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Abstract. The problem of estimating numerically a distributed parameter from indirect mea-
surements arises in many applications, and in that context the choice of the discretization plays an
important role. In fact, guaranteeing a certain level of accuracy of the forward model that maps
the unknown to the observations may require a fine discretization, adding to the complexity of the
problem and to the computational cost. On the other hand, reducing the complexity of the problem
by adopting a coarser discretization may increase the modeling error and can be very detrimental for
ill-posed inverse problems. To balance accuracy and complexity, we propose an adaptive algorithm
for adjusting the discretization level automatically and dynamically while estimating the unknown
distributed parameter by an iterative scheme. In the Bayesian paradigm, all unknowns, including
the metric that defines the discretization, are modeled as random variables. Our approach couples
the discretization with a Bayesian hierarchical hyperparameter that is estimated simultaneously with
the unknown parameter of primary interest. The viability of the proposed algorithm, the Bayesian
mesh adaptation (BMA) is assessed on two test cases: a fan-beam X-ray tomography problem and
an inverse source problem for a Darcy flow model.
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1. Introduction. A wide range of applications in, e.g., medical imaging, non-
destructive material testing, geophysical sounding or remote sensing, require the es-
timation of a spatially distributed parameter from indirect and noisy measurements.
Approximating the distributed parameter in terms of a mesh-based basis provides a
natural discretization scheme, particularly when the connection between the observed
quantity and the unknown parameter is governed by partial differential or integral
equations. An example of the former is electrical impedance tomography, where the
unknown conductivity distribution inside a body is estimated from boundary values
of the solution of the second order elliptic equation for the voltage potential [14], while
an example of the latter is the X-ray tomography problem, where the unknown den-
sity distribution inside the body is related to the data through the Radon transform
[33].

The choice of the density of the computational mesh used for approximating
the unknown is the result of a trade-off between stability and resolution on the one
hand, and between accuracy and complexity of the inverse problem on the other
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BAYESIAN MESH ADAPTATION A3879

hand. In fact, while the reduction of the degrees of freedom attained with a coarse
mesh representation may improve the stability of the discretized inverse problem, this
comes at the potential loss of spatial resolution. An even bigger concern, however,
is the fact that a coarse mesh discretization may introduce a significant discrepancy
between the presumably accurate continuous model and the discretized one. The
corresponding discretization error tends to behave like correlated noise and, if not
accounted for properly, may have very detrimental effects on the solution of the inverse
problem which, by its ill-posed nature, is sensitive to all noise. In contrast, a fine
discretization yields higher accuracy, and the associated small discretization error can
be safely lumped with the measurement noise at a higher computational cost. These
considerations motivate the search for adaptive meshing strategies that refine the
mesh dynamically, adding nodes, and hence increasing the accuracy, where a higher
resolution is needed, while coarsening the mesh in uniform regions, where a too fine
discretization would only increase the computational burden and risk fitting the model
to noise. For example, if the distributed parameter is a piecewise constant function,
ideally a fine mesh is required only near the discontinuities. The problem with this
idea is that we usually do not know a priori where the refinement is required, as it
is determined by the properties of the unknown function to be estimated. Thus, the
discretization of the problem is part of the inverse problem. Addressing this challenge
is the topic of this article.

Mesh adaptation is a standard procedure in numerical approximation of par-
tial differential equations (PDEs), particularly when using the finite element method
(FEM) [22, 40]. In that context, there is a good qualitative understanding of where
refinement is needed: the solution of a PDE is expected to change rapidly near co-
efficient discontinuities corresponding to material interfaces, or near singular points
of the boundary of the computational domain, all of which constitute the input of
the problem. To guarantee also a quantitative control on the discretization error,
rigorous mathematical tools, such as a priori and a posteriori error estimators, can be
derived to control a suitable norm or a functional of the discretization error [1]. Here,
we take a different approach based on the Bayesian paradigm. In that framework,
conditionally Gaussian hierarchical prior models have been previously proposed as a
viable way of dealing with inverse problems whose solution is expected to contain
singularities, such as discontinuities [10, 11, 12], with the dynamically updated prior
variance acting as an indicator of the presence of these singularities. In this work,
we propose a novel way of combining some classical adaptive mesh strategies in FEM
analysis with a dynamical updating of hierarchical models: The prior variance of the
gradient, indicating the level of credibility of the gradient estimation in the current
meshing, is given the additional role of signaling how the mesh should be adapted.
The proposed Bayesian mesh adaptation (BMA) algorithm is illustrated with com-
puted examples involving inverse problems in X-ray tomography and a PDE-based
inverse source problem.

2. Statement of the problem. In this work, we consider the inverse problem
of estimating a distributed parameter u over a bounded domain \Omega \subset Rd from a finite
number of noisy observations of a quantity depending on u, that is,

(1) b = F \ast (u) + \varepsilon ,

where b \in Rm comprises the data, F \ast is the function mapping the parameter u to the
data, and \varepsilon \in Rm represents additive exogenous noise independent of u. While the
basic idea may be extended to any dimension, we restrict the discussion here to d = 1
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A3880 CALVETTI, COSMO, PEROTTO, AND SOMERSALO

and, in particular, d = 2.
We consider a discretized version of (1) starting from a tessellation Th = \{ Kj\} 

of the domain by nonoverlapping intervals in d = 1, or triangles or quadrilaterals
in d = 2, covering a polygon \Omega h approximating the domain \Omega , so that \Omega h = \cup jKj ,
where the subindex h refers to the mesh density, which will be discussed in detail later.
For the time being, the subindex h is included as a reminder of the approximation.
Furthermore, we assume that the tessellation is conforming, that is, Kj \cap Ki is empty
or coincides with a vertex (for d = 1, 2) or an edge (for d = 2) [16]. This condition
excludes meshes with hanging nodes.

Given a tessellation of the domain \Omega with vertices \{ xj\} nv
j=1, we assume that a

distributed parameter u defined over \Omega can be approximated in terms of its nodal
values, i.e.,

(2) u(x) \approx 
nv\sum 
j=1

uj\psi j(x), uj = u(xj),

where \{ \psi j\} nv
j=1 is any Lagrange basis, such that \psi j(xk) = \delta jk [16].

We approximate the continuous problem (1) by a computationally feasible finite
dimensional approximation and write the model

(3) b = F (uh,Th) + \varepsilon h,

where uh \in Rd is the unknown grid function in (2) with components uj , and F is a
mesh-dependent computed approximation of the continuous forward model F \ast . Typ-
ically, in PDE-based inverse problems, the computation of F requires solving a finite
element problem. Observe that since the discretization introduces a discretization
error, the additive noise \varepsilon h is representing not only the exogenous noise \varepsilon in the con-
tinuous model (1) but also the discretization error. The estimation of the error due to
discretization has been discussed extensively in the literature (see, e.g., [24, 23, 2, 4])
and will be briefly revisited below.

In this article, we consider the selection of the discretization mesh to be part of
the inverse problem, and we propose a dynamical updating scheme to iteratively esti-
mate the pair (uh,Th) from the data and the a priori information about the unknown.
Our particular focus in the computed examples is on problems where the unknown
distributed parameter is piecewise constant, with the discretized approximation thus
allowing a sparse representation in a properly chosen basis. The methodology, how-
ever, does not require this particular assumption to be satisfied.

The method that we advocate will be illustrated in the context of two inverse
problems that we introduce in the next subsections, and the results of numerical tests
will be discussed in detail in section 5.

2.1. Example 1: X-ray tomography. Consider the X-ray tomography prob-
lem of estimating a density function u(x) \geq 0 in a domain \Omega \subset R2 from the attenua-
tion of X-rays traversing the domain [33]. The setting assumes a fan-beam geometry
with several views, with each view consisting of a finite number of rays traversing the
domain \Omega , as illustrated schematically in Figure 1. If the kth ray Rk is parametrized
by the arc length t,

Rk : x = ck(t), 0 \leq t \leq Lk = length of the ray segment,

the noiseless forward model consists of integrals of the form

bk = F \ast 
k (u) =

\int Lk

0

u(ck(t))dt, 1 \leq k \leq m,
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BAYESIAN MESH ADAPTATION A3881

Fig. 1. The geometry of the tomography problem. The circular target \Omega is illuminated from
a given number of directions (here 3) by a fan-beam source. Each view consists of a finite number
of rays Rj along which the density in \Omega is integrated to obtain the attenuation by the target. The
middle and right images show the targets used in the numerical simulations.

and if we approximate u(x) according to (2), the forward model becomes

bk \approx 
nv\sum 
j=1

\biggl( \int Lk

0

\psi j(ck(t))dt

\biggr) 
uj =

nv\sum 
j=1

\sansA (Th)kjuj = Fk(uh,Th),

where \sansA (Th) \in Rm\times nv is a discretization-dependent matrix.

