
Efficient Outside Computation

Daniel Gildea
University of Rochester

Computer Science Department

gildea@cs.rochester.edu

Weighted deduction systems provide a framework for describing parsing algorithms that can

be used with a variety of operations for combining the values of partial derivations. For some

operations, inside values can be computed efficiently, but outside values cannot. We view out-

side values as functions from inside values to the total value of all derivations, and we analyze

outside computation in terms of function composition. This viewpoint helps explain why efficient

outside computation is possible in many settings, despite the lack of a general outside algorithm

for semiring operations.

1. Introduction

In weighted deduction systems such as those used for parsing with context-free gram-
mars, the inside–outside algorithm provides an efficient way of finding the total weight
of all derivations passing through a specific item. Weighted deduction systems can be
used with different semirings, or even more generally, with other classes of functions
for computing the values of items bottom–up in the inside pass. In some cases, efficient
inside computation is possible, but efficient outside computation is not. How can these
cases be characterized?

We give a very general characterization of the conditions for efficient outside com-
putation in terms of function composition, as well as three more specific examples of
sufficient conditions. The first of these conditions, commutative semirings, is discussed
by Goodman (1999), while we believe the other two, extremal semirings and the sum
of linear functions, to be novel formulations. We discuss general superior functions as
a case where efficient outside computation is not possible. We conclude that, despite
the emphasis in the literature on describing weighted deduction in terms of semirings,
semirings are not the best abstraction for describing the requirements of the general
inside–outside algorithm.

2. Weighted Deduction

A weighted deduction system (Nederhof 2003) has rules of the form
A1, . . . , An

C
where

A1, . . . , An are the items of the system that form the antecedents of the rule, and C is
an item that forms the consequent of the rule. One item is designated as the goal of

Submission received: 1 May 2020; revised version received: 7 July 2020; accepted for publication:
21 September 2020.

https://doi.org/10.1162/COLI a 00386

© 2020 Association for Computational Linguistics
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license



Computational Linguistics Volume 46, Number 4

the system. Associated with each rule R is a function FR which takes the weights of the
antecedent items, and calculates a new weight. A derivation is a tree of rules where the
antecedents of each rule are the consequents of its children. The leaves of this tree are
rules having zero antecedents, also referred to as axioms. The weight of a derivation is
computed by recursively evaluating the functions FR; that is, for a derivation D formed
by applying rule R to derivations D1, . . . , Dn:

weight (D) = FR(weight (D1), . . . , weight (Dn)) (1)

The fundamental problem associated with weighted deduction systems is to find the
total weight of all derivations of the goal item. This total weight is computed with a
generalized sum operation that will be denoted by ⊕.

Weighted deduction systems provide a general framework for expressing and
reasoning about dynamic programming algorithms, and in particular about parsing
algorithms (Shieber, Schabes, and Pereira 1995; Sikkel 1997; Nederhof 2003). The de-
duction rule for the basic combination step of CYK parsing of a context-free grammar
(CFG) is shown in Figure 1(a). The goal item for CFG parsing with start symbol S and
sentence length n is [S; 0; n], where i, j, and k range over positions in a string. In order
to simplify our definition of weighted deduction systems, we include the CFG rule
S→ A B as an antecedent of the rule, although it is sometimes also represented as a
“side condition” for the rule, as in Nederhof (2003), in which case the weight w1 of
the rule can be incorporated into the function FR. Weighted deduction systems can be
used to express other parsing algorithms, including Earley parsing and dependency
parsing (Eisner and Satta 1999). Beyond CFG, weighted deduction systems are used
for parsing for tree adjoining grammars (Alonso et al. 1999), combinatory categorical
grammars (Kuhlmann and Satta 2014), and general linear context-free rewriting systems
(Burden and Ljunglöf 2005), as well as for machine translation (Melamed, Satta, and
Wellington 2004; Lopez 2009). In all of these applications, a set of general deduction
rules is instantiated into a hypergraph for a specific input string. For example, given
a sentence of length n, the general rule is shown in Figure 1(a). The goal item for CFG
parsing with start symbol S and sentence length n [S; 0; n] is instantiated into a specific
rule for each combination of i, j, k ∈ {0, . . . , n}. Each instantiated item is a vertex in the
hypergraph, and each instantiated rule is a hyperedge from the antecedent vertices to
the consequent vertex. The resulting hypergraphs are also known as parse forests. In this
article, we will deal exclusively with deduction systems that are already instantiated
into hypergraphs. We will refer to hyperedges simply as edges. We use E to refer to the
set of edges (instantiated rules), and |E| to refer to the number of edges. For CYK parsing
of a string of length n with a set of CFG productions P, |E| ∈ O(|P|n3). However, our

(a) (b)
w1: A1

w2: A2

w3: A3

FR(w1, w2, w1): C

w1: [S→ A B]
w2: [A, i, j]
w3: [B, j, k]

FR(w1, w2, w3): [S, i, k]

Figure 1
A general weighted deduction rule, and a rule of CFG parsing in weighted deduction notation.
The goal item for CFG parsing with start symbol S and sentence length n is [S, 0, n].

746



Gildea Efficient Outside Computation

discussion will apply equally to the various other applications of weighted deduction
systems just mentioned. To simplify the presentation, we will assume at first that our
deduction system does not have cycles, that is, an item cannot appear as the consequent
of any derivation in which it also appears as an antecedent. For parsing CFGs, this is
true whenever the grammar is in Chomsky Normal Form. We return to discuss systems
with cycles in Section 4.

