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Abstract. There are well-known criteria on the potential and field-space geometry for
determining if slow-roll, slow-turn, multi-field inflation is possible. However, even though
it has been a topic of much recent interest, slow-roll, rapid-turn inflation only has such
criteria in the restriction to two fields. In this work, we generalize the two-field, rapid-turn
inflationary attractor to an arbitrary number of fields. We quantify a limit, which we dub
extreme turning, in which rapid-turn solutions may be found efficiently and develop methods
to do so. In particular, simple results arise when the covariant Hessian of the potential has
an eigenvector in close alignment with the gradient – a situation we find to be common and
we prove generic in two-field hyperbolic geometries. We verify our methods on several known
rapid-turn models and search two type-IIA constructions for rapid-turn trajectories. For the
first time, we are able to efficiently search for these solutions and even exclude slow-roll,
rapid-turn inflation from one potential.
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1 Introduction

Rapidly turning trajectories in multi-dimensional field spaces have been of much recent inter-
est: they can yield inflation and quintessence in potentials satisfying the de-Sitter conjecture
[1–17], and they can form primordial black holes [18–21]. Rapidly turning inflation mod-
els are also profound in their own right, as they can exhibit dynamics very different from
single-field inflation while being phenomenologically viable [14, 15, 22–28].

The turning rate ω of a classical trajectory is related through the equations of motion
to the parameters ε, η, and εV ,

εV = ε

{(
1 +

η

2(3− ε)

)2

+
ω2

9H2

1

(1− ε/3)2

}
, (1.1)

where the slow-roll and gradient parameters are defined as:

ε ≡ − Ḣ

H2
, η ≡ ε̇

Hε
, εV ≡

M2
Pl

2

|∇V |2

V 2
. (1.2)

Slow-roll, slow-turn inflation occurs when ω2/9H2 � 1, η � 1, and ε ' εV � 1. Bounds
on εV , which depend only on the potential and field-space geometry, can be used to exclude
this type of inflationary trajectory. In [29–32], no-go theorems were shown to bound εV to
be greater than O(1) constants in several classes of potentials.

Until recently, there were no similar universal criteria for trajectories with large ω and
εV , but small ε and η. Such criteria were only known for specific forms of potentials and
field-space metrics (see, e.g. [9, 14, 25]). We designate these solutions as having slow-roll,
rapid-turn inflation. Last year, Bjorkmo [33] published a two-field rapid-turn inflationary
attractor, which allows a straightforward calculation of ω and ε in terms of only potential
and field-space metric parameters. This enables one to find regions of field space admitting
rapid-turn inflation without evolving individual trajectories.

In this work, we generalize Bjorkmo’s result to an arbitrary number of fields and develop
methods for solving the resulting equations of motion across the entirety of field space (Section
2). Similar to the two-field case, the field velocities are entirely determined by the assumptions
of slow-roll and rapid-turning. However, unlike the two-field case, the magnitudes of the
acceleration terms are not uniquely determined by slow-roll. We carefully analyze the relation
between the accelerations and the turning rate. This leads us to define the extreme turning
limit, in which most of these accelerations are negligible. We then discover a purely algebraic,
covariant matrix equation to solve for the field velocities, and introduce a numerical algorithm
to solve it in full generality.

A particularly simple solution to this equation arises when an eigenvector of the poten-
tial’s covariant Hessian matrix approximately aligns with the potential’s gradient vector. In
Section 3, we observe that this Hessian alignment is rather common, analytically find the
implied rapid-turn solution and develop a perturbation series around the alignment of the
Hessian.

We explore several potentials, including some known to have rapid-turning solutions
and two type-IIA constructions in Section 4. We are able to exclude inflation in one of the
type-IIA potentials, and identify short-lived rapid-turn initial conditions in another.
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2 The Rapid-Turn Solution

We work in an FLRW spacetime, with multiple scalar fields φa minimally coupled to gravity,
a scalar potential V (φ), and an arbitrary kinetic term of the form Gabφ̇

aφ̇b/2. The kinetic
term coefficients Gab(φ) may be viewed as components of a metric on field-space. The usual
equations of motion,

Dtφ̇a + 3Hφ̇a +GabV,b = 0, (2.1)

do not readily reveal rapid-turn inflationary solutions: the kinematic basis {φ̇a|a = 1, . . . , Nf}
singles out no particular direction that is tracked by turning trajectories without solving the
equations of motion. As shown in [10], a basis consisting of the potential’s gradient vector
proves much more useful, since turning trajectories have a non-vanishing velocity along the
directions perpendicular to the gradient.

In this choice of basis, the field velocity is expanded as φ̇a = (φ̇bv
b)va+ φ̇b ⊥ab, where va

is a unit vector in the gradient direction of the potential. The velocity parallel to the gradient
is φ̇v ≡ φ̇av

a, and the projector ⊥ab≡ Gab − vavb gives the component of the field velocity
perpendicular to the gradient, φ̇a⊥ ≡⊥ab φ̇b. The norm can then be written φ̇2 = φ̇2

v + φ̇2
⊥,

where φ̇2
⊥ = φ̇⊥bφ̇

b
⊥. The equations of motion in this basis are:

φ̈a⊥ ≡ Dt(⊥ab φ̇b) = −3Hφ̇a⊥ −
⊥ab V;bcφ̇

c

Vv
φ̇v − va

φ̇b⊥V;bcφ̇
c

Vv
, (2.2)

φ̈v ≡ Dt(φ̇ava) = −3Hφ̇v − Vv +
φ̇a⊥V;abφ̇

b

Vv
, (2.3)

where the norm of the potential gradient is given by Vv ≡
√
GabV;aV;b, and V;ab denotes

the covariant Hessian matrix of the potential. Gab is the inverse metric on field space. The
velocity direction’s unit vector is:

σ̂a =
φ̇vv

a + φ̇a⊥
φ̇

. (2.4)

In analogy with the two-field result, we can define ⊥a≡ φ̇a⊥/φ̇⊥ so that σ̂a = (φ̇vv
a+φ̇⊥ ⊥a)/φ̇.

The turning vector ωa ≡ Dtσ̂a and its corresponding unit vector ŝa then take the form:

ωa =

(
−φ̇2
⊥v

a + φ̇a⊥φ̇v

)
Vv

φ̇3
, (2.5)

ŝa ≡ ωa

|ωa|
=
−φ̇⊥va+ ⊥a φ̇v

φ̇
. (2.6)

The advantage of this basis is now manifest, as the turning rate is nonzero whenever the
trajectory has a non-vanishing φ̇a⊥. We can write the norm of the turning rate, ω ≡ |ωa|, as:

ω

H
= − ŝ

aVa

Hφ̇
=
φ̇⊥Vv

Hφ̇2
. (2.7)
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2.1 Re-expressing the turning rate

Ideally, we seek an expression for ω/H in terms of only the potential and its derivatives, which
would allow us to bound when slow-roll, rapid-turn inflation is possible without evolving the
equations of motion. In other words, we would like to eliminate all velocity dependence
from (2.7). In this subsection, we derive several expressions which nearly achieve this goal:
the velocity dependence is reduced to only the direction of the perpendicular velocity ⊥a≡
φ̇a⊥/φ̇⊥. In the restriction to two fields, this velocity dependence vanishes (as there is only
one direction perpendicular to the potential gradient), and we recover Bjorkmo’s results.

We begin by examining the ω-dependence of the norm of the velocities. Using the
equations of motion, we may express them exactly in terms of ε, η, and ω:

φ̇v

φ̇
=

−3 (1− ε/3 + η/6)√
9(1− ε/3 + η/6)2 + ω2/H2

φ̇⊥

φ̇
=

ω/H√
9(1− ε/3 + η/6)2 + ω2/H2

φ̇ =
Vv

H
√

9(1− ε/3 + η/6)2 + ω2/H2
.

(2.8)

Slow-roll, rapid-turn trajectories have both ε � 1 and |η| ∼ O(ε) � 1, so we may drop the

explicit ε and η terms in (2.8) for velocities accurate to O(ε), i.e. φ̇v = ˙̄φv +O(ε). When this

truncation is consistent, the accelerations terms are negligible: ∂t
˙̄φ ∼ O(εH ˙̄φ). Alternatively,

the va and ⊥a acceleration components,

∂t
˙̄φv

H ˙̄φv
=
Vvvφ̇v + Vv⊥φ̇⊥

HVv
+ ε− 2ν

9H2

ω2 + 1
(2.9)

∂t
˙̄φ⊥

H ˙̄φ⊥
= ν +

∂tφ̇v

Hφ̇v
(2.10)

must both be O(ε). Here, ν is given by:

ν ≡
( ω
H

)′/( ω
H

)
(2.11)

=
Vvvφ̇v + Vv⊥φ̇⊥

HVv
+O(ε), (2.12)

where primes denote the e-fold derivative ∂N ≡ H−1∂t. A slowly-varying turn rate is therefore
necessary for our truncated velocities to be consistent.

