjacency matrix

W̃ altered network’s row-stochastic adjacency matrix

θi j weight of directed edge (i, j) (candidate for addition)
π (π̃ ) ℓ1-normalized left dominant eigenvector ofW (of W̃ )

mi j mean first passage time from state i to state j in chainW

Table 1: Notation Summary

maximizing the average opinion ⟨π ,x⟩. In this work, we assume

no knowledge of which users have been attacked, relying only on

our ability to detect such attacks using existing methods. The latter

methods range from the anomalous event detection in a scalar time

series of average opinion values [7], to tracking whether the current

cumulative changes in user opinions follow a pattern prescribed by

the solution to an influence maximization problem, to network sens-

ing for outbreak detection [24], to opinion dynamics model-based

anomaly detection techniques [1]. In what follows, we assume that

attack detection—orthogonal to the issue of attack effect elimina-

tion that we focus on in the paper—has been successfully performed

using one of the mentioned techniques.

Having detected an external influence attempt, we are given the

opinion distribution x ∈ [0, 1]n preceding the attack as well as the

externally altered opinion distribution x̃ ∈ [0, 1]n . As a result of the
attack, the original average opinion ⟨π ,x⟩ has changed to ⟨π , x̃⟩.
Our goal is to strategically add a limited number k of edges to the

network and, thereby, change π in such a way, that the resulting

average opinion ⟨π̃ , x̃⟩ is as close as possible to its state ⟨π ,x⟩ before
the attack, as it was illustrated in Fig. 1. Formally, the problem of

disabling external influence via edge recommendation is defined as

DIVER(W ,k,x , x̃) = argminW̃ |⟨π̃ (W̃ ), x̃⟩ − ⟨π ,x⟩|, (1)

where the perturbed row-stochastic adjacency matrix W̃ differs

fromW by k new edges whose weights θi j we cannot control—

since they correspond to interpersonal trust that users decide upon

themselves—yet, can estimate using existing techniques [18], and,

hence, assume to be known. Notice that, as edge weights reflect

relative trust, after new edge addition to a user’s out-neighborhood,

the existing edges are proportionally downweighted, and W̃ is kept

row-stochastic. For k = 1, after addition of directed edge (r , c) with

weight θrc , W̃ looks as follows (see Fig. 2):

W̃ =W − θrc diag(er )W + θrcer e
⊺
c , (2)

where ei ∈ {0, 1}
n
is i’th element of the standard basis.

In what follows, wewill focus on deterministic edge addition, and

provide a straightforward probabilistic extension, fitting the friend
recommendation mechanism of popular online social networks, in

the Supplement [2].

Figure 2: Addition of edge (r , c) to the network.

DIVER’s complexity comes along two dimensions—searching for

the best edge subset delivering the minimum of the objective, and

assessing the impact of a given subset of edges upon the objective.

While the latter can be done in polynomial time, the edge subset

search cannot and is the root cause of NP-hardness. In the following

Theorem 3, proven in the Supplement [2], we establish that, even

for the case of undirected networks, DIVER(W ,k,x , x̃) is NP-hard.

Theorem 3. DIVER is NP-hard for undirected networks.

The problem’s hardness is exacerbated by the fact that stan-

dard approximation techniques [28] are not applicable, as DIVER’s

objective function is not submodular.

4 RELATEDWORK
While DIVER is a new problem, and there are no existing methods

for solving it, there is a range of problems—in extremal network

design as well as in the perturbation analysis of centrality measures

and stationary distributions of Markov chains—related to ours ei-

ther in the nature of the optimized objective or the methods and

analyses. In this section, we survey several groups of these works,

focusing on analytic problems (combinatorial extremal network

design is reviewed in the Supplement [2]).

4.1 Analytic Network Design
Here, we review network design problems, where a network’s topol-

ogy is altered to optimize some analytic property of that network.

Algebraic Connectivity: Ghosh and Boyd [17] studied the prob-

lem of maximizing the algebraic connectivity—the second small-

est eigenvalue λ2 of the Laplacian—of an undirected unweighted

network via edge addition. The authors use convex relaxation to

formulate the problem as a semidefinite program (SDP), which is

feasible to solve for small networks. They also provide a greedy

perturbation heuristic that picks edges (i, j) based on the largest

value of (vi −vj )
2
—the squared difference of the Fiedler vector’s

components corresponding to each edge’s ends. The authors show

that, in case of simple λ2, value (vi − vj )
2
gives the first-order

approximation of the increase in λ2 if edge (i, j) is added to the

network. The authors also derive bounds on algebraic connectivity

under single-edge perturbation. More recently, this approach has

been employed by Yu et al. [34] for the design of an edge selection

heuristic that the authors have augmented with an extra objective—

neighborhood overlap-based user similarity (which likely correlates

with edge acceptance likelihood).

