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Abstract

Spatial process models are being increasingly employed for analyzing data
available at geocoded locations. In this article, we build a hierarchical frame-
work with multivariate spatial processes, where the outcomes are “mixed”
in the sense that some may be continuous, some binary and others may
be counts. The underlying idea is to build a joint model by hierarchically
building conditional distributions with different spatial processes embedded
in each conditional distribution. The idea is simple and the resulting models
can be fitted to multivariate spatial data using straightforward Bayesian com-
puting methods such as Markov chain Monte Carlo methods. Bayesian infer-
ence is carried out for parameter estimation and spatial interpolation. The
proposed models are illustrated using housing data collected in the Walmer
district of Port Elizabeth, South Africa. Inferential interest resides in model-
ing spatial dependencies of dependent outcomes and associations accounting
for independent explanatory variables. Comparisons across different models
confirm that the selling price of a house in our data set is relatively better
modeled by incorporating spatial processes.

AMS (2000) subject classification. Primary 62F15; Secondary 91B72.
Keywords and phrases. Bayesian inference; Hierarchical models; Multivariate
spatial models; Point-referenced data; Spatial processes

1 Introduction

With the emergence of Geographic Information Systems (GIS) and re-
lated technologies, spatial analysts and data scientists are increasingly faced
with the task of analyzing data sets with variables that are referenced with
respect to the geographic coordinates where they have been observed. Two
common measures of referencing are point-referenced, where each obser-
vation is associated with the coordinates (e.g., longitude-latitude or some
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planar projection thereof) of the point where it has been recorded, and
areal where a regional aggregate or summary of the outcome (e.g., counts,
rates or proportions) is recorded. Much of the traditional spatial econo-
metrics literature have focused upon areal models (see, e.g., LeSage and
Pace 2009).

Our current article is concerned with multivariate point-referenced data
sets, where each location yields measurements on multiple variables. There
is a substantial literature on multivariate spatial modeling that is too vast
to be reviewed here (see, e.g., Chapters 8 and 9 in Banerjee et al. (2014)).
The most common setting deals with situations where all the outcomes can
be treated as continuous Gaussian variables (perhaps after suitable transfor-
mations) and are modeled using multivariate Gaussian processes. Methods
such as linear coregionalization model (LCM) have strong limitations as they
imply symmetric cross-covariances for the variables under study. In the mul-
tivariate case, the number of parameters in the model, and hence the com-
putational requirement, increases quickly. Moreover, ensuring identifiability
of model parameters is not immediate. These and other limitations have
been pointed out by Marcotte (2012), who proposed certain generalizations
with potential benefits for continuous variables. The current manuscript
departs from the usual settings and considers multiple “mixed” outcomes
in the sense that some are continuous and some are discrete (e.g., binary,
counts and so on). The inference will be focused on estimating the impact
of certain predictors for each outcome, quantifying the strength of spatial
association for each of these variables, and predicting each variable across
the geographic region of interest.

Our application pertains to so called hedonic price models in real estate
economics. We model three dependent outcomes: (i) Y7: the log-transformed
selling price of a house (continuous variable), (ii) Ya2: a variable indicating
whether the property has a swimming pool or not (binary variable), and
(iii) Y3 the number of bedrooms in the house (count variable). Each of these
outcomes are posited to be spatially dependent, i.e., they tend to be similar
at proximate locations, and to be associated among themselves. In addi-
tion, there are other independent variables (or predictors) that impact these
outcomes. Our modeling framework will seek to evaluate these relationships
based upon a data set of the Walmer district of Port Elizabeth, South Africa.
We will provide further details on the data in Section 5. The decision to use
this data set is primarily due to the detailed nature of the data (and its
availability), along with the fact that hedonic modeling of house prices is
primarily restricted to the developed economies; see, Du Preez et al. (2013)
& Du Preez et al. (2016) for detailed literature reviews in this regard. Hence,
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our application aims to provide a different perspective to hedonic price mod-
eling for an emerging economy based on a Bayesian spatial framework with
multiple outcomes.

We pursue building a multivariate spatial process model using condi-
tional specifications in a hierarchical framework. There is a detailed account
of multivariate spatial process models in Chapter 28 of Gelfand et al. (2010).
An advanced presentation of linear models for multivariate spatial or tem-
poral data can be found in part D of the book Multivariate Geostatistics by
Wackernagel (2003). Cressie and Zammit-Mangion (2016) developed a con-
ditional approach for multivariate spatial-model construction. Genton and
Kleiber (2015) reviewed the main approaches for building cross-covariance
functions in multivariate models. Inference will be carried out within the
Bayesian paradigm (see, e.g., Gelman et al., 2013), where the unknowns in
the model (e.g., parameters and spatial processes) are assigned probability
laws (prior distributions) and we learn about these parameters from their
posterior distributions. Bayesian inference is appealing as they deliver exact
inference with direct and easy to interpret probability statements on param-
eter estimates, but can be difficult to compute for spatial process models
due to limited information in the data for some process parameters. To en-
sure easier implementation, we provide a framework that can be computed
using standard Bayesian computing languages such as BUGS (http://www.
openbugs.net) or JAGS (http://mcme-jags.sourceforge.net) from within the
R (https://www.r-project.org) statistical computing environment.

