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SPARSITY PROMOTING HYBRID SOLVERS FOR HIERARCHICAL
BAYESIAN INVERSE PROBLEMS\ast 
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Abstract. The recovery of sparse generative models from few noisy measurements is an impor-
tant and challenging problem. Many deterministic algorithms rely on some form of \ell 1-\ell 2 minimization
to combine the computational convenience of the \ell 2 penalty and the sparsity promotion of the \ell 1.
It was recently shown within the Bayesian framework that sparsity promotion and computational
efficiency can be attained with hierarchical models with conditionally Gaussian priors and gamma
hyperpriors. The related Gibbs energy function is a convex functional, and its minimizer, which is
the maximum a posteriori (MAP) estimate of the posterior, can be computed efficiently with the
globally convergent Iterated Alternating Sequential (IAS) algorithm [D. Calvetti, E. Somersalo, and
A. Strang, Inverse Problems, 35 (2019), 035003]. Generalization of the hyperpriors for these sparsity
promoting hierarchical models to a generalized gamma family either yield globally convex Gibbs en-
ergy functionals or can exhibit local convexity for some choices for the hyperparameters [D. Calvetti
et al., Inverse Problems, 36 (2020), 025010]. The main problem in computing the MAP solution
for greedy hyperpriors that strongly promote sparsity is the presence of local minima. To overcome
the premature stopping at a spurious local minimizer, we propose two hybrid algorithms that first
exploit the global convergence associated with gamma hyperpriors to arrive in a neighborhood of
the unique minimizer and then adopt a generalized gamma hyperprior that promotes sparsity more
strongly. The performance of the two algorithms is illustrated with computed examples.
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1. Introduction. The recovery of a sparse vector from noisy indirect observa-
tions continues to be an active research topic. After the groundbreaking work on
compressed sensing and its connections to sparsity promoting regularization methods
[2, 12, 13, 14, 15] and the \ell 1-penalty in particular, the interest in sparse recovery has
been revived by dictionary learning methods in data science, where the goal is to match
an observed vector with a few dictionary entries in a huge database [17, 21, 22]. The
connections between regularization methods and penalty functionals on one hand,
and Bayesian inference techniques on the other, have been thoroughly investigated
[3, 16, 4], and families of priors that promote sparsity have been identified in the
Bayesian framework.

Sparsity is a qualitative rather than quantitative trait because in general the
size of the support and its location cannot be specified in advance. While there is
a wealth of different priors that promote sparsity, the results may differ significantly
depending on the cost for nonvanishing entries. In the classical regularization setting,
this is well illustrated by the different \ell p-penalties, with p \leq 1. Penalty functionals
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with 0 \leq p < 1 tend to promote sparsity more strongly than p = 1. The convexity
of the objective function for the latter and the results on the exact recovery of sparse
generative models under suitable conditions have contributed to the popularity of \ell 1
regularization for sparse problems, while the presence of local minima has damped
the enthusiasm for penalties with p < 1.

Analogous considerations hold in the Bayesian framework for sparsity promoting
hierarchical prior models, with generalized gamma hyperpriors. Recently [5, 6], it
has been shown that the maximum a posteriori (MAP) iterative sparse reconstruc-
tion algorithm is particularly well suited for heavily underdetermined but large scale
problems (see, e.g., [8] for an application). The Iterative Alternating Sequential (IAS)
algorithm is based on hierarchical Bayesian models and uses sparsity promoting hy-
perpriors selected from a family of generalized gamma distributions. As pointed out
in [6], some choices of the hyperparameters yield algorithms that are closely related,
e.g., to the \ell p-penalization methods. Moreover, the convexity properties of the ob-
jective function also depend on the parameter choice, as does the convergence rate
of algorithms for computing the MAP estimate. Our aim is to combine the proper-
ties of generalized gamma hyperpriors to design robust and computationally efficient
methods for sparse recovery from few noisy observations. More specifically, we pro-
pose hybrid algorithms for the MAP computation: a gamma hyperprior guides the
approximate solution towards the unique minimizer of the objective functions at the
beginning, and subsequently a greedier hyperprior is employed to promote sparsity
more strongly. We focus on two such hybrid algorithms, which we refer to as local and
global because of the different strategy to switch hyperpriors. In the local version,
the hyperprior is changed componentwise, guaranteeing local convexity, while in the
global version, the hyperprior is changed for all components. In addition to analyzing
the convergence properties of each approach, we provide a criterion for ensuring that
the a priori beliefs are consistent with the two different hyperpriors. The performance
of the algorithms is assessed in light of computed examples.

2. Hierarchical Bayesian models. In this section we introduce the IAS al-
gorithm for the MAP computation and review some of its key properties; additional
details can be found in [8, 5, 6].

Consider the linear observation model with additive Gaussian noise,

b = \sansA x+ e , e \sim \scrN (0,\sansSigma ),

where \sansA \in Rm\times n, with m < n, is a known ill-conditioned matrix describing the
forward model, x \in Rn is the unknown of interest, and \sansSigma \in Rn\times n is the symmetric
positive definite covariance matrix of the noise. We remark that by letting \sansA \prime = \sansS \sansA 
and b\prime = \sansS b, where \sansS is the Cholesky factor of the precision matrix, \sansSigma  - 1 = \sansS \sansT \sansS , we
can assume the noise to be white, i.e., \sansSigma = \sansI ; hence, the likelihood probability density
function (pdf) of b with given x takes the form

\pi b| x(b | x) \propto exp

\biggl( 
 - 1

2
\| \sansA x - b\| 2

\biggr) 
.

We are interested in estimating x from the observed measurements in b under the a
priori assumption that x is sparse, that is, \| x\| 0 = card(supp(x)) \ll n. In general, the
approach can be generalized to cases where the unknown of interest itself is not sparse,
but admits a sparse representation in some dictionary, by making the coefficients of
the representation the unknown of primary interest.
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To encode the sparsity belief in the prior model, we begin by considering a com-
ponentwise Gaussian prior model,

xj \sim \scrN (0, \theta j) , \theta j > 0 , 1 \leq j \leq n,

or, equivalently,

x \sim \scrN (0,\sansD \theta ) ,\sansD \theta = diag(\theta 1, . . . , \theta n) \in Rn\times n,

where the variances of the individual components are not known. The conditional
prior density of x given \theta is of the form

\pi x| \theta (x | \theta ) \propto 1\prod n
j=1

\sqrt{} 
\theta j

exp

\biggl( 
 - 1

2
\| \sansD  - 1/2

\theta x\| 2
\biggr) 

= exp

\biggl( 
 - 1

2
\| \sansD  - 1/2

\theta x\| 2  - 1

2

n\sum 
j=1

log \theta j

\biggr) 
,

and following the Bayesian paradigm that all unknowns are modeled as random vari-
ables, the a priori belief about \theta is encoded in a hyperprior pdf \pi \Theta (\theta ). The price to
pay for this hierarchical prior model is that we need to estimate not only x but also
\theta based on data in terms of the joint posterior distribution of (x, \theta ) conditioned on b,

(2.1) \pi x,\theta | b(x, \theta | b) \propto \pi x| \theta (x | \theta )\pi \theta (\theta )\underbrace{}  \underbrace{}  
\pi x,\theta (x,\theta )

\pi b| x(b | x).