Combining these velocities and the equation of motion (2.3), we derive several expres-
sions for ω:

ω

H
= −3φ̇⊥

φ̇v

(
1− ε

3
+
η

6

)
, (2.13)

ω

H
=
⊥a V;abφ̇

b

HVv
+O(ε), (2.14)

ω2

H2
=
V⊥⊥
H2
− 3

ω

Vv⊥
H
− 9 +O(ε) (2.15)
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where ⊥a≡ φ̇a⊥/φ̇⊥ and V⊥b ≡⊥a V;ab. Further, when we demand the turning rate to be
slowly-varying, i.e. ν ∼ O(ε), the last expression reduces to two explicit equations:

ω

H
=

3Vvv
Vv⊥

+O(ε) (2.16)

ω2

H2
=
V⊥⊥
H2
−

V 2
v⊥

VvvH2
− 9 +O(ε). (2.17)

These must agree in regions of the potential where a long-lasting rapid-turn solution is
possible.

The difference between two dimensions and higher dimensions is manifest in (2.14)-
(2.17). At first glance, these expressions allow us to compute ω purely from components of
the covariant Hessian matrix V;ab, ostensibly satisfying our goal of identifying regions of field
space admitting rapid-turn solutions. However, with more than two fields, the unit vector
⊥a is not uniquely determined by va: it requires the velocity direction as well. Fortunately,
we find that the velocities φ̇a⊥ may be computed algebraically from the equations of motion
upon imposing carefully formulated assumptions of slow-roll and sufficiently high turning1.

2.2 Extreme turning and the perpendicular velocity

We now seek a slow-roll, rapid-turn solution for φ̇a⊥ by solving the equations of motion (2.2)
and (2.3). We first consider the acceleration terms and notice that not all components of φ̈a⊥
can be neglected. Using (2.14), we can see that φ̈a⊥ ⊃ vaφ̇⊥ω. Fortunately, this term does
not enter the low-order slow-roll parameters. The acceleration parameter η can be expanded
as:

η =
Dt(φ̇2)

2εH3
+ 2ε

= −6− Vvφ̇v
εH3

+ 2ε,

(2.18)

where

Dt(φ̇2) = 2(φ̇vφ̈v + φ̇⊥aφ̈
a
⊥). (2.19)

In terms of the accelerations, demanding η ∼ O(ε) without a fine-tuned cancellation then
requires:

φ̇vφ̈v
H3

∼
φ̇⊥aφ̈

a
⊥

H3
. O(ε2). (2.20)

Notably, the gradient acceleration φ̈v and the component of φ̈a⊥ along ⊥a are constrained by
η. Observing that trajectories with nontrivial turning may have an appreciable φ̇v via (2.13),
we are motivated to neglect the acceleration term φ̈v for full generality. Doing so renders
(2.3) a purely algebraic equation for the velocity φ̇v.

Unfortunately, this is not sufficient to solve the other equation of motion (2.2). The
accelerations in directions aligned with neither the perpendicular velocity nor the potential
gradient could in principle be arbitrarily large, yet not contribute to η. These accelerations
cannot be trivially neglected in a field space of dimension Nf > 2; this contrasts the two-field

1Some limited information about these Hessian components is available without knowing ⊥a. Because the
Hessian is a linear transformation, λmin ≤ V;⊥⊥ ≤ λmax and V 2

;v⊥ ≤ V;vaV;vbG
ab, where λmin and λmax are the

minimum and maximum eigenvalues of the Hessian.
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attractor discussed in [33], where these accelerations are trivially absent. Their magnitudes
are determined by the potential’s covariant Hessian, which we now proceed to analyze more
closely.

We parametrize these directions with the projector Πab ≡⊥ab − ⊥a⊥b and define an
orthonormal basis {Πa

(p)|p = 1, . . . , Nf − 2} spanning this Π-subspace. These directions have
a contribution to the equations of motion given by:

φ̈⊥(p) ≡ Π(p)aφ̈
a
⊥ = −

V;(p)cφ̇
c

Vv
φ̇v, (2.21)

where V;(p)c ≡ Πb
(p)V;bc. At least a priori, we cannot rule out slow-roll, rapid-turn initial

conditions with these terms arbitrarily large.
Nevertheless, we know that the gradient component of the acceleration φ̈a⊥ is large

during rapid-turn trajectories: φ̈a⊥va/(Hφ̇⊥) = ω/H+O(ε). By comparison, the acceleration
components in the Π-subspace are inversely proportional to ω:

φ̈⊥(p)

Hφ̇⊥
=
−9HV;v(p) + 3ωV;⊥(p)

9H2ω + ω3
+O(ε). (2.22)

We observe that (2.15) ensures ω is independent of the Hessian’s contractions in the Π-
subspace, V;(p)a. We therefore expect these Π-accelerations to be suppressed in the limit
of an extremely large ω. This limit holds so long as the Hessian components V;(p)a/H are
sufficiently small with respect to ω.

In order to constrain these Hessian components, we define φ̈⊥v ≡ vaφ̈a⊥ and require the
norm-square of φ̈⊥(p) be smaller than that of φ̈⊥v. Demanding that ν be small, we replace
the hessian components in terms of ω using (2.16)-(2.17). Then, expanding in powers of ω,
we have:

φ̈2
⊥Π

φ̈2
⊥v

=
9H2V 2

;⊥Π

ω6
−

54H3V;⊥ΠV;Πv

ω7
+

81H4V 2
;vΠ − 162H4V 2

;⊥Π

ω8
+O

(
1

ω9

)
+O (ε) , (2.23)

where φ̈2
⊥Π ≡ φ̈a⊥Πabφ̈

b
⊥ and V;aΠV;Πb ≡ V;acΠ

cdV;db. Barring a fine-tuned cancellation, the Π
components are negligible compared to the gradient component when:

V 2
;⊥Π

H4
� ω6

H6
,

V 2
;vΠ

H4
� ω8

H8
. (2.24)

On the other hand, the analogous ratio involving φ̈⊥⊥ ≡⊥a φ̈a⊥ vanishes to O(ε) so long as ν
is sufficiently small to admit (2.16):

φ̈⊥⊥

φ̈⊥v
' O (ε) . (2.25)

This highlights the subtle, yet critical, connection between the longevity of turning ν and
the longevity of inflation η we first observed in Section 2.1.

These bounds illustrate the conditions required for a high-turning trajectory to have
negligible Π-accelerations. In this limit, the only non-negligible acceleration is φ̈⊥v. All other
projections of the equations of motion (2.2) and (2.3) may therefore be treated as algebraic
equations for the velocities φ̇a⊥ and φ̇v. We dub this the extreme turning limit.
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Since the Hessian contractions in (2.24) involve the ⊥a direction, we cannot immediately
determine what qualifies as extreme turning from the potential and metric alone. We can,
however, define the threshold value,

ωextreme

H
≡
(
V;va ⊥ab V;bv

H4

)1/8

, (2.26)

which is strictly larger than the Hessian contraction (V 2
;vΠ/H

4)1/8 appearing in (2.24). The

gradient direction and the projector ⊥ab are determined exclusively from the potential and
metric, so ωextreme can be computed without having a solution at hand. Extreme turning
trajectories then satisfy ω � ωextreme.

The methods described below will only search the subset of all possible solutions that
feature extreme turning. We treat (2.24) as self-consistency conditions that may be verified
after solving the equations of motion for the velocities φ̇a⊥ via our methods. In the only
explicit Nf ≥ 3 sustained rapid-turn trajectory we know of, all components of φ̈⊥(p) are
sufficiently small to admit ωextreme � ω; see Section 4.2. However, we suspect that (2.24)
could be violated and still lead to a slow-roll, rapid-turn trajectory. Regrettably, we lack the
tools to explore these general conditions.