2 Multivariate Spatial Process Models

Let S = {s1, $2,...,5n} be the set of spatial locations where the data is
recorded. Let Y;(s), i = 1,2,3, denote outcome i at location s and let x(s)
be a px 1 vector of independent variables (or predictors) recorded at location
s. We will let y; denote the n x 1 vector of outcomes for each ¢ = 1,2,3 and
X to be the n x p matrix of predictors with each row being 2" (s). A general
hierarchical model will be formulated as

3
1G(+2 | ar, br) x H{Ic(ag lao,,bo,) X N(wi|0,ai2R¢(¢i))}
i=1

X H{Poi(YS(Sa’) |27 (s7)03 +ws(s;)) x Ber(Ya(s;) | ®(1Ya(sy) + 2 (s7)02 + wa(s))))
j=1
><N(Y1(5j) | J?T(Sj)el + aYa(s;) + BY3(s5) +wi(s;), 72)} s (2.1)
where ®(-) is the cumulative distribution function of the standard normal
distribution (yielding the probit link) and each w; = {w;(s) : s € S} is
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an n X 1 vector with zero mean and a n x n spatial correlation matrix
Ri(¢i) whose jkth element is specified according to an exponential spatial
correlation function p(¢s; ||s;—sk||). Each w;(s) is a spatial Gaussian process,
independent across ¢ = 1,2, 3, that is specified by a variance parameter 01»2
and a correlation function p(¢;||s — s'||). Note that the prior distributions
for the regression parameters {61,62,60s,,3,~} in the hierarchical model
are all assumed to be flat.

Some special cases are worth noting. For example, a model representing
spatial dependence only in Yj(s) and Ya2(s) but not in Y3, will set ws(s) =0
in (2.1). Similarly, for spatial dependence in Yi(s) and Y3(s), but not in
Ys, we will set wy(s) = 0. For spatial dependence only in Yi(s) we will set
both ws(s) and ws(s) to zero, and for a complete non-spatial model we will
assume w;(s) =0 for each i = 1,2, 3.

The customary strategy for implementing (2.1) is by Markov chain Monte
Carlo (see, e.g., Robert and Casella 2004; Brooks et al. 2011). However, in
full generality where all process parameters are assumed unknown, such
algorithms encounter problems with convergence due to the presence of
highly auto-correlated chains. This is especially true when dealing with
non-Gaussian components in the data likelihood, as is the case for yo and y3
in (2.1). It is, therefore, practical to assume some of the process parameters
to be fixed. In particular, we assume that the spatial range (correlation de-
cay) parameters, i.e., the ¢;’s, are fixed using some preliminary exploratory
analysis using variograms.

The variogram is usually defined for continuous processes Y (s) as

E[Y(s+h) —Y(s)]> = Var[Y (s + h) — Y (s)] = 2v(h) ,

where it is assumed that E[Y (s + h) — Y (s)] = 0 (intrinsically stationary).
The function (k) is called the semi-variogram and is assumed to be a func-
tion only of the separation between the locations. In practice, often the
variogram is assumed to depend only upon the distance between locations
so that y(h) = (||h]|]). The underlying intuition is that we expect small
differences (more similarity) between measurements of the process at short
distances and larger differences (less similarity) as ||k|| grows larger. Empir-
ical variograms are computed as §(d) = m Z(s“sj)eN(d) [V (si) — Y (s5)]?,
where N (d) is the set pairs of points such that ||s; —s;|| = d and |[N(d)] is the
number of location pairs in the set. The function 4(d) is plotted against dis-
tance using raw data binned over neighborhoods of points separated by fixed
distances (see, e.g., Cressie 1993; Banerjee et al. 2014) and are automated
in a number of freely available R packages such as geoR and gstat.
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Figure 1: Fitted empirical variograms

To obtain estimates of the process parameters, a parametric form of the
variogram is posited and its parameters are estimated using weighted least
squares to minimize the distance between the parametric and the empir-
ical variogram. In our context, we first obtain the residuals of the three
outcomes by performing corresponding regression models, then the residual
empirical variograms are approximated with exponential variogram model.
The empirical variogram of least squares residuals for Y7 (s) (log transformed
selling price) is presented in Fig. la. Note that Ya(s) and Y3(s) are discrete
variables. Y5 is a binary variable indicating presence of a swimming pool
and Y3 is a count variable giving the number of bedrooms on each property.
To obtain the semivariograms for the residuals of these two variables, we
performed a probit regression and a Poisson regression respectively with the
rest of the variables as covariates. The empirical variograms for the residuals
corresponding to Y5 and Y3 are presented in Fig. 1b and ¢. Table 1 shows
the prior estimates of the process parameters and fixed ¢ values.

3 Bayesian Inference

Statistical inference with full uncertainty quantification is obtained by
drawing samples from the joint posterior distribution proportional to (2.1).
We use Markov chain Monte Carlo (MCMC) algorithms constructed using
the JAGS modeling language and implemented within the R statistical com-
puting environment (https://cran.r-project.org/web/packages/rjags). More

Table 1: Estimates of the process parameters

Prior estimates 72 o? o3 o3 Fixed parameters ¢ ¢  ¢3

0.023 0.073 0.778 0.12 75.1 62.3 36.3
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specifically, we fit the following five models, each emerging from (2.1), asso-
ciated with different hypotheses:

e Model 1: Residual spatial dependencies do not exist for all three vari-
ables; in (2.1) we have wy, wa, w3 = 0.

e Model 2: Residual spatial dependence exists for Y; only; in (2.1) we
have ws, w3 = 0.

e Model 3: Residual spatial dependence exists for Y7 and Y3, but not Ys;
in (2.1) we have wz = 0.

e Model 4: Residual spatial dependence exists for Y7 and Y3, but not Yos;
in (2.1) we have wg = 0.

e Model 5: Residual spatial dependencies exist for all three variables.