2.2. Example 2: Inverse source problem. In this problem, we consider a
linear PDE model over \Omega = (0, 1)\times (0, 1),

\Delta f =  - u,

with mixed boundary conditions

\partial f

\partial n

\bigm| \bigm| \bigm| \bigm| 
\Gamma 1

=
\partial f

\partial n

\bigm| \bigm| \bigm| \bigm| 
\Gamma 3

= 0, f
\bigm| \bigm| 
\Gamma 2

= f
\bigm| \bigm| 
\Gamma 4

= 0;

see Figure 2 for a schematic illustration of the problem setting. The data are assumed
to consist of noisy observations of the solution f at discrete observation points xk \in \Omega ;
i.e., the noiseless observation model is

bk = f(xk) = Fk(u), 1 \leq k \leq m.

To discretize the problem, the domain \Omega is divided into triangular elements, and
the source term is approximated in terms of first order (piecewise linear) basis func-
tions \{ \psi j\} nv

j=1, while in order to control the approximation error, the solution f is

represented in terms of second order (piecewise quadratic) basis functions \{ \varphi j\} Nv
j=1

corresponding to free second order nodes, excluding the Dirichlet nodes on \Gamma 2 \cup \Gamma 4.
Observe that the boundary conditions for u are not yet specified. The standard FEM
discretization yields the system of equations

Nv\sum 
j=1

\biggl( \int 
\nabla \varphi k \cdot \nabla \varphi j

\biggr) 
\underbrace{}  \underbrace{}  

(\sansK h)kj

fj =

nv\sum 
j=1

\biggl( \int 
\varphi k\psi j

\biggr) 
\underbrace{}  \underbrace{}  

(\sansM h)kj

uj , 1 \leq k \leq Nv,
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A3882 CALVETTI, COSMO, PEROTTO, AND SOMERSALO

Fig. 2. Left: The domain \Omega = (0, 1)\times (0, 1) with the boundary conditions for f , and the true un-
derlying source u used in the numerical simulations. Right: The computed solution f corresponding
to the source u. The observation points are indicated by dots.

whose solution,

fh = \sansK  - 1
h \sansM huh,

is a stable approximation of f at the second order nodal points, while the data are
obtained through an interpolation matrix \sansP h \in Rm\times Nv ,

b = \sansP h\sansK 
 - 1
h \sansM huh = F (uh,Th).

Observe that in both examples, the distributed parameter can be characterized
by specifying the discontinuities, which allow for a sparse representation of the dis-
cretized approximation; this will be specified in detail later. In the following section,
we revisit the discretized inverse problems within the framework of Bayesian hierar-
chical models, formulate certain sparsity-promoting hierarchical priors, and outline
how these connect naturally with the mesh determination problem.

3. Hierarchical Bayesian prior models. We begin by reviewing some results
concerning Bayesian hypermodels in inverse problems [11, 6, 10, 12, 8, 7, 9]. We
assume that the discrete forward model is linear. An extension to nonlinear models
is possible but beyond the scope of the present paper.

Consider the linear discrete inverse problem of estimating z \in Rn from noisy
indirect observations of the form

(4) b = \sansA z + \varepsilon , \varepsilon \sim \scrN (0,\sansSigma ),

where \sansA \in Rm\times n, and the noise covariance matrix \sansSigma \in Rm\times m is symmetric positive
definite. We assume a priori that z is sparse, that is, \| z\| 0 = card\{ supp(z)\} \ll n, or,
more generally, compressible, that is,

card\{ zj | | zj | > \delta \} \ll n,

where the threshold \delta corresponds to insignificant background values of the compo-
nents. If \sansSigma is known, the additive noise can be whitened by multiplying both sides
of (4) by a matrix \sansS \in Rm\times m satisfying \sansS \sansSigma \sansS \sansT = \sansI m, where \sansI m is the identity matrix
of size m \times m. The matrix \sansS can be chosen, for instance, to be the Cholesky factor
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of the precision matrix \sansSigma  - 1. Hence, without loss of generality, we may assume that
\sansSigma = \sansI m, leading to a likelihood model

\pi b| z(b | z) \propto exp

\biggl( 
 - 1

2
\| b - \sansA z\| 2

\biggr) 
,

where \propto means proportionality up to a normalizing factor. Define the conditionally
Gaussian prior model for z,

\pi z| \theta (z | \theta ) \propto 
1

(\theta 1\theta 2 \cdot \cdot \cdot \theta n)1/2
exp

\left(   - 1

2

n\sum 
j=1

z2j
\theta j

\right)  ,

where the quantities \theta j > 0 are the a priori variances of the mutually independent
components of z. Since we believe that the unknown z is either sparse or compressible,
in order for the prior to favor such solutions, most of the variances should be close
to zero, with only a few being significantly large. However, since we do not know a
priori which components are significantly different from zero, we model \theta as a random
vector. To promote the desired properties for \theta , we introduce a hyperprior that favors
small values for \theta j while allowing for significantly large but rare outliers. Among the
distributions with such properties, we concentrate on the three-parameter family of
the generalized gamma distributions, with probability density function of the form

\pi (\theta j) \propto 
\biggl( 
\theta j
\vargamma j

\biggr) r\beta  - 1

exp

\biggl( 
 - 

\biggl( 
\theta j
\vargamma j

\biggr) r\biggr) 
.

In our setting, the parameter r \not = 0 identifies a member of the generalized gamma
family, and the values of the scale parameters \vargamma j > 0 are chosen separately for each
j, while the same shape parameter \beta > 0 is used for all \theta j . Setting r = 1 gives the
gamma distribution, while r =  - 1 is the inverse gamma distribution.

Combining the likelihood, conditional prior, and hyperprior according to Bayes'
formula, we obtain the posterior distribution for the pair (z, \theta ),

\pi z,\theta | b(z,\theta | b)\propto exp

\left(   - 1
2
\| b - \sansA z\| 2 - 1

2

n\sum 
j=1

z2j
\theta j
+

\biggl( 
r\beta  - 3

2

\biggr) n\sum 
j=1

log

\biggl( 
\theta j
\vargamma j

\biggr) 
 - 

n\sum 
j=1

\biggl( 
\theta j
\vargamma j

\biggr) r
\right)  .

In this work, we consider the maximum a posteriori (MAP) estimator, defined as the
maximizer of the above expression or, equivalently, minimizer of the energy functional,

(5) (z, \theta )MAP = argmin

\left\{   1

2
\| b - \sansA z\| 2 + 1

2

n\sum 
j=1

z2j
\theta j
 - \eta 

n\sum 
j=1

log

\biggl( 
\theta j
\vargamma j

\biggr) 
+

n\sum 
j=1

\biggl( 
\theta j
\vargamma j

\biggr) r
\right\}   ,

where \eta = r\beta  - 3/2. An iterative algorithm for effectively computing the MAP
estimate, the iterative alternating sequential algorithm (IAS), has been suggested
and extensively studied in the literature; see [6, 9, 12, 7, 8]. The structure of the
algorithm can be summarized as follows:

Given the parameters r \not = 0, \beta , \vargamma \in Rn:
Initialize: Set \theta 0 = \vargamma , t = 0.
Iterate until the stopping criterion is met:
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(a) Update z,

zt+1 = argmin

\left\{   1

2
\| b - \sansA z\| 2 + 1

2

n\sum 
j=1

z2j
\theta tj

\right\}   ;

(b) Update \theta ,

\theta t+1 = argmin

\left\{   1

2

n\sum 
j=1

(zt+1
j )2

\theta j
 - \eta 

n\sum 
j=1

log

\biggl( 
\theta j
\vargamma j

\biggr) 
+

n\sum 
j=1

\biggl( 
\theta j
\vargamma j

\biggr) r
\right\}   ;

(c) Advance the counter by one, t\leftarrow t+ 1.
The stopping criterion requires the relative change in \theta to fall below a given

threshold value. As pointed out in the cited articles, the algorithm is particularly
simple to implement: The update step (a) with fixed \theta requires only the solution of
a linear least squares problem, while in step (b), each component \theta j can be updated
separately. The first order optimality condition yields a uniquely solvable condition
for each \theta j( see [6, 9]), and in [7] it was shown that for all values r \not = 0, the updating
can be done efficiently by solving a simple ordinary differential initial value problem.
For particular values of r, including r = \pm 1, a closed form updating formula for \theta j
can be found.