A way to promote sparse solutions is to choose a hyperprior \pi \theta that favors small values
of \theta but allows occasional large outliers. A family with these properties, thoroughly
investigated in [6], is that of the generalized gamma distributions,

\pi \theta (\theta ) = \pi \theta (\theta | r, \beta , \vargamma ) = | r| n

\Gamma (\beta )n

n\prod 
j=1

1

\vargamma j

\biggl( 
\theta j
\vargamma j

\biggr) r\beta  - 1

exp

\biggl( 
 - 

\biggl( 
\theta j
\vargamma j

\biggr) r \biggr) 
,

where r \in R \setminus \{ 0\} , \beta > 0, and \vargamma j > 0.
The MAP estimate of the posterior pdf model (2.1) is also the minimizer of the

negative logarithm of the posterior pdf,

(2.2) (x\ast , \theta \ast ) = argmin
x,\theta 

\bigl\{ 
 - log \pi x,\theta | b(x, \theta | b)=:\scrF (x, \theta )

\bigr\} 
.

The objective function \scrF (x, \theta ) can be written as

\scrF (x, \theta ) = \scrF (x, \theta | r, \vargamma , \beta )

=

(a)\underbrace{}  \underbrace{}  
1

2
\| b - \sansA x\| 2 + 1

2

n\sum 
j=1

x2
j

\theta j
 - 

\biggl( 
r\beta  - 3

2

\biggr) n\sum 
j=1

log
\theta j
\vargamma j

+
n\sum 

j=1

\biggl( 
\theta j
\vargamma j

\biggr) r

\underbrace{}  \underbrace{}  
(b)

(2.3)

to emphasize that only the terms in (a) depend on x, and only those in (b) depend
on \theta . These observations play a key role for the design of a computationally efficient
algorithm for computing the MAP estimate. We start by recalling the IAS algorithm
for the solution of problem (2.2); see [7, 8, 5] for further details and for a comprehensive
study of the effect of the choice of hyperparameters (r, \beta , \vargamma ) on the promotion of
sparsity and the properties of the objective function.
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2.1. IAS algorithm. Given the initial value \theta 0, each step of the IAS algorithm
for problem (2.2) consists of the two updates,

\theta t \rightarrow xt+1 \rightarrow \theta t+1, t \geq 0,

where

xt+1 = argmin
x

\bigl\{ 
\scrF (x, \theta t)

\bigr\} 
, \theta t+1 = argmin

\theta 

\bigl\{ 
\scrF (xt+1, \theta )

\bigr\} 
.

Due to the particular form of the objective function (2.3), each step comprises first
the computation of the minimizer of (a) with respect to x keeping \theta fixed, then the
minimizer of (b) with respect to \theta with the updated value of x fixed. While this
procedure is remarkably similar to the Alternating Direction Method of Multipliers
(ADMM) [1], there are some fundamental differences. In fact, while in ADMM, the
alternating structure is achieved via an artificial partial decoupling of the fidelity
term and the penalty term by introducing auxiliary variables, in the IAS algorithm
the partial decoupling is automatic, with the common term of (a) and (b) being
the link between the two minimization tasks. Moreover, both minimization tasks
are relatively simple with an exact condition for the minimizer. For some choices of
hyperparameters, the IAS algorithm has been shown to be globally at least linearly
convergent [7, 5]. In the following, we review some of the computational details of the
IAS algorithm that are particularly relevant for the proposed hybrid schemes.

Update of x. The update of x given \theta by minimizing part (a) in (2.3) reduces to
solution of a quadratic minimization problem, i.e.,

xt+1 = argmin
x

\Bigl\{ 
\| \sansA x - b\| 2 + \| \sansD  - 1/2

\theta x\| 2
\Bigr\} 
, \theta = \theta t ;

thus xt+1 is the least squares solution of the linear system

(2.4)

\biggl[ 
\sansA 

\sansD 
 - 1/2
\theta 

\biggr] 
x =

\biggl[ 
b
0

\biggr] 
.

The solution of (2.4) can be approximated by solving a reduced problem via the
Conjugate Gradient for Least Squares (CGLS) algorithm [9], often without any real
loss of information in the solution [6]. Introduce the change of variables

\sansD 
 - 1/2
\theta x = w,

which corresponds to a whitening of the conditional prior, and reformulate the linear
system (2.4) in terms of w as\biggl[ 

\sansA \theta 

\sansI 

\biggr] 
w =

\biggl[ 
b
0

\biggr] 
, \sansA \theta = \sansA \sansD 

1/2
\theta .

If the matrix \sansA is ill-conditioned, the linear system

(2.5) \sansA \theta w = b , x = \sansD 
1/2
\theta w

can be solved approximately through a CGLS iteration with an early stopping criterion
[6]. More precisely, denote the kth Krylov subspace corresponding to the above system
by

Kk = Kk(\sansA 
\sansT 
\theta b,\sansA 

\sansT 
\theta \sansA ) = span

\Bigl\{ \bigl( 
\sansA \sansT 
\theta \sansA \theta 

\bigr) j
\sansA \theta b | 0 \leq j \leq k  - 1

\Bigr\} 
.
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SPARSITY PROMOTING BAYESIAN HYBRID SOLVERS A3765

Define the reduced Krylov subspace (RKS) solution as

wk = argmin \{ \| b - \sansA \theta w\| | w \in Kk\} ,

where k is the first index satisfying

\| b - \sansA \theta wk+1\| \leq 
\surd 
m or G(wk+1) > \tau G(wk),

where \tau > 1, \varepsilon = \tau  - 1 > 0 is a small safeguard parameter, and the functional G,
given by

G(w) = \| b - \sansA \theta w\| 2 + \| w\| 2,

is the objective function approximately minimized by the surrogate reduced model.
Update of \theta . It follows from the independence of the components that the first

order optimality condition that needs to be satisfied by the updated \theta can be imposed
componentwise. Setting the partial derivatives of (b) in (2.3) with respect to \theta j equal
to zero, we find that \theta j must satisfy

(2.6)  - 1

2

x2
j

\theta 2j
 - 

\biggl( 
r\beta  - 3

2

\biggr) 
1

\theta j
+ r

\theta r - 1
j

\vargamma r
j

= 0 , x = xt+1 .