For models including w1 (s), i.e., Models 2-5, we collapse the parameter
space by integrating out w; from (2.1). The resulting model is

3 3
IG(r® |ar,b;) x [ [ IG(0F |ac;  bo;) x [ N(w: 0,07 Ri($:))
i=1 i=2

<[] {POi(Ys(Sj) |27 (s5)03 +ws(s;)) x Ber(Ya(s;) | ®(yYa(s;) +a ' (s5)02 + wz(sj)))}
j=1

XN(Y1| X061 + aYz + BYs, 05 Ry (d1) + 7°1n) | (3.1)

where Y; denotes the n x 1 vector with j-th element Y;(s;) for j = 1,2, 3,
X is n x p with rows 2 (s;) and I, is the n x n identity matrix. The rjags
code for the five models are supplied in the supplement Supplementary.

Once the posterior samples for Q = {01,602,03,a, 8,7,7%,0%,03,03} are
obtained, we can recover the exact posterior distribution of w; by sampling

from

Pmmq:pmm@u/pmﬂm@mmmmm (3.2)

-1
This distribution comes out to be N(Bb, B), where B = (%Rfl (¢1)+ T%)
1
and b = L (V7 — aYs — BY3 — X6).

7—2
Subsequently, the posterior predictive distribution at an arbitrary loca-
tion can be computed using composition sampling. Let sg be a new location,
and w*, Y™, X* be the features at the new location. We compute P(w}|Y")

as:

H@Ma/PMWﬁXWWMHHMﬂmm. (3.3)
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Composition sampling consists of three steps. First obtain posterior samples
Q ~ P(Q]Y), then recover w; as described in (3.2). Finally, since we assume
independent Gaussian processes for all w’s, the distribution P(w]|w,,Y")
can be simplified to P(w}|w;, ), and is derived from a multivariate normal
distribution:

0
Z; 0 ®;_, o7 Ri(¢1) @i, o7ri(s0)
Wil Ly |9,
wy 0
wy 0 T
wz 0 (D7, o?ri(s0)] B, o?
fi 0 0
where @le fi=10 fo 0], andri(sp) is a vector with ith element as
0 0 fs
p(@is [[si — soll)-

The conditional distribution has the form:

P(w]|w,Q,Y) = P(w} w;, Q) ~ N (X, e D wis Sur =50, e B St ;)
(3.4)

where ¥, = 02 Ri(¢), Byr = o2, Ywiwr = Bt w; = o2ri(sp). After obtain-
ing wy, prediction of the responses can be easily carried out by sampling the
conditional expectation E[Y*|Y,Q, w*].

For comparing these models, we use the Widely Applicable Informa-
tion Criterion (WAIC) proposed by Watanabe (2010); also see Gelman
et al. (2014). WAIC is a Bayesian criterion that closely approximates cross-
validation in a computationally convenient way. It can be calculated using
only training samples which is useful for model selection. WAIC is computed
as waic = —2elpd,, ;. (Vehtari and Gelman, 2014), where elpd,,,;. is the es-
timated expected log point-wise predictive density, defined as el})dwaic =
lﬁd — Pwaic, Where l];d is the computed log pointwise predictive density,

n S
A 1
Ipd = E log <S E p(yi]93)> and Pyaic 18 the simulation-estimated effec-
=1 s=1

tive number of parameters, computed by summing posterior variance of log
predictive density over all the data points, Puwaic = Y1y VE, (logp(y¢|95)),
where V is the sample variance V.2, (a,) = <71 Zsszl(as —a).
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4 Simulation

We conducted some simulation experiments to evaluate our multivariate
spatial process models. We simulated several data sets each with six vari-
ables (Y1, Y2, Y3, X1, X9, X3) under different spatial effects settings at 200
locations.

Setting 1 (spatial effects: wy, wa, w3):
Y1 ~ N(p1,0.5), 1 = oY + BY3 4+ big + b11 X1 + b12Xo + b13 X3 + wy

Yy ~ Ber(®(vY3 + b1 X1 + baaXo + bas X3 + wo))
Y3 : Pois(b31 X1 + b3 Xo + b33 X3 + w3)

Setting 2 (spatial effects: wq, ws):
Y1 ~ N(p1,0.5), u1 = aYs + BY3 + big + b11 X1 + b12 X + b3 X3 + wy

Yy ~ Ber(®(vY3 + ba1 X1 + baaXo + ba3 X3))
Y3 : Pois(b31 X1 + b3aXo + b3z X3 + w3)

Setting 3 (spatial effects: wy, ws):
Y1 ~ N(p1,0.5), p1 = aYs + BY3 + big + b1 X1 + b12 X2 + bi3 X3 + wy

Yo ~ BeT(@(’ng + b1 X1 + boo X9 + boz X3 + wg))
Y3 : Pois(b31 X1 + b3a X2 + b33 X3)