With this in mind, we restrict our search to initial conditions with the perpendicular
accelerations φ̈a⊥ approximately aligned with va. In other words, we take φ̈a⊥φ̇⊥a ≈ 0 not by
projection, but by zeroing all components of φ̈a⊥ perpendicular to the gradient.

Under this assumption, the terms in (2.2) in the direction perpendicular to the gradient
cancel:

3HVvφ̇
a
⊥ ≈ − ⊥ab V;bcφ̇

cφ̇v. (2.27)

Expanding φ̇c = φ̇vv
c + φ̇c⊥, we find:(

3HVvδ
a
c + φ̇v ⊥ab V;bc

)
φ̇c⊥ = −φ̇2

v ⊥ab V;bcv
c, (2.28)

which can be solved as a matrix equation for the components φ̇c⊥. In practice, a simultaneous
method of finding φ̇v is also necessary – we describe our numerical technique below in Section
2.4.

Solving (2.28) can give multiple solutions, which we now enumerate. To solve for the
velocities, we must invert the matrix on the l.h.s. of (2.28), then plug the solution for φ̇a⊥
into the φ̇v equation of motion. The inverse matrix will be inversely proportional to the

determinant, which is a polynomial of degree φ̇
Nf−1
v . The entries in the matrix of cofactors

will be polynomials of degree φ̇
Nf−2
v . Then, naively, the φ̇v equation (2.3) is an O(φ̇

2Nf
v )

polynomal, and could have up to 2Nf real solutions. However, the highest power coefficient
is always zero, as can easily be seen by setting H = 0 in (2.28), and the polynomial is only
of order 2Nf − 1. Though 2Nf − 1 solutions are possible, rarely in practice are all of these
real-valued. As we show in Section 3, the number of physically possible solutions is closely
linked to the eigenvalue spectrum of the Hessian.

2.3 Longevity of solutions

All real-valued solutions correspond to valid rapid-turn initial conditions, though are not
guaranteed to be long-lived trajectories – i.e., there is no guarantee Vvv, V⊥v, and V⊥⊥
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maintain a high ω at other points along the trajectory. In our searches, we estimate the
longevity of a solution by computing higher-order slow-roll parameters. We use ν as defined
in (2.11) and

ξ ≡ η′/η. (2.29)

When both ν and ξ are small, those initial conditions will correspond to a trajectory that
remains slow-roll and rapidly turning. Note that η is fixed to be O(ε) by our method of solving
for the velocities. Using (2.7) and the equation of motion (2.2), we recover the expression for
ν as shown by Bjorkmo [33], but generalized for any number of fields:( ω

H

)′
= −µ× +

ω

H
(−3 + ε− η) , (2.30)

where

µ× =
φ̇⊥φ̇v

H2φ̇2
(V⊥⊥ − Vvv) +

V⊥v

H2φ̇2

(
φ̇2
v − φ̇2

⊥

)
− 2

ω

H
ε. (2.31)

Alternatively ν can be expressed as

ν =
φ̈a⊥φ̇⊥a

Hφ̇2
⊥

+
φ̇⊥V⊥v + φ̇vVvv

HVv
+ 3ε− η. (2.32)

Similarly,

ξ =
φ̈vVv
H4εη

+ φ̇v
φ̇⊥V⊥v + φ̇vVvv

H4εη
+ η − 3ε− 18ε/η + 6ε2/η + 6

=
φ̈2
v + φ̈a⊥φ̈⊥a + φ̇v

...
φ v + φ̇a⊥

...
φ⊥a

ηεH4
+ 12ε− 12

ε2

η
− 2η

(2.33)

where the two expressions for ξ come from differentiating the two expressions for η in (2.18).
These parameters can be expanded to leading order in ε

ν =
Vvvφ̇v + Vv⊥φ̇⊥

HVv
+O(ε) (2.34)

ξ = ν
Vvφ̇v
H3

×O(ε−2) = −6ν ×O(ε−1) (2.35)

which makes it apparent that ξ cannot be estimated to O(1) with velocities less accurate
than O(ε2). Nonetheless, we have found ξ to be a helpful discriminator between solutions.

Although Vvv is absent from the equations of motion, we see its relevance here: long
lived solutions will have a Vvv and Vv⊥ such that the leading order term in ν approximately
cancels. In fact, one particularly effective check that a solution is long-lasting is to compare
the various expressions for ω2 in Section 2.1 – when ν is small and all of the accelerations
are negligible, they will all agree to O(ωε).

2.4 Numerical method

To numerically determine where a model satisfies rapid-turn inflation, we perform the fol-
lowing steps:

• After inputting the potential and metric, perform the necessary symbolic manipulations
to compute va, Vv, and V;ab.

– 7 –



• Choose a point in field space, and explicit values for any parameters in the potential.

• Guessing φ̇v, multiply (2.28) by the inverse of the matrix on the l.h.s. to solve for φ̇a⊥.
Using (2.3), check the acceleration φ̈v implied by this value of φ̇v.

• Repeat the last step, choosing φ̇v in the range 0 < −φ̇v < H
√

2εV to give φ̈v = 0. In
practice, we find the zeros of φ̈v/φ̇

2
⊥ and use a bisection algorithm to identify them to

high precision. There will always be exactly 2Nf − 1 values of φ̇v that set φ̈v to zero,
though none of them are guaranteed to lie within the searched range.

• Using the velocities corresponding to all found zeros of φ̈v, compute the various slow-roll
parameters ε, ω, η, ν, ξ, . . . and compute and check the consistency conditions (2.24).

• Repeat the previous four steps, scanning the model’s field and parameter space. Points
that support extended rapid-turn solutions are assumed to minimize a cost function

cost ≡

∣∣∣∣∣ φ̈v

3Hφ̇v

∣∣∣∣∣+Aε+B(|η1|+ |η2|) + C|ν|+ D

ω2
+
E

εV
(2.36)

where the two expressions for η are those in (2.18) and A,B, . . . , E are arbitrary relative
weights of each term. In our type-IIA constructions, we typically take A = 1, B = C =
0.1, D = E = 0 while in potentials that allow for slow-roll, slow-turn inflation, we take
D,E > 0. We use a differential evolution optimizer to efficiently perform this scan over
field space and parameter space [34].

Our implementation of this strategy was created using one of the authors’s Julia-language
inflation code, Inflation.jl2. Despite the complexity of finding rapid-turn solutions this
way, it remains orders of magnitude faster than blindly evolving the equations of motion.

2.5 Attractor behavior

In order to analyze the attractor nature of multi-field inflationary trajectories, we require the
mass matrix of a trajectory’s perturbations. The full mass matrix reduces to block-diagonal
form when certain perturbative modes decouple from the remaining degrees of freedom,
thus drastically simplifying the analysis. This is the case in generalized hyperinflation [10],
where perturbations along the adiabatic and first entropic directions decouple from the higher
entropic modes. Subsequently, only the 2 × 2 block of the full mass matrix describing these
two modes need be considered to determine stability of the trajectory. This decoupling is
also manifest in the time derivatives of the gradient direction va and a single perpendicular
direction wa, where one exclusively sources the other.

Assuming an arbitrary potential and field space geometry, we do not find a simple de-
coupling of two modes from the remaining degrees of freedom. The gradient’s time derivative
is given by

Dtva =⊥ab
V;bcφ̇

c

V;v
=⊥ab Vbc

V;v

(
φ̇vv

c + φ̇⊥ ⊥c
)

(2.37)

and mixes the gradient with the (a priori) unknown perpendicular direction ⊥a. Due to
the generic structure of the Hessian matrix, we cannot readily identify an a priori known

2https://github.com/rjrosati/Inflation.jl
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direction along which this time derivative lies. This contrasts generalized hyperinflation,
where Dtva can be made proportional to a particular eigenvector of the Hessian, wa, and
the remaining eigenvectors’ derivatives fully decouple from these two vectors. We observe
that this is possible in the extreme turning limit, since the Π-subspace components of the
gradient’s derivative are negligible. Then, the right hand side of (2.37) reduces to ω ⊥a. We
leave an analysis of this specific limit’s perturbations and attractor behavior for future work.

As a result, the perturbations’ equations of motion do not feature generalized hyper-
inflation’s decoupling of adiabatic and first entropic modes from the higher entropic modes.
Hence, the fully coupled equations do not readily admit an analytically simple mass matrix.
In light of this, we believe the attractor nature of a high-turning trajectory for a generic
potential and geometry must therefore be verified numerically.