Spectral Radius: Van Mieghem et al. [32] study the problem of

minimizing the spectral radius of an undirected network via edge or

node removal. They prove NP-hardness of the problem, and show

that the edge selection heuristic that picks edges (i, j) with the

largest scoresvivj—wherev is the dominant eigenvector—performs

well in practice. More recently, Saha et al. [30] addressed the same

spectral radius minimization problem and designed a walk-based

algorithm, relying on the link between the sum of powers of eigen-

values of a network and the number of closed walks in it, and

provided approximation guarantees for them. Zhang et al. [35]

studied spectral radius minimization for directed networks under

SIR model, and provided an SDP/LP-based solution, having high

polynomial time complexity.
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Eigenvalues and Their Functions: Tong et al. [31] target optimiza-

tion of the diffusion rate—expressed as the largest eigenvalue of

the adjacency matrix—through a directed strongly connected un-

weighted (see [9] for the weighted case) network via edge addition

or removal. Similarly to [32], the authors use first-order perturba-

tion theory to assess the effect of deleting k edges λmax − λ̃max =∑
uivj/⟨u,v⟩+O(k), where u andv are the left and right dominant

eigenvectors of the adjacency matrix, respectively. This analysis

inspires an edge selection heuristic, with the quality of edge (i, j) be-
ing defined asuivj , similarly tovivj edge score of [32]. Le et al. [23]
extend this result to the networks with small eigengaps. Chan et

al. [6] target optimization of natural connectivity—a network ro-

bustness measure defined, roughly, as an average of exponentiated

eigenvalues of the adjacency matrix—of an undirected network via

altering its topology. For edge addition, they focus on the edges

between high-centrality nodes.

4.2 Centrality Perturbation and Manipulation
These works study either how eigenvector centrality, or PageRank,

or the stationary distribution of a Markov chain changes when a

network’s structure is perturbed, or how to strategically manipulate

centrality by altering the network.

Strategic Centrality Manipulation: Avrachenkov and Litvak [3]

analyze to what extent a node can improve its PageRank by creat-

ing new out-edges. The authors derive equalities that result in a

conclusion that the PageRank of a web-page cannot be consider-

ably improved by restructuring its out-neighborhood. The authors

also derive an optimal linking strategy, stating that it is optimal

for a web-page to have only one outgoing edge pointing to a web-

page with the shortest mean first passage time back to the original

page. Similar conclusions can be drawn for eigenvector centrality

in an arbitrarily weighted network using Theorem 4 of our work.

De Kerchove et al. [14] generalize the results of Avrachenkov and

Litvak [3], studying maximization of the sum of PageRanks of a

subset of nodes via adding outgoing edges to them. Csáji et al. [13]

study the problem of optimizing the PageRank of a given node

via directed edge addition. The authors formulate the optimization

problem as a Markov decision process and propose a (non-scalable)

polynomial-time algorithm for it.

