The Classical Limit as an Approximation

Benjamin H. Feintzeig*f

I argue that it is possible to give an interpretation of the classical 7# — 0 limit of quantum
mechanics that results in a partial explanation of the success of classical mechanics. The
interpretation is novel in that it allows one to explain the success of the theoretical struc-
ture of classical mechanics. This interpretation clarifies the relationship between physical
quantities and propositions in quantum theories and provides a precise notion of a quan-
tum theory holding “approximately on certain scales.”

1. Introduction. The purpose of this article is to show a precise sense in
which quantum mechanics can explain the success of classical mechanics
through the classical Z— 0 limit. This work is a contribution to a tradition
of philosophical investigations of the classical limit stemming from Post
(1971) and continuing through Scheibe (1986), Rohrlich (1990), Radder
(1991), and Primas (1998). A central question in these investigations is
whether one can use quantum mechanics to explain not only why the predic-
tions of classical mechanics are nearly accurate in many systems but also
why the theoretical structure of classical mechanics is successful in generat-
ing predictions and explanations of phenomena. The contribution of the cur-
rent investigation is to show that one can produce an explanation of the the-
oretical structure of classical mechanics from quantum mechanics through
the classical limit. The explanation proceeds by showing that the theoretical
properties and relations of physical magnitudes as represented in quantum
mechanics can always be understood as “close” to the theoretical properties
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and relations as represented in classical mechanics. I aim to show that the
classical 7 — 0 limit makes the notion of “closeness” precise. What it means
for physical magnitudes to be “close” is that their difference lies within an
error bound determined by both a numerical value and a system of units
in which that numerical value is expressed. The system of units in turn is en-
coded as a choice of numerical value for Planck’s constant 7, understood as
the same physical parameter in different units, on the way to the limit. Al-
though changing units (as # — 0) does not affect either the phenomenon be-
ing modeled or the theory used to model it, it can encode larger error bounds
in which quantum and classical mechanics become “close.”

This notion of “closeness” or “approximation” is already employed in
mathematical physics, and I believe it is implicit in discussions in the broader
physics community. It is worth making this interpretation explicit, however,
because the notion of “closeness” is considerably stronger than that recog-
nized in most conceptual discussions. My analysis entails that the predictions
given by quantum mechanics for expectation values in each state are “close”
to the corresponding predictions in classical physics. But it also provides
much more: (i) the error bounds by which the predictions of quantum and clas-
sical mechanics are allowed to differ can be made uniform for all possible
states, and (ii) the properties and relations encoded in the algebraic structure
of quantum mechanics can be shown to be close to the properties and relations
encoded in the algebraic structure of classical mechanics.

I believe the significance of the #Z — 0 limit goes beyond establishing the
relationship between quantum and classical mechanics. Through this inves-
tigation, we can clarify our interpretation of quantities, propositions, and
other theoretical structure in quantum theories. Further, [ believe an interpre-
tation of the classical limit is important for understanding its role in the stage
of heuristics, or theory construction. And finally, I hope it will become clear
that the notion of “approximation on certain scales” I develop is not unique
to the classical limit; this concept appears elsewhere in quantum physics. For
example, I believe the interpretation developed here has implications for our
understanding of renormalization in quantum field theories, where one also
speaks of “approximation on certain scales.” These last two topics of heuris-
tics and renormalization go beyond the current work and I will not discuss
them further, but these potential applications show that the current topic
can lay the groundwork for future investigations.

The structure of the article is as follows. In section 2, I review the perspec-
tives of other authors on the explanatory status of the classical limit. I show
how the old question of whether the classical limit allows one to explain the
theoretical structure of classical mechanics arises again in the context of
work by contemporary authors. In section 3, I lay out mathematical tools
for understanding the classical limit of quantum theories in terms of contin-
uous fields of algebras, which gives rise to the theory of strict deformation
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quantization. I then use these mathematical tools in section 4 to make precise
how one can explain through the classical limit why quantum systems be-
have approximately classically when probed on certain scales. Finally, I con-
clude in section 5 with some discussion.