Efficient computation on weighted deduction systems depends on a general dy-
namic programming algorithm that computes a table of inside values for each item.
The inside value of an item B represents the total weight of all derivations of B.

V(B) =
⊕

derivations D of B

weight (D)

The general inside algorithm computes the table of inside values efficiently by summing
over rules R having B as a consequent, and applying the function FR to the (previously
computed) inside values of the rule’s antecedents.

V(B) =
⊕

R:
A1,..., An

B

FR(V(A1), . . . , V(An)) (2)

Items are sorted in a topological order to ensure that inside values of an antecedent are
ready before the calculation of the consequent.

The basic property that is required to enable dynamic programming is that the
generalized sum must distribute over each argument:

∀i,
⊕

xi

FR(x1, . . . , xi−1, xi, xi+1, . . . , xn) = FR(x1, . . . , xi−1,
⊕

xi

xi, xi+1, . . . , xn) (3)

Weighted deduction can be performed with various choices of FR and ⊕. The most
common choices are the max-product or Viterbi algorithm, where weights are non-
negative real numbers, FR is always multiplication (regardless of the rule R), and⊕ is the
maximum operation. The sum-product algorithm, used to derive the total probability of
a string, or as a subroutine of the Expectation Maximization (EM) algorithm (Dempster,
Laird, and Rubin 1977), is the case where weights are real numbers, FR is always
multiplication, and ⊕ is addition. In the case of CYK parsing, using the sum-product
algorithm, the inside recurrence of Equation (2) takes the familiar form:

V([A, i, k]) =
∑

B,C,j

P(A→ B C) V([B, i, j]) V([C, j, k])

because the set of rules with item [A, i, k] as a consequent can be found by iterating over
nonterminals B and C and split points j. Every deduction rule has three antecedents; the
inside value of the axiom A→ B C is defined as the grammar’s probability P(A→ B C),
and the function FR simply multiplies these three inside values. The sum-product algo-
rithm was the focus of the first presentations of the inside–outside algorithm for parsing
by Baker (1979) and Lari and Young (1990). Eisner (2016) relates the sum-product inside–
outside algorithm to backpropagation as used in neural networks (Rumelhart, Hinton,

747



Computational Linguistics Volume 46, Number 4

and Williams 1986) by showing that the inside–outside algorithm can be derived with
automatic differentiation.

The max-product and sum-product algorithms are both instances of the semiring
parsing framework of Goodman (1999). A semiring over a set K consists of two opera-
tions ⊕ and ⊗ such that:

• ⊕ is associative and commutative, and has an identity element 0̄

• ⊗ is associative and has an identity element 1̄

• ⊗ distributes over ⊕, and

• for all x ∈ K, 0̄⊗ x = x⊗ 0̄ = 0̄

The semiring parsing framework uses these operators to combine partial derivations,
and is an instance of our general definition of weighted deduction. For all rules R, the
function FR is the semiring product of its arguments:

FR(x1, . . . , xn) =

n
⊗

i=1

xi (4)

Applying our general recurrence of Equation (2), the inside value of an item is the
semiring sum over rules producing the item of the semiring product of each rule’s
antecedents:

V(B) =
⊕

R:
A1,..., An

B

n
⊗

i=1

V(Ai)

Goodman (1999) describes a number of other semirings that can be used in this general
algorithm. In particular, the Viterbi derivation semiring, discussed in more detail in
Section 3.2, computes the value of the highest weight derivation along with a record of
the derivation itself. The derivation semiring collects a set of all valid derivations. The
size of this set can be exponential in the number of edges in the hypergraph.

As an alternative to the semiring framework, Knuth (1977) defines superior func-
tions to be functions that are monotonically increasing in each argument, and that have
the property that the function is greater than or equal to each of its arguments. In
Knuth’s framework, each FR can be any superior function, and the generalized sum
for weighted deduction is the minimum operation:

V(B) = min
R:

A1,..., An
B

FR(V(A1), . . . , V(An))

Defining FR to be the sum of its arguments yields an algorithm that is an instance of both
the semiring framework and the superior function framework. This min-sum algorithm
is equivalent to max-product (Viterbi) if we transform each value by taking its negative
logarithm. However, the superior function formulation also includes functions such as
F(x1, x2) = x1 + exp(x2) that are not associative, as well as functions with more than
two arguments. The sum-product algorithm, on the other hand, is an instance of the
semiring framework, but is not an instance of the superior function framework, because
the generalized sum is not the minimum operation.

748



Gildea Efficient Outside Computation

In general, one can allow items to have weights of different types, for example,
vectors of various dimensions. Dynamic programming is possible as long as each type
has a generalized sum operation, and as long as Equation (3) holds for each rule, with
the first sum interpreted as the sum operator for the type of the rule’s consequent, and
the second sum interpreted as the sum operator for the type of the ith antecedent.

3. Outside Computation

We refer to the total value of all derivations passing through an item X as the item’s
total weight γ(X):

γ(X) =
⊕

D: X∈D

weight (D) (5)

where each derivation D consists of a complete tree of rules having the goal item as a
consequent, and X ∈ D means that item X is the consequent of some rule in D. Note that
the total weight is defined over complete derivations, unlike inside values.