Centrality Perturbation Analysis: Cho and Meyer [11] provide

coarse bounds of type |πi −π̃i |/πi ≤ ∥E∥∞maxi,jmi j/2 for the sta-

tionary distribution of a generally perturbed Markov chain, where

E is an additive perturbation of the state transition matrix. Chien

et al. [10] provide an efficient algorithm for incremental compu-

tation of PageRank over an evolving edge-perturbed graph, with

the analysis’ drawing upon the theory of Markov chains. The key

idea of their algorithm is to contract the network and localize its

part where the nodes are likely to have changed their PageRank

scores under the perturbation. Langville and Meyer [22] provide

exact equalities for the change in the stationary distribution of a

perturbed Markov chain using group inverses. They address the

problem of updating the stationary distribution under multi-row

perturbation via exact and approximate aggregation, similarly to

what Chien et al. [10] did for PageRank. Hunter [19] addresses

the same problem of establishing equalities for the change in the

stationary distribution, yet, provides an answer that does not in-

volve group inverses and, instead, uses mean first passage times in

a Markov chain; our perturbation analysis in Sec. 5.2 builds upon

this result. Como and Fagnani [12] provide an upper bound on the

perturbation of the stationary distribution of a Markov chain in

terms of the mixing time of the chain as well as the entrance time

to and the escape likelihood from the states with perturbed out-

neighborhoods. Bahmani et al. [5] address the problem of updating

PageRank algorithmically. The proposed node probing-based algo-

rithms provide a close estimate of the network’s PageRank vector

by crawling a small portion of the network. More recently, Li et

al. [26] and Chen and Tong [8] addressed a general problem of up-

dating eigenpairs of an evolving network. Chen and Tong provide

a linear-time algorithm for tracking top eigenpairs.

5 STRATEGIC EDGE ADDITION
Since, due to Theorem 3, DIVER optimization problem

DIVER(W ,k,x , x̃) = argminW̃ |⟨π̃ (W̃ ), x̃⟩ − ⟨π ,x⟩|, (1)

is NP-hard, we need to design a heuristic for it. Our general ap-

proach, formalized in Sec. 5.5, is as follows. We will assess candidate

edges with respect to how much their addition to the network de-

creases term ⟨π̃ , x̃⟩ of (1), and then iteratively add the most promis-

ing edges to the network until satisfied with the objective’s value.

Hence, our foremost concerns now are: (a) the selection of a

small number of candidate edges to assess; and (b) the subsequent

assessment of the potential impact of these edges’ addition to the

network upon the network’s eigenvector centrality and, thus, the

objective. These concerns are addressed in what follows.

5.1 Candidate Edge Selection
The above described general approach involves assessing candidate

edges individually. However, the number of absent edges in a sparse

network is O(n2), and inspecting all of them is unfeasible for large

networks. Hence, we will focus on a small number of candidate

edges, outgoing from nsrc ≪ n network nodes. This implies that a

small number of nodes are being the sources of most—or, at least,

a large number of—“good” candidate edges. Intuitively, the nodes

having the largest (eigenvector) centrality should be those edge

sources; the changes in their out-neighborhoods should have the

largest impact upon the centrality distribution in the network, as

Fig. 3 suggests. This intuition will find formal support in Corollary 1

in the following Sec. 5.2.
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Figure 3: Dependence of the average opinion’s reduction
fπ (r , c) = ⟨π , x̃⟩− ⟨π̃ , x̃⟩ after addition of edge (r , c), θrc = const
to a scale-free network (n = 100,γ = −2.5) upon the eigenvec-
tor centrality πr of the edge’s source node.
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Thus, to make sure that addition of candidate edges to the net-

work has a large impact—either positive or negative—upon the av-

erage opinion, we can limit ourselves to considering only candidate

edges outgoing from high-centrality nodes. Fortunately, the num-

ber of such nodes in real-world social networks is small, and most

nodes are at the periphery, which justifies our choice of nsrc ≪ n.

5.2 Eigenvector Centrality Under
Single-Edge Perturbation

In order to tackle DIVER (1), we need to understand how the ad-

dition of a single edge w̃rc = θrc ∈ (0, 1) from node r to node c
changes the network’s eigenvector centrality π → π̃ . We assume

that edge (r , c) is originally absent (wrc = 0) and use the same

single-edge perturbation model as before (see Fig. 2):

W̃ =W − θrc diag(er )W + θrcer e
⊺
c . (2)

In our subsequent perturbation analysis, we will make the following

Assumption 1 to improve readability of our theorems.

Assumption 1 (Rational Selfishness). Users are rationally
selfish in that for any user i , ∀j , i : wii > wi j . Thus, each user trusts
his or her own opinion more than that of any other individual user.

The following Theorem 4 states how the eigencentrality vector

changes under a single-edge perturbation (2).

Theorem 4 (Single-Edge Perturbation). Under Assumption 1,
for a single-edge perturbation (2) of a strongly connected aperiodic net-
work with adjacency matrixW , the network’s eigenvector centrality
changes as

π̃j = πj

[
1 −

θrc (mc j (1 − δ {j, c}) −mr j + 1)

mr r + θrc (mcr −mr r + 1)

]
, (3)

wheremi j is the mean first passage time from state i to j of Markov
chainW , and δ is Kronecker delta. In particular,

π̃r = 1/[mr r + θrc (mcr −mr r + 1)]. (4)

The proofwill rely on the following Theorem 5 due toHunter [19],

provided for reference below.