2. Background. This section situates the position developed in this article
within the contemporary literature on the classical limit, primarily in re-
sponse to recent work by Rosaler (2015a, 2015b, 2016, 2018). I show that
Rosaler’s interpretation of the classical limit lacks important features, which
I hope to be able to recover in the following sections. In particular, Rosaler
is able to explain only the success of the empirical predictions of classical
mechanics but not its theoretical structure. This issue is, of course, much
older—dating from at least the work of Post (1971) and Radder (1991). It
is the central concern of this article to show that one can explain the theoret-
ical structure of classical mechanics from quantum mechanics, and so it will
be helpful to establish that this is a live issue even though it has not been the
focus of contemporary discussions.

Rosaler frames his contribution as a response to Batterman (1991, 2002),
who argues that quantum mechanics fails to explain the success of classical
mechanics because of the “singular” nature of the # — 0 limit. For example,
Batterman (2002) constructs a family of quantum states (in the form of wave
functions) from the data of a classical theory. These wave functions take the
form Y(q) ~ e7°¢") where S is a real-valued function. Batterman claims that
since these functions fail to converge in the limit as 77 — 0, the classical limit
is “singular.” This feature shows, according to Batterman, that one must pay
careful attention to deviations from classical behavior in the 7 — 0 limit,
which he refers to as semiclassical physics. These nonclassical deviations,
Batterman argues, prevent the reduction of classical to quantum mechanics:
“My discussion of these borderland phenomena and their explanation
should also lead one to question what has become a fairly common senti-
ment among physicists and philosophers. It seems that most investigators
maintain a reductionist and even eliminativist attitude toward classical phys-
ics given the many successes of the quantum theory. Of course, it is just this
attitude that I have been at pains to question” (111). While I completely agree
with Batterman that the semiclassical phenomena he points to—especially
those concerning chaotic systems—are important and interesting, I am not
convinced that they prevent us from providing a (partial) reduction. In par-
ticular, I do not think Batterman’s claims extend to all instances of the 7 — 0
limit. Perhaps Batterman is correct that a reductive explanation of all aspects
of chaotic classical systems is impossible. But I believe that for some sys-
tems, it is possible to give a reductive explanation of the success of at least
the kinematic structure of classical mechanics from the kinematic structure
of quantum mechanics, and I will attempt to establish this in what follows.
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Rosaler and I appear to agree about the possibility of giving a kind of re-
ductive explanation of classical behavior, but our proposed explanations dif-
fer radically. The explanation I will offer of classical behavior follows
Batterman’s approach, at least in the sense that I employ the 7 — 0 limit.
Here, I follow an idea of Nickles (1973) (which Batterman also cites) that
these limiting relations might provide “approximative reductions™: “Ap-
proximative reductions . . . might be said to explain why the predecessor the-
ory worked as well as it did” (185 n. 4). It is precisely this kind of explana-
tion that I will take the classical limit to offer. I believe one can use the
classical limit to explain why classical mechanics works as well as it did.
In contrast, Rosaler leaves behind the classical #— 0 limit altogether, in-
stead giving an alternative explanation of the success of classical mechanics
through decoherence theory. I want to highlight two of the reasons he pro-
vides for this approach, which I believe to be ill founded.

First, Rosaler claims there are difficulties interpreting the 7 — 0 limit be-
cause / is a physical constant that takes on a single value: “One may make
the predictable criticism that Batterman’s analysis relies on the limit 7# — 0
even though 7 is constant for all real systems, and that the relevance of the
analysis for real systems is obscured by this fact” (2015a, 331). Rosaler
seems to believe that these difficulties can be dealt with, but only by making
matters more complicated. The common strategy that he points to is outlined
already by Batterman: “One might reasonably wonder what it could mean to
let a constant change its value. The way to understand ‘Z — 0’ is that it is the
limit in which 7 is small relative to some quantity having the same dimen-
sion—namely, the classical action” (2002, 99 n. 1). However, Rosaler notes,
we commonly analyze the behavior of quantum systems as /7 varies without
attention to the ratio between # and the classical action. Rosaler asserts that
this “may be seen as a matter of convenience, [but] it is a convenience that
comes at a significant cost to our physical insight” (2015a, 331). According
to him, if we do not explicitly treat the classical limit in terms of ratios of %
to classical action, we will not have complete understanding of the inter-
theory relations between quantum and classical physics.

