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1. Introduction

Soft anomalous dimensions are fundamental field-theoretical functions that are essential in
determining soft-gluon contributions to partonic scattering cross sections (for a review see Ref. [1]).
Such cross sections factorize in Laplace or Mellin moment space into products of hard, soft, and
jet functions.

The soft function, S, is in general a matrix in color space and it satisfies the renormalization
group equation [2]

d d
<,,Lau+ﬁ(gs)ag> S= TS ST, (L)

with soft anomalous dimension I's, also a matrix. The evolution of the soft function results in
the exponentiation (resummation) of logarithms of the moment variable. Resummation at NNLL
accuracy requires two-loop soft anomalous dimensions while at N3LL accuracy it requires three-
loop soft anomalous dimensions.

In a top-quark production partonic process, fi + f» — ¢ + X, we define a threshold variable s4
that measures distance from partonic threshold. When the resummed cross section is inverted
to momentum space, the soft-gluon corrections involve logarithms of s4, but a prescription is
needed for all-order results to deal with infrared divergences. Such resummed results are strongly
prescription-dependent, and some prescriptions give poor results by underestimating the true size
of the corrections. Alternatively, finite-order expansions can be performed with better control over
subleading effects and no prescriptions. Expansions to second and third order (with matching with
lower-order complete results) provide approximate NNLO (aNNLO) and N3LO (aN3LO) predic-
tions which are state-of-the-art. As we approach partonic threshold, s4 — 0, there is diminishing
energy left for additional gluon radiation, and the contributions from soft-gluon emission are dom-
inant and they provide excellent predictions for the high-order corrections.

In the next section, we present results through three loops for the cusp anomalous dimension,
which is the simplest soft anomalous dimension. We consider the case when both eikonal lines
are massive and the case when one line is massive and one is massless. In Section 3, we present
results through three loops for the soft anomalous dimensions in single-top production processes,
in processes with a top quark in new physics models, and in top-antitop pair production.

2. Three-loop cusp anomalous dimension

A basic ingredient of soft anomalous dimensions for partonic processes is the cusp anomalous
dimension [3-7] (see Fig. 1 for representative eikonal diagrams at one, two, and three loops). The
cusp angle is defined by 6 = cosh™!(p; - p il\/ p%p?), in terms of the momenta of eikonal lines i

and j, and the perturbative expansion for the cusp anomalous dimension is I'cysp = Y (%)” ng)sp.
When the lines represent a top and an antitop, then the cusp anomalous dimension can be thought
of as the soft anomalous dimension for ee~ — 7. From the UV poles of the loop diagrams in
dimensional regularization we calculate results at each order.

At one loop,

Ty = Cr(6coth® — 1), 2.1)
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Figure 1: Representative eikonal diagrams for the cusp anomalous dimension at one, two, and three loops.

where Cr = (N> —1)/(2N), with N the number of colors. In terms of the heavy-quark speed

B =tanh(6/2), we have 6 = In (%) and

(Hﬁz)ln(l_ﬁ)—l}. (2.2)

(ny
N

At two loops [4],
(2) o) 1 2 LA 20
T = K@ Talp+ 5CrCa{ 146+ 67 —coth | 5,6+ 6 —l—?—l-le(l—e )

3
+coth?6 {— G+ 60+ % +0Lis (ﬂ") +Lis (e”)] }(2.3)
where K'?) = K?) /Cp = C4(67/36 — {»/2) — 5ns/18, with C4 = N and ns the number of light
quark flavors.

At three loops [5, 6],

3 / 1 / 2 / 1 3
T&), =K OTG), + 2@ |18l — KO8, | + 5l 2.4)

where K ®) = K0 /Cr is a lengthy expression with color terms and constants (note that in general
K™ denotes the proportionality factor of the n-loop cusp anomalous dimension in the massless
limit with 0). The expression for Cc(ﬁgp is very long (see [6] for details). For top-quark production

ny =135, and a simple numerical expression is [6]
TOLPPY (B = 0.09221 B2 +2.80322 Ty (B) - (2.5)

For the case where one eikonal line is massive and one is massless we find simpler expressions
for the cusp anomalous dimension, which we now denote as I'. to distinguish it from the fully
massive case. If eikonal line i represents a massive quark and eikonal line j a massless quark, then

1y 2pi-pj\ 1
) —cp [m( e > 2] , (2.6)
@ _ @ |y (2PiPi\ 1] 1 _
r? =k h(%ﬁ) S|+ 3CrCa1=83), @7

2p;ipi
r® _ 0 [ln( P p1> _1} + ik, - &)

1 3 3 9
+CrC3 [—4+8C2—i3—8§zé;3+16.§5]. (2.8)
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The cusp anomalous dimension is an essential component in calculations of soft anomalous
dimension matrices for general partonic processes. In the fully massless case, two-loop soft anoma-
lous dimension matrices are proportional to the one-loop quantity [8]; however, when masses are
present this is no longer the case. We also note that three-parton correlations with at least two
massless lines vanish at any order due to constraints from scaling symmetry [9, 10]. However,
four-parton correlations at three loops and beyond do not necessarily vanish even in the massless
case [11]. We will show explicit results at one, two, and three loops for various top-quark processes
in the next section.