Theorem 5 ([19, Theorem 4.4]). Let multiple perturbations occur
in r ’th row ofW . Let ϵi = W̃r i −Wr i , the minimal negative per-
turbation happen at state a, with ϵa = −m = min {ϵj | 1 ≤ j ≤ n};
the maximal positive perturbation occur at state b with ϵb = M =
max {ϵj | 1 ≤ j ≤ n}. Also, let P be the set of positive perturbation
indices, excluding b, and N be the set of negative perturbation indices,
excluding a. Then,

πj − π̃j =



πa π̃r [Mmba +
∑

k ∈P∪N
ϵkmka ] if j = a,

πb π̃r [−mmab +
∑

k ∈P∪N
ϵkmkb ] if j = b,

πj π̃r [−mmaj +Mmbj +
∑

k ∈P∪N
k,j

ϵkmk j ] if j , a,b .

Proof (Theorem 4). Let us apply Theorem 5 to our case of a

single-edge perturbation (2). We are adding edge (r , c) with weight

θrc to the network. Due to the form (2) of our single-edge pertur-

bation, the only positive perturbation occurs at the added edge’s

destination node c , so b = c , ϵc = M = θrc , and P = ∅. For all

the other out-neighbors i of the new edge’s source node r , the

corresponding perturbations ϵi = −θrcwr i are negative. Due to

Assumption 1, ∀i , r : wr r > wr i , so the minimal negative pertur-

bation occurs at i = r , and, thus, a = r and ϵa = −m = −θrcwr r .

Let us first show the validity of (3) in case of j = r , that is, (4).
According to Theorem 5,

πr − π̃r = πr π̃r
[
θrcmcr +

∑
k ∈P∪N

(−θrcwrk )mkr

]
= (aswrc = 0) = θrcπr π̃r

[
mcr −

∑
k,r

wrkmkr

]
.

Using the one-hop conditioning Theorem 2, the obtained expression

can be written as

πr − π̃r = θrcπr π̃r [mcr −mr r + 1]

⇔ π̃r = πr /(1 + θrcπr [mcr −mr r + 1]).

Dividing the numerator and denominator in the right-hand side of

the obtained expression by πr > 0 (positivity comes from Perron-

Frobenius theorem [27, Sec. 8.2]) and using 1/πr = mr r (Theo-

rem 1), we obtain (4).

Let us similarly deal with the case j , r , c . From Theorem 5,

πj − π̃j = πj π̃r
[
− θrcwr rmr j + θrcmc j +

∑
k ∈P∪N
k,j

(−θrcwrk )mk j

]
= θrcπj π̃r

[
mc j −wr rmr j −

∑
k,r,c, j

wrkmk j

]
= (aswrc = 0) = θrcπj π̃r

[
mc j −

∑
k,j

wrkmk j

]
⇔ (from Theorem 2)⇔ π̃j = πj [1 − θrc π̃r (mc j −mr j + 1)].

Substituting (4) in the obtained expression, we get (3) for j , c . The
proof for j = c is similar and, thus, is omitted. □

The following Corollary 1—justifying Sec. 5.1’s focus on top-

centrality edge source nodes—immediately follows from equation (3)

of Theorem 4 used together with Theorem 1.

Corollary 1. Under perturbation (2) of the network with a sin-
gle edge (r , c), θrc > 0, it holds that limπr→0 π̃ = π , and, thus,
limπr→0 fπ (r , c) = limπr→0 (⟨π , x̃⟩ − ⟨π̃ , x̃⟩) = 0.

5.3 Average Opinion of the Network Under
Single-Edge Perturbation

To solve DIVER, we are interested in adding candidate edges that

would result in a large reduction fπ (r , c) = ⟨π , x̃⟩ − ⟨π̃ , x̃⟩ of the
average opinion. While Theorem 4 states how different components

of the eigencentrality vector change under a single-edge pertur-

bation (2), the following Theorem 6 characterizes the impact of

such perturbation upon the value of fπ (r , c). The proof of the theo-
rem is immediately obtained by substituting (3) of Theorem 4 into

fπ (r , c) = ⟨π − π̃ , x̃⟩.