It was proved in [9] that for r = 1, the IAS algorithm converges to a unique min-
imizer of the energy functional, and the convergence rate was analyzed in [12]. For
other values of r, the convergence properties were further studied in [7]. The articles
[12, 7] established the connection between the proposed algorithm and a number of
classical sparsity-promoting regularization schemes, including the \ell p penalty regular-
ization, p \leq 1. Furthermore, in the cited articles, it was demonstrated that if an
estimate of the signal-to-noise ratio (SNR) of the problem is available, under certain
natural conditions the selection of the hyperparameter \vargamma can be made automatic, and
\vargamma is directly related to the sensitivity of the inverse problem to the different compo-
nents of z [9, 12, 7]. We summarize the results relevant to the present work in the
following theorems.

Theorem 3.1. For r = 1 and \eta > 0, the objective function (5) is strictly convex,

and the IAS algorithm converges to the global minimizer (\widehat z, \widehat \theta ), where \widehat \theta satisfies

\widehat \theta j = 1

2
\vargamma j

\left(  \eta +
\sqrt{} 
\eta 2 +

\widehat z2j
2\vargamma j

\right)  .

Moreover, when \eta \rightarrow 0+, the minimizer \widehat z converges to the minimizer of the functional

(6)
1

2
\| b - \sansA z\| 2 +

\surd 
2

n\sum 
j=1

| zj | \sqrt{} 
\vargamma j
.

For the proof, see Theorem 3.7 in [12]. From this theorem it follows that in
the limit, \vargamma j represents a weight of the \ell 1 penalty. In the geophysical and biomedical
literature, the weight in the penalty is usually introduced to account for the sensitivity
of the data to different components in z; see, e.g., [29, 27, 28]. Such weighting is
often introduced based on heuristic arguments, and interpreting it as a prior in the
Bayesian framework is problematic, since the prior would depend on \sansA and hence on
the measurement configuration. However, the following theorem establishes a proper
Bayesian interpretation.
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Theorem 3.2.
(a) Assuming that a support set S \subset \{ 1, 2, . . . , n\} is given, the SNR conditional

to the unknown z being supported on S, denoted by SNRS, is given by

SNRS =

\sum 
j\in S \nu (r, \beta )\vargamma j

trace(\sansSigma )
+ 1, \nu (r, \beta ) =

\Gamma (\beta + 1/r)

\Gamma (\beta )
,

provided that \beta >  - 1/r.
(b) Let pk = \sansP \{ \| z\| 0 = k\} denote the probability that the support of the signal has

cardinality k for k = 1, 2, . . . , n. Then the exchangeability condition (E ),

(E ) : SNRS = SNRS\prime whenever S and S\prime are of the same cardinality,

is satisfied if and only if \vargamma j is chosen as

\vargamma j =
C

\| a(j)\| 2
, C =

(SNR - 1)trace(\sansSigma )

\nu (r, \beta )

n\sum 
k=1

pk
k
,

where a(j) = \sansA ej is the jth column of the matrix \sansA .

For the proof, see Lemma 2.1 and Theorem 3.3 in [12]. We point out that since
\| \sansA ej\| is the classical sensitivity of the data to the jth component of z, by choosing
the weights \vargamma j as in the previous theorem, it turns out that the components zj in the
penalty are weighted as suggested in the literature, and the weighting is justified by
a Bayesian argument rather than heuristics. The explanation for how the matrix \sansA 
can enter the prior is that the concept of SNR implicitly carries information about
the measuring configuration.

Now we address how to solve the least squares problem (a) in the IAS algorithm.
The solution of the linear least squares problem can be restated as

z = argmin

\biggl\{ \bigm\| \bigm\| \bigm\| \bigm\| \biggl[ \sansA 

\sansD 
 - 1/2
\theta 

\biggr] 
z  - 

\biggl[ 
b
0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| \biggr\} = argmin

\biggl\{ \bigm\| \bigm\| \bigm\| \bigm\| \biggl[ \sansA \sansD 
1/2
\theta 

\sansI n

\biggr] 
(\sansD 

 - 1/2
\theta z) - 

\biggl[ 
b
0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| \biggr\} ,
where

\sansD \theta = diag(\theta ) \in Rn\times n, \theta = \theta t,

yielding a least squares problem that is formally equivalent to the standard Tikhonov
regularized problem for the system

\sansA \sansD 
1/2
\theta w = b, \sansD 

 - 1/2
\theta z = w,

with regularization parameter equal to one. Inspired by this observation, authors have
suggested replacing the exact solution of the quadratic exact minimization problem (a)
by an approximate one based on the regularization properties of the Krylov subspace
iterations [10, 7]. In the approximate IAS algorithm, the update zt+1 is the reduced
Krylov subspace (RKS) solution, defined as follows. Introduce the notation \sansA \theta =

\sansA \sansD 
1/2
\theta , where \theta = \theta t, and consider the sequence of approximate solutions by the

conjugate gradient method for least squares (CGLS), defined as

(7) w(k) = argmin
\bigl\{ 
\| b - \sansA \theta w\| | w \in Kk(\sansA 

\sansT 
\theta b,\sansA 

\sansT 
\theta \sansA \theta )

\bigr\} 
, z(k) = \sansD 

1/2
\theta w(k),

where
Kk(\sansA 

\sansT 
\theta b,\sansA 

\sansT 
\theta \sansA \theta ) = span

\bigl\{ 
(\sansA \sansT 

\theta \sansA \theta )
\ell \sansA \sansT 

\theta b | 0 \leq \ell \leq k  - 1
\bigr\} 
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A3886 CALVETTI, COSMO, PEROTTO, AND SOMERSALO

is the kth Krylov subspace associated with the vector \sansA \sansT 
\theta b and the matrix \sansA \sansT 

\theta \sansA \theta . The
quantity b - \sansA \theta w

(k) whose norm is minimized is the discrepancy vector corresponding
to w(k). The RKS solution is the k\ast th iterate,

zt+1 = \sansD 
1/2
\theta wt+1, wt+1 = w(k\ast ),

with k\ast chosen to be the first index k satisfying the criterion

(C ) : \| b - \sansA \theta w
(k+1)\| \leq 

\surd 
m or G(w(k+1)) > \tau G(w(k)),

where \tau  - 1 = \epsilon > 0 is a small safeguard parameter, and G is the norm of the
discrepancy of the original linear system,

(8) G(w) =

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ \sansA \sansD 
1/2
\theta 

\sansI n

\biggr] 
w  - 

\biggl[ 
b
0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2

= \| b - \sansA \sansD 
1/2
\theta w\| 2 + \| w\| 2.

Extensive computed examples reported in the cited articles have shown that the
approximate IAS solutions are consistently similar to those obtained with the exact
IAS, at a much lower computational cost.

3.1. Sparse increments. In this article we focus on inverse problems of es-
timating piecewise constant distributed parameters with sparse gradients. In order
to take advantage of the sparsity promotion of the IAS algorithm, the minimization
problem must be expressed in terms of a discrete approximation of the function in-
crements rather than the function itself. We denote by u = uh the discretized grid
function, suppressing the subindex h to keep notation simpler. As a motivation, start
by considering a one-dimensional problem over a unit interval. Denoting by u(x) the
unknown distributed parameter, 0 \leq x \leq 1, with discretization uj = u(jh), h = 1/n,
being the discretization parameter, we may write uj in terms of the increments, i.e.,

uj = u0 +

j\sum 
k=1

(uk  - uk - 1), 1 \leq j \leq n.

Assuming for simplicity that u0 = 0, and defining zj = uj  - uj - 1, we have

\sansL u = z, \sansL =

\left[     
1
 - 1 1

. . .
. . .