While for some values of r, notably r = \pm 1, (2.6) admits an analytic solution, in
general we need to solve it numerically. It was shown in [6] that after the changes
of variables \theta j = \vargamma j\xi j , xj =

\sqrt{} 
\vargamma jzj , we may write \xi j = \varphi (| zj | ), and via implicit

differentiation, the function \varphi satisfies the initial value problem

(2.7) \varphi \prime (z) =
2z\varphi (z)

2r2\varphi (z)r+1 + z2
, \varphi (0) =

\Bigl( \eta 
r

\Bigr) 1/r

;

therefore, the updated \theta j can be computed by a numerical time integrator.
We conclude this section with the main results on selecting the model parameters

(r, \beta , \vargamma ). The values of the parameters r and \beta affect how strongly the sparsity of
the solution is promoted and determine the convexity of the objective function, while
the value of \vargamma j can be related to the sensitivity of the data to xj . Recall that for a
linear model b = \sansA x + \varepsilon , a classical measure of the sensitivity of the data b to the
component xj is \| \sansA ej\| , where ej \in Rn is the canonical jth Cartesian unit vector. It
was proven recently [8, 5, 6] that under rather natural conditions, a judicious choice
of the parameter \vargamma is

\vargamma j =
C

\| \sansA ej\| 2
,

where the constant C > 0 is related to the expected sparsity of the solution and to
an estimate of the signal-to-noise ratio (SNR). Due to the connection with sensitivity,
this choice of \vargamma is referred to as sensitivity scaling (cf. [18, 19, 20]).

3. Hybrid IAS algorithms. In this section, we will propose a hybrid version
of the IAS algorithm in which the hypermodel in the generalized gamma family is
updated componentwise as the iteration proceeds. The following theorem (see [6]
for details) summarizes how the values of the hyperparameters r and \beta affect the
convexity properties of the functional \scrF .
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Theorem 3.1. Let \beta > 0 and r \not = 0, and let \scrF (x, \theta ) be the objective function for
the minimization problem in (2.2).

(a) If r \geq 1 and \eta = r\beta  - 3/2 > 0, the function \scrF (x, \theta ) is globally convex.
(b) If 0 < r < 1 and \eta = r\beta  - 3/2 > 0, or if r < 0 and \beta > 0, the function

\scrF (x, \theta ) is convex provided that

\theta j < \theta = \vargamma j

\biggl( 
\eta 

r| r  - 1| 

\biggr) 1/r

.

As far as the computation of the MAP estimate is concerned, the global convexity
of the objective function when r \geq 1 is very convenient, although there are several
reasons for considering other choices of r that yield hierarchical priors that promote
sparsity more strongly. It has been observed that, by and large, the further the
objective function is from being globally convex, the stronger the sparsity of the
minimizer is promoted. We review below some recent results (see [10, 5]) relating
generalized gamma hyperpriors and classical sparsity promoting priors.

Let

\scrP (x, \theta | r, \beta , \vargamma ) = 1

2

n\sum 
j=1

x2
j

\theta j
 - 

\biggl( 
r\beta  - 3

2

\biggr) n\sum 
j=1

log
\theta j
\vargamma j

 - 
n\sum 

j=1

\biggl( 
\theta j
\vargamma j

\biggr) r

=

n\sum 
j=1

p(xj , \theta j | r, \beta , \vargamma j)

denote the penalty term (b) in the objective function, and express the IAS updating
formula (2.7) for \theta j as a function of xj :

gj(xj) = \theta j = \vargamma j\varphi 

\Biggl( 
| xj | \sqrt{} 
\vargamma j

\Biggr) 
.

It has been shown in [5] that for r = 1, as \eta \rightarrow 0+ the penalty function \scrP (x, \theta , 1, 3/2+
\eta , \vargamma ) approaches a weighted \ell 1-penalty in the sense that

lim
\eta \rightarrow 0+

\scrP 
\biggl( 
x, g(x) | 1, 3

2
+ \eta , \vargamma 

\biggr) 
=

\surd 
2

n\sum 
j=1

| xj | \sqrt{} 
\vargamma j

and, moreover, the corresponding minimizer x\ast found by the IAS algorithm converges
to scaled \ell 1-regularized solution.

More generally, as shown in [6], by choosing r\beta = 3/2, the penalty function
coincides with the weighted \ell p-norm, with p = 2r/(r + 1):

\scrP 
\biggl( 
x, g(x) | r, 3

2r
, \vargamma 

\biggr) 
= Cr

n\sum 
j=1

| xj | p\sqrt{} 
\vargamma j

p , Cr =
r + 1

(2r)r/(r+1)
.

While this result holds in general, for 0 < r < 1 and \beta = 3/2r, the model corresponds
to \ell p penalties with 0 < p < 1, which are known to promote strongly the sparsity of
the solution.

For the inverse gamma hypermodel, corresponding to r =  - 1, the penalty term
approaches the Student distribution, a prominently fat-tailed distribution favoring
large outliers, and leading to a greedy algorithm that strongly promotes sparsity [6].
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The main problem with the lack of global convexity of the objective function is that
optimization-based algorithms for the MAP computation may stop at a spurious local
minimizer.

In this work, we propose two modifications to the IAS algorithm that take ad-
vantage of the global convexity of the objective function corresponding to the gamma
hyperprior (r = 1), and of the stronger sparsity promotion of hierarchical models
with r < 1 whose associated objective functions are only locally convex. Both algo-
rithms use intially the gamma hyperprior to drive the IAS iterates towards the unique
minimizer of the globally convex objective function, and then switch to a greedier hy-
permodel. The two different algorithms are referred to as local and global hybrid
algorithms. In the local algorithm, the hyperprior is changed componentwise as soon
as the corresponding variance falls inside the convexity region of the second model,
while in the global algorithm, the hyperprior is changed for all components after a
given number of IAS steps. Next we present the details relative to the two hybrid
schemes.

3.1. Local hybrid IAS. We write the objective function \scrF (x, \theta | r, \vargamma , \beta ) with
the given model parameters (r, \beta , \vargamma ) as

\scrF (x, \theta | r, \vargamma , \beta ) = \| b - \sansA x\| 2 +
n\sum 

j=1

p(xj , \theta j | r, \vargamma j , \beta ),

where

p(xj , \theta j | r, \vargamma j , \beta ) =
1

2

x2
j

\theta j
 - 

\biggl( 
r\beta  - 3

2

\biggr) 
log

\theta j
\vargamma j

+

\biggl( 
\theta j
\vargamma j

\biggr) r

.

Unlike in the standard IAS algorithm, where the parameters r, \beta , and \vargamma are kept
fixed, the local hybrid algorithm updates the parameters for those component pairs
(xj , \theta j) that satisfy the convexity criterion in Theorem 3.1 for the second hypermodel.

More precisely, consider two hypermodels with parameters (r(1), \beta (1), \vargamma (1)) and
(r(2), \beta (2), \vargamma (2)), with r(2) < 1 \leq r(1), r(2) \not = 0, referred to as M1 and M2, respectively,
and start the IAS algorithm with the model M1.

Let (x, \theta ) = (xt, \theta t) denote the IAS iterate after t steps. For each component xj

of x, we compute the \theta j update corresponding to model M2,

\theta 
(2)
j = g(xj | r(2), \beta (j), \vargamma 

(2)
j ) = g(2)(xj).