A semiring is called commutative if its multiplication operator is commutative:
a⊗ b = b⊗ a. When using a commutative semiring in the semiring framework, an
outside value Z(X) for an item X is a value that can be combined with the inside value
to obtain the total weight of an item:

γ(X) = Z(X)⊗ V(X) (6)

Outside values with the sum-product semiring are used to compute expected counts of
grammar rules in the EM algorithm. Outside values in the max-product semiring can be
used to find the highest probability parse that includes a given item. For example, for
CYK parsing of a sentence w1 · · ·wn with the max-product semiring, the outside value
Z([A, i, j]) would be the value of the highest scoring parse tree having the grammar’s
start symbol as the root, and the string w1 · · ·wiAwj+1 · · ·wn as leaves. The product
Z([A, i, j]) V([A, i, j]) is the score of the best tree generating w1 · · ·wn and containing a
node A over the substring wi+1 · · ·wj.

For commutative semirings, the outside value Z(X) for an item X can be computed
by iterating over rules R that take X as an antecedent, and multiplying the outside value
of R’s consequent with the inside values of R’s other antecedents:

Z(X) =
⊕

R, i:

R=
A1,..., An

B
Ai=X

Z(B)⊗
n

⊗

j=1,
j 6=i

V(Aj) (7)

For CYK parsing with the sum-product algorithm, the recurrence above corresponds to
the standard recurrence for outside probabilities:

Z([B, i, j]) =
∑

A,C,k

Z([A, i, k]) P(A→ B C) V([C, j, k]) +

∑

A,C,k

Z([A, k, j]) P(A→ C B) V([C, k, i])

The first sum includes rules of the form shown in Figure 1(a). The goal item for
CFG parsing with start symbol S and sentence length n is [S; 0; n] where [B, i, j] is the

749



Computational Linguistics Volume 46, Number 4

second of the three antecedents, and the second sum includes rules where it is the third
antecedent.

Outside values can be efficiently computed with a top–down or outside pass
through the deduction system after first performing a bottom–up pass to compute the
inside values for each item.

We depend on the fact that the⊗ operation is commutative, because we re-order the
product V(A1)⊗ · · · ⊗ V(An) by removing V(Ai), in order to later multiply it in from the
right in Equation (6).

For non-commutative semirings, the situation is more complex, because one must
combine values in the correct order. Goodman (1998, Section 2-C) defines a new semir-
ing, defined from an arbitrary inside semiring, for outside computation. The values of
this new outside semiring are sets of pairs of values from the inside semiring. Although
this approach shows that there is a semiring that can be used for outside computation,
Goodman does not give a general, efficient algorithm for computing outside values. The
values in the outside semiring may grow exponentially large (because they are sets of
pairs), making the general inside–outside algorithm exponential even when operations
on the inside semiring are efficient.

We wish to give a general set of conditions under which efficient outside compu-
tation is possible, and to specify the general algorithm. Let us first state the problem
by giving a precise definition of efficient outside computation. We will use |γ(X)| to
indicate the size of the representation (in memory) of γ(X).

Definition 1
Given a weighted deduction system, let g be a function such that, as the size |E| of
the system’s instantiated hypergraphs grows, maxX |γ(X)| ∈ O(g(|E|)). Efficient outside
computation refers to any algorithm that computes the total weight γ(X) of all items X
in time O(|E| g(|E|)).

We include the term g(|E|) in our definition in order to cover situations such as the
derivation semiring, where the size required for the goal item G, |γ(G)|, is exponential
in |E|, and |γ(G)| provides an upper bound on |γ(X)| for all items X. However, in most
cases, and in all the examples discussed in this article, g(|E|) can be treated as a constant.
In this case, efficient outside computation is equivalent to time linear in the size of the
hypergraph.

Our definition of efficient outside computation does not explicitly require a top–
down or outside pass through the deduction system. It is possible in some settings to
compute the total weight of an item without an outside pass. For example, in CYK
parsing, one can first eliminate all items not consistent with a fixed item denoting a par-
ticular pair of nonterminal and span, and one can then compute the total weight of all
remaining derivations bottom–up (Pereira and Schabes 1992), as shown in Algorithm 1.

Algorithm 1 Bottom–Up Computation of Total Weight

procedure BOTTOMUPTOTALWEIGHT

for Items [A, i, j] do
Remove all items [A′, i′, j′] such that i < i′ < j < j′ or i′ < i < j′ < j
Compute inside value of goal V(G) = V([S, 0, n])
γ([A, i, j])← V(G)
Restore all items previously removed

750



Gildea Efficient Outside Computation

For CYK parsing |E| ∈ O(n3) with respect to the sentence length n. The outer loop
of Algorithm 1 has O(n2) iterations, and each inside pass is O(n3), for a total runtime of
O(n5). Thus, using this method to compute the total weight for all items in the system
takes time greater than O(|E| g(|E|)). Computing the total weight of all items is necessary
for the EM algorithm, perhaps the most common use case for outside computation. As
another use case, one may also wish to precompute the best derivation passing through
each item, using the Viterbi semiring, in order to be able to later look up in constant time
the best derivation for any desired item. Our definition of efficient outside computation
is chosen so as not to predetermine any specific algorithm, but also to rule out less
efficient procedures such as repeated bottom–up computation.