Due to this absence of decoupling, we do not have a general prescription for analyzing
the phenomenology of perturbations in any potential and geometry. However, we do observe
that trajectories with high rates of turning are known to feature a tachyonic instability that
leads to an exponential growth of subhorizon modes’ power spectra [13, 14, 28, 35, 36]. This
growth must be considered in any phenomenological study of rapid-turn trajectories. We
end by noting that phenomenologically viable rapid-turn trajectories have been found in
[11, 14, 28], in which the mass scale of inflation is lowered to ensure an adiabatic power
spectrum that is consistent with observations.

3 The Aligned Hessian Approximation

The equations of motion (2.2) and (2.3) yield particularly simple analytic results when the
gradient is an eigenvector of the potential’s covariant Hessian matrix. As we argue below
in Section 3.1, this is generic in hyperbolic two-dimensional field space. The resulting ve-
locities can subsequently be used to compute the turning rate analytically. As an example,
hyperinflation and its generalizations [9, 10, 37] (also, Section 4.1) are a well-studied class of
high-turn rate models with such a Hessian.

For future use, we define an orthonormal basis {wa(i)|i = 1, . . . , Nf − 1} that spans

the directions in field space orthogonal to the gradient such that ⊥ab=
∑

iw
a
(i)w

b
(i). For

now, we make no assumption about the alignment of this basis with respect to the Hessian
eigenvectors. In this basis, (2.2) and (2.3) reduce to:

φ̈⊥i = −

[
3Hδij +

φ̇v
Vv
V;ij

]
φ̇⊥j −

φ̇2
v

Vv
V;iv (3.1)

φ̈v = −

[
3H −

φ̇i⊥V;iv

Vv

]
φ̇v − Vv +

φ̇i⊥V;ijφ̇
j
⊥

Vv
. (3.2)

3.1 When does the Hessian align?

We have observed that in large regions of parameter space, the gradient of the potential
aligns closely with one of the Hessian eigenvectors. We lack a formal proof of this alignment
for an arbitrary potential and geometry, but our numerical scans of parameter space indicate
this holds across many different models. In Section 4, we present several examples in which
this alignment yields robust results.

There is, however, a logical explanation for this alignment in the case of a two-dimensional
hyperbolic metric. Let
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Gab =

(
1 0
0 sinh2 x

)
(3.3)

In the limit x� 1, a vector V = (v1, v2) when normalized takes the form V̂ = (1, v2v1 ) +

O
(

1
sinh2 x

v22
v21

)
. The scalar product of two normalized vectors: V̂ and Û , in the region of x� 1

is approximately:

V̂ · Û = 1 +O

(
1

sinh2 x

v2 u2

v1 u1

)
(3.4)

There is alignment as long as (
1

sinh2 x

v2 u2

v1 u1

)
� 1 (3.5)

This relation will not hold for the normalized orthogonal vector to V̂ as

V̂⊥ =

(
1

sinhx

v2

v1
,− sinhx

)
(3.6)

Conversely, in the limit x � 1 a vector V = (v1, v2) when normalized takes the form
V̂ = x(v1v2 , 1)+O

(
x2
)
. The scalar product of two normalized vectors: V̂ and Û , in the region

x� 1 can be approximated by.

V̂ · Û = 1 +O

(
x2 v

2
1

v2
2

)
∼ 1 (3.7)

Thus, treating the gradient as an eigenvector of the Hessian should be a good approximation
everywhere but the region around x ∼ 1. When the metric is of the form,

Gab =

(
e2y/R0 0

0 1

)
, (3.8)

similar reasoning to the one given above explains why the gradient is close to being an
eigenvector of the Hessian when y � R0.

In the higher dimensional spaces that we study in sections 4.3-4.8, there are also sizable
regions of field space where the gradient is parallel to an eigenvector of the Hessian. A careful
analysis shows that this result depends both on the metric and the potential.

3.2 The diagonal Hessian

For this subsection, we’ll assume the Hessian has an eigenvector exactly aligned with va. Then
the wa(i) align with the Hessian eigenvectors, and the Hessian is diagonal in the {v, w(i)} basis:

V ;ab = V;vvv
avb + V;w1w1w

a
1w

b
1 + V;w2w2w

a
2w

b
2 + . . . (3.9)

Here, the Hessian’s eigenvalues are not required to be equal in the perpendicular directions.
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Under this assumption, V;iv = 0 and V;ij = λiδij , with no summation implied. The
equations of motion (3.1) and (3.2) become

φ̈v = −3Hφ̇v − Vv +
φ̇i⊥V;ijφ̇

j
⊥

Vv
(3.10)

φ̈⊥i = −

[
3H +

φ̇v
Vv
λi

]
φ̇⊥i. (3.11)

Note that the Π accelerations defined earlier (c.f. (2.21)) are identically zero with this
Hessian structure.

When η is small and the accelerations are negligible, two types of solution are possible.
Either all components of φ̇⊥i are zero and we recover slow-roll (3Hφ̇v = −Vv), or, for each
component of φ̇⊥i, either φ̇v = −3HVv/λi or φ̇⊥i = 0. Since φ̇v is a scalar, only one eigenvalue,
λk, can contribute to its value:

φ̇v = −3HVv
λk

. (3.12)

Multiple components of φ̇⊥i could be nonzero if some of the Hessian’s eigenvalues were
degenerate, but all other components of φ̇⊥i in directions with different eigenvalues λi 6= λk
must vanish. We denote d as the degeneracy of λk.

For any amount of degeneracy d, we can solve the φ̇v equation to get

φ̇2
⊥ =

(
1− 9H2

λk

)
V 2
v

λk
, (3.13)

φ̇2 = φ̇2
v + φ̇2

⊥ =
V 2
v

λk
, (3.14)

where φ̇2
⊥ = φ̇2

⊥k when d = 1, or a sum of the components with identical eigenvalues when
not 3. In either case, we get that

ε =
φ̇2
v + φ̇2

⊥
2H2

=
V 2
v

2H2λk
=

3V 2
v

2V λk + V 2
v

∼ 3V 2
v

2V λk
= εV

9H2

λk
. (3.15)

Comparing to (2.7), we see that

ω2

H2
=

λk
H2
− 9 (3.16)

For these results to make sense, λk must be positive and greater than 9H2. At a given point,
all sufficiently large eigenvalues except for λu could correspond to λk. Together with the
slow-roll solution and the two possible signs of φ̇⊥k, we reproduce the same counting as the
full equations of motion: up to 2Nf − 1 distinct solutions are possible. As in the generic
hessian case, all real-valued solutions correspond to valid initial conditions, and the longevity
of a particular set of initial conditions is measurable through ν, ξ, and other higher-order
slow-roll parameters.

We note that expressions (3.12), (3.14), and (3.16) have two-field counterparts [33],
which arose from enforcing the constraints Vvv/H

2 . O(εω2/H2) and Vv⊥/H
2 . O(εω/H)

3Interestingly φ̇⊥ has a maximum when λk = 18H2.
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on the two-field version of (2.17). Since the diagonal Hessian has Vv⊥ = 0, the latter bound
is automatically satisfied; the former bound is satisfied for a sufficiently large λk. In light
of this, the diagonal Hessian may be viewed as a subset of the two-field rapid-turn solution
that generalizes to an arbitrary number of fields.

Neglecting the accelerations gives a consistent solution when the derivatives of the ve-
locities are small ∂tφ̇ ∼ O(εHφ̇). We compute them as

∂tφ̇v

Hφ̇v
= V ′v/Vv + ε− λ′k/λk (3.17)

∂tφ̇⊥

Hφ̇⊥
= ν +

∂tφ̇v

Hφ̇v
(3.18)

(3.19)

They will be long-lived when the higher slow-roll parameters are small.

ν =
Vvvφ̇v
HVv

+
Vv⊥φ̇⊥
HVv

+O(ε) (3.20)

= −3
Vvv
λk

+
ω

H

Vv⊥
λk

+O(ε) (3.21)

η = −6
Vvv
λk

+ 2
Vv⊥φ̇⊥
VvH

+ 3
λkvVv
λ2
k

− λk⊥φ̇⊥
Hλk

+ 2ε (3.22)

' 2ν − λ′k/λk +O(ε) (3.23)

= 2ν +
3λkvVv
λ2
k

− λk⊥Vv
λ2
k

ω

H
+O(ε) (3.24)

where we computed η directly from (3.12)-(3.14) and have left the Vv⊥ terms in, and λkv ≡
V;kkv, λk⊥ ≡ V;kk⊥. We have substituted in the velocity solutions directly.