If

(3.1) \theta 
(2)
j < \theta j = \vargamma 

(2)
j

\biggl( 
\eta (2)

r(2)| r(2)  - 1| 

\biggr) 1/r(2)

,

we update \theta j , switching to M2; otherwise we continue with M1. Observe that since
the function g(2) is strictly increasing for xj > 0, we may write the above condition
in terms of xj :

| xj | <
\Bigl[ 
g(2)

\Bigr]  - 1

(\theta j) = xj .

Let I \subset \{ 1, 2, . . . , n\} denote an index set such that

j \in I if and only if | xj | < xj ,
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and denote by Ic its complement. Define the local hybrid objective function,

\scrF (x, \theta | I) = \| b - \sansA x\| 2 +
\sum 
j\in Ic

p(xj , \theta j | r(1), \vargamma (1)
j , \beta (1))

+
\sum 
j\in I

p(xj , \theta j | r(2), \vargamma (2)
j , \beta (2)),

whose convexity can be guaranteed by a bound constraint

(3.2) | xj | < xj for j \in I.

It was shown in [6] that to add a bound constraint to the IAS algorithm it suffices to
project the updated vector x onto the feasible set. The selection of the hyperparameter
\vargamma (j), j = 1, 2, deserves some attention. For M1, the value of \vargamma (1) can be decided by
taking sensitivity analysis into consideration, as suggested in [6]. We assign the value
of \vargamma (2) based on the following consideration: If xj = 0, the corresponding variance \theta j
should be the same regardless of the choice of the hypermodel and should reflect the
expected variance of a background signal. We recall that if xj = 0, the updating of \theta j
in the IAS algorithm according to (2.6) yields

g(0 | r, \beta , \vargamma j) = \vargamma j

\Bigl( \eta 
r

\Bigr) 1/r

, \eta = r\beta  - 3/2,

and in order for the two models to agree, it suffices to set

\vargamma 
(2)
j =

\biggl( 
\eta (1)

r(1)

\biggr) 1/r(1) \biggl( 
r(2)

\eta (2)

\biggr) 1/r(2)

\vargamma 
(1)
j .

We are now ready to summarize the proposed local hybrid IAS scheme in algorithmic
form. Here we assume that x \in Rn itself is sparse; suitable adjustments need to be
made when the sparsity assumption concerns the increments.

Before discussing a modification of the above algorithm, a comment on the pro-
jection on the convexity interval (step 4) is of order. The projection step is included
in the algorithm to ensure that the index set I of components being updated using
the hypermodel M2 is monotonically increasing, which, in general, may not be auto-
matically guaranteed. However, the numerical experiments show that the projection
step in practice may not be necessary, and the bound constraint | xj | < x is not active.

In [6], the stability of the convexity condition was briefly discussed in terms of

the scaled (dimensionless) variables, zj = xj/
\sqrt{} 

\vargamma 
(2)
j , \xi j = \theta j/\vargamma 

(2)
j . It was shown (see

Lemma 4.2 in [6]) that if \xi tj < \xi , then

| zt+1
j | \leq M\xi tj = M\varphi (| ztj | ),

where \varphi is the IAS updating function of the scaled variable \xi j given the current zj ,
and M depends on the matrix \sansA and the data b. For example, in the case r = 1/2,
the convexity bound is \xi = 16\eta 2. A natural question is whether, if | ztj | < \varepsilon < z, where

z = \varphi  - 1(\xi ) is the convexity bound for the scaled variable zj , it can be guaranteed
that | zt+1

j | < z, or, equivalently,

\varphi (| zt+1
j | ) < \xi = 16\eta 2,
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Algorithm 3.1 Local Hybrid IAS.

inputs: Noisy data b \in Rm,

linear forward operator \sansA \in Rm\times n, noise covariance matrix \sansSigma \in Rm\times m

hyperparameters (r(1), \beta (1), \vargamma (1)), (r(2), \beta (2), \vargamma (2))

output: estimated signal and variance x\ast , \theta \ast \in Rn

1. initialize: set t = 0, \theta t = \vargamma (1), I = \emptyset 
2. for t = 0, 1, 2, . . . until convergence do:

3. update xt+1 by solving (2.5)

4. project components xt+1
j , j \in I, to [ - x, x]

5. for j = 1, . . . , n

6. if \theta j \geq \theta 

7. update \theta t+1
j = g(xt+1

j | r(1), \beta (1), \vargamma 
(1)
j )

8. else

9. update \theta t+1
j = g(xt+1

j | r(2), \beta (2), \vargamma 
(2)
j )

10. update I = I \cup \{ j\} 
11. endif

12. end for

13. x\ast = xt+1, \theta \ast = \theta t+1

where \eta = r(2)\beta (2)  - 3/2. In [6] it was shown that

\varphi (t) = 4\eta 2 +
1

\eta 
t2 +\scrO (t4);

therefore,

| zt+1
j | \leq M

\biggl( 
4\eta 2 +

1

\eta 
\varepsilon 2

\biggr) 
.

To check if (3.1) is satisfied up to fourth order terms, it suffices to have

4\eta 2 +
1

\eta 

\biggl( 
M

\biggl( 
4\eta 2 +

1

\eta 
\varepsilon 2

\biggr) \biggr) 2

< 16\eta 2

or

M2

\biggl( 
4\eta 2 +

1

\eta 
\varepsilon 2

\biggr) 2

< 12\eta 3,

that is,

\varepsilon 2 <

\surd 
12

M
\eta 3/2  - 4\eta 2.

The positivity of the right side can be guaranteed by choosing \eta sufficiently small.
While the above estimate is only approximate and qualitative, it conveys the idea
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that the stability of the convexity condition may depend on the forward model as well
as on hyperparameter selection.

3.2. Global hybrid IAS. As the numerical experiments confirm, the gain from
switching to the model M2 for components that are already in the convexity region of
that model is not so much in enhancing, e.g., sudden discontinuities in the solution,
but more in cleaning the background. An alternative approach is to relax the convexity
requirement and use the global convexity of the first model to find a good starting
point for the optimization with the second model, taking the risk of minimizing a
nonconvex objective function from an initial guess sufficiently close to the global
minimum of the first model.

More specifically, we first run the IAS algorithm for a fixed number t of iterations
with model M1, whose conservative parameter choice guarantees convergence towards
a global minimizer, and then switch to the less conservative hypermodel M2, trading
the global convexity for stronger sparsity promotion. We refer to this scheme as global
hybrid IAS, since the change of hyperprior is carried out at once for all the variances
\theta j , unlike in the local version, where only selected components followed the model
M2. The computational details are summarized in Algorithm 3.2.