In our general framework of weighted deduction, each derivation corresponds to
a tree of function evaluations. The outside value of an item X can be thought of as a
function F¬X from the inside value of X to the total weight of X:

F¬X(V(X)) = γ(X)

We call F¬X defined above an outside function. We use the symbol ¬ as a mnemonic for
“outside” in the definition above and in the remainder of this article. In the commutative
semiring framework, the outside function multiplies its argument with the outside
value Z(X) discussed above:

F¬X(x) = Z(X)⊗ x (8)

The outside function F¬X can also be formulated in terms of paths through
the deduction system, as shown in Figure 2. We refer to a sequence of deductions
R1, . . . , Rn such that the consequent of each Ri is an antecedent of Ri+1 as a path p. Let

Ri =
Ai,1, . . . , Ai,ni

Ci
with Ci−1 = Ai, ji , that is, ji specifies which antecedent of rule Ri is

satisfied by the consequent of rule Ri−1. We define a function fi for each rule on the path p
by fixing the inside values of the other antecedents, and projecting the rule’s inside
function onto argument ji:

fp,i(x) = FRi
(V(Ai,1), . . . , V(Ai,ji−1), x, V(Ai,ji+1), . . . , V(Ai,ni

)) (9)

The outside function F¬X can be expressed as a sum over paths from item X to the goal
item G.

F¬X(x) =
⊕

paths p from X to G

fp,n ◦ · · · ◦ fp,1(x) (10)

This can be shown by taking the sum over all derivations through item X, grouping
the derivations according to the path from X to the goal G, and applying the general
distributive rule for weighted deduction of Equation (3):

γ(X) =
⊕

D:X∈D

weight (D) (11)

=

⊕

paths p from X to G

⊕

D:p⊆D

weight (D) (12)

=

⊕

paths p from X to G

fpn
◦ · · · ◦ fp1

( V(X) ) (13)

= F¬X( V(X) ) (14)

751



Computational Linguistics Volume 46, Number 4

Figure 2
Any tree outside an item X contains a path from X to the goal item G (top). Each rule along
the path specifies a function, which can be applied to the inside values of the rule’s other
antecedents (bottom left). Composing the resulting unary functions along the path results in the
outside function F¬X (bottom right).

752



Gildea Efficient Outside Computation

Standard algorithms for outside computation compute this sum of function com-
positions using dynamic programming. The top–down, outside pass of computation
consists of creating a representation of F¬X from the set of the representations of F¬B

for all items B that are consequents of a rule having X as an antecedent:

F¬X(x) =
⊕

R, i:

R=
A1,...,An

B
Ai=X

F¬B(FR(V(A1), . . . , V(Ai−1), x, V(Ai+1), . . . , V(An))) (15)

For commutative semirings, this recurrence is equivalent to Equation 7, as can be seen
by substituting in Equation (8) for F¬B and Equation 4 for FR. For non-commutative
semirings, by induction on the length of the paths, we see that:

F¬X(x) =
⊕

p

ap ⊗ x⊗ bp (16)

where p ranges over all paths from X to the goal item, and ap and bp are semiring
values determined from the inside values along path p. However, the exponentially
large number of terms in the sum may make outside computation difficult.

The formulation of Equation (15) leads to a simple general condition for efficient
outside computation.

Theorem 1
Let out(X) be the set of items B such that some rule has X as an antecedent and B
as a consequent, and define g(|E|) as in Definition 1. Efficient outside computation is
possible if a representation of F¬X can be computed with |out(X)| operations of time
O(g(|E|)), given F¬B for each B ∈ out(X), and if the representation can be evaluated in
time O(g(|E|)).

Proof. Procedure OUTSIDE (Algorithm 2) computes F¬X for all items X using time
∑

X |out(X)|O(g(|E|)). The sum
∑

X |out(X)| is bounded by summing the number of
antecedents for each in E, so

∑

X |out(X)| ∈ O(|E|), yielding total time O(|E| g(|E|)) for
Algorithm 2. We then compute γ(X) = F¬X(V(X)) in time O(|E| g(|E|)), satisfying the
conditions of Definition 1. �

Algorithm 2 General Outside Pass

procedure OUTSIDE

for Items X in reverse topological order do
Compute F¬X with Equation (15)

We will give examples of settings that do and that do not meet this general criterion
for efficient outside computation.

3.1 Commutative Semirings

For any commutative semiring, the representation of the outside function F¬X(x) con-
sists of the outside value Z(X). If semiring operations take time O(g(|E|)), this value can
be computed for all items X in time O(|E| g(|E|)) using Equation (7). The outside function

753



Computational Linguistics Volume 46, Number 4

can be evaluated with a single semiring multiplication using Equation (8). Therefore the
conditions of Theorem 1 are met, yielding the following corollary:

Corollary 1
Efficient outside computation is possible for any commutative semiring whose opera-
tions can be computed in time O(g(|E|)).

In particular, efficient outside computation is possible whenever semiring opera-
tions take constant time. The general outside pass of Algorithm 2 takes the following
form for commutative semirings.

Algorithm 3 Outside Pass for Commutative Semiring

procedure OUTSIDECOMMUTATIVE

for Items X in reverse topological order do
Compute Z(X) with Equation (7)
Set F¬X(x) = Z(X)⊗ x

Commutative semirings include the sum-product semiring used for finding the
total probability of all parses of a string, as well as the max-product and max-sum
(Viterbi) semirings used for finding the score of the best parse. Other examples include:
the K-best semiring used to find the scores for the k best parses (Mohri 2002), the
expectation semiring used to compute expected feature values for EM or for training
log-linear models (Eisner 2002), the variance semiring used in minimum risk training
of log-linear models (Li and Eisner 2009), the entropy semiring used to compute the
entropy of the distribution over parses (Hwa 2004; Cortes et al. 2006), the generalized
entropy semiring used to compute the relative entropy between two grammars (Cohen,
Simmons, and Smith 2011), and the k-best+residual semiring used to find the k best
scores and total score simultaneously (Gimpel and Smith 2009). Gimpel and Smith
(2009) also define “generalized” semirings for approximate inference that do not meet
all the criteria that define a semiring, but that have a commutative ⊗ operator and thus
admit outside computation with Algorithm 3.