From (3.17)-(3.24), we see that O(ε)-consistent solutions to the equations of motion
will also necessarily have a small η: ν and λ′k/λk set both. The lowest-order descriminator
between solutions, then, is ξ.

3.3 Non-diagonal corrections

In light of (3.16), we seek to understand how (3.9) changes when the gradient is strongly, but
not exactly, aligned with an eigenvector of V;ab. This will allow us to perturbatively expand
this eigenvector about the gradient. Suppose V;ab has an eigenbasis {ua, ta(n)|n = 1, . . . , Nf−1}
such that ua is approximately aligned with the gradient: uava = 1 − α, where α � 1. We
expand this eigenvector as:

ua = (1− α)va +

Nf−1∑
i=1

δiw
a
(i). (3.25)

Demanding uaua = 1 and neglecting O(α2) terms fixes the sum-squared of coefficients:∑
i

δiδi ' 2α. (3.26)

Hence, each coefficient is bounded in magnitude: |δi| . O(α1/2).
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Similarly, we expand the remaining eigenvectors: ta(n) = γnv
a +

∑
i βniw

a
(i). Imposing

ta(n)ua = 0 fixes the γ coefficients, γn ' −(1 + α)
∑

i δiβni. This yields:

ta(n) =

Nf−1∑
i=1

βni

[
−(1 + α)δiv

a + wa(i)

]
≡

Nf−1∑
i=1

βniq
a
(i). (3.27)

Note that the vectors {qa(i)} are perturbatively orthogonal to ua, i.e. qa(i)ua ' O(α2). Hence,

they span the same hyperplane as the vectors {ta(n)}. However, they are not mutually or-

thonormal to O(α): qa(i)q(j)a ' δij + δiδj . Therefore, we cannot view the coefficients βni as

enacting an orthogonal transformation. Orthonormality of {ta(n)} yields the constraint:∑
i,j

[βniβmjδiδj(1 + 2α) + δijβniβmj ] = δnm. (3.28)

Since δiδj ∼ O(α), we can neglect the combination δiδjα ∼ O(α2) to obtain:∑
i,j

[(βniδi)(βmjδj) + δijβniβmj ] = δnm. (3.29)

Henceforth, sums over repeated {i, j} indices are implied except for evidently free indices.
We can invert (3.25) and (3.27) to obtain expressions for the gradient and its perpendicular
directions in the Hessian eigenbasis:

va = (1− α)ua − (1 + α)

Nf−1∑
n

(βniδi)t
a
(n) (3.30)

wa(i) = δiu
a +

Nf−1∑
n

βnit
a
(n). (3.31)

These vectors are orthonormal to O(α) provided we enforce (3.26) and orthonormality of the
perpendicular directions: wa(i)w(j)a = δij . This yields a second constraint:∑

n

βniβnj = δij − δiδj . (3.32)

The two orthonormality constraints (3.29) and (3.32) let us identify an explicit O(α) expres-
sion for the matrices βni:

βni = δni −
1

2
δnδi. (3.33)

Strictly speaking, the vectors wa(i) need not be closely aligned with the eigenvectors ta(n), since
the ta(n) need only be orthogonal to ua and slightly non-orthogonal to va. However, we are
free to rotate the wa(i) such that they are closely aligned with the ta(n).

The Hessian is diagonal in the {ua, ta(n)} basis, so it takes the form:

V;ab = λuuaub +

Nf−1∑
n=1

λnt(n)at(n)b, (3.34)
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where λu and λn are the eigenvalues of ua and ta(n), respectively. Inserting (3.25), (3.27),

(3.33), and keeping only O(α) ∼ O(δ2) terms, we find:

V;ab '

[
λu(1− 2α) +

∑
n

λnδ
2
n

]
vavb

+

[
λuδiδj +

∑
n

λn

(
δniδnj −

δiδnj + δjδni
2

δn

)]
w(i)aw(j)b

+

(
λu −

∑
n

λnδn

)
δi
(
vaw(i)b + w(i)avb

)
.

(3.35)

This gives us the Hessian in a form that can be inserted into the equations of motion. Note
that we are neglecting terms higher order in δ without considering the hierarchy of eigenvalues
λu and λn. We will later see that for λu � λk, this perturbative method becomes unreliable.

The components of V;ab entering (3.1) and (3.2) simplify to:

V;ij = λiδij +

(
λu −

λi + λj
2

)
δiδj (3.36)

V;iv =

(
λu −

∑
n

λnδn

)
δi, (3.37)

The equations of motion are then given by the O(δ2) expressions:

φ̈⊥i = −

(
3H +

φ̇v
Vv
λi

)
φ̇⊥i

+
φ̇v
Vv

∑
j

δi

(
λu −

λi + λj
2

)
δjφ̇⊥j −

φ̇2
v

Vv

(
λu −

∑
n

λnδn

)
δi

(3.38)

φ̈v = −3Hφ̇v − Vv +
1

Vv

∑
i

λiφ̇⊥iφ̇⊥i

+
1

Vv

∑
i,j

δiφ̇⊥i

(
λu −

λi + λj
2

)
δjφ̇⊥j +

φ̇v
Vv

(
λu −

∑
n

λnδn

)∑
i

δiφ̇⊥i.

(3.39)

Setting the acceleration to zero in (3.38) results in a matrix equation:

−

(
3H +

φ̇v
Vv
λi

)∑
j

δij − φ̇v

(
λu − λi+λj

2

)
3HVv + λiφ̇v

δiδj

 φ̇⊥j =
φ̇2
v

Vv

(
λu −

∑
n

λnδn

)
δi. (3.40)

The matrix multiplying φ̇⊥j is readily invertible, but the non-identity components yield
O
(
δ3
)

corrections to the right hand side. Dropping these, we arrive at an O
(
δ2
)

expression
for the perpendicular-direction velocities:

−

(
3H +

φ̇v
Vv
λi

)
φ̇⊥i '

φ̇2
v

Vv

(
λu −

∑
n

λnδn

)
δi (3.41)
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We can solve (3.41) and (3.39) with negligible accelerations by expanding the velocities
in powers of α1/2 ∼ |δi|:

φ̇⊥i ' φ̇
(0)
⊥i + α1/2φ̇

(1)
⊥i + αφ̇

(2)
⊥i +O

(
α3/2

)
(3.42)

φ̇v ' φ̇(0)
v + α1/2φ̇(1)

v + αφ̇(2)
v +O

(
α3/2

)
(3.43)

Inserting these into (3.41) leads to the order-by-order matching conditions:(
3H +

φ̇
(0)
v

Vv
λi

)
φ̇

(0)
⊥i = 0 (3.44)

α1/2

[(
3H +

φ̇
(0)
v

Vv
λi

)
φ̇

(1)
⊥i +

(
φ̇

(1)
v

Vv
λi

)
φ̇

(0)
⊥i

]
= −


(
φ̇

(0)
v

)2

Vv
λu

 δi (3.45)

α

[(
3H +

φ̇
(0)
v

Vv
λi

)
φ̇

(2)
⊥i +

(
φ̇

(1)
v

Vv
λi

)
φ̇

(1)
⊥i +

(
φ̇

(2)
v

Vv
λi

)
φ̇

(0)
⊥i

]

=
1

Vv

(
λu −

λi + λk
2

)∑
j

φ̇(0)
v φ̇

(0)
⊥jδiδj −

[
2φ̇

(1)
v φ̇

(0)
v

Vv
λu

]
α1/2δi +


(
φ̇

(0)
v

)2

Vv

∑
n

λnδn

 δi
(3.46)

Likewise, (3.39) gives the matching conditions:

3Hφ̇(0)
v + Vv −

λk
Vv

(
φ̇

(0)
⊥

)2
= 0 (3.47)

α1/2

[
3Hφ̇(1)

v −
2λk
Vv

∑
i

φ̇
(1)
⊥i φ̇

(0)
⊥i

]
=
λu
Vv
φ̇(0)
v

∑
i

φ̇
(0)
⊥i δi (3.48)

α

[
3Hφ̇(2)

v −
1

Vv

∑
i

(
λiφ̇

(1)
⊥i φ̇

(1)
⊥i + 2λkφ̇

(2)
⊥i φ̇

(0)
⊥i

)]