Algorithm 3.2 Global Hybrid IAS.

inputs: Noisy data b \in Rm,

linear forward operator \sansA \in Rm\times n, noise covariance matrix \sansSigma \in Rm\times m

hyperparameters (r(1), \beta (1), \vargamma (1)), (r(2), \beta (2), \vargamma (2))

integer t > 0 defining the switch point

output: estimated signal and variance x\ast , \theta \ast \in Rn

1. initialize: set \theta 0 = \vargamma (1)

2. for t = 0, 1, 2, . . . until convergence do:

3. update xt+1 by solving (2.5)

4. for j = 1, . . . , n

5. if t < t

6. update \theta t+1
j = g(xt+1

j | r(1), \beta (1), \vargamma 
(1)
j )

7. else

8. update \theta t+1
j = g(xt+1

j | r(2), \beta (2), \vargamma 
(2)
j )

9. endif

10. end for

11. x\ast = x(t+1), \theta \ast = \theta (t+1)

In the description of the Algorithm 3.2, the value t is given as input. Alternatively,
one could run the model M1 until the variances \theta stop changing significantly. Since
in general we have little information on the nature of the minima of the objective
function when r < 1, a definitive automatic switching rule is not easy to justify. We
illustrate the performance of the algorithm on a few test cases in section 5.
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4. IAS for sparse increments. The IAS algorithm and the hybrid versions
of it assume that the unknown has a sparse representation, and x is the vector of
coefficients in this representation. In the case where the a priori sparsity belief is not
about the signal x but its increments, the IAS algorithm needs to be suitably adapted
[11]. In the one-dimensional case the changes are rather straightforward, while the
treatment in the higher dimensional cases is more delicate.

In the one-dimensional case assume that the unknown is a piecewise constant
signal in R characterized by a few discontinuities. If f(t) is the signal, 0 \leq t \leq 1,
and xj = f(jh), where h = 1/n is the discretization parameter, we may express x in
terms of the increments

xj = x0 +

j\sum 
k=1

(xk  - xk - 1), 1 \leq j \leq n,

or, letting yj = xj  - xj - 1, as

x = x0e1 + \sansL  - 1y,

where

\sansL =

\left[     
1

 - 1 1
. . .

. . .

 - 1 1

\right]     , e1 =

\left[     
1
0
...
0

\right]     .

Assuming for simplicity that x0 = 0, it follows from the invertibility of \sansL that we may
reformulate the problem as estimating y from the observation model

b = \sansA \sansL  - 1y + \varepsilon ,

with the a priori belief that y is sparse. We update x in the IAS algorithm by
computing

yt+1 = argmin

\left\{   1

2
\| b - \sansA \sansL  - 1y\| 2 + 1

2

n\sum 
j=1

y2j
\theta tj

\right\}   , xt+1 = \sansL  - 1yt+1,

where the sparsity of y is playing a role in the update of the \theta :

\theta t+1 = argmin

\left\{   1

2

n\sum 
j=1

(yt+1
j )2

\theta j
+

\biggl( 
r\beta  - 3

2

\biggr) n\sum 
j=1

log

\biggl( 
\theta j
\vargamma j

\biggr) 
 - 

n\sum 
j=1

\biggl( 
\theta j
\vargamma j

\biggr) r
\right\}   .

The passage from the signal to its increments is more challenging in dimensions
d \geq 2 where the one-to-one correspondence no longer holds.

To illustrate how to proceed, consider a quadrilateral graph, the nodes repre-
senting, e.g., the pixels in an image that we want to estimate, with adjacent pixels
connected by an edge; see Figure 1. Assume for simplicity that the values of the image
vanish at the boundary nodes, which we refer to as bound nodes; thus we are only
interested in estimating the values at the remaining nodes, referred to as free nodes.
Let nv be the number of free nodes and ne the number of edges with at least one free
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Fig. 1. Schematics of the circulation condition \sansM z = 0. In this figure, the black dots indicate
the free nodes, and the green dots are bound nodes in which the grid function is assumed to vanish.
Between free nodes, no edge is defined, thus corresponding to a zero contribution to the circulation.
If z is a jump vector corresponding to a grid function x, the sums around edges of each loop must
vanish. (Color available online.)

node as an end point, referred to as free edges. Let \sansL \in Rne\times nv denote the mapping
from the free nodal values collected in the vector x to the increments along free edges
in the vector y,

(4.1) y = \sansL x.

Since the nodal values at the bound nodes, not included in the vector x, are equal to
zero, the matrix \sansL has a trivial null space, i.e., N (\sansL ) = \{ 0\} .

Let nt denote the number of all loops Tj in the graph (see Figure 1) including
those defined by the edges between bound nodes, and let \sansM \in Rne\times nt be the matrix
computing the circulation around each loop by summing the increments over edges in
clockwise order. If the increments along the edges correspond to the nodal values, then
the circulation in each element must vanish, i.e., \sansM y = 0, or, equivalently, y \in N (\sansM )
for every y \in R(\sansL ). Since the edge increments associated with the nodal values are
computed via the matrix \sansL , the matrices \sansL and \sansM define a short exact sequence:

\{ 0\}  - \rightarrow Rnv
\sansL  - \rightarrow Rne

\sansM  - \rightarrow Rnt  - \rightarrow \{ 0\} .

To define a prior promoting sparse increments, we consider a conditionally Gauss-
ian prior model in terms of the increments yj along the free edges, written concisely
as

(4.2) \pi y,\theta (y, \theta ) = \pi y| \theta (y | \theta )\pi \theta (\theta ) \propto exp

\left(   - 1

2

ne\sum 
j=1

y2j
\theta j

+ \phi (\theta )

\right)  ,

where the function \phi (\theta ) = \phi r,\beta (\theta ) does not depend on y. It follows from the definition
of the increments in terms of the nodal values (4.1) that y \in R(\sansL ) = N (\sansM ); therefore
the support of the prior is restricted to N (\sansM ). Introducing the auxiliary variable

\beta = \sansD 
 - 1/2
\theta y,
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SPARSITY PROMOTING BAYESIAN HYBRID SOLVERS A3773

where \sansD \theta \in Rne\times ne is the diagonal matrix with entries \theta j , the compatibility condition
on y can be written in terms of \beta as

\beta \in R(\sansL \theta ), \sansL \theta = \sansD 
 - 1/2
\theta \sansL .

Consider the QR factorization of \sansL \theta ,

\sansL \theta = \sansQ \sansR =
\bigl[ 
\sansQ 1 \sansQ 2

\bigr] \biggl[ \sansR 1

\sansO 

\biggr] 
,

where the orthogonal matrix \sansQ is partitioned into the two blocks \sansQ 1 \in Rne\times nv ,
\sansQ 2 \in Rne\times (ne - nv), and \sansR 1 \in Rnv\times nv is upper triangular and nonsingular because \sansL is
of full rank, and \sansO is the zero matrix of size(ne  - nv)\times nv. For any \beta \in R(\sansL \theta ), there
exists x \in Rnv such that

(4.3) \beta = \sansL \theta x = \sansQ \sansR x;

hence, by multiplying both sides of (4.3) by the transpose of \sansQ , we get

Q\sansT \beta =

\biggl[ 
\sansQ \sansT 

1\beta 
\sansQ \sansT 

2\beta 

\biggr] 
=

\biggl[ 
\sansR 1x
0

\biggr] 
,

or, equivalently,

\sansR  - 1
1 \sansQ \sansT 

1\beta = x, \sansQ \sansT 
2\beta = 0.