3. Soft anomalous dimensions for top-quark processes

We now present results for the soft anomalous dimensions through three loops for a variety of
top-quark production processes.

3.1 Single-top-quark production

Single-top cross sections  m=172.5 GeV
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Figure 2: Theoretical single-top cross sections for the ¢ and s channels at aNNLO [1, 13] and for tW produc-
tion at aN3LO [14], using MMHT2014 NNLO pdf [15], at LHC energies compared with LHC data [16-20].

We begin with single-top-quark production [1,7,12—14]. Before presenting the analytical form
of the soft anomalous dimensions, we show in Fig. 2 theoretical predictions at NNLL accuracy for
the cross sections at LHC energies. The soft-gluon corrections are important and the theoretical
predictions are in very good agreement with the data.
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3.1.1 Single-top 7-channel production

The partonic processes in single-top z-channel production are b(p1) +q(p2) — 1(p3) +¢'(p4)-
We define the usual partonic kinematical variables s = (p; + p2)%, t = (p1 — p3)%, and u = (py —
p3)?, and the threshold variable s4 = s+ +u —m?. We choose a singlet-octet ¢-channel color basis
c1 = 01364 and ¢ = T5; T,. The soft anomalous dimension is a 2 x 2 matrix.

At one loop, the four matrix elements are [1, 12, 13]

rJS(111) _c, [ln <t(t—m,2)> _1] ’ rg(llz) _Cr <u(u—m§)> | rJS(zll) :ln<u(u—m§)> |

mys3/2 2 2N\ s(s—m?) s(s—my?)
(1 t(t —m?) 1 u(u—m?) N u(u—m?)
ri=ar () -3 - (S ) <2 () G

At two loops, we find [7,13]
/ 1 !
- Kor s lean-g), R -xOry,
, / 1
T =K, T =KOrd)+ 2cea(1- ). (3.2)

At three loops, we only need the first element of the matrix for N°LL resummation, and to
calculate the N3LO soft-gluon corrections. We have [7]
1 &G 3

, 1 3
) = kO 4 kO, (1- &) +CrCE |-~ + FlCht

9
> 1 3 _§C2C3+E€5 : (3.3)

Due to the simple structure of the leading-order hard matrix, the other three matrix elements of
I'§ at three loops do not contribute to the N3LO corrections. We can still provide expressions for
those three matrix elements, up to four-parton correlations, as discussed in the context of s-channel
production below.

3.1.2 Single-top s-channel production

The partonic processes in single-top s-channel production are ¢(p1) +@ (p2) — t(p3) +b(ps).
We again have a 2 x 2 soft anomalous dimension matrix, and we choose a singlet-octet s-channel
color basis, c; = 812034 and ¢, = Ty T5,.

At one loop, the four matrix elements are [1, 12, 13]

2 2 2
1 _ §—my _1 (D_ﬁ 1t —my) (1 _ t(t —m;)
it e (50 ) <o) m =g () 8= (i)

2 2 2
s(1) s—mi\ 1] 1 t(t—mt)) N (t(t—m,))
sy, =Cr [ln < t\/§> 2] N In <u(u 2 + > In 7s(s—m,2) . 3.4

At two loops, we have [7,13]

/ 1 '
FSS(lzl) =K (z)rf?(l]l) + ZCF Ca(1=8), 1—‘59(122) =K (2)1'“;(112) )

/ ' . / 1
B =KOnl), O =KOnY s e -g). (3
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At three loops, again we only need the first element of the matrix for N’LL resummation and
N3LO corrections. We find [7]
1 3 4

/ 1
1'“;(131):K(S)F;(lll)—f—fK(Z)CA(l—C3)+CFC§ _7+§C2_§_

3 9
5 1 §C2C3+T6§5 - (3.6)

The other three matrix elements of I'; at three loops are not fully known. However, we can see
that the structure of the results will be similar to those at two loops. The three-loop off-diagonal
matrix elements will have a similar form as at two loops [replace all two-loop terms, denoted by
superscript (2), in Eq. (3.5) by the corresponding three-loop terms, denoted by superscript (3)]
while l";g) should have the form of Eq. (3.6) [just replace the element subscript 11 with 22] up to
four-parton correlations. The same also applies to the 7-channel results as indicated previously.