 - 1 1

\right]     .
Since the matrix \sansL is invertible, we may reformulate the problem as estimating z from
the observation model

b = \sansA \sansL  - 1u+ \varepsilon ,

with the a priori belief that the solution is sparse. Accordingly, we modify the IAS
update of the unknown in terms of the increment vector, namely,

zt+1 = argmin

\left\{   1

2
\| b - \sansA \sansL  - 1z\| 2 + 1

2

n\sum 
j=1

z2j
\theta tj

\right\}   , ut+1 = \sansL  - 1zt+1,
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BAYESIAN MESH ADAPTATION A3887

Fig. 3. Schematic illustration of the circulation condition \sansM z = 0. In this figure, the black dots
indicate the free nodes, and the green squares are bound nodes, or Dirichlet nodes, where the grid
function is assumed to vanish. Free edges, drawn as solid lines, have at least one free node as an
endpoint, while bound edges, drawn as dashed lines, connect bound nodes. Bound edges give a zero
contribution to the circulation. If z is the vector of increments corresponding to a grid function u,
the sums of increments around edges of each element with a given orientation (here clockwise) must
vanish.

followed by the update step of \theta ,

\theta t+1 = argmin

\left\{   1

2

n\sum 
j=1

(zt+1
j )2

\theta j
 - \eta 

n\sum 
j=1

log

\biggl( 
\theta j
\vargamma j

\biggr) 
+

n\sum 
j=1

\biggl( 
\theta j
\vargamma j

\biggr) r
\right\}   .

A different approach is required in dimension d \geq 2 because the finite difference
matrix is no longer square, and there is no one-to-one correspondence between x and
z.

Consider a triangular mesh as shown in Figure 3, and assume that the values of
the unknown function are known to vanish at some of the nodes, referred to as bound
nodes (or Dirichlet nodes), whereas the remaining ones are referred to as free nodes.
In order to keep the notation simple, let nv denote from now on the number of free
nodes, and ne the number of free edges e\ell = \{ v\ell 1 , v\ell 2\} \in Efree, for which at least one
endpoint is a free node. Let \sansL \in Rne\times nv denote the matrix mapping the nodal values
u at free nodes to increments z along free edges,

(9) z = \sansL u.

Note that the increments along edges between bound nodes vanish. Since the nodal
values at bound nodes vanish, it is straightforward to show that \sansL has the null space
N (\sansL ) = \{ 0\} . Let nt denote the number of all triangular elements in the mesh, and
let c \in Rnt be a vector containing the sums of the increments in a clockwise direction
over the edges of each element. We denote by \sansM \in Rne\times nt the matrix of entries 0 or
\pm 1, such that

(10) c = \sansM z.

If z corresponds to a grid function u through (9), the circulations must vanish, that
is, z \in N (\sansM ). Hence, the matrices \sansL and \sansM define a short exact chain,

\{ 0\}  - \rightarrow Rnv
\sansL  - \rightarrow Rne

\sansM  - \rightarrow Rnt - \rightarrow \{ 0\} .
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A3888 CALVETTI, COSMO, PEROTTO, AND SOMERSALO

To define a prior for the increments analogously to the one-dimensional case, we must
secure that the prior is concentrated on the subspace N (\sansM ). To do this, let

(11) \sansL \theta = \sansD 
 - 1/2
\theta \sansL , where \sansD \theta = diag(\theta 1, . . . , \theta ne).

Given a grid function u, we introduce the auxiliary variable

(12) \beta = \sansL \theta u.

Observe that
ne\sum 
j=1

(\sansL u)2j
\theta j

= \| \beta \| 2.

In order that \beta corresponds to a grid function, we must require that \beta \in H = R(\sansL \theta ).

If this is the case, u can be solved through the pseudoinverse, i.e., u = \sansL \dagger \theta \beta . We
therefore define the conditional density for \beta , setting

(13) \pi \beta | \theta ,b(\beta | \theta , b) \propto exp

\biggl( 
 - 1

2
\| b - \sansA \sansL \dagger \theta \beta \| 

2  - 1

2
\| \beta \| 2

\biggr) 
\delta H (\beta ),

where \delta H (\beta ) is the singular measure concentrated on the subspace H . It was shown
in [8] that for a fixed \theta , the minimizer of the energy functional,

\beta = argmin
\Bigl\{ 
\| b - \sansA \sansL \dagger \theta \beta \| 

2 + \| \beta \| 2
\Bigr\} 
,

is automatically in the subspace H , i.e., the compatibility condition need not be
enforced. This observation leads to the following version of the IAS algorithm for the
increments:

Given the parameters r \not = 0, \beta , \vargamma \in Rn:
Initialize: Set \theta 0 = \vargamma , t = 0.
Iterate until convergence:
(a) Update u,

ut+1 = \sansL \dagger \theta t\beta 
t+1, where \beta t+1 = argmin

\Bigl\{ 
\| b - \sansA \sansL \dagger \theta t\beta \| 2 + \| \beta \| 2

\Bigr\} 
.

(b) Update \theta ,

\theta t+1 = argmin

\left\{   1

2

ne\sum 
j=1

(\sansL ut+1)2j
\theta j

 - \eta 
ne\sum 
j=1

log

\biggl( 
\theta j
\vargamma j

\biggr) 
+

ne\sum 
j=1

\biggl( 
\theta j
\vargamma j

\biggr) r
\right\}   ;

(c) Advance the counter by one, t\leftarrow t+ 1.
In order to update u, we need to solve in the least squares sense the linear system

(14)

\biggl[ 
\sansA \sansL \dagger \theta 
\sansI ne

\biggr] 
\beta =

\biggl[ 
b
0

\biggr] 
, \theta = \theta t.

Alternatively, as proposed in [7], we can consider the reduced problem

\sansA \sansL \dagger \theta \beta = b,
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BAYESIAN MESH ADAPTATION A3889

and as in the previous section, compute its approximate RKS solution by the CGLS
algorithm with an appropriate stopping criterion. More precisely, if

Kk = Kk

\Bigl( 
(\sansA \sansL \dagger \theta )

\sansT b, (\sansA \sansL \dagger \theta )
\sansT \sansA \sansL \dagger \theta 

\Bigr) 
= span

\biggl\{ \Bigl[ 
(\sansA \sansL \dagger \theta )

\sansT \sansA \sansL \dagger \theta 

\Bigr] j
(\sansA \sansL \dagger \theta )

\sansT b | j = 0, 1, . . . , k  - 1

\biggr\} 
defines the Krylov subspace of dimension k associated with the vector (\sansA \sansL \dagger \theta )

\sansT b and

the matrix (\sansA \sansL \dagger \theta )
\sansT \sansA \sansL \dagger \theta , we approximate the solution of (14) by the kth iterate of the

CGLS algorithm,

\beta t+1 = \beta (k\ast ) = argmin
\Bigl\{ 
\| b - \sansA \sansL \dagger \theta \beta \| , \beta \in Kk\ast 

\Bigr\} 
, \theta = \theta t,

where k\ast is the smallest index that satisfies the discrepancy criterion

(15) (C ) : \| b - \sansA \sansL \dagger \theta \beta 
(k+1)\| \leq 

\surd 
m or G(\beta (k+1)) > \tau G(\beta (k)),

with
G(\beta ) = \| b - \sansA \sansL \dagger \theta \beta \| 

2 + \| \beta \| 2.

Furthermore, it was shown in [7] that it is possible to add a positivity constraint to
the IAS algorithm by a proper projection on the positive cone.

In the CGLS algorithm, the multiplication of a vector z with \sansA \sansL \dagger \theta can be evaluated
by first solving the linear system

\sansL \theta \alpha = z

in the least squares sense, and then multiplying the solution \alpha by \sansA . To implement the
multiplication of b by (\sansA \sansL \dagger \theta )

\sansT = (\sansL \dagger \theta )
\sansT \sansA \sansT , we recall the definitions of the pseudoinverse

\sansL \dagger \theta and its transpose,

\sansL \dagger \theta =
\bigl( 
\sansL \sansT \theta \sansL \theta 

\bigr)  - 1
\sansL \sansT \theta ,

\bigl( 
\sansL \dagger \theta 

\bigr) \sansT 
= \sansL \theta 

\bigl( 
\sansL \sansT \theta \sansL \theta 

\bigr)  - 1
,

where the matrix \sansL \sansT \theta \sansL \theta in our application is very sparse. Therefore, for the multipli-
cation with the transpose, we solve first

(\sansL \sansT \theta \sansL \theta 
\bigr) 
w = \sansA \sansT b,

for w, then multiply w by \sansL \theta .