Therefore, we can express the compatibility condition in terms of the auxiliary variable
as

\beta \in N (\sansQ \sansT 
2 ) = H .

The posterior density for the prior (4.2) on the increments,

(4.4) \widetilde \pi \beta | b,\theta (\beta | b, \theta ) \propto exp

\biggl( 
 - 1

2
\| b - \sansA \sansR  - 1

1 \sansQ \sansT 
1\beta \| 2  - 

1

2
\| \beta \| 2 + \phi (\theta )

\biggr) 
,

if we neglect the compatibility conditions, when restricted to the subspace H becomes

\pi \beta | b,\theta (\beta | b, \theta ) = \widetilde \pi post(\beta | b, \theta )\otimes \delta H (\beta )(4.5)

\propto exp

\biggl( 
 - 1

2
\| b - \sansA \sansR  - 1

1 \sansQ \sansT 
1\beta \| 2  - 

1

2
\| \sansQ \sansT 

1\beta \| 2 + \phi (\theta )

\biggr) \bigm| \bigm| \bigm| \bigm| 
\sansQ \sansT 

2\beta =0

,

where \delta H is the singular measure concentrated on H . The following theorem shows
that it is possible to carry out the iterations of the IAS algorithm for the posterior
(4.5) working directly with (4.4).

Theorem 4.1. The vector \beta \ast that maximizes (4.4) satisfies \sansQ \sansT 
2\beta \ast = 0 and there-

fore also maximizes (4.5). Moreover, \beta \ast can be found by minimizing the expression

F (\beta ) =
1

2
\| b - \sansA \sansL \dagger \theta \beta \| 

2 +
1

2
\| \beta \| 2,

where \sansL \dagger \theta is the pseudoinverse of \sansL \theta .
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Proof. From the observation that

\| \beta \| 2 = \| \sansQ \sansT \beta \| 2 = \| \sansQ \sansT 
1\beta \| 2 + \| \sansQ \sansT 

2\beta \| 2,

it follows that

1

2
\| b - \sansA \sansR  - 1

1 \sansQ \sansT 
1\beta \| 2 +

1

2
\| \beta \| 2  - \phi (\theta )

=
1

2
\| b - \sansA \sansR  - 1

1 \sansQ \sansT 
1\beta \| 2 +

1

2
\| \sansQ \sansT 

1\beta \| 2 +
1

2
\| \sansQ \sansT 

2\beta \| 2  - \phi (\theta ),

and its minimizer, for fixed \theta , is

\beta \ast = argmin

\biggl\{ 
1

2
\| b - \sansA \sansR  - 1

1 \sansQ \sansT 
1\beta \| 2 +

1

2
\| \sansQ \sansT 

1\beta \| 2
\biggr\} 
, \sansQ \sansT 

2\beta 
\ast = 0,

which also maximizes (4.5). Moreover, for \beta \ast such that \sansQ \sansT 
2\beta 

\ast = 0,

\sansR  - 1
1 \sansQ \sansT 

1\beta \ast = \sansL \dagger \theta \beta \ast ,

which completes the proof.

The previous theorem shows that to find the MAP estimate, it is not necessary
to form the matrix \sansM or to compute the QR factorization of the matrix \sansL \theta . Instead,
it suffices to solve the linear system\biggl[ 

\sansA \sansL \dagger \theta 
\sansI 

\biggr] 
\beta =

\biggl[ 
b
0

\biggr] 
in the least squares sense, because its solution automatically satisfies \sansQ \sansT 

2\beta = 0, thus

guaranteeing the existence of a vector x such that (4.3) holds. The vector y = \sansD 
1/2
\theta \beta 

satisfies the compatibility condition \sansM y = 0, representing feasible and consistent
increments along the edges. When resorting to the RKS approximation of the update
of the signal inside the IAS iteration, we need to have a procedure to multiply a
vector \beta by the matrix \sansA \sansL \dagger \theta and its transpose. The matrix-vector product of \beta with

\sansA \sansL \dagger \theta can be computed by first solving \sansL \theta \alpha = \beta for \alpha in the least squares sense, and
then multiplying \alpha by \sansA . To evaluate the product of the transpose and a vector z,
we observe that the transpose of \sansA \sansL \dagger \theta is\bigl( 

\sansL \dagger \theta 
\bigr) \sansT 

\sansA \sansT = \sansL \theta 
\bigl( 
\sansL \sansT \theta \sansL \theta 

\bigr)  - 1
\sansA \sansT ,

where, fortunately, in our case \sansL \sansT \theta \sansL \theta is very sparse. Therefore, we solve
\bigl( 
\sansL \sansT \theta \sansL \theta 

\bigr) 
w = \sansA \sansT z

and then multiply the solution w by \sansL \theta .

5. Computed examples. In our evaluation of the performance of the local and
global hybrid IAS algorithms, we focus on the following questions.

Stability of the convexity condition in local IAS. To monitor how the components
behave with respect to the local convexity region, we run the local hybrid IAS and
monitor the behavior of the index set I in Algorithm 3.1. In particular, we track
the indices j \in I, pointing to components xj that enter the local convexity region,
satisfying (3.2), and check whether or not they remain in I without forcing the bound
constraint for xj .
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Identification of the support. It is of particular interest to see whether the local
hybrid method correctly identifies the support of a generative signal, avoiding stop-
ping at a local minimum that may miss some of the components in the support, as
sometimes happens when the nonconvex prior models are used. Likewise, with the
global hybrid algorithm, we monitor the indices corresponding to the variances in the
convexity region at the switching iteration t and at the final iteration of Algorithm
3.2.

In our examples, the hyperpriors for the hybrid schemes are the gamma (r(1) = 1)
and the inverse gamma (r(2) =  - 1). The performances of local and global hybrid IAS
algorithms are also compared with the plain IAS with either the gamma or the inverse
gamma hyperprior. In the global hybrid IAS algorithm, the switch to the nonconvex
model occurs at iteration t = 10.

Example 1. The first test case is a one-dimensional deconvolution problem. The
generative model is a piecewise constant signal f : [0, 1] \rightarrow R, f(0) = 0, and the data
consist of a few discrete noisy observations,

bj =

\int 1

0

A(sj  - t)f(t)dt+ \varepsilon j , 1 \leq j \leq m, A(t) =

\biggl( 
J1(\kappa | t| )
\kappa | t| 

\biggr) 2

,

where J1 is the Bessel function of the first kind and \kappa is a scalar controlling the width
of the kernel that we set to \kappa = 40, yielding a kernel with full width half maximum
FWHM = 0.08. We discretize the integral as\int 1

0

A(sj  - t)f(t)dt \approx 
n\sum 

j=1

wkA(sj  - tk)f(tk), 1 \leq k \leq n,

where tk = (k  - 1)/(n  - 1) and the wk's are the trapezoidal quadrature weights.
We generate the data with a dense discretization with n = ndense = 1253, while
in the forward model used for solving the inverse problem, we set n = 500. The
observation points are given by sj = (4 + j)/100, 1 \leq j \leq m = 91, and the additive
noise is assumed to be scaled white noise, with standard deviation \sigma set to 2\% of the
maximum of the noiseless generated signal. We denote xj = f(tj). Figure 2 shows
the generative signal and the data.