We compare the five models in each of the above settings. Prior estimates
are obtained from empirical variograms. Table 2 shows the comparisons in

Table 2: WAIC and computation time comparisons

Model M1(no w) M2(wl) M3(wlw2) M4(wlw3) M5(wlw2w3)
Setting 1 840.0 479.8  480.9 471.0 464.2
Setting 2 836.3 474.9  475.2 454.6 463.8
Setting 3 673.5 314.2  308.9 312.2 315.8

Machine specs MacBook Pro, 2 GHz Dual-Core Intel Core i5, 8 GB
1867 MHz LPDDR3

Computation time

(100 iterations)  2.179s  7.993s 12.597s 12.272s 16.499 s
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the simulation study. We see substantial improvement by incorporating spa-
tial effects in the model. In the first simulation setting, the best model is M5
with all three spatial effects included. And in the second setting where the
true spatial effects are wy and ws, the best model is M3 which only includes
two spatial effects wy, ws. Similarly, in the third setting where the true spa-
tial effects are w; and ws, the best model is M4 which includes the spatial
effects w1, w3. Computation times presented in Table 2 are based upon run-
ning 100 iterations for each model. Estimating the additional spatial effects
will increase the computational complexity and is more time consuming.
Hence, we exclude them.
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Figure 2: Mapping of houses in Walmer district
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Table 3: Description of variables in Housing data

Variables Type Description

Price Continuous Recorded sales price of the
house in Rand

Year.of.Sale Discrete The year that the house was sold

Size. Erf Continuous The size of the erf (land reg-
istered in a deeds registry) in
square meters

Stories Count Number of stories in the house

Bath Count Number of bathrooms (in-
cluding partial bathrooms) in
the house

Bed Count Number of bedrooms in the house

Swim Binary The presence of a swimming pool

Staff Binary The presence of staff quarters

Bachelor Binary The presence of a bachelor’s
flat /apartment

Aircon Binary The presence of air conditioning,

Garage Binary The presence of a garage

Irrigation Binary The presence of a irrigation
System

Dining Binary The presence of a separate
dining room

Living.Rooms Count Number of living rooms

Tennis Binary The presence of tennis court

Wall Binary The presence of a boundary
wall enclosing the property

Elec.Gate Binary The presence of an electric
gate for gaining access to the
property

Security Binary The presence of a security system

ElecFence Binary The presence of an electrified
barrier installed on top of the
boundary wall

Dist.Social.Housing Continuous Distance to a social housing

development (Walmer Town-
ship) in metres
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Table 4: SLR of lasso selected variables

Coefficients Estimate Std. Error t value Pr(> |t|) Significance
Size.Erf 0.026 0.005 5.651 7.le-08  ***

Bath 0.045 0.028 1.606 0.110

Bed 0.058 0.035 1.66  0.099

Swim 0.308 0.067 4581 9.3e-06 ¥

Staff 0.104 0.054 1.942  0.054

Irrigation 0.198 0.049 4.047  8e-05 ook
Dist.Social.Housing 0.011 0.004 2.520 0.013 *

5 Data Analysis

Our housing market data comes form the district of Walmer, Port Eliza-
beth, South Africa. Previous studies using this data set include (Du Preez
et al., 2013), and (Du Preez and Sale, 2015), where (linear and nonpara-
metric) hedonic price models were applied to the district of Walmer.! This
district has 2625 properties in total. A sample of 168 houses that have been
traded at least once during 1995 and 2009 is used here for the analysis. Our
primary interest is the recorded sales prices of the houses. The ABSA house
price index was used to inflate the sales price of each individual house to
constant 2009 rands. Eighteen other structural and neighborhood character-
istics were collected on each individual house: Year.of.Sale, Size.Erf,
Stories, Bath,Bed, Swim, Staff, Bachelor, Aircon, Garage, Irrigation,
Dining, Living.Rooms, Tennis, Wall, Elec.Gate, Security, ElecFence,
Dist.Social.Housing. See more details of the variables in Table 3. The
average sales price between Year 1995 and Year 2009 is R 1,618,497, range
from R 193,600 to R 4,926,800. The house in the dataset has an average of
1773 square metres in size, 3.7 bedrooms, 2.7 bathrooms, 1.9 living rooms,
1.2 stories, and is located 1797 metres from the Walmer Township. The ma-
jority of houses have a garage, a swimming pool, a separate dining room, and
are built with boundary wall, electric gate, and security system , although
less than half of the houses have air-conditioning, tennis court, or electric
fencing. Provided the physical addresses, we obtain the coordinates of each
individual house from the GoogleMaps package in R and plot the map of
houses in Fig. 2.

Our primary interest is the selling price so the main outcome Y7 is chosen
to be the log-transformed 2009 home prices. A log-transformation is applied
as the original data indicated right skewness. We choose the other two

"We would like to thank Dr. Mari Du Preez and Dr. Michael Sale for kindly sharing the
data set with us.
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outcomes Yo and Y3 using some preliminary analysis. First, we perform a
lasso regression of Y; on the remaining variables, then least squares estimates
are obtained for the subset of variables from lasso; see Table 4. We selected
two types of variables that are more significant in their own category: a
binary variable Swim as Y5 and a count variable Bed as Y3.