3.2. Modeling error. As part of the proposed algorithm that will be introduced
in the next section, we need to solve iteratively the discretized inverse problem with a
given discretization. As pointed out earlier, the discretization of a continuous problem
introduces a discretization error that cannot be ignored when solving inverse problems
unless the discretization is so fine that the induced error is dominated by the exogenous
error in the data. The ways in which approximation errors are addressed in classical
FEM applications and in inverse problems have some fundamental differences. In
the former, the approximation error is the discrepancy between the true solution of
a PDE and the computed approximation, and sophisticated methods for controlling
the accuracy through mesh adaptation have been developed. In inverse problems,
the intrinsic ill-posedness adds an extra layer of complexity, as small inaccuracies in
the forward model, if not properly addressed, may propagate as huge errors in the
computed solution. We briefly review here how discretization errors or, more generally,
any modeling errors induced by replacing the exact model by an approximation, can
be addressed in the Bayesian framework.
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A3890 CALVETTI, COSMO, PEROTTO, AND SOMERSALO

Given the exact model (1) and the corresponding discrete approximation (3), we
write

b = F \ast (u) + \varepsilon 

= F (uh,Th) +
\bigl[ 
F \ast (u) - F (uh,Th)

\bigr] 
+ \varepsilon ,

expressing the modeling error due to the discretization as

(16) mh = m(u,Th) = F \ast (u) - F (uh,Th) = Fh(u).

The problem with addressing the modeling error is that it depends on the solution
of the inverse problem, which is unknown. However, in the Bayesian framework, the
prior distribution \pi u of the unknown can be used to write an approximate model for
the probability distribution of the modeling error. From formula (16), it follows that
the a priori probability distribution of the modeling error can be expressed as the
push-forward of the prior distribution \pi u for u,

(17) \pi mh
=

\bigl( 
Fh

\bigr) 
\sharp 
\pi u.

In practice, the above formula leads to a useful algorithm through sampling: By gener-
ating an ensemble of independent realizations \{ u(1), . . . , u(K)\} of the unknown drawn
from the prior density \pi u, a sample of realizations of the modeling error distributed
according to \pi mh

given by (17) can be generated by setting

m
(j)
h = Fh

\bigl( 
u(j)

\bigr) 
, 1 \leq j \leq K,

thus allowing an approximation of the distribution itself by using, e.g., a Gaussian
approximation or an approximation by Gaussian mixtures. This approach requires,
however, that the exact forward model F \ast can be implemented, which usually is a
challenge. In practice, a numerically accurate high-precision surrogate, such as a FEM
model with a dense mesh, is used, and the time-consuming generation of the modeling
error sample is performed off-line prior to the solution of the inverse problem. This
idea, originally proposed in [24, 23], was further developed and applied to a variety of
inverse problems (see, e.g., [2, 34, 35]) and generalized in [5, 4] through an iterative
updating process taking into account the increasing information on u as the inverse
problem is solved. In this paper, to contain the computational burden, we adopt a
simplified approach and approximate only the order of magnitude of the modeling
error in a straightforward manner, which will be described in section 5.

We point out that the modeling error related to reduced models is a recurrent
topic in Bayesian inverse problems and sampling algorithms. In [38, 39], the authors
consider approximate surrogate models in Markov chain Monte Carlo sampling, in-
troducing a multifidelity correction to compensate for the approximation. In [13, 15],
the error induced by an approximate model is controlled by a Bayes factor estimate,
ensuring that the difference between the posterior density and its approximation re-
mains insignificant. In [26, 17], the model reduction and the posterior estimation
are coupled so that the reduced model does not significantly perturb the posterior
estimation.

4. Mesh adaptation strategy. In classical finite element methods, mesh adap-
tation is a well-established tool for improving the accuracy and efficiency of a dis-
cretization scheme. The goal pursued by a mesh adaptation procedure is to minimize
the number of mesh elements for a fixed accuracy of the discrete solution or, vice
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versa, to maximize such accuracy for a given number of tiles in the mesh. The al-
ternative to an adapted mesh is a uniform tessellation of the domain \Omega h, with a
sufficiently small discretization size so that the complex features of the solution can
be correctly identified. This last choice is clearly not optimal from a computational
viewpoint, particularly in the presence of problems which are highly heterogeneous in
space and/or in time.

The actual challenge when generating an adapted mesh is identifying the areas
of the domain which deserve to be refined or coarsened. This goal can be pursued by
resorting to a preliminary knowledge of the phenomenon at hand (if any), to a heuristic
criterion (e.g., by tracking the gradient or the Hessian of the discrete solution), or
to theoretically sound mathematical tools which are known in the literature as a
priori or a posteriori error estimators [1]. The former are expressed in terms of the
exact solution (e.g., via an interpolation error control); the latter involve the discrete
solution and thus provide practical (i.e., directly computable) information. Among
the several a posteriori error estimators available in the literature, we focus on the
recovery-based error estimators first proposed by Zienkiewicz and Zhu [41]. This
methodology inspired us to propose a new mesh adaptation for inverse problems.

In the following, u represents a solution of a PDE over a domain \Omega , and uh is
the FEM approximation. According to a recovery-based approach [41, 43], the mesh
adaptation is driven by a control of the H1-seminorm of the discretization error,

(18) | eh| 2H1(\Omega ) =

\int 
\Omega 

| \nabla u(x) - \nabla uh(x)| 2 dx =
\sum 

Kj\in Th

\int 
Kj

| \nabla u(x) - \nabla uh(x)| 2 dx,

where for simplicity we have assumed \Omega \equiv \Omega h. Since the gradient of the exact solution
is not known, we need to replace \nabla u in (18) by a computable quantity, \nabla \ast u, known
as recovered gradient [42]. This yields an a posteriori error control for eh, given by

(19) | eh| 2H1(\Omega ) \approx 
\sum 

Kj\in Th

\int 
Kj

| \nabla \ast u(x) - \nabla uh(x)| 2 dx =
\sum 

Kj\in Th

\eta 2Kj
.

Several procedures for recovering the gradient have been proposed in the literature,
each yielding a different estimator in (19). In the pioneering work [41], the authors
proposed an estimator based on either a least squares process or an averaging step.
Independently of the adopted procedure, at first one computes the values \nabla \ast u(xi) at
certain points, \{ xi\} mr

i=1, known as recovery points, starting from the values assumed
by \nabla uh on a set of sampling points, \{ sj\} ns

j=1, located in a patch associated with xi.
Subsequently, \nabla \ast u is defined over elements by a piecewise polynomial interpolation
of the recovered values \nabla \ast u(xi). If the recovery points xi are chosen to be vertices
of the mesh and the sampling points sj are the triangle barycenters, the averaging
method seeks a recovered gradient such that

(20) \nabla \ast u(xi) =
1

W i

ns\sum 
j=1

wi
j\nabla uh(sj) with i = 1, . . . ,mr,

where wi
j are suitable weights, and W i =

\sum ns

j=1 w
i
j . The values of the weights wi

j can
be set equal to the area, | Kj | , of the elements Kj in Th containing xi as a vertex,
with j running over the triangles constituting the patch, \Delta xi

= \{ K \in Th : xi \in K\} ,
associated with the vertex xi, so thatW i = | \Delta xi

| is the area of the patch; for common
choices in practical applications, see, e.g., [42, 25, 36, 3, 32, 37]. We remark that some
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A3892 CALVETTI, COSMO, PEROTTO, AND SOMERSALO

attention has to be paid in the definition of the recovered gradient when recovery
points belong to the domain boundary (for details, see, e.g., [42]).

Once the recovered gradient has been computed, we can obtain the contribution of
each element to the total a posteriori error estimate. According to the equidistribution
principle, an ideal mesh is such that the error contribution is equally distributed
among the elements. To attain this goal, define the scaled local error estimator as

\widehat \eta 2Kj
=

1

| Kj | 
\eta 2Kj

,

which is thus defined to even out the effect of different sizes of the elements. If Nh is
the cardinality of Th, the equidistribution principle requires that

\eta 2Kj
= | Kj | \widehat \eta 2Kj

=
\tau 2

Nh
,

where \tau > 0 is the accuracy required for the discrete solution. The value \tau thus
controls the overall accuracy of the FEM approximation and is not of importance for
the goals of this paper. Assuming for simplicity that the mesh is isotropic, i.e., all
triangles are approximately equilateral, and each element is a shifted, rotated, and
scaled version of the reference element \widehat K, an equilateral triangle with unit diameter,
we have | Kj | = h2j | \widehat K| , where the diameter hj of the element Kj defines the mesh
density parameter h = min\{ hj = diam(Kj) | Kj \in Th\} . Then the equidistribution
principle can be translated into a condition for the diameter, i.e.,

(21) h2j =
\tau 2

Nh| \widehat K| \widehat \eta 2Kj

.