Theorem 6. Under the rational selfishness Assumption 1, the re-
duction fπ (r , c) = ⟨π , x̃⟩ − ⟨π̃ , x̃⟩ of the average opinion caused by a
single-edge perturbation (2) ofW is

fπ (r , c) = θrc

n∑
j=1

πj (mc j · (1 − δ {j, c}) −mr j + 1)x̃ j

mr r + θrc (mrc −mr r + 1)
. (5)
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Essentially, Theorem 6 provides us with an edge score fπ (r , c),
whose use for candidate edge selection comprises our heuristic for

DIVER. Unfortunately, fπ ’s computation is rather challenging, and

is addressed in the following section.

5.4 Efficient Computation of Edge Scores
Computation of candidate edge scores fπ is challenging for two rea-

sons. Firstly, expression (5) involves summation over all n network

nodes. Since there are O(nsrcn) candidate edges—with nsrc ≪ n
sources and n destinations—it would result in at least a quadratic-

time heuristic for DIVER that would not scale. Secondly, expres-

sion (5) involvesmean first passage times, whose direct computation

is very expensive. We address these challenges separately below.

5.4.1 Focus on a Small Number of Nodes. Our first concern is that

expression (5) for fπ contains summation over all n nodes. Intu-

itively, not all network nodes contribute equally to the value of (5).

Indeed, in networks with skewed eigencentrality distribution, such

as scale-free networks, fπ is largely determined by a small number

of top-centrality nodes. This is illustrated in Fig. 4, that shows the

relationship between the exactly computed fπ and its approxima-

tions, with different numbers of scale-free network nodes being

used in fπ ’s computation. We can see that, even when we use only

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-0.1

-0.05

0

0.05

0.1

100%

80%

60%

40%

20%

10%

Fraction of

nodes used

by f (r, c)

Figure 4: Comparison of exact and approximate candidate
edge scores fπ in a scale-free network (n = 100,γ = −2.5).

10% of nodes, the relative order of fπ for different candidate edges

is close to the original, and it is still easy to identify candidate edges

(r , c) with the largest values of fπ (r , c).
Thus, to efficiently compute fπ (r , c), we will use only those

j in (5) corresponding to a constant number, e.g., nsrc , of top-
centrality nodes in the network, in addition to j ∈ {r , c}.

5.4.2 Efficient Computation of Mean First Passage Times. In the

previous section, we have considerably simplified computation of

fπ (r , c) by leaving only O(nsrc ) summands in expression (5). Now,

our concern is to actually compute the values of the mean first

passage timesmi j remaining in (5).

The classic method for exact MFPT computation [21, Theorem

4.4.7] involves computing the fundamental matrix Z = (I −W +
1π⊺)−1 of Markov chainW , and defines MFPTs as

M = {mi j } = (I − Z + 11
⊺
diag(Z )) diag−1(π ).

0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

Walk length = 5k

Walk length = 10k

Walk length = 100k

Walk length = 1M

Figure 5: Root mean square error of MFPT estimates in a
scale-free network (n = 100,γ = −2.5) using walks of differ-
ent length.

Computation of the fundamental matrix involves a cubic-time ma-

trix inversion and would not scale. In [20], Hunter surveys alterna-

tive methods for MFPT computation, but all of them share the same

high complexity. Most importantly, however, all existing methods

target computation of all O(n2) MFPTs between all network nodes.

Let us notice that expression (5) for fπ uses MFPTs either from or

to high-centrality nodes: r are top-centrality according to Sec. 5.1;

j are top-centrality according to Sec. 5.4.1. There are nsrcn ≪ n2

such MFPTs, where nsrc is the number of candidate edge source

nodes r .
We propose to estimate the MFPTs between a small number of

nodes by performing a finite random walk over the network and

tracking first passage times between its nodes. The walk starts at an

arbitrary node and proceeds for a predefined number of steps follow-

ing the transition probabilities defined by the adjacency matrixW ,

viewed here as the state transition matrix of a Markov chain. While

performing the walk, we accumulate the passage times between

nsrc candidate edge sources and n candidate edge destinations, and

compute the means when the walk is complete. This approach to-

wards MFPT estimation is similar to the k-Step Markov Approach

that White and Smyth [33, Sec. 6.4] used for estimation of their

MFPT-based relative importance of network nodes.

The key questions here are whether the proposed method will
produce good estimates of MFPTs to and from high-centrality nodes
and, if so, how long the random walk should be. We answer these

two questions via empirical analysis.