While the generative signal, a piecewise constant function, is not sparse, it admits
a sparse representation in terms of its increments zj = xj  - xj - 1 over the interval of
definition. Assuming x0 = 0, then

z = \sansL x , \sansL =

\left[     
1 0 . . . 0
 - 1 1 . . . 0

. . .

0 . . .  - 1 1

\right]     \in Rn\times n;

hence

x = \sansC z with \sansC = \sansL  - 1 =

\left[     
1 0 . . . 0
1 1 . . . 0
...

. . .

1 . . . 1 1

\right]     \in Rn\times n.

Therefore, our inverse problem is to estimate the vector z, assumed to be sparse, from
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Fig. 2. Left: The generative model. Right: The blurred and noisy data vector b \in R91.

the data vector b, given the forward model

b = \sansA \sansC z + e, \varepsilon \sim \scrN (0, \sigma 2\sansI ), \sansA jk = wkA(sj  - tk).

The reconstruction results, together with the final variance vector \theta and the num-
ber of CGLS steps per IAS iteration, are shown in Figure 3. The locations of the first
two increments in the generative signal are not easy to detect from the data (see
Figure 2), and they are not sharply restored by the IAS algorithm with gamma hy-
perprior (see the first row of Figure 3), while the IAS with inverse gamma (second
row) hyperprior lumps the increments, stopping at a local minimizer that corresponds
to a simpler profile.

The reconstruction with the local hybrid algorithm is shown in the first panel of
the third row of Figure 3. The middle panel of the same row shows in dashed blue
the components of \theta that follow the inverse gamma distribution at the last iteration
of IAS, and in solid red those that never switch from the gamma distribution (color
available online). The effect of changing to the inverse gamma is a cleaner background.
The global hybrid hyperprior returns a sharp restoration of the signal, as shown in
the first panel of the fourth row of Figure 3, with the five jumps accurately identified
in the correct positions. In both cases, after a few steps, the number of CGLS steps
per IAS iteration equals the number of increments detected, indicating that both
hybrid IAS algorithms can determine very accurately the cardinality of the support;
see also [6].

To address the stability of the convexity condition, we follow iteration by itera-
tion the convexity condition, classifying each index in the set I (convexity condition
satisfied) and its complement Ic (condition not satisfied). The left panel of Figure 4,
where the indices in I are marked in green, and those in Ic in yellow, indicate that
the set I is monotonously increasing; that is, once a component enters the convexity
region, it does not leave it, thus effectively removing the need for imposing the bound
constraint (3.2).

The middle panel of Figure 4 shows the variances \theta j in the global hybrid algorithm
at the end of the iteration t - 1 = 9, prior to switching to the inverse gamma model.
The components \theta j satisfying the convexity bound, in dashed blue, are those for which
the switch to the inverse gamma distribution does not compromise the convexity of
the objective function. The panel on the right indicates for each component at each
global hybrid IAS iteration whether it satisfies (green) or not (yellow) the convexity
bound. Although in this case, unlike for the local hybrid IAS algorithm, the index
set I is not monotonically increasing, eventually the support is correctly detected to
high accuracy.
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Fig. 3. From top to bottom, reconstruction of the signal via gamma, inverse gamma, local
hybrid, and global hybrid hyperprior (left), the hyperparameter \theta (center), and the CGLS iterations
per each IAS iteration (right). For the gamma hyperprior in the top row the parameter values are
\eta = 10 - 2 and \vargamma = 10 - 5, and those for the inverse gamma hyperprior in the second row are \eta =  - 4.5
and \vargamma = 10 - 5. The hybrid hyperpriors in the bottom rows inherit the parameters from the generative
hyperpriors.

Example 2. The second test case is an image restoration problem. Let \Omega be a
square compact region in R2 and x be the generative image defined over \Omega . The
discrete and noisy data consist of observations at points qj \in \Omega of a convolved version
of the image,

bj =

\int 
\Omega 

A(qj , p
\prime )x(p\prime )dp\prime + \varepsilon j ,

with a Gaussian convolution kernel

(5.1) A(p, p\prime ) =
1

2\pi w2
exp

\biggl( 
 - \| p - p\prime \| 22

2w2

\biggr) 
, with w = 0.015.

The integral is discretized over an n\times n pixel grid with n = 136, whereas the number of
observation points is m = 68\times 68. The noiseless signal is corrupted by additive scaled
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Fig. 4. Left: Pseudocolor image of the indices iteration by iteration of the local hybrid algorithm,
green indicating the indices of those components that are in the convexity domain (index set I), and
yellow those that are outside of it (index set Ic). Observe that when moving up, the yellow intervals
shrink and the green ones increase, indicating stable convexity without the need to force the bound
constraint (3.2). Center: Variables \theta j in the global hybrid algorithm at the iteration t - 1 = 9, before
the switch to inverse gamma model. The values in the convexity region are indicated in blue, and the
rest are indicated in red. Right: Pseudocolor image of the indices iteration by iteration in the global
hybrid algorithm, green indicating the indices with components in the stability region. Observe that
while the algorithm converges, correctly identifying the support, the index sets are not monotonous.
In particular, after the switch (t = 10), the discontinuities close to the left end of the interval create
some confusion. (Color available online.)

Fig. 5. From left to right: Original test image x \in R136\times 136; observed data b \in R68\times 68

corrupted by Gaussian blur and additive Gaussian noise; vector of horizontal increments of the
image; and vertical increments.

white noise with standard deviation approximately 2\% of the maximum noiseless
signal. We assume a priori sparsity of the horizontal and vertical increments of the
discrete image x, and we implement the sparsity prior in the IAS algorithm according
to the procedure detailed in section 4. The original image, the observed data, and the
vertical and horizontal increments of the original image are shown in Figure 5.

The IAS algorithm is performed by constraining the values xj in the interval [0, 1],
1 \leq j \leq n2. More details on the constrained IAS algorithm are given in [6].

The restored images computed by the IAS algorithm with gamma and inverse
gamma and by the local and global IAS algorithms are shown in Figure 6. Figure
7 shows the logarithmic plot of variances \theta j , the profile of the restorations along
the dotted horizontal cut lines indicated in the reconstructions of Figure 6, and the
profile of the original image. Not surprisingly, the restoration using the gamma hy-
perprior shows slightly rounded corners, while the algorithm based on the inverse
gamma hyperprior produces some staircasing artifacts along the edges. Both effects
are mitigated in the restorations computed with the hybrid IAS algorithms. The
reconstruction of the global hybrid IAS algorithm is of remarkably high quality.

The number of CGLS steps in each IAS iteration for the four models is reported
in Figure 8.