Posterior inference for regression coefficients in all five models discussed
in Section 2 are presented in Tables 5-7. The results of the five models agree
closely. The variables that have positive effects on home prices are Swim,

Table 5: Coefficients for modeling log(price) (Y1)

Posterior MI(no w)  M2(wl) M3(wlw2) M4(wiw3) M5(wlw2w3)
Mean
(95% CI)
Swim(Y2) 0.29 0.29 0.28 0.28 0.28

(0.15, 0.42) (0.15, 0.42) (0.14, 0.41) (0.15, 0.42) (0.14, 0.42)
Bed (Y3) 0.03 0.04 0.04 0.04 0.03

(—0.03, 0.10) (—0.04, 0.1) (—0.03, 0.11) (—0.03, 0.14) (—0.04, 0.12)
Year.of.Sale 0.7 0.67 0.62 0.67 0.49

(0.65, 0.75) (0.54, 0.79) (0.55, 0.71) (0.59, 0.73)  (0.36, 0.63)
Size.Erf 0.03 0.03 0.03 0.03 0.03

(0.02, 0.04) (0.02, 0.03) (0.02, 0.04) (0.02, 0.04) (0.02, 0.03)
Stories 0.11 0.11 0.11 0.11 0.10

(—0.04, 0.26) (—0.03, 0.26) (—0.03, 0.25) (—0.02, 0.25) (—0.03, 0.23)
Bath 0.05 0.05 0.05 0.05 0.05

(—0.01, 0.10) (—0.01, 0.10) (—0.01, 0.10) (—0.02, 0.11) (—0.01, 0.11)
Staff 0.09 0.09 0.09 0.08 0.09

(—0.03, 0.20) (—0.03, 0.20) (—0.03, 0.20) (—0.03, 0.19) (—0.02, 0.20)
Bachelor -0.11 —0.11 —0.11 —0.11 —0.11

(—0.21, 0) (—0.21, 0) (—0.21, 0) (—0.21, 0) (—0.21, 0)
Aircon 0.03 0.03 0.03 0.03 0.03

(=0.08, 0.15) (—0.09, 0.15) (—0.09, 0.15) (—0.09, 0.15) (—0.09, 0.15)
Garage —0.05 —0.04 —0.04 —0.05 —0.04

(—0.19, 0.09) (—0.18, 0.09) (—0.18, 0.10) (—0.18, 0.10) (—0.18, 0.10)
Irrigation 0.19 0.19 0.19 0.19 0.19

(0.08, 0.29) (0.09, 0.30) (0.09, 0.30) (0.09, 0.30) (0.08, 0.30)
Dining —0.06 —0.06 —0.06 —0.06 —0.06

(—0.18, 0.05) (—0.17, 0.05) (—0.18, 0.05) (—0.17, 0.05) (—0.17, 0.05)
Living.Rooms —0.03 —0.03 —0.03 —0.03 —0.03

(=0.11, 0.05) (—0.11, 0.05) (—0.12, 0.04) (—0.10, 0.05) (—0.11, 0.05)
Tennis 0.04 0.03 0.03 0.03 0.03

(=0.13, 0.21) (—0.13, 0.19) (—0.14, 0.19) (—0.14, 0.19) (—0.14, 0.20)
Wall 0.12 0.09 0.10 0.10 0.10

(—0.25, 0.48) (—0.31, 0.47) (—0.22, 0.43) (—0.29, 0.48) (—0.25, 0.41)
Elec.Gate 0.13 0.14 0.14 0.15 0.14

(—0.07, 0.31) (—0.05, 0.32) (—0.05, 0.34) (—0.05, 0.35) (—0.07, 0.34)
Security 0.28 0.32 0.32 0.32 0.35

(—0.11, 0.65) (—0.01, 0.62) (—0.03, 0.61) (0.02, 0.68) (0.01, 0.68)
Elec.Fence 0.10 0.10 0.10 0.10 0.10

(=0.01, 0.22) (—0.02, 0.22) (—0.02, 0.22) (—0.03, 0.22) (—0.02, 0.22)
Dist.Social.Housing 0.01 0.01 0.01 0.01 0.01

(0, 0.02) (0, 0.02) (0, 0.02) (0, 0.02) (0, 0.02)
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Table 6: Coeflicients summary for modeling Swim Y5

Posterior Estimates M1(no w) M2(wl) M3(wlw2) M4(wlw3) M5(wlw2w3)
Mean
(95% CI)
Bed (Y3) 0.07 0.03 0.07 0.03 0.02

(-0.39, 0.50) (—0.38, 0.47) (—0.34, 0.46)  (—0.36, 0.43) (—0.43, 0.4)
Year.of.sale 0.41 0.25 —0.22 —0.01 —-0.5

(0.07, 0.76)  (—0.06, 0.62) (—0.44, —0.03) (—0.33, 0.23) (—0.77, —0.18)
Size.Erf 0.03 0.03 0.03 0.03 0.03

(—0.03, 0.08) (—0.02, 0.08) (—0.03, 0.08)  (—0.02, 0.08) (—0.02, 0.08)
Stories 0.01 —0.02 0.09 0.01 0.02

(—0.81, 0.92) (—0.82, 0.86) (—0.76, 0.97) (—0.83, 0.88) (—0.78, 0.84)
Bath 0.1 0.12 0.10 0.12 0.12

(—0.24, 0.47) (—0.24, 0.49) (—0.24, 0.42) (—0.2, 0.44) (—0.19, 0.47)
Staff 0.46 0.46 0.48 0.44 0.46