The first insight is that MFPTs to and from high-centrality nodes

converge very fast, since the walk visits such nodes most often.

This is illustrated in Fig. 5, according to which the error of MFPT

estimatesmi j noticeably varies with the walk’s length when both i
and j are low-centrality, and is uniformly low if at least one of i and
j is high-centrality. This insight echoes the result of Avrachenkov et
al. [4], who show that PageRank of high-centrality nodes estimated

via Monte Carlo simulation converge very fast.

Now, we empirically study the question of how long the random

walk should be to obtain sufficiently good estimates of MFPTs to

and from top-centrality nodes in a scale-free network. The results

are reported in Fig. 6, that shows how many steps a random walk

should perform in order for 5% of MFPTs to and from top 5% high-

centrality nodes to converge within 5% of their true values, while

the network’s size n and scale-free exponent γ vary. For each pair
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Figure 6: Dependency of the length of a random walk—used
for estimating MFPTs to and from top-centrality nodes—on
the size and density of the scale-free network.

(n,γ ), 100 networks are generated, and the mean walk lengths are

reported. The results are reported for 3 specific scale-free exponents,

γ ∈ {−2.9,−2.5,−2.1}. The length of the random walk does not

depend on the scale-free exponent, and depends upon the network’s

size n as (0.197n − 2.248) · 104. This result allows to make the

following statement.

Proposition 1 (Random Walk Length). In scale-free networks,
the length of a random walk sufficient for convergence ofO(n)MFPTs
to and fromO(1) top-centrality nodes isO(n) (in contrast toO(n3) cost
of the direct computation of all MFPTs via the fundamental matrix
method).

5.5 SolvingDIVERDIVERDIVER

In this section, we gather all our results, formally state a heuristic

for solving DIVER, and analyze its complexity.

Algorithm 1 Heuristic for DIVER

Input: W—sparse row-stochastic irreducible adjacency matrix of

the network; k—number of new edges to add; nsrc—maximal

number of new edges’ sources.

Output: sequence (r1, c1), (r2, c2), . . . of new edges to add

1: Compute eigencentrality π (dominant left eigenvector ofW )

2: Define candidate edge sources: R ← nsrc top-centrality nodes

3: Estimate MFPTs {mi j } to and from each r ∈ R

4: for r ∈ R, c ∈ {1, . . . ,n} do
5: Estimate fπ (r , c) using O(nsrc ) top-centrality nodes

6: end for
7: S ← candidate edges (r , c) having top-k scores fπ (r , c)
8: return S

Theorem 7. Time-complexity of Algorithm 1 is O(n(gap(W ) +
n2src )+nsrc lognsrc+k logk), where gap(W ) is the number ofmatrix-
vector multiplications the power method uses to compute the dominant
left eigenvector ofW .

Proof. In step 1 of Algorithm 1, we compute the dominant left

eigenvector π ofW using the power method, performing gap(W )
matrix-vector multiplications, each of which has a linear time

complexity for sparse W . Thus, this step’s complexity is T1 =
O(gap(W )n). The cost of selecting top nsrc elements out of n at

Step 2 is T2 = O(n + nsrc log(nsrc )). In step 3, following Sec. 5.5.2

and, in particular, Proposition 5.1, we estimate MFPTs via a O(n)-
long finite random walk, so this step’s cost is T3 = O(n). At steps 4-
6, we compute nsrcn edge scores fπ . Following the method of

Sec. 5.5.1, each fπ (r , c) is computed in time O(nsrc ), bringing time

complexity of steps 4-6 to T4−6 = O(n2srcn). Finally, selection
of top k out of nsrcn items at step 7 is performed in time T7 =
O(nsrcn + k logk). If we collect the expressions for T1, . . . ,T7, we
get T = O(n(gap(W ) + n2src ) + nsrc lognsrc + k logk). □

In Theorem 7, the number gap(W ) of iterations it takes the

power method to converge depends onW ’s spectral gap λ2/λ1,

but, in practice, gap(W ) usually can be assumed to be a reasonably

small constant [4]. Thus, assuming that gap(W ) is bounded, as well
as noticing that we choose both nsrc and k to be small, that is,

nsrc ≪ n and k ≪ n, it immediately follows from Theorem 7 that

Algorithm 1 is computable in time O(n).

