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ABSTRACT
The development of the A64FX processor by Fujitsu has been a
massive innovation in vectorized processors and led to Fugaku:
the current world’s fastest supercomputer. We use a variety of
tools to analyze the behavior and performance of several OpenMP
applications with different compilers, and how these applications
scale on the different A64FX processors on clusters at Stony Brook
University and RIKEN.
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1 INTRODUCTION
The introduction of the A64FX processor by Fujitsu has sparked an
innovation in vectorized processors and the birth of Fugaku: the cur-
rent world’s-fastest supercomputer 1. The A64FX chip also brings
an unprecedented co-design approach, impressive performance,
and energy-awareness that puts it at the top position on all 5 major
1November, 2020, list of https://top500.org
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HPC benchmarks. In this (short) paper, we analyze the OpenMP [7]
shared-memory/parallel programming model, from how it scales
on the A64FX – and its variants on Ookami and Fugaku, see Section
2 – to performance across different compiler toolchains.2

The A64FX processor [6, 10] is the processor used in the Fugaku
supercomputer, enabled by the Japanese FLAGSHIP 2020 project as
a co-design between RIKEN and Fujitsu. Currently, Fugaku is ranked
number 1 on both the Top500 and HPCG lists. A64FX is a general-
purpose processor based on the Armv8.2-A specification [10] and
has 48 compute cores, divided into four corememory groups (CMGs)
with 12 cores, and 2 − 4 cores dedicated to OS communications.

OpenMP is a directive-based standard for parallel programming
on shared memory systems. Its ease of use makes OpenMP very
attractive for obtaining efficient parallel versions of serial programs.
The programmer can use compiler directives, library routines, and
environment variables to write parallel programs for shared mem-
ory systems in Fortran and C/C++.

2 APPLICATIONS AND EXPERIMENTAL
SETUP

2.1 List of Applications
• Minimod [4] - a seismic modeling mini-application that
solves the acoustic wave equation. Minimod is used to study
the performance of emerging compilers and runtimes for
HPC. An OpenMP task-based version [8] is used in this pa-
per.

• PENNANT [3] - a mesh physics mini-application for ad-
vanced architecture research, with the mesh size determined
by input sets. PENNANT is dominated by pointer chasing.
It can be run solely with MPI or in a hybrid MPI+OpenMP
setup. It uses OpenMP’s static loop-scheduling, and makes
use of gather/scatter to send data to and from the root to
other ranks, and reductions to consolidate partial results.

• SWIM 3 - a Fortran OpenMP weather forecasting program
designed for testing current performance of supercomput-
ers. Like PENNANT, SWIM also uses static scheduling in
OpenMP loops.

2This work is in progress and here we present a partial list of results we so far have
due to page limitations.
3https://www.spec.org/cpu2000/CFP2000/171.swim/docs/171.swim.html
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2.2 Systems and Compilers
Fugaku. The world’s fastest supercomputer, located at The RIKEN
Center for Computational Science in Japan [9]. Its processor is
the Fujitsu A64FX, and has a proprietary interconnect called Tofu,
configured as a 6D torus. The cluster became operational in 2020 and
enters production usage in 2021. Fugaku provides Fujitsu’s native
and cross-compilers alongside various versions of GNU compilers.
Its underlying Tofu-D interconnect is not used in these experiments
– only intranode performance is measured in our experiments. In
addition, its stripped-down, lightweight, customized Linux kernel
allows users to further enhance their applications’ performance
through the use of various environment variables not defined in
standard Linux distributions.

Ookami. A new cluster installed at Stony Brook University (SBU)
in late summer 2020. It has 174 compute nodes, with another 2 for
debugging/experimentation. Ookami was funded through an NSF
grant [5] as the first A64FX cluster outside of Japan. Ookami uses
a non-blocking HDR 200 switching fabric via 9 40-port Mellanox
Infiniband switches in a 2-level tree. Each node, similar to Fugaku’s
compute nodes, currently has 32GB of high-bandwidth memory.
Our experiments do not use these switches in its intranode exper-
iments. In addition, it runs a standard CentOS Linux distribution
and its A64FX processors do not contain the extra cores that come
in the "full" FX1000 variant of the chip. Table 1 shows the compilers
used.

Versions
Compiler Family Fugaku Ookami

ARM - 20.3
Cray - 10.0.1
Fujitsu 4.3.0a -
GCC 8.3.1, 10.2.1 8.3.1, 10.2.1, 11.0.0
LLVM 11.0.0 11.0.0, 12.0.0

Table 1: Compilers of Fugaku and Ookami.