(—0.12, 1.08) (—0.13,1.07) (—0.12,1.08) (—0.13, 1.02) (—0.14, 1.08)
Bachelor —0.05 —0.03 —0.04 —0.03 —0.03

(—0.58, 0.46) (—0.57, 0.48) (—0.59, 0.52)  (—0.53, 0.47) (—0.57, 0.52)
Aircon 0.00 —0.01 0.01 0.02 0.06

(—0.63, 0.66) (—0.65, 0.64) (—0.64, 0.69) (—0.57, 0.62) (—0.57, 0.72)
Garage 0.67 0.67 0.73 0.65 0.68

(0.07,1.28)  (0.07, 1.23)  (0.08, 1.39) (0.05,1.2)  (0.07, 1.3)
Irrigation 0.11 0.08 0.11 0.11 0.11

(—0.44, 0.68) (—0.47, 0.65) (—0.47, 0.68)  (—0.41, 0.63) (—0.48, 0.66)
Dining 0.34 0.35 0.37 0.34 0.31

(—0.20, 0.86) (—0.19, 0.91) (—0.18, 0.93) (—0.18, 0.86) (—0.26, 0.87)
Living.Rooms —0.01 0.00 —0.01 0.00 0.00

(—0.41, 0.39) (—0.36, 0.38) (—0.4,0.39)  (—0.38, 0.39) (—0.4, 0.39)
Tennis 0.60 0.60 0.62 0.52 0.58

(—0.37, 1.71) (—0.42, 1.75) (—0.42, 1.83)  (—0.48, 1.61) (—0.44, 1.76)
Wall 0.29 0.24 0.4 0.02 0.16

(—1.46, 1.85) (—1.39, 1.66) (—1.2, 2.06) (—2.11, 1.67) (—1.93, 1.74)
Elec.Gate 0.19 0.14 0.15 0.11 0.11

(—0.67,0.98) (—0.83,1)  (—0.8,1.05)  (—0.75,0.94) (—0.91, 1.06)
Security 1.48 1.62 1.66 1.21 1.41

(0.22, 2.89)  (—0.33, 3.77) (0.22, 3.74) (—0.18, 2.45) (—0.01, 3)
Elec.Fence 0.96 0.99 0.98 0.96 0.99

(0.28,1.74)  (0.28, 1.79)  (0.23, 1.79) (0.25,1.75)  (0.26, 1.87)
Dist.Social.Housing —0.02 —0.02 —0.03 —0.02 —0.03

(—0.07, 0.02) (—0.07, 0.01) (—0.07, 0.02)  (—0.07, 0.02) (—0.07, 0.02)
Bed, Year.of.Sale, Size.Erf, Stories, Bath, Staff, Irrigation,

Tennis, Wall, Elec.Gate, Security, Elec.Fence and Dist.Social.
Housing, and the ones that have negative effects are Bachelor, Garage,
Dining, Living.Rooms. We see that Y5 (Swim), Year.of.Sale, Size.Erf,
Bachelor, Irrigation and Dist.Social.Housing are significant vari-
ables for modeling Y7 according to the posterior 95% confidence intervals.
From the posterior estimates of the coefficients, when we have Y5 =1, Y7 is
increased by approximately 0.28 which indicates that the selling price of a
house with a swimming pool is about ¢%?® = 1.3 times more than a house
without a swimming pool. Housing price also significantly increase with
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Table 7: Coeflicients summary for modeling bed Y3

Posterior Estimates M1(no w) M2(wl) M3(wlw2) M4(wlw3) M5(wlw2w3)
Mean
(95% CI)
Year.of .sale 0.01 —0.02 —0.11 0.09 —0.05

(-0.1, 0.08) (-—0.16, 0.13) (—0.26, —0.03) (0.01, 0.14) (—0.16, 0.04)
Size.Erf 0.01 0.01 0.01 0.01 0.01

(—0.01, 0.02) (—0.01,0.02) (—0.01, 0.02) (0, 0.02) (—0.01, 0.02)
Stories 0.05 0.04 0.05 0.05 0.07

(—0.17, 0.25) (—0.18,0.25) (—0.14, 0.26) (—0.18, 0.26) (—0.15, 0.29)
Bath 0.08 0.07 0.07 0.08 0.08

(0.00, 0.15)  (0.00, 0.15)  (0.00, 0.15) (0.01, 0.15)  (0.01, 0.16)
Staff —0.02 —0.01 —0.01 —0.03 —0.02

(-0.2,0.15) (—0.18,0.17) (—0.19, 0.17) (—0.21, 0.17) (—0.2, 0.16)
Bachelor 0.00 0.00 0.00 0.00 —0.01

(-0.16, 0.17) (—0.15,0.17) (—0.16, 0.17) (=0.17, 0.17) (—0.17,0.17)
Aircon 0.06 0.06 0.06 0.06 0.05

(=0.13,0.24) (—0.13,0.24) (—0.13,0.23)  (—0.12, 0.24) (—0.14, 0.24)
Garage —-0.07 —0.06 —0.07 —0.07 —0.06

(—0.29, 0.15) (—0.26, 0.15) (—0.28, 0.14) (—0.28, 0.13) (—0.27, 0.15)
Irrigation —0.07 —0.07 —0.07 —0.09 —0.08