These target values can be used to drive the mesh refinement and coarsening. In
particular, as detailed in the next section, the new adapted mesh can be described in
terms of a metric defined in \Omega , providing us with a useful starting point for inverse
problems.

4.1. Meshing and metric. Motivated by the ideas behind the mesh adaptation
strategies in the classical FEM literature, we establish a connection between Bayesian
hypermodels and the metric guiding the mesh adaptation algorithms. Let \widehat K denote
the reference triangle defined in the previous section, and let K be a generic triangle
in the tessellation. We define an affine mapping

FK : \widehat K \rightarrow K, x \mapsto \rightarrow sK + \sansF Kx,

where \sansF K \in R2\times 2 is the Jacobian of the map, and sK \in R2 is the shift parameter.
Let

\sansF K = \sansP K\sansU K

be the polar decomposition of \sansF K , where \sansU K is an orthogonal matrix, and \sansP K is
a symmetric positive definite matrix whose eigenvalues, 0 < \lambda K,1 \leq \lambda K,2, are the
singular values of \sansF K .

We associate a piecewise constant metric in \Omega h with a tessellation \{ Kj\} in terms
of a piecewise constant metric tensor \sansG = [gij ], such that

(22) \sansG 
\bigm| \bigm| 
Kj

= \sansP  - 2
Kj
.
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BAYESIAN MESH ADAPTATION A3893

To compute the diameter of the elements with respect to this metric, consider a line
segment across the reference triangle, parametrized with respect to the arc length,
\xi = \xi (t) \in \widehat K, and the corresponding parametrized curve in Kj ,

\gamma (t) = sKj + \sansF Kj\xi (t).

In the metric \sansG defined by (22), the arc length element is given by

ds =
\bigl( 
\gamma \prime (t)\sansT \sansG 

\bigm| \bigm| 
Kj
\gamma \prime (t)

\bigr) 1/2
dt =

\bigl( 
\xi \prime (t)\sansT \sansU \sansT 

Kj
\sansP Kj

\sansG 
\bigm| \bigm| 
Kj

\sansP Kj
\sansU Kj

\xi \prime (t)
\bigr) 1/2

dt = \| \xi \prime (t)\| dt,

because of the orthogonality of \sansU Kj
; hence in this metric the elements Kj have the

same diameter.
Conversely, given a metric tensor \sansG on \Omega , we can look for a tessellation so that the

elements have approximately the same size with respect to this metric. The meshing
problem can be formally written as follows.

Problem 4.1. Given a metric \sansG in \Omega and 0 < hmin < hmax, find a tessellation
\{ Kj\} of \Omega such that hmin \leq diam(Kj) \leq hmax by minimizing the discrepancy

max
j
\| \sansG 

\bigm| \bigm| 
Kj
 - \sansP  - 2

Kj
\| \infty 

over the tessellation.

Observe that if for an element K, \sansP K = \lambda \sansI 2, then the element K is, up to a
translation and an orthogonal transformation, a scaled copy of \widehat K, and its diameter is
equal to \lambda . Consequently, if h = h(x) is a given function defining the target distance
between the vertices in the mesh and x \in \Omega , to find an isotropic nonhomogeneous
mesh corresponding to h(x), we define the metric as

\sansG (x) =
1

h2(x)
\sansI 2.

In the next section, we propose an automatic mesh adaptation algorithm for inverse
problems, where the current approximation is used, in a predictive way, to generate
the function h(x), and hence we have the metric yielding the new discretization.

4.2. Bayesian mesh adaptation (BMA). In this subsection we customize the
mesh adaptation procedure to inverse problems, using the hierarchical IAS algorithm
as a tool to convey the information for the mesh generation. The driving idea of
this approach is the interpretation of large estimated variance of the increment of the
solution along an edge as an indication of a potential jump in the solution that may
require a finer discretization, while a small variance allows larger elements and thus
reduces the complexity of the problem.

Consider the discretized inverse problem

(23) b = \sansA huh + \varepsilon h,

where \sansA h is the discretized forward matrix based on the current tessellation Th,
identified with the triplet (\sansV h,\sansE h,\sansT h) of matrices, where \sansV h \in R2\times nv contains all nv
vertex coordinates, including the Dirichlet nodes, \sansE h \in Nne\times 2 is the edge list of all ne
edges with pointers to the endpoint vertices, and \sansT h \in Nnt\times 3 is the element topology
matrix with pointers to the vertex nodes. Here uh is the vector of the nodal values of
the unknown function at the free nodes of the mesh, and \varepsilon h is the noise vector with
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A3894 CALVETTI, COSMO, PEROTTO, AND SOMERSALO

zero mean and covariance \sansSigma h estimated from the approximation error model. Let \sansL h
denote the full-rank matrix mapping the nodal values to the increments along the free
edges.

Given the current model (23), we run the IAS algorithm for sparse increments,
compute the current approximation (xh, \theta h) \in Rnv\times Rne for the free nodes and edges,
and extend \theta h by zero to the boundary edges, i.e., the edges between the Dirichlet
nodes. Observe that if (\theta h)j is small, we expect the increment of the solution xh along
the jth edge to be small. In other words, a small (\theta h)j is taken as an indication of
unlikely discontinuity of the unknown along that edge, thus suggesting that there is
no need to refine the mesh, or even that a coarser mesh would suffice. Conversely, a
large value of (\theta h)j indicates the potential for a large increment, and to better localize
the point of discontinuity along the edge, a refinement is desirable. This heuristics
suggests that we can use \theta h as a proxy for the metric, after interpolating the edge-
bound values of \theta h to \Omega , giving rise to the following mesh adaptation algorithm.

Algorithm 1: Variance-based meshing (VBM).

Input: Triplet (\sansV h,\sansE h,\sansT h), a variance vector \theta h with cardinality equal to the
number of edges.

(a) Add an auxiliary vertex at the midpoint of each edge,

\widehat v\ell = 1

2
[\sansV h ( : ,\sansE (\ell , 1)) + \sansV h ( : ,\sansE (\ell , 2))] , 1 \leq \ell \leq ne.

Denote by \widehat \sansV h \in R2\times ne the matrix of all auxiliary nodes.

(b) Generate an auxiliary triplet \widehat Th = (\widehat \sansV h, \widehat \sansE h, \widehat \sansT h) by using Delaunay triangu-
larization [20].

(c) Define the metric

\sansG (x) = max\{ \widehat \theta h(x), \theta \ast \} \sansI 2,
where \widehat \theta h(x) is the piecewise linear extension of the nodal values \theta h in the
auxiliary mesh, and \theta \ast > 0 is a threshold value introduced to avoid excessively
large triangles.

(d) Given the metric, find a new triplet (\sansV h\prime ,\sansE h\prime ,\sansT h\prime ).

We point out that in the above algorithm, slight adjustments of the nodes \widehat \sansV h at
the boundary of the domain may be necessary to ensure that the resulting polygonal
domain properly approximates the domain \Omega . In step (d), we generate the new mesh
using the meshing tool included in the FreeFem++ package [21]. The algorithm allows
a nodal input of the metric in the current mesh, which in this case is the midpoint
mesh constructed above, and requires the specification of a range [hmin, hmax] for the
mesh size, providing a way to control the complexity and the accuracy of the forward
map.

We may now proceed iteratively by repeatedly recalculating the forward model,
estimating the modeling error, and applying the IAS algorithm to the new discretized
problem. We summarize how to organize the calculations in the following algorithm.
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BAYESIAN MESH ADAPTATION A3895

Algorithm 2: Bayesian mesh adaptation with IAS (BMA-IAS).

Input: The data b \in Rm, the noise covariance matrix \sansSigma \in Rm\times m, the initial
mesh parameter h.