2.3 Runtime Environment
Each benchmark was run on one compute node with one MPI
rank to avoid shared memory operations that occur with two or
more processes, and over-subscription of threads to cores, which
might result in degraded performance. Threads are bound to cores
using the OMP_PLACES environment variable with its semantics
start_core:num_cores. This allows threads to be assigned to spe-
cific cores (e.g., Thread 0 is assigned to Core 0) as well as splitting
threads among specific CMGs.

2.4 Compiler options
For each compiler mentioned in Section 2.2, we enabled specific
flags, maximizing thread optimization and SVE instructions, and
minimizing execution-time while maintaining correctness. We also
enabled fine-tuning for the A64FX processor, where possible. The
flags are listed for each compiler/group4 as shown in Table 2.

4For any GNU and LLVM compiler: If compiling directly on an A64FX node, use
-mcpu=native instead.

Compiler Flags
Cray -homp -hvector3 -hthread3

GCC -mcpu=a64fx
-Ofast -fopenmp

LLVM -mcpu=a64fx
-Ofast -fopenmp

Fujitsu-Traditional -Nnoclang -Nlibomp -O3
-KSVE,fast,openmp,ARMV8_2_A

Fujitsu-LLVM -Nclang -Nlibomp -Ofast
-Kfast,openmp
-mcpu=a64fx+sve

Table 2: Flags used for each compiler.

3 EXPERIMENTAL RESULTS
We analyzed runtime and relative speed-up using OpenMP with
different compiler classes – Cray, ARM, GNU, Fujitsu, and LLVM;
and different versions among each class where applicable. Each set
of results is drawn from running our programs on specified inputs
five times per specified OpenMP thread count (one from 1, 2, 4, 8,
12, 16, 24, 32, 36, and 48) and obtaining the arithmetic mean for
each set. Note that for each graph, the x-axis refers to the number
of OpenMP threads, ranging from 1 to 48.

3.1 Ookami
For each application, we made graphs of the three compilers we
deemed "best in class": of Ookami’s compilers across the GCC, ARM,
and Cray collections, binaries compiled from these gave the best
runtime performance and speedup: GCC 10.2.0, ARM 20.1.3, and
Cray 10.0.1, with the results for the other compilers explained in
the following subsections.

3.1.1 PENNANT. For this application we focus on the LeblancBig
input, which fits in the 32GB of on-chip memory while also being
a non-trivial input size.

In Figure 1, we show the relative speedup observed between each
of the three compilers, measured by the runtime Tthread_value
compared to T1_OpenMP_Thread . While the armclang-compiled
code returns the slowest overall runtimes, it gives the most linear
relative speed-up, with the Cray compilers having the smallest
relative speed-up from being able to quickly saturate the on-chip
memory bandwidth at the start of execution.

Profiling the LeblancBig input with CrayPat [2] and ARM
Forge [1] on Ookami, we noticed that different values for
OMP_WAIT_POLICY (active or passive) resulted in substantially differ-
ent behaviors. An activewait policy resulted in PENNANT spending
66.3% of its runtime in OpenMP regions. Conversely, the passive
wait policy results in only 17.8% of LeblancBig’s runtime inside
OpenMP regions. The difference in time spent between computa-
tion and synchronization of threads is proportional to the requested
thread count, with very little time (under 30%) used for thread syn-
chronization.

3.1.2 SWIM. The default input for SWIM is swim.ref.in, which
sets up a 7701x7701 matrix running for 3000 iterations. In our
experiments, we tested 7 different compiler versions, but to avoid
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Figure 1: LeblancBig Speedup Comparison

clutter and data overlap, we have chosen 3 representatives from
the various compiler families: GNU, ARM’s LLVM-based compiler,
and Cray. We present speed-up results as shown in Figure 2.
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Figure 2: SWIM: speed-up results

As shown in Figure 2, we can see that among all of the compilers,
the GNU compiler seems to have the greatest speed-up. 48 threads
achieve a 37x speed-up over 1 thread. On the other hand, the Cray
compiler has a much more moderate speed-up rate. The greatest
speed-up is about 16 times between 1 and 48 OpenMP threads.

With profiling tools ARM MAP and CrayPat [2] on Ookami,
SWIM spends 70.2% of its runtime on OpenMP regions, which is
understandable since it is a purely OpenMP benchmark. OpenMP
generates a small amount of overhead: 28.5% was seen with this
particular run.