(—0.23,0.1) (—0.24, 0.10) (—0.24, 0.10) (—0.26, 0.09) (—0.25, 0.09)
Dining —0.02 —0.02 —0.02 —0.01 —0.03

(—0.19, 0.16) (—0.20, 0.16) (—0.19, 0.17) (—0.20, 0.18) (—0.21, 0.16)
Living.Rooms 0.01 0.02 0.01 0.01 0.01

(=0.12, 0.13) (—0.11,0.15) (—0.11,0.13)  (—0.12,0.12) (—0.11, 0.14)
Tennis 0.11 0.11 0.12 0.12 0.11

(—0.14, 0.35) (—0.14, 0.34) (—0.12, 0.36) (—0.13, 0.36) (—0.14, 0.36)
Wall 0.25 0.19 0.24 0.2 0.24

(—0.26, 0.90) (—0.35,0.86) (—0.32, 0.77) (—0.43, 0.72) (—0.33, 1.07)
Elec.Gate —0.05 —0.04 —0.04 —0.07 —0.01

(—0.36, 0.27) (—0.35,0.35) (—0.35,0.29)  (—0.41, 0.26) (—0.31, 0.32)
Security 0.05 0.09 0.06 0.11 0.12

(—0.44, 0.54) (—0.46, 0.72) (—0.42, 0.61) (—0.51, 0.7) (—0.47, 0.65)
Elec.Fence 0.06 0.06 0.06 0.05 0.05

(-0.12, 0.25) (—0.13,0.25) (—0.12,0.24)  (—0.14, 0.23) (—0.13, 0.24)
Dist.Social.Housing 0.00 0.00 0.00 0.00 0.00

(—0.01, 0.02) (—0.01, 0.02) (—0.01, 0.02) (—0.01, 0.02) (—0.01, 0.02)

time. Bigger sized houses tend to be more expensive. However, since most
of the houses in this dataset are very close in size, the influence is relatively
small. A bachelor-style flat will impact the selling price by 10%. An irri-
gation system seems to be a significantly important factor in evaluating the
sales price of a house.

Coefficients in the Probit model with Y> Swim as response variable are
shown in Table 6. The posterior estimates suggest two significant variables
that are positively associated with the swimming pool. We conclude that
houses with garage and electric fence are more likely to have a swimming
pool. Coeflicients in the Poisson model with Y3 Bed as response variable
are shown in Table 7. Bath is a significant variable, which is reasonable as
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Table 8: Posterior parameters summary
Posterior Estimates M1(no w) M2(wl) M3(wlw2) M4(wiw3) M5(wlw2w3)
Mean (sd)

72 0.106 (0.012) 0.012(0.014) 0.013(0.017) 0.014(0.017) 0.012(0.015)
o? - 0.096(0.018) 0.094(0.021) 0.093(0.020) 0.095(0.019)
o3 - - 0.089(0.038) — 0.226(0.039)
o3 - - - 0.016(0.005) 0.016(0.003)

the number of bathrooms usually increases with the number of bedrooms.
However, Bed is not strongly related to any of the remaining variables.

Posterior estimates of the process parameters and spatial random effects
are recorded in Table 8. Table 9 shows the significance of the three posterior
spatial random effects w1, we, w3 among all 168 locations.

Figure 3 depict the interpolated surfaces of spatial random effects wy, wo,
ws for four spatial models (Model 2 ~ Model 5). New locations are randomly
simulated on the grid of the region. Predictions of spatial random effects are
calculated at each new location using parameters estimated from the model.
We use multilevel B-spline approximation (MBA) algorithm proposed by
Lee et al. (1997) which is available in R package MBA to approximate the
surface from a bivariate scatter of data points. The black dots are the
original locations and the red triangles are the simulated new locations. We
can see clearly the patterns of spatial dependence in Fig. 3a—h that there
is obvious spatial pattern according to the image plots and the four models
display similar patterns. The spatial effects of housing price are positive at
most locations, however, the spatial effects of swimming pool and number
of bedrooms are negative at most locations.

We run each jags model for 20000 iterations with one chain. We present
the diagnostic plots of parameters «, 8,7 and spatial effects at random lo-
cations in Fig. 4. The trace plots show good convergence for «, 5,v. Among
the three spatial effect terms, wy converges well, while wy and ws converge
much slower.

Table 9: Posterior spatial random effects significance summary

95% Confidence Interval [MI(no w) M2(wl) M3(wiw2) M4(wlw3) M5(wlw2w3)

w1l Proportion of not including 0 — 99% 98% 98% 96%
Significantly Positive - 79 79 79 78
Significantly Negative - 88 86 86 83

w2 Proportion of not including 0- - - 96% - 97%
Significantly Positive - - 74 - 85
Significantly Negative - - 87 - 78

w3 Proportion of not including 0 — - - 96% 96%
Significantly Positive - - - 82 76

Significantly Negative — — - 80 85
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Table 10: WAIC Comparison
Model ~ Ml(now) M2(wl) M3(wlw2) M4(wlw3) M5(wlw2w3)
WAIC  880.6 563.3 578.5 594.9 567.0
LPML  886.4 678.2 665.8 704.4 660.5

WAIC comparisons shown in Table 10 suggests that the model perfor-
mance is greatly enhanced by incorporating random spatial effects of the
selling price into the model. Adding spatial effects to Swim and Bed do not
seem to produce substantial improvements. To show that the inference is
consistent with other model selection criteria, we also computed PSIS-LOO
CV, efficient approximate leave-one-out (LOQ) cross-validation for Bayesian
models using Pareto smoothed importance sampling (PSIS) proposed by
Vehtari et al. (2017). WAIC and the LOO information criterion (LOOIC)
give consistent comparisons among the five models as seen in the Table
10.