3.2 Extremal Semirings

A semiring is extremal if for all a, b, either a⊕ b = a or a⊕ b = b (Vorobev 1963). The
max-product semiring is extremal, as is any semiring over real numbers having max as
the generalized addition operator. An extremal semiring is always idempotent, meaning
that a⊕ a = a.

Another example of an extremal semiring is the Viterbi derivation semiring of
Goodman (1999). Values in this semiring consist of a pair whose first item is a real
number, and whose second item is a record of a partial derivation. This semiring is
used to find a maximum scoring derivation, rather than merely computing the maxi-
mum score as a real number. The record of the partial derivation can be implemented
with back pointers; this semiring is a mathematical formalization of the standard use
of backpointers in dynamic programming algorithms. The semiring operation a⊕ b
returns whichever of a and b has the highest value as the first element (score) of the pair.
The operation a⊗ b multiplies the scores of a and b and concatenates the derivations

754



Gildea Efficient Outside Computation

into a new derivation. This semiring is non-commutative, because the concatenation in
the ⊗ operator is non-commutative. The Viterbi derivation semiring is extremal.1

For extremal semirings, it is sufficient to retain the outside value of a single outside
derivation. We will now prove this fact and derive a general algorithm for extremal
semirings. The natural order of a semiring is defined by:

a ≤ b if a⊕ b = b

b ≤ a if a⊕ b = a

The natural order of an extremal semiring is a total order, because one of the two cases
above applies for any pair of a and b.

An extremal semiring is monotonic with respect to its natural order, meaning that:

a ≤ b =⇒ a⊗ c ≤ b⊗ c

a ≤ b =⇒ c⊗ a ≤ c⊗ b

For a short proof, see Lemma 2 of Mohri (2002). Monotonicity implies that:

a ≤ b =⇒ (a⊗ c)⊕ (b⊗ c) = (b⊗ c) (17)

a ≤ b =⇒ (c⊗ a)⊕ (c⊗ b) = (c⊗ b) (18)

We now show that the outside function of an item X can be represented by one left
and one right multiplication:

F¬X(x) = a⊗ x⊗ b (19)

To see this, let B range over consequents of rules with X as an antecedent, and assume
as an inductive hypothesis that B’s outside function can be represented as one left and
one right multiplication:

F¬B(x) = aB ⊗ x⊗ bB

Applying the composition rule of Equation (15) yields:

F¬X(x) =
⊕

R,i:

R=
A1..., An

B
Ai=X

aB ⊗





i−1
⊗

j=1

V(Aj)



⊗ x⊗





n
⊗

j=i+1

V(Aj)



⊗ bB (20)

which can be summarized by

F¬X(x) =
⊕

i

ai ⊗ x⊗ bi (21)

for the appropriate choice of ai and bi.

1 In order to break ties between derivations with the same score, one can use an arbitrary ordering over the
partial derivations—for example, lexicographic order.

755



Computational Linguistics Volume 46, Number 4

For a monotonic semiring, if

a1 ⊗ 1̄⊗ b1 ≤ a2 ⊗ 1̄⊗ b2

then for all x,

a1 ⊗ x⊗ b1 ≤ a2 ⊗ x⊗ b2

Thus, which term of Equation (21) is greatest does not depend on V. Total ordering
implies that there is a unique greatest term. From Equation (17), only the greatest term
of Equation (21) appears in the result, meaning that F¬X(x) = aj ⊗ x⊗ bj for some j.
Our algorithm for extremal semirings identifies this greatest term and retains it as the
outside value. Algorithm 4 represents outside values as pairs of semiring values to be
combined on the left and right. For an outside value Z(X), we use Z(X).l to denote the
first (or left) element of the pair, and Z(X).r to denote the second (or right) element.
(Including the term 1̄ in the products above is superfluous for semirings, because it is
the multiplicative identity element. We retain it to indicate a placeholder for the inside
values, and to generalize to settings where items may have different types, and an
identity element of the same type as the inside value may be necessary.)

Algorithm 4 Outside Pass for Extremal Semiring

procedure OUTSIDEEXTREMAL

Z(G)← (1̄, 1̄) for goal item G
for Items X in reverse topological order do

Z(X)← (0̄, 0̄)

for Rules R =
A1, . . . , An

B
, i such that Ai = X do

if Z(X).l⊗ 1̄⊗ Z(X).r ≤

Z(B).l⊗ (
⊗i−1

j=1 V(Aj))⊗ 1̄⊗ (
⊗n

j=i+1 V(Aj))⊗ Z(B).r then

Z(X).l← Z(B).l⊗
⊗i−1

j=1 V(Aj)

Z(X).r← (
⊗n

j=i+1 V(Aj))⊗ Z(B).r

Set F¬X = Z(X).l⊗ x⊗ Z(X).r

The representation of F¬X(x) that we have derived results in the following corollary
of Theorem 1.

Corollary 2
Efficient outside computation is possible for any extremal semiring whose operations
can be computed in time O(g(|E|)).

3.3 Sum of Linear Functions

As an example of a setting where efficient outside computation is possible even though
the inside functions are not semiring operations, we consider the case of vectors as
item weights. Components of these vectors correspond to latent variables or refined
nonterminals in the latent variable parsing models of Matsuzaki, Miyao, and Tsujii
(2005), Petrov et al. (2006), and Cohen et al. (2012).