=
λu − λk
Vv

∑
i,j

φ̇
(0)
⊥i φ̇

(0)
⊥jδiδj +

λu
Vv

∑
i

(
φ̇0
vφ̇

(1)
⊥i + φ̇(1)

v φ̇
(0)
⊥i

)
δiα

1/2 − 1

Vv

∑
n,i

λnφ̇
(0)
v φ̇

(0)
⊥i δnδi,

(3.49)

where λk is the eigenvalue that solves φ̇
(0)
v = −3HVv/λk, such that the corresponding velocity

φ̇
(0)
⊥k 6= 0. For l 6= k, we have φ̇

(0)
⊥l = 0, and the matching condition (3.45) yields:

φ̇
(1)
⊥l = − 3HVvλu

λk (λk − λl)
δl
α1/2

. (3.50)

For degeneracy d of the eigenvalue λk, we see that (3.44) leaves the non-vanishing compo-

nents φ̇
(0)
⊥k unconstrained at zeroth order. We can only solve for the norm-squared of the
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perpendicular velocity via (3.47), as in (3.13). Assuming d = 1, we can solve for the kth

component:

φ̇
(0)
⊥k = ±Vv

λk

√
λk − 9H2, (3.51)

as well as the remaining O
(
α1/2

)
terms:

φ̇(1)
v = ∓λu

λ2
k

9H2Vv√
λk − 9H2

δk
α1/2

(3.52)

φ̇
(1)
⊥k =

3HVv
2

λu
λ2
k

λk − 18H2

λk − 9H2

δk
α1/2

. (3.53)

We therefore find the following O (δ) slow-roll expressions for ε and ω:

ε =
V 2
v

2H2λk
±

(
λu

λ2
k

√
λk − 9H2

3V 2
v

2H

)
δk. (3.54)

ω2

H2
=

λk
H2
− 9∓ λu

9H
√
λk − 9H2

δk. (3.55)

The derivative of the turning rate (2.30) can also be computed to O(δ):

ν = ε− 3
λu
λk
±

[
λu
λk

λk − 9H2 λu+λk
λk

H
√
λk − 9H2

]
δk. (3.56)

A few remarks regarding the validity of our perturbation theory. Neglecting terms in
(3.35) and (3.40) is not insensitive to the values of λu and λn. Whenever λu/λk � 1, we
naively expect from the zeroth order estimate for ν that sustained high-turn inflation is ex-
cluded. On the other hand, a consistent perturbative expansion requires the O(δ) correction
to be parametrically smaller than the zeroth order value, i.e. it cannot offset this undesirable
zeroth order value. Hence, this hierarchy of eigenvalues either fails to yield sustained infla-
tion or falls within a regime of parameter space in which the perturbation theory cannot be
trusted. Our numerical method remains self-consistent in this regime.

Utilizing the O(δ) results, we can solve (3.46) and (3.49) for the O (α) ∼ O(δ2) velocity
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corrections:

φ̇(2)
v =± 3HVv

2λ3
k (λk − 9H2)2

δk
α

×

[
6Hλk

(
λk − 9H2

)3/2∑
n

δnλn

± δk
[
162H4λ2

u − 27H2λkλu
(
6H2 + λu

)
− 2λ3

k

(
18H2 + λu

)
+ 18λ2

k

(
9H4 + 2H2λu

)
+ 2λ4

k

]]
(3.57)

φ̇
(2)
⊥l =

Vv
2λ2

k (λk − λl) 2

δl
α

×

[
6Hλk (λk − λl)

∑
n

δnλn

± δk√
λk − 9H2

[
λ2
k

(
18H2λu − λ2

l + 2λlλu
)

+ 9H2λk
(
λ2
l − 2λlλu − 4λ2

u

)
− λ3

k

(
9H2 + 2λu

)
+ 18H2λlλ

2
u + λ4

k

]]
(3.58)

φ̇
(2)
⊥k =

1

8Vvλ3
k (λk − 9H2)5/2

1

α

×

[
12HV 2

v λk
(
λk − 9H2

)3/2 (
18H2 − λk

)
δk
∑
n

δnλn

∓ 36H2V 2
v λ

2
uλ

2
k

(
λk − 9H2

)2∑
l

δ2
l

(λk − λl)2

± V 2
v δ

2
k

[
5832H6λ2

u − 1296H4λkλ
2
u − 4λ4

k

(
18H2 + λu

)
+ 36λ3

k

(
9H4 + 2H2λu

)
− 9λ2

k

(
36H4λu − 5H2λ2

u

)
+ 4λ5

k

]]
(3.59)

These expressions can in turn be used to further correct the turning rate. We plot the O(δ2)
numerical estimates of ω for a concrete example in Figure 4.3.

4 Examples

Although we leave an extensive search though known potentials for slow-roll, rapid-turn in-
flation for future work, in this section we examine a few noteworthy cases. We study the
only previously published Nf > 2 rapid-turn solutions we know of: hyperinflation and the
helix, as well as search two well-studied type-IIA constructions. In both type-IIA construc-
tions, we fail to find long-lasting rapid-turn inflation, and are able to exclude one of them
entirely. In the other, we find initial conditions that support high turning for a short period,
but quickly decay. In all examples, when appropriate, we compare and contrast the aligned
hessian approximation with our numerical method.
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4.1 Hyperinflation

Hyperinflation [9, 10, 37] is a rapidly turning solution possible whenever the field space is
hyperbolic, and the potential sufficiently steep around the origin. As previously noted by
[23], it is a special case of sidetracked inflation [13, 14].

Under the assumptions of generalized hyperinflation [10], the covariant Hessian takes a
particularly simple form:

V;ab = V;vvvavb +

(
V;v

L

)
⊥ab (4.1)

where L is the geometric scale appearing in the field space metric. I.e., in an orthonormal
basis the Riemann tensor takes the form

Rabcd = −(δac δbd − δadδbc)/L2. (4.2)

This model is directly amenable to the aligned Hessian approximation (and was our
inspiration to study aligned Hessians in the first place). Using (3.12)-(3.16) and (3.22) with
λk = V;v/L, we recover

φ̇v = −3HL (4.3)

φ̇2
⊥ = LV;v − 9H2L2 (4.4)

ε =
LV;v

2H2
=

3εL
2 + εL

(4.5)

η = −3ηL + 2ε (4.6)

ω2

H2
=

V;v

H2L
− 9 (4.7)

where

εL ≡
LV;v

V
, (4.8)

ηL ≡
LV;vv

V;v
(4.9)

in agreement with [10].

4.2 Helix

This potential was first presented in [11], and is a three-field model with an analytically
known high-turning background solution. The potential can be written

V = Λ4

(
ez/R + ∆

(
1− exp

[
−(x−A cos z/f)2 − (y −A sin z/f)2)

2σ2

]))
(4.10)

where the fields are x, y, z, the field space is Euclidean, and all other variables are positive
constants. These authors found an analytic high-turning background solution (named the
“steady-state solution”; see Appendix A of their work) which we will not reproduce here.
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The solution has constant slow-roll parameters

ε = M2
Pl

1

2R2

1

1 +A2/f2

εV = M2
Pl

f2

2(A2 + f2)2

(
A2 + f2

R2
+

4A2f2

(f2 − 6(A2 + f2)R2)2

)
1 +

ω2

9H2
= εV /ε = 1 +

4A2f2R2

(A2 + f2)(f2 − 6(A2 + f2)R2)2
.

η = ν = ξ = 0

(4.11)

and a small Π-acceleration.
Because this attractor solution is analytically known, it gives us an opportunity to test

consistency with the rapid-turn solution, as well as compare our purely numeric method with
our aligned hessian approximation. The behavior of the δ-expansion is quite different when
the eigenvalue ratio λu/λk is small than when it is large, so we present two sets of parameters:
one with the ratio large over most of the surveyed space, and one with the ratio significantly
smaller. These are available in Table 1.

At first glance, this model is not clearly amenable to the aligned Hessian approximation
– unlike the other models we examine, the field space is flat and the geometry cannot help
align the Hessian. Furthermore, we also examine a highly featured region of the potential with
large Hessian eigenvalues. We are fortunate that the extreme-turning limit is well satisfied:
for parameter set 1, ω2

extreme/H
2 ∼ 100 on the steady state solution, while ω2/H2 ∼ 3100.

Parameter set 1 (small λu/λk) Parameter set 2 (large λu/λk)

R = 1.07MPl R = 0.21MPl

∆ = 8.43 ∆ = 8.43
A = 3.47× 10−3MPl A = 3.47× 10−3MPl

f = 7.85× 10−4MPl f = 1.8× 10−4MPl

σ = 8.91× 10−3MPl σ = 10−2MPl

Table 1: Values of the helix potential parameters (c.f. (4.10)) showcased below.