3.1.3 Associated W production

In tW production, the partonic process is

b(p1)+g(p2) = t(p3) + W™ (pa). (3.7)

In this case the soft anomalous dimension is a simple function (not a matrix).
At one loop, we have [12,13]

2 2
W) m; —t 1 Cy u—m;
I —CF[ln(mt\/g> 2]+21 ) (3.8)

At two loops, we have [13]

/ 1
F'SW(2) —K (2)IJSW(1) + ZCFCA(l - &). 3.9

At three loops, we have [7]

ry’ ¥ =gerdt +;K ACA(1=83) +CrC —i+ C—é—§C2C3+ G| (10

3.2 tZ,tZ',ty, and tH~ production

Top quarks can also be produced in association with electroweak and Higgs bosons in models
of new physics. Such processes include the associated production of a top quark with a charged
Higgs boson via bg — tH~ [21]; the associated production of a top quark with a Z boson, gg — tZ
[22], or with a photon, gg — tY [23], via anomalous couplings; and the associated production of
a top quark with a Z’ boson either via anomalous couplings, gg — tZ', or via initial-state tops,
tg — tZ' [24]. The soft anomalous dimensions for all these processes are identical to the one for
bg — tW™ that was presented in the previous subsection.

3.3 Top-antitop pair production

We continue with top-antitop pair production [1,2,25,26]. The soft anomalous dimension is
a 2 x 2 matrix for the quark-initiated channel, gg — t, and a 3 x 3 matrix for the gluon-initiated
channel, gg — 11 [2,25,27].
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We begin with the soft anomalous dimension matrix for the gg — ¢ channel in a color tensor
basis of s-channel singlet and octet exchange, ¢; = 812034 and ¢, = T, T5;.
At one loop for gg — t7 [2,25]:

] : C t—m? , t—m;
) = ey, = S () vt <o (1202,

u—m;

; Cy 1 t —m? Cy sm?(t —m?)?
() _ (1 AN g L) -2 () L (3l
522 2Cp cusp + 2L N u—m? 2 +in (u—m?)* -11)

At two loops for gg — tf [1,25]:
Y = 18, T = (K o) e rg? = (KO- ang) re”

G2 / 7(1 Ca 2 / 1
rgf = KOrgll - (1- 4 (Fﬁu)sp—K (Z)Fﬁulp), (3.12)
2Cr
where )
2_06" 1 a2 v (1_,-26
N = -+ oot |G — 67 —Lip (1 -7 | (3.13)

At three loops, it is evident that the diagonal elements of the three-loop matrix for gg — tf
receive contributions from the three-loop massive cusp anomalous dimension, Eqgs. (2.4), (2.5),
but we do not yet have complete three-loop results. However, in analogy to our discussion for
s-channel and 7-channel single-top production, the structure of the results at three loops should be
analogous to that at two loops [replace all two-loop terms, denoted by superscript (2), in Eq. (3.12)
by the corresponding three-loop terms] up to four-parton correlations.

We continue with the soft anomalous dimension matrix for the gg — ¢f channel in a color
tensor basis ¢; = 812 4, ¢y = d'** T3y, and c3 = if12e T3,

At one loop for gg — ¢ [2,25]:

1 1 1 1 1 t—m; 1 t—my;
) =, =0, TP o, Y- (20, gl —am (2,

u—mt2 u—m,z
Ca ) Ca smy;
re — (oAl A 4 :
522 2CF )P 2 i (t—m?u—m?) )|’
2 2 2
(1) _ Cay (t=m (iy_ (V=4 (t—m (1) _ peg()
Iy = 21n<u_mtt2>v I = N In u_mttz , T =Tsy (.14)

At two loops for gg — 17 [1,25]:
0 =18, TP -0, TP -0, P - (kO -c)rEl.

/ / C !/
i = (K2 T, T = KO+ (1520 ) (i -kl )

2 / 1 2 / 1 2 2
= KO P - s - 319

At three loops, again it is clear that the diagonal elements of the three-loop matrix for gg — tf
receive contributions from the three-loop massive cusp anomalous dimension, Egs. (2.4), (2.5),
but we do not yet have complete three-loop results. However, in analogy to our discussion for the
quark-initiated channel, the structure of the results at three loops should be analogous to that at two
loops [replace all two-loop terms, denoted by superscript (2), in Eq. (3.15) by the corresponding
three-loop terms] up to four-parton correlations.
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