To make this concrete, we take as our starting point the tensor formulation of
the inside–outside algorithm given by Collins and Cohen (2012). Inside values for an

756



Gildea Efficient Outside Computation

item are vectors, and the function for computing inside values bottom–up consists of
applying a three-dimensional tensor Ta→b c specific to a CFG rule a→ b c to two vectors
representing the inside values for nonterminals b and c. The function for computing
inside values takes two vectors as arguments, and returns a vector that is linear in each
argument:

FR(xa, xb)k =

∑

i,j

Ta→b c
i,j,k xa,i, xb,j

If we project this function onto one of its arguments as shown in Equation (9), we
obtain a linear function:

fp,i(x) = FRi x (22)

where FRi is a matrix that can be computed from the rule tensor Ta→b c and the other
argument of FR. This implies that the outside function for an item is linear and can be
expressed as a matrix-vector multiplication:

F¬X(x) = Z(¬X) x

for some matrix Z(¬X). We now show this result by induction. From our composition
rule in Equation (15):

F¬X(x) =
∑

R,i:

R=
A1,..., An

B
Ai=X

F¬B(FR(V(A1), . . . , V(Ai−1), x, V(Ai+1), . . . , V(An))) (23)

Using the linear projection of Equation (22):

=

∑

R,i:

R=
A1,...,An

B
Ai=X

F¬B(FRi x) (24)

Using the induction hypothesis:

=

∑

R,i:

R=
A1,...,An

B
Ai=X

Z(¬B) FRi x (25)

= Z(¬X) x (26)

Thus there exists a matrix Z(¬X) as desired.
The computation of the matrix Z(¬X) takes time constant in |E|, giving the following

corollary of Theorem 1.

Corollary 3
Efficient outside computation is possible for any inside function consisting of a sum of
linear functions.

This example does not fall into the semiring framework. The inside function cannot
be expressed as a semiring product because the rule tensor and the vectors for inside
values do not have the same type. It is also possible to allow different items to have

757



Computational Linguistics Volume 46, Number 4

inside values consisting of vectors of different dimensionality, which therefore do not
belong to a single semiring. Thus, the sum of linear functions provides a case where
efficient outside computation is possible, despite the fact that the inside functions are
not semiring operations, much less commutative or extremal semirings.

Matrix multiplication. The operations of matrix addition and matrix multiplication over
d× d matrices of real numbers form a semiring in which efficient inside computation is
possible. However, this semiring is non-commutative, and is also not extremal. Never-
theless, because the outside functions are linear, the sum of linear functions technique
allows efficient outside computation.

For any semiring, including non-commutative semirings, we saw in Equation (16)
that the outside function for an item can be represented as:

F¬X(x) =
⊕

p

ap ⊗ x⊗ bp

where p ranges over all paths from X to the goal item, and ap and bp are semiring values
determined from the inside values along path p. In the case of matrix multiplication,
this function cannot be represented as a single matrix multiplication. For example, if V
is a matrix of rank one, the product of V with any matrix will have rank no greater than
one, while the rank of F¬X(V) may be as large as the number of terms in the sum. Thus,
it is not possible to represent the outside value of an item as an element of the semiring
used to define inside computation.

Nevertheless, F¬X is a linear function from R
d×d to R

d×d having d4 parameters.
Consider the inside function for a rule R using matrix multiplication as the semiring
product:

FR(A, B, C) = A B C

The projection of this function onto its second argument is:

f (B)i,j =

∑

k,ℓ

ai,kbk,ℓcℓ,j

which is a linear function with the d4 parameters {ai, kcℓ,j}i, j, k,ℓ. In general, the projection
onto any one argument has the form of Equation (22), repeated here:

fp,i(x) = FRi x (27)

where x is a vector of dimensionality d2 consisting of a flattened version of the d× d
matrix for an inside value, and FRi is a matrix of size d2 × d2. Matrix addition is equiva-
lent to a sum of the flattened vectors. Thus, the semiring of matrix addition and matrix
multiplication falls into the framework of a sum of linear functions, and efficient outside
computation is possible using the procedure described above.

We emphasize that, although standard implementations of matrix muliplication are
O(d3) time in the matrix dimension, the time is constant with respect to the size of the
hypergraph |E|. Thus the function g(|E|) in the statement of Theorem 1 is constant, and
efficient outside computation is equivalent to time linear in |E|.

3.4 Superior Functions

We now give an example where efficient outside computation is not possible.

758



Gildea Efficient Outside Computation

Table 1
Summary of results.

Efficient Inside Possible Best-first Possible

Efficient Outside Possible commutative semirings extremal semirings
sum of linear functions

Efficient Outside Not Possible general superior functions

Knuth’s framework of a minimum of superior functions encompasses extremal
semirings, as well as some cases outside the semiring framework. It allows not only
efficient inside computation, but also efficient best-first search using a generalization
of Dijkstra’s algorithm (Nederhof 2003). However, efficient outside computation is not
possible in general. Using Equation (10), the outside function can be represented as:

F¬X(x) = min
p

fp,n ◦ · · · ◦ fp,1(x)

where p ranges over paths from X to the goal, and each fp,i is the inside function at
rule i of path p, projected onto a single argument by fixing the values of the other
argument to their inside values. This outside function is guaranteed to be a superior
function, but may be arbitrarily complex. For example, even if each fp,i is linear, and
therefore each composition of fp,n ◦ · · · ◦ fp,1 is also linear, F¬X(x) may be a piecewise
linear function with an exponentially large number of pieces. Because there is no known
way to perform the function composition and represent the result in constant time,
efficient outside computation is not possible.