Initialize: Generate the initial triplet (\sansV h,\sansE h,\sansT h).
Iterate until stopping criterion is satisfied:
(a) Compute the forward matrices \sansA h and \sansL h on the current mesh.
(b) Estimate the modeling error, compute the covariance matrix \sansSigma h. Whiten

the noise \varepsilon h.
(c) Compute the sensitivity vector corresponding to \sansA h\sansL 

\dagger 
h; compute \vargamma .

(d) Initialize the IAS iteration, setting \theta = \vargamma .
(e) Run the IAS algorithm with sparse increments by repeating until con-

vergence:
(i) Update \beta h \rightarrow uh by CGLS with early stopping criterion;
(ii) Update \theta h.

(d) Update the mesh using Algorithm 1.
end

The IAS iteration can be augmented with the projection of the solution uh to the
positive cone if the parameter u is a priori known to be positive; see [7] for details.
Above, the stopping criterion for the IAS algorithm is given by requiring that the
relative change of the variance parameter \theta is below a threshold value,

\| \theta t+1  - \theta t\| \infty 
\| \theta t\| \infty 

< \delta ,

where we use the value \delta = 0.1 for the tolerance. The stopping criterion for the mesh
update, as well as the choice of parameters defining the mesh density, is discussed in
light of computed examples, where preliminary versions of a systematic criterion are
considered.

5. Computed examples. In this section we demonstrate the viability of Algo-
rithm 2 by applying it to the linear inverse problems described in sections 2.1 and
2.2.

5.1. Tomography problem. In this example, we consider the X-ray tomog-
raphy problem sketched in Figure 1. In the first test, we assume that the target
is illuminated from several directions, choosing 15 equally spaced view directions,
each view consisting of 300 rays, and thus the total dimensionality of the data is
m = 15 \times 300 = 4 500. The generative model used to compute the noiseless data,
shown in Figure 1, consists of a unit disc \Omega of zero background density with a circu-
lar inclusion with center at (0, 0.5), radius 0.3, and density u = 1. We compute the
noiseless data by solving analytically for each ray the length of the line segment inside
the inclusion, thus avoiding any error due to discretization. In this experiment, the
exogenous additive noise is white noise scaled by \sigma ex equal to 0.5\% of the maximum
of the entries of the noiseless data.

To find a computationally operational model for the discretization error, let b0
denote the exact noiseless data, and assume that the observation model is of the form

b = \sansA u+ \varepsilon , \varepsilon \sim \scrN (0, \sigma 2
ex\sansI m),
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A3896 CALVETTI, COSMO, PEROTTO, AND SOMERSALO

where \sansA denotes an integral operator. Given a discretization level h > 0, we write
the scaled white noise likelihood model

\pi b| u(b | uh) \sim \scrN (\sansA huh, \sigma 
2
h\sansI m).

Choosing \sigma 2
h = \sigma 2

ex, thus ignoring the modeling error, may not be a good choice if
the discretization is coarse and the exogenous noise level is low, as the IAS algorithm
with the discretized model may not be able to approximate the data within the noise
level \sigma 2

ex. Therefore, we increase artificially the noise level \sigma h so that the modeling
error, although possibly not zero mean Gaussian, is within the noise envelope. To
find a suitable value for \sigma h, we begin by writing

b = \sansA u+ \varepsilon = \sansA huh + (\sansA u - \sansA huh) + \varepsilon = \sansA huh + \varepsilon h + \varepsilon ,

where \varepsilon h = \sansA u - \sansA huh is the modeling error due to discretization.
To estimate the level of the modeling error, we start by generating a sample

of realizations u, assuming circular inclusions with random radius and at random
positions, denoted by S = \{ u(1), . . . , u(K)\} . Since the amplitude of the modeling error
scales linearly, we assume for simplicity that the amplitude of the circular inclusion is
one. For a given mesh size h > 0, we discretize the domain \Omega by generating a uniform
mesh, and approximate the densities u(k) by a piecewise linear function with nodal
values given by the true density u(k). We compute the corresponding modeling error
realizations

\varepsilon 
(k)
h = \sansA u(k)  - \sansA hu

(k)
h , 1 \leq k \leq K.

We approximate the underlying noise distribution by scaled Gaussian white noise with
variance \widetilde \sigma 2

h, obtained by

\widetilde \sigma 2
h =

1

m
trace

\Biggl( 
1

K

K\sum 
k=1

\varepsilon 
(k)
h

\bigl( 
\varepsilon 
(k)
h

\bigr) \sansT \Biggr) 
=

1

mK

K\sum 
k=1

\| \varepsilon (k)h \| 
2.

Observe that the above equation is exact in the limit K \rightarrow \infty if the underlying
distribution is indeed a scaled white noise. To account for the modeling error within
a scaled white noise framework, we set

\sigma 2
h = \widetilde \sigma 2

h + \sigma 2
ex.

Figure 4 shows the value of \widetilde \sigma h, computed by drawing 200 disc inclusions for the 15-
view tomography data, for different uniform mesh sizes h. Since the dependency of\widetilde \sigma h on h is almost linear, we can fit a linear model to the data and use \sigma h = 0.3h for
the estimate of the noise model.

Since the modeling error scales linearly with respect to the inclusion, in order to
have a reasonable scaling of the discretization error level, we need to have some a
priori information about the density. To test how critical it is to know the amplitude,
we run the IAS algorithm with fixed mesh for different choices of the approximation
error noise variance. The hyperparameters in the IAS algorithm in this test, as well
as in the numerical examples to ensue, are set to r = 1, corresponding to the gamma
hyperprior, and \eta = 0.001. The vector \vargamma is computed by using the sensitivity scaling.
In this preliminary test, we use a fine, fixed mesh of size h = 0.02, with 17,813 elements
and 9062 nodes. In this test, the exogenous noise level is set at zero; that is, we assume
that the only error source is the discretization error in the forward model. To test
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Fig. 4. Estimated level of the modeling error as a function of the grid parameter given by
the solid curve. The dashed line is the least squares fit, given by \sigma h = \alpha h + \beta with \alpha = 0.3035,
\beta =  - 0.0005.

how sensitive the solution is to the estimation of the noise level, we consider four
different cases: \sigma h = 0.03h (underestimated), \sigma h = 0.15h (slightly underestimated),
\sigma h = 0.3h (correctly estimated), and \sigma h = 0.6h (overestimated).

Figure 5 shows the results with the IAS algorithm; the hyperparameter controlling
the focality of the solution was set at \eta = 0.001. Two observations are in order.
First, when the modeling error is strongly underestimated, the edges of the target are
well identified, but noise clutter is clearly visible in the solution, indicating that the
IAS algorithm is fitting to the discretization noise not properly accounted for in the
likelihood model. On the other hand, when the modeling error level is overestimated,
the reconstruction of the inclusion is not sharp, and the structure of the underlying
discretization mesh becomes visible by making the target hexagonal instead of round.
These results indicate that the IAS algorithm stops the CGLS iterations too soon when
the desired discrepancy is reached. Numerical tests suggest that a rough estimate of
the modeling error level is sufficient for a reasonable quality of reconstruction, with a
slight preference for underestimating the error level.

Next we ran the BMA algorithm using the modeling error formula \sigma h=0.3min(hj),
with the minimum taken over all edges. In the FreeFem++ code, the minimum and
maximum mesh sizes were set at hmin = 0.006 and hmax = 0.1, respectively. In the
metric update, we set

Gj = max
\bigl\{ 
\theta j , 0.5\times \theta max

\bigr\} 
, \theta max = max\{ \theta j\} .

Changes in the threshold value slightly affect the width of the region around the
boundary of the inclusion discretized with the finer mesh. Figure 6 shows the results
at each of the first four iterations: the left panel displays the underlying mesh, and
the right shows the reconstruction based on that mesh. The IAS algorithm, termi-
nated when the relative change in the \theta update falls below 10\% of the \ell \infty -norm of
\theta , required between four and eight outer iterations. The stopping criterion for the
BMA algorithm is based on the three indicators shown in Figure 7, namely, from left
to right, the norm of the discrepancy \| b - \sansA huh\| , the complexity measured in terms
of the number of nodes of the mesh, and the product of these two numbers. Figure 7
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A3898 CALVETTI, COSMO, PEROTTO, AND SOMERSALO

Fig. 5. IAS reconstructions after two outer iteration rounds with fixed discretization mesh and
with four different estimates of the discretization error, corresponding to, in lexicographical order,
\sigma h = 0.03h, \sigma h = 0.15h, \sigma h = 0.3h, and \sigma h = 0.6h. The focality parameter of the IAS algorithm
controlling the sharpness of the reconstruction is \eta = 0.001.

shows that the discrepancy using the initial coarse mesh is high, as one would expect,
and subsequently it drops to a level where it stabilizes. While the discrepancy based
on the second mesh is slightly smaller than that based on the third, the second mesh is
significantly more complex, indicating an initial overrefinement. An indicator taking
into account both the discrepancy and the complexity, such as the product of the two,
seems to identify the third mesh as a good compromise. A visual inspection of the
meshes confirms that after the third iteration, no significant changes take place, and
therefore continuing the iterations would not improve the solution.