6 EXPERIMENTAL RESULTS
In this section, we experimentally study Algorithm 1’s performance

on synthetic and real-world networks. We start with experimental

setup, and, then, study performance of our heuristic. Additional ex-

periments studying our heuristic’s effectiveness, efficiency, as well

as robustness to network noise can be found in the Supplement [2].

6.1 Experimental Setup
6.1.1 Networks. We have experimented with three synthetic and

three real-world networks:

▷ SF(n,γ ): a scale-free network with n nodes and scale-free

exponentγ , built using a greedy generator that constructs a directed
graph trying to match a given degree distribution

1
.

▷ BA(n,ml inks ): a Barabási-Albert network on n nodes with a

seed SF(0.01n,−2.5) andml ink edges created per node / iteration.

▷ ER(n,Pedдe ): an Erdős–Rényi network with the edge proba-

bility Pedдe , being an example of a “non-scale-free-like” network,

on which our heuristic and baselines perform poorly.

▷ Karate: Zachary’s Karate Club network.
▷ Facebook: a 4k-node part of Facebook graph [25].

▷ Epinions: a 32k-node part of the mutual trust network epin-

ions.com [29].

Network |V | |E | Sπ Sd Kπ Kd
SF(1024, −2.5) 1024 3.9k 5.30 9.37 54.88 134.56

BA(1024, 3) 1024 7.9k 7.51 7.46 103.34 84.26

ER(1024, 0.25) 1024 261k 0.04 0.10 2.95 3.01

Karate 34 190 1.09 2.00 3.24 6.30

Facebook 4039 181k 4.24 4.52 19.67 57.56

Epinions 32k 476k 9.87 9.02 130.01 160.64

Table 2: Summary of networks.

The characteristics of these networks are summarized in Table 2,

where Sπ andKπ are skewness and kurtosis, respectively, of the un-

weighted network’s eigencentrality distribution, and Sd and Kd are

the same metrics of the same network’s total (in- plus out-) degree

distribution. All the networks except Facebook are directed. If the

original network was not strongly connected, we replace it with its

largest strongly connected component. We also add all self-loops—

since each user in our case is supposed to have some amount of

1
EvaluateGraphCreateRandomGraph.cpp of Complex Networks Package.

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

683



0 20 40 60 80 100 120 140 160 180 200

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20 40 60 80 100 120 140 160 180 200

0

0.005

0.01

0.015

0.02

0 20 40 60 80 100 120 140 160 180 200

0.0495

0.05

0.0505

0.051

0.0515

0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100 120 140 160 180 200

0

2

4

6

8

10

12

10
-3

0 20 40 60 80 100 120 140 160 180 200

0

2

4

6

8

10

12

14

16

18

10
-3

Figure 7: Solving DIVER over synthetic and real-world networks.

trust in her or his own opinion—and draw edge weights uniformly

at random, while maintaining self-weight dominance—as per As-

sumption 1—and rescaling the weights in each out-neighborhood

to make sure the resulting adjacency matrix is row-stochastic.

6.1.2 Opinions and Attack Upon Them. The user opinions x are

drawn uniformly at random from [0, 1]n . To simulate an attack and

create a new opinion distribution x̃ , 0.1n users (5 for Karate net-

work) are chosen uniformly at random, and their opinions change to

1, while the opinions of other users stay intact. We assume that the

social network platform has successfully detected the attack, having

recognized that an abnormal change has happened to x , but having
no information about the location of the attack. Now, knowing both

x and x̃ , the goal is to recommend links to the users, restoring the

network’s average opinion. To that end, we will compare several

methods described in the following section.

6.1.3 Methods. We experiment with several versions of our heuris-

tic, as well as two baselines. Note that there is no state of the art,

as no existing method can solve our optimization problem.

▷ DIVER: uses Algorithm 1 with fπ being computed using all
rather than O(1) top-centrality nodes, and estimates MFPTs using

the procedure of Sec. 5.4.2. The heuristic adds k edges at a time,

improving the distribution of eigencentralities π̃ either until the

average opinion ⟨π̃ , x̃⟩ gets close enough to its original state ⟨π ,x⟩,
or a maximum of kmax new edges is reached. The number nsrc of

top-centrality nodes considered in computation is 20 for synthetic,

10 for Karate, 40 for Facebook, and 200 for Epinions networks.

This version of Algorithm 1 has quadratic time complexity, and

represents “the best case” behavior of DIVER heuristic.