6 Conclusion

This study works with multivariate point-referenced data and considers
multiple mixed outcomes, i.e., some are continuous and some are discrete, in
a Bayesian hierarchical framework. When applied to a data set of 168 houses
in the district of Walmer, Port Elizabeth, South Africa, our results revealed
that among all the house characteristics, the presence of a swimming pool,
the year the property was sold, the size of the property (in square meters),
whether it is a bachelor’s apartment, the presence of an irrigation system,
and the distance to a social housing development (in meters) are significantly
associated with the selling price. Furthermore, the presence of a swimming
pool seems to be significantly associated with the property having a garage
and an electric fence. Importantly, comparison between the different models
suggest that incorporating a spatial process for selling price clearly results
in better model fitting of the data, while the spatial processes for swimming
pool (binary) and number of bedrooms (count) did not result in further
significant improvements.



BAYESIAN SPATIAL MODELING FOR... 19

References

BANERJEE, S., CARLIN, B.P. and GELFAND, A.E. (2014). Hierarchical Modeling and Analysis
for Spatial Data. 2nd Edn. Chapman & Hall/CRC.

BROOKS, S., GELMAN, A., JONES, G. and MENG, X.-L. (2011). Handbook of Markov Chain
Monte Carlo. Chapman & Hall/CRC.

CRESSIE, N. and ZAMMIT-MANGION, A. (2016). Multivariate spatial covariance models: a
conditional approach. Biometrika 103, 4, 915-935.

CRESSIE, N.A.C. (1993). Statistics for Spatial Data. Wiley, New York.

DU PREEZ, M., BALCILAR, M., RAZZAK, A., KOCH, S.F. and GUPTA, R. (2016). House values
and proximity to a landfill in South Africa. Journal of Real Estate Literature 24,
133-149.

DU PREEZ, M., LEE, D. and SALE, M. (2013). Nonparametric estimation of a hedonic price
model: A South African case study. Journal for Studies in Economics and Econo-
metrics 37, 2, 41-62.

DU PREEZ, M. and SALE, M. (2015). Municipal assessments versus actual sales prices in
hedonic price studies. Journal of Economic and Financial Sciences 8, 35—46.

GELFAND, A. E., DIGGLE, P. J., FUENTES, M. and GUTTORP, P. (2010). Handbook of Spatial
Statistics. Chapman & Hall/CRC.

GELMAN, A., CARLIN, J. B., STERN, H. S., DUNSON, D. B., VEHTARI, A. and RUBIN, D.B.
(2013). Bayesian Data Analysis. 3rd Edn. Chapman & Hall/CRC.

GELMAN, A., HWANG, J. and VEHTARI, A. (2014). Understanding predictive information
criteria for Bayesian models. Statistics and Computing 24, 6, 997-1016.

GENTON, M.G. and KLEIBER, W. (2015). Cross-Covariance Functions for multivariate geo-
statistics. Stat. Sci. 30, 2, 147-163.

LEE, S., WOLBERG, G. and SHIN, S.Y. (1997). Scattered data interpolation with multilevel
B-Splines. IEEFE Transactions on Visualization and Computer Graphics 3, 3.

LESAGE, J. and PACE, R.K. (2009). Introduction to Spatial Econometrics. Chapman &
Hall/CRC.

MARCOTTE, D. (2012). Rewisiting the Linear Model of Coregionalization. Springer, Dor-
drecht, p. 67-78.

ROBERT, C. and CASELLA, G. (2004). Monte Carlo Statistical Methods. 2nd ed. Springer.

VEHTARI, A. and GELMAN, A. (2014). WAIC and cross-validation in Stan. Statistics and
Computing.

VEHTARI, A., GELMAN, A. and GABRY, J. (2017). Practical bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing 27,5, 1413-1432.

WACKERNAGEL, H. (2003). Multivariate Geostatistics: An Introduction with Applications.
Springer, Berlin.

WATANABE, S. (2010). Asymptotic equivalence of Bayes cross validation and widely appli-
cable information criterion in singular learning theory. Journal of Machine Learning
Research 11, 3571-3594.



20 B. Wang et al.

Publisher’s Note. Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

BingLING WANG

AND SUDIPTO BANERJEE

DEPARTMENT OF BIOSTATISTICS,

UNIVERSITY OF CALIFORNIA, LOS ANGELES

(or UCLA), Los ANGELES, CA, USA

E-mail: binglingwang@ucla.edu
sudipto@Qucla.edu

RAaNGAN GUPTA

DEPARTMENT OF EcoNoMICS, UNIVERSITY
OF PRETORIA, PRETORIA, SOUTH AFRICA
E-mail: rangan.gupta@up.ac.za

Paper received: 18 June 2018.



	Bayesian Spatial Modeling for Housing Data in South Africa
	Introduction
	Multivariate Spatial Process Models
	Bayesian Inference
	Simulation
	Data Analysis
	Conclusion