The left panels of Figure 9 display pseudocolor images of the indices of the vari-
ances \theta j of the horizontal and vertical increments at the last iteration of the local
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Fig. 6. From left to right: Restored images by IAS algorithm based on gamma and inverse
gamma hyperpriors, and by the local and global hybrid IAS algorithm using the combination of
gamma and inverse gamma models. In the gamma hyperprior, the parameter values are \eta = 10 - 4

and \vargamma = 10 - 3, and those in the inverse gamma hyperprior are \eta =  - 6.5 and \vargamma = 10 - 4. The hybrid
hyperpriors inherit these parameters from the generative hyperpriors. The dotted horizontal line
indicates a cut across the reconstruction defining the profiles shown in Figure 7.
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Fig. 7. From top to bottom: Logarithmic plots of variances corresponding to vertical and
horizontal increments, and on the right, one-dimensional profiles extracted from the restorations in
Figure 6 for the gamma, inverse gamma, local hybrid, and global hybrid hyperprior.
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Fig. 8. Number of CGLS steps per outer iteration, in lexicographic order, for gamma, inverse
gamma, local hybrid, and global hybrid hyperprior.

hybrid IAS algorithm, with green corresponding to increments that satisfy the local
convexity condition for the inverse gamma, and yellow to the complement. The re-
maining panels of Figure 9 show the corresponding pseudocolor images for the global
hybrid algorithm at the switching iteration t (center), and at the last iteration of
global hybrid IAS (right), respectively.

Example 3. In the third example, we consider the problem of estimating a nearly
black two-dimensional object. The generative model is a starry night impulse image,
defined as a distribution on \Omega = [0, 1]\times [0, 1],

d\mu (p) =
J\sum 

k=1

ak\delta (p - pk)dp, pk \sim Uniform(\Omega ), ak \sim Uniform([1.5, 2]) ,

and is observed through a Gaussian convolution kernel (see (5.1)), with the discrete
and noisy data at observation points qj \in \Omega given by

bj =

\int 
\Omega 

A(qj , p
\prime )d\mu (p\prime ) + \varepsilon j =

K\sum 
k=1

akA(qj , pk) + \varepsilon j .

To solve the inverse problem, we subdivide the image \Omega into n = 128\times 128 = 16 384
pixels, denoted by \Omega \ell , and let \sansA be the matrix representing the discretized kernel,

\int 
\Omega 

A(qj , p)d\mu (p) \approx 
n\sum 

\ell =1

| \Omega \ell | A(qj , q\prime \ell )\underbrace{}  \underbrace{}  
=\sansA j\ell 

x\ell , x\ell =
1

| \Omega \ell | 

\int 
\Omega \ell 

d\mu (p),

where q\prime \ell denotes the center point of the pixel \Omega \ell and | \Omega \ell | is its area. The number
of observation points is m = 64 \times 64 = 4 096, and the noiseless signal is corrupted
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Fig. 9. Pseudocolor image of the indices to the variances \theta j for vertical (top) and horizontal
(bottom) increments with color coding indicating whether \theta j < \=\theta (green) or \theta j \geq \=\theta (yellow). The
left panels represent the final iteration of the local hybrid algorithm, the middle panels the iteration
t - 1 right before the switch of the global hybrid algorithm, and the right panels the final iteration of
the global hybrid algorithm. (Color available online.)
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Fig. 10. Left: Original generative impulse image plotted on a 128\times 128 grid as a pixel image.
This is the discretization used in the inverse solver, so the pixel image shown here represents the
best reconstruction that the algorithm could produce. The reconstructions are compared with this
image. Right panel: The 64 \times 64 blurred and noisy observation, degraded by Gaussian blur and
additive white Gaussian noise, scaled so as to achieve SNR \approx 25.

by scaled white noise with standard deviation approximately 1.8\% of the maximum
noiseless signal. In this case, since the signal itself is sparse, no change of variable is
needed. Figure 10 shows the original impulse image characterized by k = 80 nonzero
points, and the noisy blurred image with kernel width w = 0.015.

The restored images and the variances \theta represented as pixel images obtained
with the IAS algorithm with gamma and inverse gamma hyperpriors, and the local
and global hybrid IAS algorithms are shown in Figure 11. The differences in the
four algorithms are clearly visible from the estimates of the variance \theta and the one-
dimensional profiles along the dotted horizontal cut line in the image. The change in
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Fig. 11. Reconstructions, from top to bottom, using gamma and inverse gamma hyperpriors,
and the local and global hybrid models (first column). The second column shows the corresponding
variances, and the last column shows the reconstructed profiles along the horizontal dotted line across
the image. The profiles are compared to the corresponding profile of the generative model represented
as a pixel image in the same grid. For the gamma hyperprior in the top row the parameter values
are \eta = 10 - 5 and \vargamma = 10 - 4, and those for the inverse gamma hyperprior in the second row are
\eta =  - 4.5 and \vargamma = 10 - 6. The hybrid hyperpriors in the bottom rows inherit the parameters from the
generative hyperpriors.

the image of the variances estimated by the IAS algorithm with gamma hyperprior
(top row, middle) is less pronounced than for the estimates obtained with the other
three algorithms, and the intensity of the second star along the cut line (top row, right
panel) is significantly lower than in the original image. On the other hand, while the
reconstruction from the IAS algorithm with inverse gamma hyperprior (second row) is
very sharp, the algorithm is too greedy and misses the second star on the horizontal cut
line (right panel). Both hybrid reconstructions (third and fourth rows) are sharper
than that obtained with the gamma hyperprior image and reproduce the original
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Fig. 12. Image of the variances \theta j with color coding indicating if \theta j < \=\theta (green) or \theta j \geq \=\theta 
(yellow). The left panel represents the final iteration of the local hybrid algorithm, the middle panel
the iteration \=t - 1, right before the switch of the global hybrid algorithm, and the right panel the final
iteration of global hybrid algorithm. (Color available online.)

profile with higher fidelity than the IAS algorithm with inverse gamma hyperprior.
Finally, in Figure 12 the behavior of the variances in terms of distribution is

shown as pseudocolor maps. The left panel depicts the local hybrid case at the final
IAS iteration, the middle panel shows the global hybrid case at the switching, and
right panel shows the final IAS iteration of the global hybrid algorithm.

6. Conclusions. In the present work, we discuss the minimization of condition-
ally Gaussian hypermodels under the adoption of generalized gamma hyperpriors.
Based on the results derived in [6], the two proposed hybrid algorithms, namely the
local and global hybrid IAS algorithms, exploit the global convexity ensured by gamma
hyperpriors (r = 1) and the stronger sparsity promotion of the generalized gamma
hyperpriors with r < 1. The local hybrid hypermodel preserves the global convexity
characterizing the gamma hyperpriors and, as confirmed by numerical examples, is
particularly effective in cleaning the background, while not ensuring a sharp recovery
of sudden discontinuities in the signals. On the other hand, the global hybrid hyper-
model, which relies on the detection of a suitable initial guess for the minimization
of the locally convex hypermodel, returns high quality restorations at the expense of
global convexity.
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