This implies that the conditions for efficient outside computation neither subsume
nor are subsumed by the conditions for best first search, as summarized in Table 1.

4. Cycles

We now relax the assumption that the deduction system has no cycles. In the semiring
framework, the total weight of an item X is defined by Goodman (1999) as:

γ(X) =
⊕

D:X∈D

weight (D) C(X, D)

where C(X, D) is an integer indicating the number of times that item X appears in
derivation D, and the product weight (D) C(X, D) indicates repeated addition with the
semiring ⊕ operation. Inside values can be computed by solving a set of equations
of the form of Equation (2). The equations may be linear, if an item can appear at
most once as the antecedent of a rule (this is the case for unary chains in CFGs), or
nonlinear, if an item can appear more than once (as can happen with CFGs with epsilon
productions). Methods for solving such equations are discussed by Stolcke (1995) and
Goodman (1999), with detailed complexity analysis by Etessami and Yannakakis (2009).

For commutative semirings, computing outside values once inside values are
known involves solving a similar set of equations. The outside equations are always
linear, because they have only one outside value on the right-hand side. For extremal
semirings, derivations with cycles can always be discarded, as they have weight less

759



Computational Linguistics Volume 46, Number 4

than the same derivation with the cycle removed, assuming that the inside value is
well-defined. For the sum of linear functions, outside values can again be computed by
solving a set of linear equations.

To summarize, for all cases discussed in this article where efficient outside com-
putation is possible, outside computation with cycles is no more difficult than inside
computation with cycles.

5. Conclusion

This article has aimed to provide a deeper understanding of the conditions under which
efficient outside computation is possible by making three observations.

First, we give a very general condition for efficient outside computation stated in
terms of function composition. Despite the emphasis in the literature on describing
weighted deduction in terms of semirings, our general condition does not apply to all
semirings, and can apply in situations that do not fall into the semiring framework.

Second, we identify a few more specific situations in which efficient outside com-
putation is possible. Extremal semirings help explain why efficient outside computation
is possible for the specific non-commutative semirings described by Goodman (1999),
despite the fact that the general outside algorithm given by Goodman is not efficient.
The sum of linear functions is a setting that is not a semiring but does allow efficient
outside computation.

Third, we show that the conditions for efficient outside computation are incompa-
rable to the conditions for efficient best-first search.

The bottom left cell of Table 1 is empty. It is an interesting open problem to consider
whether this is an accident, which is to say, whether efficient outside computation is
possible for all semirings. Resolving this problem would require either providing a
general efficient algorithm that applies to all semirings, or providing a counterexample
by means of a semiring such that outside computation can be used to solve a problem
that is NP-complete or otherwise considered to be intractable.

Acknowledgments

We are grateful for feedback from Giorgio

Satta, Daniel Štefankovič, Parker Riley, Shay
Cohen, Esma Balkır, and the anonymous
reviewers. This work was supported by
National Science Foundation award
IIS-1813823.

References
Alonso, Miguel A., David Cabrero, Eric

de la Clergerie, and Manuel Vilares. 1999.
Tabular algorithms for TAG parsing. In
Ninth Conference of the European Chapter of
the Association for Computational Linguistics,
pages 150–157, Bergen. DOI: https://doi
.org/10.3115/977035.977056

Baker, J. K. 1979. Trainable grammars for
speech recognition. In Speech
Communication Papers for the 97th Meeting of
the Acoustical Society of America,
pages 547–550.

Burden, Håkan and Peter Ljunglöf. 2005.
Parsing linear context-free rewriting
systems. In 9th International Workshop on
Parsing Technologies (IWPT-05),
pages 11–17, Vancouver. DOI: https://
doi.org/10.3115/1654494.1654496

Cohen, Shay B., Robert J. Simmons, and
Noah A. Smith. 2011. Products of weighted
logic programs. In Theory and Practice of
Logic Programming, 112–3:263–296.
DOI: https://doi.org/10.1017
/S1471068410000529

Cohen, Shay B., Karl Stratos, Michael Collins,
Dean P. Foster, and Lyle Ungar. 2012.
Spectral learning of latent-variable PCFGs.
In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics
(ACL), pages 223–231, Jeju Island.
DOI: https://doi.org/10.1017
/S1471068410000529

Collins, Michael and Shay B. Cohen. 2012.
Tensor decomposition for fast parsing with

760



Gildea Efficient Outside Computation

latent-variable PCFGs. In Advances in
Neural Information Processing Systems 25,
pages 2519–2527, Curran Associates, Inc.

Cortes, Corinna, Mehryar Mohri, Ashish
Rastogi, and Michael Riley. 2006. Efficient
computation of the relative entropy of
probabilistic automata. In 7th Latin
American Symposium on Theoretical
Informatics (LATIN 2006), volume 3887 of
Lecture Notes in Computer Science,
pages 323–336, Valdivia. DOI: https://
doi.org/10.1007/11682462 32

Dempster, A. P., N. M. Laird, and D. B.
Rubin. 1977. Maximum likelihood from
incomplete data via the EM algorithm.
Journal of the Royal Statistical Society,
39(1):1–21. DOI: https://doi.org
/10.1111/j.2517-6161.1977.tb01600.x

Eisner, Jason. 2002. Parameter estimation for
probabilistic finite-state transducers. In
Proceedings of the 40th Annual Conference of
the Association for Computational Linguistics
(ACL-02), pages 1–8, Philadelphia, PA.
DOI: https://doi.org/10.3115/1073083
.1073085