3.1.3 Minimod. Two different OpenMP configurations of Minimod
(see [8] for details) were evaluated:

• Loop xy: Grid is blocked in x (largest-stride) and y dimen-
sions. An OpenMP parallel for loop is applied to the 2-D loop
nest over x-y blocks. (A collapse(2) is used to combine the
two loops).

• Tasks xy: Grid is blocked in x and y dimensions. Each x-y
block is a task using OpenMP’s tasking directive. OpenMP’s
depend clause is used to manage dependencies between time
steps.

In both cases a grid size of 5123 was used. Minimod speedups
are shown for the tasks-xy configuration in Figure 3. In general,
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Figure 3:Minimod: speedup plot (tasks xy) for each compiler

for the task-based configuration, LLVM tends to outperform GCC
(particularly at higher thread counts), although the total runtimes
for this grid size are quite similar. In the loop-xy configuration,
GCC performs slightly better than LLVM in terms of total runtime,
and the speedups are similar between the two compilers.

Profiling using the Arm Forge Performance Report tool, we find
that both configurations are entirely compute-bound, and both have
a high number of stalled cycles (76.5% and 80.7% of cycles for loop-
xy and tasks-xy configurations, respectively), indicating that the
application is memory-bound. This makes the HBM2memory of the
A64FX processor potentially advantageous for these applications.

3.2 Fugaku
The Fujitsu compiler has two backends (traditional; LLVM), so we
can compare performance and thread-scaling between them. In
this section, we will break down and explain our results on Fugaku
comparing results between the GNU and Fujitsu compilers. Per the
experiments in Section 2, we ran each application 5 times and took
the average of the runtimes.

3.2.1 PENNANT. The Fujitsu compiler gave the longest recorded
runtimes for the LeblancBig input. In particular, the single-
threaded runtimes for both inputs had surprisingly large standard
deviations (107 seconds as opposed to a fraction of 1 second). Both
versions of the GNU compilers on Fugaku were still competitive
with Ookami. We noticed that the traditional back-end options
for the Fujitsu compiler, compared to the LLVM-backend (see sec-
tion 2.4), took substantially longer in smaller-threaded runs. Profil-
ing LeblancBig shows that the traditional Fujitsu back-end gen-
erally results in a less efficient execution compared to the LLVM
back-end. In particular, both back-ends are faster at 24 OpenMP
threads (181 seconds with LLVM, 186 with traditional) than at 48
threads (233 and 236 seconds, respectively).

Similarly, this results in observed reduced speedup for the Fujitsu
compiler, especially after reaching 12 threads placed in 1 CMG (see
Figure 4)5.

5While not the focus of our study, this observation would be resolved by utilizing
PENNANT’s MPI features in addition to OpenMP.
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Figure 4: LeblancBig/Fugaku Speedup

3.2.2 SWIM. On Fugaku, the Fujitsu and GCC (10.2.1) compilers
were used to test SWIM’s capabilities. Compared to results reported
in section 3.2.1, SWIM ran significantly faster when compiled with
Fujitsu than with Cray on Ookami. As shown in Figure 5, the GNU
compiler has a greater speed-up than Fujitsu. 36 threads achieve
a 32x speed-up over 1 thread. The Fujitsu compiler only obtained
a 25x speed-up with 36 threads over 1 thread. The Fugaku-based
runs show a drop in relative speed-up starting at 8 OpenMP threads
before leveling out at 12 threads, which could be explained by
insufficient OpenMP optimization of the Fujitsu compiler.
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Figure 5: SWIM: Speedup Plot

On Fugaku, SWIM has shown a much better performance than
all other applications tested previously on Ookami. It has achieved
a performance of over 31 GFLOPS, which correlates well with the
high SVE operation rate (99.9983%).

3.2.3 Minimod. Figure 6 shows the speedup result for the “loopxy”
configuration of Minimod. The Fujitsu-Traditional compiler suf-
fers a significant slowdown at higher thread counts, although the
speedups for both compilers are significantly worse than the com-
pilers evaluated on Ookami.

The Fujitsu-Trad compiler failed to run the tasks-xy configu-
ration, presumably because of a lack of support for the OpenMP
depend clause of the task directive. We are still working on evalu-
ating with other compilers on Fugaku.
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Figure 6: Minimod: speedup plot (loop xy) for each compiler
on Fugaku
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