▷ DIVER(fπ ∼ X%), X ∈ {10, 20, 30}: similar to DIVER above,

except that Algorithm 1 estimates fπ using only a fraction X of all

the nodes. The time complexity of these methods is pseudo-linear,

as per Theorem 7, and lower values of X correspond to a higher

computational efficiency, yet, to a lower effectiveness (more new

edges are spent to recover the original average opinion).

▷ BASE(rnd): the worst-case baseline, that selects new edges

uniformly at random. It is expected to keep the average opinion at

about the same level.

▷ BASE(θrc (πr − πc )(x̃r − x̃c )): this baseline attempts to effec-

tively reduce the average opinion ⟨π , x̃⟩ by adding heavy-weight

edges from higher-centrality nodes r having larger opinion values

to lower-centrality nodes c having lower opinion values, thereby,

reducing the contribution of πr x̃r and increasing that of πc x̃c to

the value of ⟨π , x̃⟩. This baseline—similarly to DIVER—ranks only

the candidate edges outgoing from nsrc top-centrality nodes, and,

hence, is computable in pseudo-linear time (“pseudo” since it uses

π ). The main qualitative difference of this baseline from DIVER is

that it uses only absolute centrality information πi , while DIVER
takes into account both absolute and relative “centrality”mi j .

6.1.4 Evaluation. For all these methods, we assess their perfor-

mance based on howmany candidate edges a method uses to restore

the original average opinion.

6.2 Solving DIVER

In this section, we solve DIVER using the previously described

networks and methods. All these methods add k = 10 edges at a

time, improving the distribution of eigencentralities π̃ either until

the average opinion ⟨π̃ , x̃⟩ gets close enough to its original state

⟨π ,x⟩, or a maximum of kmax = 200 new edges is reached. The

results are displayed in Fig. 7.

We can see that our heuristic works well on all scale-free-like

networks, disabling attacks by adding 20-60 candidate edges. In

case of ER network, the quality of all absent edges is uniformly
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low, which naturally leads to all the methods’ performing uni-

formly poorly. For the case of Karate network—which, similarly

to ER network, has rather low skewness and kurtosis of eigen-

centrality and degree distributions as per Table 2—performance

of DIVER heuristic degrades rather fast with the number of nodes

used in computation of fπ ; for example, using 30% of nodes to

compute fπ , it takes DIVER(fπ ∼ 30%) twice as many new edges

as DIVER to restore the average opinion. We also see that baseline

BASE(θrc (πr − πc )(x̃r − x̃c )) performs well only on BA network,

and underperforms on all the other networks. Notice, however, that

during the first one-two iterations of edge addition, this baseline

performs almost as well as DIVER does, as both methods add edges

outgoing from very high-centrality nodes, which appear to be the

best according to both the absolute centrality-based assessment of

the baseline, and the relative centrality-based assessment of DIVER.

However, during the subsequent iterations, the relative centrality

information starts playing a crucial role for edge addition impact

assessment, and the baseline’s performance rapidly degrades, while

DIVER continues to perform well.

7 CONCLUSION
In this work, we formulated DIVER—a new problem of strategically

recommending links in a social network to disable the effect of

malicious external control of user opinions. Due to NP-hardness of

this problem, we focused on designing a heuristic for it. To that end,

relying on the theory of Markov chains, we provided a perturba-

tion analysis, formally answering the question of how the network

nodes’ eigencentralities and, thus, DIVER’s objective change when

a edge is added to the network. This analysis led to the definition of

candidate edge scores that quantify the potential impact of candi-

date edges, allowing to add them to the network in a greedy fashion.

We also provided insights into how to compute these edge scores in

scale-free-like networks in pseudo-constant time, which resulted in

a pseudo-linear-time heuristic for DIVER. One of these insights is

related to efficient estimation of mean first passage times in Markov

chains. We confirmed our theoretical and algorithmic findings in

experiments with synthetic and real-world networks. In particular,

we showed the importance of taking into account relative node

centrality information when dealing with strategic manipulation

of absolute centrality. Future work includes adapting DIVER to the

optimization of the opinion distribution rather than the average

opinion, deriving formal convergence bounds for MFPT estimation,

and evening the quality of MFPT estimates by biasing the random

walk. Finally, and more importantly for the society, we should study

how to ensure that link recommendation is not misused by online

social network platforms as a tool for malicious opinion control.
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