Eisner, Jason. 2016. Inside-outside and
forward-backward algorithms are just
backprop. In Proceedings of the Workshop on
Structured Prediction for NLP, pages 1–17,
Austin, TX. DOI: https://doi.org/10
.18653/v1/W16-5901

Eisner, Jason and Giorgio Satta. 1999.
Efficient parsing for bilexical context-free
grammars and head automaton grammars.
In Proceedings of the 37th Annual Conference
of the Association for Computational
Linguistics (ACL-99), pages 457–464,
College Park, MD. DOI: https://doi.org
/10.3115/1034678.1034748

Etessami, Kousha and Mihalis Yannakakis.
2009. Recursive Markov chains, stochastic
grammars, and monotone systems of
nonlinear equations. Journal of the
Association for Computing Machinery,
56(1):1:1–66. DOI: https://doi.org/10
.1145/1462153.1462154

Gimpel, Kevin and Noah A. Smith. 2009.
Cube summing, approximate inference
with non-local features, and dynamic
programming without semirings. In 12th
Conference of the European Chapter of the
Association for Computational Linguistics
(EACL-09), pages 318–326, Athens.
DOI: https://doi.org/10.3115/1609067
.1609102

Goodman, Joshua. 1998. Parsing Inside-Out.
Ph.D. thesis, Harvard University.

Goodman, Joshua. 1999. Semiring parsing.
Computational Linguistics, 25(4):573–605.

DOI: https://doi.org/10.1162
/0891201041850894

Hwa, Rebecca. 2004. Sample selection for
statistical parsing. Computational
Linguistics, 30(3):253–276.

Knuth, Donald E. 1977. A generalization of
Dijkstra’s algorithm. Information Processing
Letters, 6(1):1–5.

Kuhlmann, Marco and Giorgio Satta. 2014.
A new parsing algorithm for combinatory
categorial grammar. Transactions of the
Association for Computational Linguistics,
2:405–418. DOI: https://doi.org/10
.1162/tacl a 00192

Lari, K. and S. J. Young. 1990. The estimation
of stochastic context-free grammars using
the Inside-Outside algorithm. Computer
Speech and Language, 4:35–56.

Li, Zhifei and Jason Eisner. 2009. First- and
second-order expectation semirings with
applications to minimum-risk training on
translation forests. In Conference on
Empirical Methods in Natural Language
Processing (EMNLP 2009), pages 40–51,
Singapore.

Lopez, Adam. 2009. Translation as weighted
deduction. In Proceedings of the 12th
Conference of the European Chapter of the
ACL (EACL 2009), pages 532–540, Athens.
DOI: https://doi.org/10.3115/1609067
.1609126, PMID 19815967

Matsuzaki, Takuya, Yusuke Miyao, and
Jun’ichi Tsujii. 2005. Probabilistic CFG
with latent annotations. In Proceedings of
the 43rd Annual Conference of the Association
for Computational Linguistics (ACL-05),
pages 75–82, Ann Arbor, MI. DOI:
https://doi.org/10.3115/1219840
.1219850

Melamed, I. Dan, Giorgio Satta, and Ben
Wellington. 2004. Generalized multitext
grammars. In Proceedings of the 42nd
Annual Conference of the Association for
Computational Linguistics (ACL-04),
pages 661–668, Barcelona. DOI: https://
doi.org/10.3115/1218955.1219039

Nederhof, M.-J. 2003. Weighted deductive
parsing and Knuth’s algorithm.
Computational Linguistics, 29(1):135–144.
DOI: https://doi.org/10.1162
/089120103321337467

Pereira, Fernando and Yves Schabes. 1992.
Inside-outside reestimation from partially
bracketed corpora. In 30th Annual Meeting
of the Association for Computational
Linguistics, pages 128–135, Newark, DE.
DOI: https://doi.org/10.3115/981967
.981984

761



Computational Linguistics Volume 46, Number 4

Petrov, Slav, Leon Barrett, Romain Thibaux,
and Dan Klein. 2006. Learning accurate,
compact, and interpretable tree annotation.
In Proceedings of the 21st International
Conference on Computational Linguistics and
44th Annual Meeting of the Association for
Computational Linguistics, pages 433–440,
Sydney. DOI: https://doi.org
/10.3115/1220175.1220230

Rumelhart, D. E., G. E. Hinton, and R. J.
Williams. 1986. Learning internal
representations by error propagation. In D.
E. Rumelhart and J. L. McClelland, editors,
Parallel Distributed Processing, volume 2.
MIT Press, pages 318–362. DOI: https://
doi.org/10.21236/ADA164453, PMID:
3159828

Shieber, Stuart M., Yves Schabes, and
Fernando C. N. Pereira. 1995. Principles
and implementation of deductive parsing.
Journal of Logic Programming, 24(1-2):3–36.
DOI: https://doi.org/10.1016/0743
-1066(95)00035-I

Sikkel, Klaas. 1997. Parsing Schemata.
Springer Verlag, Berlin.

Stolcke, Andreas. 1995. An efficient
probabilistic context-free parsing
algorithm that computes prefix
probabilities. Computational Linguistics,
21(2):165–202.

Vorobev, N. N. 1963. Extremal matrix
algebra. Proceedings of the USSR Academy
of Sciences, 152:24–27.

762


	Introduction
	Weighted Deduction
	Outside Computation
	Commutative Semirings
	Extremal Semirings
	Sum of Linear Functions
	Superior Functions

	Cycles
	Conclusion