In Table 2, we verify that the steady-state solution is recovered by the numerical and
approximate rapid-turn solution methods. We use parameter set 1, although the results from
both parameter sets are similar. On the steady-state solution, the Hessian alignment is good
α ≈ 1.4×10−3 and λu/λk is small, so the aligned Hessian methods are relatively accurate. In
each case, evolving the given initial conditions converges to the steady-state solution within
a few e-folds.

In Figure 4.1, we show the region of the potential around the center of the track plotted
over x and y, for a fixed value of z. Both parameter sets have εV < 1 in some regions, though
these are much larger for parameter set 1. The pattern of alignment (third column from
the left) is similar for both parameter sets, with the regions of misalignment narrower in
parameter set 2. The most notable difference between the parameter sets, though, is in the
eigenvalue ratio λu/λk. Parameter set 2 has a much higher λu/λk over the surveyed region
of field space, and will invalidate our aligned Hessian results over more of the field space.

In Figures 4.2-4.4, we compare the predicted ε, ω/H, and ν respectively, as estimated
by our numerical and aligned/diagonal Hessian results. As in the previous figure, we plot
these paramters fixing z. In the numerical plots (the leftmost column of each figure), we
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εH ω2/H2 η ν ξ x′ y′ z′

steady-state 0.021 3193 0.000 0.000 0 0.187 0.072 -0.045
Numerical rapid-turn 0.021 3085 0.021 -5.528 1543 0.189 0.072 -0.045
Aligned hessian 0.022 3115 - -191.831 26689 0.193 0.062 -0.045
Aligned hessian O(δ) 0.025 3093 - -37.587 26235 0.207 0.078 -0.049
Aligned hessian O(δ2) 0.023 2942 - - - 0.195 0.070 -0.046

Table 2: Using parameter set 1, we compare various slow-roll parameters evaluated on: the
helix’s steady-state solution, the numerical solution, and the diagonal Hessian approximate
solution. The parameters for which we have not analytically computed truncations in the
δ-expansion are left blank. At this point, εV = 7.48, and the Hessian is closely aligned,
α ≈ 1.4 × 10−3. Our methods successfully identify the neighborhood of the steady-state
solution as rapidly turning, and predict accurate initial velocities. In more detail: ε is well
captured by all methods, and η is accurate to O(ε). ω2 is only accurate to O(ωε), while ν
is particularly poorly estimated and ξ even worse. The initial velocities in the x, y plane are
very slightly over-estimated in the aligned Hessian approximation.

identify the possible solutions using the method of Section 2.4. At every point, out of the
2Nf − 1 = 5 possible solutions, we plot the solution with the smallest |ξ|. If the numerical
method is unable to recover any solution at a point, the plot is left unfilled. For the diagonal
method plots (the right three columns of each figure), to identify λk and the sign of φ̇k, we
again chose the solution with the smallest implied value of |ξ|. In contrast to the numerical
method, the slow-roll, slow-turn solution is not automatically incorporated as an alternative.
The diagonal method plots, then, will never display the slow-roll, slow-turn solution as an
option, even when it has the smallest |ξ|. Such points are rare in the surveyed parameter
space of the helix, since εV > 1 in the interior of the helical track (see the second-to-left
column of Figure 4.1). When λu/λk is large, the perturbation series in δ begins to break
down. This is particularly apparent for parameter set 2, given in the bottom row of Figure
4.2.

Overall, we approximately recover the analytically known solution, and confirm the
validity of the aligned Hessian approximation when the amount of alignment and eigenvalue
ratio λu/λk permit the δ-expansion to converge.
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Figure 4.1: The potential in (4.10), plotted over x and y at constant z = 0.5MPl, centered
on the helical track. The red point marks this potential’s known high-turning solution. We
show parameter sets 1 and 2 in the top and bottom row respectively. In the second column
from the right, we show the alignment of the Hessian with the potential gradient. In the
rightmost column, we show the ratio of the aligned and orthogonal eigenvalues of the Hessian:
parameter set 1 has substantially lower λu/λk over much of the surveyed range.

Figure 4.2: We show the implied ε from the solution with the smallest |ξ|, for parameter
sets 1 and 2 in the upper and lower rows respectively. The first column displays the numer-
ical method calculation, and the remaining columns show increasingly higher order results
from the diagonal Hessian approximation. While the diagonal method begins converging for
parameter set 1, in parameter set 2 regions with a large λu/λk diverge (compare with the
rightmost column of 4.1)

.
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Figure 4.3: We show the implied ω/H from the solution with the smallest |ξ|, for parameter
sets 1 and 2 in the upper and lower rows respectively. While the diagonal method begins
converging for parameter set 1, in parameter set 2 regions with a large λu/λk diverge (compare
with the rightmost column of 4.1)

Figure 4.4: We show the implied ν from the solution with the smallest |ξ|, for parameter
sets 1 and 2 in the upper and lower rows respectively. While the diagonal method begins
converging for parameter set 1, with parameter set 2 and its larger λu, most of the surveyed
range is orders of magnitude misestimated. Even in the perturbatively stable regions, ν con-
verges noticably slower than ε or ω/H. Comparing with (3.54)-(3.56), we see that corrections
to ν depend on a higher power of λu/λk.
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4.3 A 2-field type-IIA potential

This potential was shown [29] to have εV ≥ 27/13 everywhere, and therefore forbids slow-roll
slow-turn inflation. In this section, we show that it additionally fails to support an extended
period of slow-roll, rapid-turn inflation for any parameter values.

The potential can be written

V =
A0

τ4ρ−3
+

A2

τ4ρ−1
+

A3

ρ3τ2
+
A4

ρτ4
+

A6

ρ3τ4
+
AD6

τ3
− AO6

τ3
(4.12)

where the A constants are positive functions of other fields in the construction (here taken
to be constant), ρ = exp(2ρ̂/3), τ = exp(τ̂ /2), and the field space metric is δij in the (ρ̂, τ̂)
coordinates.

Because this model has only two fields, we may use the ⊥a-dependent expressions (2.17)
and (2.16) directly, without solving the equations of motion. As in Bjorkmo’s case, there is
a unique unit vector (up to a sign) wa that is perpendicular to the gradient. If there is a
region of the potential with small εH , large ω/H, and small ν, (2.17) and (2.16) must agree.
For the rest of this subsection, we name the corresponding ω’s from these expressions ω1 and
ω2 respectively.

In Figure 4.5, we plot these two expressions for a particular value of the A constants.

Figure 4.5: The log of ω2/H2, as defined in (2.17) (left) and (2.16) (right), for parameters
A0 = A2 = A3 = A4 = A6 = AD6 = 1, AO6 = 3 with MPl = 1. Note that we plot with
respect to the noncanonical fields (ρ, τ), not the canonical (ρ̂, τ̂). In regions of the potential
with log(ω2/H2) < 0, we have left the plot colored white.

In order to rule out slow-roll, rapid-turn inflation, we numerically minimize a cost
function of our parameters

costNf=2 ≡
|ω2

1 − ω2
2|

H2
+B

2εV
2 + (ω2

1 + ω2
2)/(9H2)

(4.13)

where the second term is approximately ε when the two ω expressions are equal (c.f. (1.1)),
and B trades the relative importance of the difference of the ω’s and the size of ε. Numerically
minimizing (4.13) with several values of B and the fields and parameters only constrained
to be positive, we find, at best, an ε = 0.45, with ω2

1 = 65.8H2, ω2
2 = 66.8H2. This is a

short-lived solution with η = 0.9 ∼ 2ε.
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As a check on our diagonal method, we also use it to analyze this potential, and rule
out some regions of field space. We denote the eigenvectors of V;ab as {ua, ta}, where ua is
chosen to be the eigenvector most aligned with the gradient. Then, per (3.15), we would need
Vtt � 9H2εV along an inflationary trajectory in order to support inflation with a small ε. By
taking limits of the eigenvalues and eigenvectors, we can see that this condition is violated
in asymptotic field space (ρ̂, τ̂ → ±∞), where Vtt/H

2 → 0, ua → va, and εV → (4, 7)
exponentially (both values of εV are possible depending on the direction of the limit). Then
the only region that could possibly support inflation is near the origin.