The X-ray tomography data with 15 views represent a rather complete set of pro-
jections, and it is of interest to see how the proposed methodology works with more
limited data, as it is often collected, e.g., in some industrial and medical applications,
where the number of views is limited due to geometric constraints, health considera-
tions, or constraints in data acquisition speed. Figure 8 shows the results after three
mesh adaptation iterations when the number of views is limited to three and seven,
respectively; all other parameters remain the same. The reconstructions, very much
in line with what could be expected, exhibit reduced sharpness along the boundary
of the inclusion in directions not coinciding with the wave front sets.

Finally, we test the algorithm with a nonconvex inclusion by considering the
configuration shown in Figure 1 (right). In the reconstructions, the same value for
the modeling error as in the case of the convex disc-like object is used. The noise
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BAYESIAN MESH ADAPTATION A3899

Fig. 6. BMA-IAS iterations for the fan-beam tomography estimation problem, with 15 views
and noise level 0.5\%. Each row shows the discretization mesh (left) and the corresponding IAS
estimate (right). The mesh in the next row is based on the prior variance of the estimate in the
previous row.
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Fig. 7. Example 1. The norm of the discrepancy, \| b  - \sansA huh\| (left), the complexity measured
in terms of the number, nv,free, of degrees of freedom in the problem (center), and the product
nv,free \times \| b - \sansA huh\| of the two (right), as a function of the iteration.

Fig. 8. The third iteration of the BMA-IAS iteration mesh and corresponding reconstruction
of the density, when the number of views is limited to three (top row) and seven (bottom row). The
noise level and the model parameters are the same as in Figures 6 and 7.

level is 0.1\% of the maximum of the noiseless signal. The reconstructions shown in
Figure 9 and the adapted meshes suggest that the algorithm is robust with respect
to the geometry.

5.2. Inverse source problem for Darcy flow. In the second example, we
consider the inverse source problem for the Darcy flow introduced in section 2.2. The
generative model consists of the piecewise constant source term shown in Figure 2, and
the simulated data, collected in a vector of size m = 400, are generated by a second
order FEM solver with a uniform mesh consisting of 4974 triangular elements, with
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Fig. 9. BMA-IAS iterations for the fan-beam tomography estimation problem, with 15 views
and noise level 0.1\%, with the data corresponding to the nonconvex inclusion, shown in Figure 1
(right). As in Figure 6, each row shows the discretization mesh (left) and the corresponding IAS
estimate (right). The mesh in the next row is based on the prior variance of the estimate in the
previous row.
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9897 degrees of freedom with exogenous additive scaled white noise with standard
deviation \sigma ex equal to 0.1\% of the maximum of the noiseless signal.

We initialize the BMA algorithm by generating a coarse structured mesh with
nt = 780 triangular elements as shown in Figure 10 (first row). In the IAS itera-
tions, we use the same parameter values as in the tomography problem, with r = 1
corresponding to the gamma hyperprior, and with

\eta = 0.001, \vargamma j =
1\times 10 - 3

\| \sansA hej\| 
,

and we stop the outer iterations when the relative change in the prior parameter \theta 
is less than 10\% of the previous value. As in the previous example, this stopping
condition is satisfied after only 4--7 outer iterations. The modeling error is estimated
by setting \sigma h = 0.3\times hmin, in analogy with the previous example, where hmin is the
minimum edge length in the current discretization. In the update of the metric, we
set

Gj = max
\bigl\{ 
\theta j , 0.3\times \theta max

\bigr\} 
, \theta max = max\{ \theta j\} .

When computing the new mesh using FreeFem++, we specify the minimum and max-
imum allowed element sizes to be hmin = 0.015 and hmax = 0.04 to avoid overly dense
meshes that make the FEM solver slow and badly scaled, and too coarse discretization
that would make the FEM approximation error too large.

Figure 10 shows the progression of the algorithm by displaying the first four
meshes and the corresponding reconstructions of the source term. As in the tomogra-
phy problem, the first refinement significantly increases the complexity of the system,
while the second update reduces the degrees of freedom by identifying the areas where
the source term suggests a jump. After the second refinement, the iterations do not
significantly change the discrepancy, and the solution of the inverse problem remains
visually unaltered. Figure 11 shows the iteration history of the norm of the discrep-
ancy \| \sansA huh - b\| , and the number of nodes of the mesh are plotted, revealing behavior
similar to that in the tomography problem. Again, the product of the mesh size and
the norm of the discrepancy provides a useful and informative indicator, suggesting
that after few mesh adaptations, there is no reason to continue iterating.

6. Discussion. In this paper we propose a novel Bayesian method for simul-
taneously solving an inverse problem for a distributed parameter and updating the
discretization mesh used for approximation of the unknown. We illustrate the per-
formance of the proposed method on two test cases, both arising from linear inverse
problems. The examples demonstrate the viability of the suggested method; however,
the dependency on the choice of the various model parameters needs further investi-
gation before the algorithm can be fully automatic. In particular, the approximation
error model and the mesh size parameters hmin and hmax are addressed here only pre-
liminarily, and further investigations are necessary to gain a comprehensive picture of
their role. Extending the approach to nonlinear problems is possible but not imme-
diate, as the underlying IAS algorithm requires a further linearization and iteration
steps. In the second example, the mesh determined by the BMA-IAS algorithm is
used also for solving the forward model with a higher order finite element method.
The order of the FEM approximation is an important feature, as an underlying coarse
mesh may be sufficient to accurately represent the distributed parameter of interest,
but may fail to produce a sufficiently accurate approximation of the solution of the
PDE unless higher order methods are used. To fully control the mesh adaptation

D
ow

nl
oa

de
d 

09
/0

1/
21

 to
 1

29
.2

2.
11

7.
64

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BAYESIAN MESH ADAPTATION A3903

Fig. 10. BMA-IAS iterations for the source estimation problem in a Darcy flow model. Each
row shows the discretization mesh (left) and the corresponding IAS estimate (right). The mesh in
the next row is based on the prior variance of the preceding estimate.
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Fig. 11. The norm of the discrepancy \| b  - \sansA huh\| as a function of the iteration (left), the
complexity measured in terms of the number nv,free of degrees of freedom in the problem (center),
and the product nv,free \times \| b - \sansA huh\| of the two (right).

process, in addition to the variance parameter of the inverse problem, the accuracy
of the FEM solution via the a posteriori error estimates should be monitored. The
accuracy of the forward model approximation constitutes an important part of a care-
ful modeling error analysis that is not addressed in detail in this paper. A further
extension of the modeling error analysis entails the correlation structure of the mod-
eling error. It is well known that the modeling error due to discretization is typically
strongly correlated and normally has a nonvanishing mean. A more careful analysis
would require new ideas for dynamically assessing the modeling error without need-
ing to resort to very dense discretization meshes that we aim to avoid by proposing
the dynamic mesh updating. The algorithm was tested by using piecewise constant
generative models that after discretization allow a sparse representation. From the
point of view of the algorithm, the sparsity is not a necessary assumption, as the IAS
algorithm can be adjusted for non-sparse problems by a proper selection of the model
parameters [7]. However, the discretization error analysis requires more attention and
is worth a separate discussion.

In our discussion, it was assumed that the target mesh at each adaptation should
be close to isotropic. This assumption was encoded in the algorithm by assuming that
the metric guiding the mesh calculation is such that the eigenvalues of the matrix
defining the metric at each point are equal. In principle, this is not necessary, and,
in fact, an anisotropic metric gives rise to meshes characterized by stretched elements
that are used successfully to represent strongly directional features; see, e.g., [18, 19,
30, 31]. Extension of the present work to anisotropic meshes is a possible future
direction but beyond of the scope of the present paper.
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