An extensive search using our numerical method over the region A◦ ∈ [0, 10], ρ, τ ∈
[0, 10MPl] produces at minimum, a cost function (c.f. (2.36)) of approximately 0.03, corre-
sponding to ε ∼ 0.49, η ∼ 0.49, ξ ∼ 2.6, and ν ∼ −0.05. Evolving the point gives roughly
0.35 e-folds of inflation. This solution is at a different point than the purely two-field method
above, but of comparable quality.

To our knowledge, this constitutes the first potential and metric excluded from support-
ing slow-roll, rapid-turn inflation. In this case, the purely two-field methods or the diagonal
and numerical method prove equally powerful. The diagonal Hessian method immediately
excludes asymptotic field space, while numerically searching with either the two-field or the
full numeric method excludes regions around the origin. It is our hope that a sizable variety
of potentials and metrics, even those with significantly more fields, will be amenable to a
similar procedure.

4.4 An 8-field type-IIA potential (DGKT)

This potential, first presented in [38] and examined in Appendix A of [39], is from the Kähler
sector of a type-IIA compactification. The Kähler potential is

K = − log(32 b1b2b3b
4
4), (4.14)

where the real-valued fields can be labelled φI = {a1, a2, a3, a4, b1, b2, b3, b4}. The field-space
metric is

GIJ =
1

2
diag

(
1

b21
,

1

b22
,

1

b23
,

4

b24
,

1

b21
,

1

b22
,

1

b23
,

4

b24

)
. (4.15)

Although the field space does not fit the totally isotropic form necessary for hyperinflation
(4.2), the scalar curvature is constant and negative R = −13.

The potential is known up to an overall constant Vflux (irrelevant for the background
evolution) and a sign, δ = ±1

V =
Vflux

32b1b2b3b44

[
− 4a1a2a3δ

(
a1 + a2 + a3 + 2

√
2a4

)
− 4δ(a2a3b

2
1 + a1a3b

2
2 + a1a2b

2
3)

+ 2(a2
2a

2
3b

2
1 + a2

1a
2
3b

2
2 + a2

1a
2
2b

2
3) + 2(a2

1b
2
2b

2
3 + a2

2b
2
1b

2
3 + a2

3b
2
1b

2
2) + 2a2

1a22a2
3

+ 2
(
a1 + a2 + a3 + 2

√
2a4

)2
− 8
√

2b1b2b3b4

+ 2b21b
2
2b

2
3 + 2(b21 + b22 + b23) + 4b24

]
.

(4.16)
This potential contains several points that at first glance appear to support a rapid-turn

solution. With δ = −1, one such point is φa? ≡ {18.77,−0.0517,−0.0264,−6.142, 0.00174, 5.968×
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tai va λi/H
2 εHd ω2

d/H
2

-0.000444 -6.000067 -10.437980 -15.000067
0.000015 -5.999987 -10.438120 -14.999987

-0.000117 -5.998909 -10.439994 -14.998909
0.000005 11.996639 5.220510 2.996639
0.000000 12.000013 5.219043 3.000013

-0.000023 12.001564 5.218368 3.001564
0.999995 53.752597 1.165127 44.752597
0.002989 7525.069161 0.008323 7516.069161

- - 0.008301 7494.410042

Table 3: The Hessian’s eigenvector alignment and eigenvalues at the point φa? along with
each eigenvalue’s implied ε and ω/H, assuming that eigenvalue is the λk of the O(δ0) aligned
Hessian approximation (see (3.15)-(3.16)). Although these expressions are invalid when λk =
λu or λk < 9H2, in this table we compute them anyway. The eigenvector and eigenvalue in
the seventh row are the most aligned with the gradient direction, while the eigenvalue in the
eighth row appears to support a rapid-turn solution. In the last row, we give the numerical
method’s ε and ω/H evaluated at the same point. For reference, at this point εV ≈ 6.95 and
ωextreme/H ≈ 2.17.

10−5, 4.781, 0.00254}MPl. The eigenvalues of the Hessian and the implied aligned Hes-
sian approximation ε and ω/H are available in Table 3. We also note that the 6-volume
Vol6 = b1b2b3 ∼ 10−7 is unphysically small, and the implied gs = b−1

4

√
Vol6/2 is an accept-

able value of roughly 0.2 4.
Unfortunately, these initial conditions do not bear out an extended period of inflation.

The slow-roll parameters ν and ξ grow with higher order corrections in the δ-expansion,
indicating a breakdown of one of our assumptions. The full numerical method gives the
reason why: evaluated at this point using (2.7), it agrees well with the diagonal method’s ε
and ω/H. Unfortunately, the two small-ν estimates for ω greatly differ: ω2/H2 = {56, 7485}
for (2.16) and (2.17) respectively. The measured ν ∼ 0.25 is not O(ε), so neglecting the
accelerations while solving the equations of motion is inconsistent – we do not have a long-
lasting solution.

In Figure 4.6, we evolve the O(δ0) initial conditions numerically, generating ∼ 0.18 e-
folds of inflation5. The rapid-turn initial conditions are quickly spoiled by the large increase
in η and decay in ω/H. In Figure 4.7, we plot the potential and several other quantities in
the neighborhood of the trajectory. Note that we only slice the 8-dimensional field space in
the (a3, b3) subspace, which features the majority (but not all) of the fields’ motion. As a
consequence, the on-trajectory values of εV differ from the ones in the contour plot.

Other than this trajectory, an extensive search with the numerical method over ai =
[−20,+20]MPl, bi = [10−5, 5]MPl found no improvement, with a minimum cost function of
approximately 9.9 (corresponding to ε ∼ 0.25, ω/H ∼ 0.05, η ∼ 20).

We have also searched an Nf = 4 simplification of this potential and metric (previously

4Similar points exist at higher (still unphysical) values of Vol6 as well. One such point is φa =
{−20.0, 0.047, 0.0243, 1.09, 3.09, 0.060, 5.0, 1.63}MPl, with Vol6 ∼ 0.93, gs ∼ 0.42, and ε ∼ 0.1, λk ∼ 425H2.

5Note that considerably more e-folds Ne . 5 are possible in this potential when starting trajectories with
zero initial velocities and high accelerations. These short-lived initial conditions are not rapid-turn.
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Figure 4.6: Several slow-roll parameters and the potential numerically evolved along the
trajectory beginning at φa?. Though the trajectory is initially rapid-turn, ω/H rapidly decays
and η sharply rises, quickly ending inflation after 0.183 e-folds. The rapid-turn behavior ends
quickly as the Hessian and trajectory misalign within a few hundredths of an e-fold.

studied as expression (39) of [39]), with a1 = a2 = a3 and b1 = b2 = b3. No points with a
Hessian like the one presented in Table (3) were found. The minimum cost function found
was comparable to the 8-field case.
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Figure 4.7: The neighborhood of the point φa? (red circle) in the DGKT potential, with
the numerically evolved trajectory in red. Though the field space is 8-dimensional, we plot
the potential, Hessian alignment, εV , and eigenvalue ratio sliced along the (a3, b3) subspace.
Note that, except for the initial point, the trajectory is slightly out of the plotted plane in
the 6 orthogonal directions – for accurate information about these quantities on-trajectory,
see Figure 4.6.

5 Summary and Conclusions

We have sought to address a broad question: given a multi-field potential and field space
geometry, what regions of field space admit inflationary solutions? The limited viability
of slow-roll, slow-turn trajectories in generic potentials has directed our attention toward
identifying rapid-turn solutions. By generalizing a previous two-field rapid-turn attractor
to many fields, we identify and enumerate the conditions required for sustained rapid-turn
inflation at any point in field space. In particular, we find an extreme turning limit in which
most of the accelerations are negligible. This limit is characterized by components of the
potential’s covariant Hessian matrix that are not present in the two-field attractor. We then
apply these conditions to the equations of motion and formulate a matrix equation that
constrains the field velocities. We propose a numerical algorithm to solve this equation, as
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well as an analytic, perturbative approach that holds when the potential gradient is strongly
aligned with an eigenvector of the Hessian matrix.

Lastly, we examine a variety of EFT and Type-IIA constructions using the two ap-
proaches, comparing to known attractor solutions when applicable. In one construction, we
are able to exclude slow-roll, rapid-turn inflation from the entire field space. In others, we
can rule out vast regions of field space, but do not find any previously unknown long-lasting
rapid-turn trajectories. With our methods, determining whether a potential and metric
admit or exclude rapid-turn trajectories is now possible.
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