There seems to be an implicit assumption in Rosaler’s argument here that
the only way one might make sense of the #Z — 0 limit is to employ the strat-
egy of using / as proxy for a dimensionless ratio. Rosaler is not alone on this
point; the statement that the constant # cannot vary echoes Nickles, who
writes, “Indeed, it makes no physical sense to permit physical constants to
vary (41— 0, ¢ — 00)” (1973, 201) and Radder, who writes, “Of course, from
a physical point of view putting 7 = 0 is impossible: / is an empirically fixed
constant unequal to zero” (1991, 209 n. 8).

Although none of these authors elaborates on this impossibility, the rea-
son seems to be that the alternative forces us to imagine different possible
worlds in which 7 really takes a different value and the physics of such
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worlds differs from our own. I think one might reasonably worry, if this were
the alternative, about how one could use facts about these other possible
worlds in which 7 differs to explain anything about our own world.

Fortunately, I do not believe this is the only alternative. I hope to show
that it is possible for one to interpret the # — 0 limit as representing features
of our own world without thinking of / as proxy for a dimensionless ratio.
This is not to say that I reject the dimensionless ratio interpretation; I think
such an interpretation works together with the one I will present, and so I re-
turn to their relationship briefly in section 5.

Second, Rosaler claims that philosophers who analyze only mathematical
relations between theories (like the #— 0 limit) miss important empirical
content: “While questions about empirical reduction are partially mathemat-
ical in nature, assessing whether one theory reduces empirically to another
requires further empirical input regarding the set of circumstances under
which the reduced theory furnishes an accurate representation of the behav-
ior of some actual physical system; without such information, it would not
generally be possible to assess whether one theory encompasses the domain
in which the other is successful” (2015a, 338). Rosaler’s preferred notion of
empirical reduction is described as follows: “Empirical reduction requires
that every circumstance under which the behavior of a real physical system
can be modeled in the reduced theory (in this case, classical mechanics) is
also one in which that same behavior can be modeled at least as precisely
in the reducing theory (in this case, quantum mechanics). That is, empirical
reduction requires that the reducing theory wholly subsume the physical do-
main of applicability of the reduced theory, but does not necessarily require
the reduced theory’s formal mathematical structure to be subsumed as a spe-
cial or limiting case of the reducing theory’s formal structure” (326).

I agree with Rosaler that extra empirical information is necessary to know
the situations in which a reduced theory is successful. But I believe his state-
ments here go too far toward what Nagel called an “instrumentalist” ap-
proach, according to which “the claim that a theory 7. . . is reduced to an-
other theory 7 [is] that all the observation statements which can be derived
from given data with the help of 7 can also be derived with the help of 77, but
not conversely. Accordingly, the question to which this account of . . . reduc-
tion is addressed is not the ostensibly asserted content of the theories in-
volved in reduction, but the comparative ranges of observable phenomena
to which two theories are applicable” (1998, 911). Nagel believed the instru-
mentalist approach was inadequate. He writes, “It ignores the question of
how, if at all, the concepts of a reduced theory are related to those of the re-
ducing one, or in what way statements about a variety of observable things
may fall within the scope of both theories” (912). Another way of putting the
point is that if one only shows that the reducing theory can make all of the
correct empirical predictions about the domain of the reduced theory, then
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one has not given an adequate explanation of why the theoretical structure of
the reduced theory was successful. In the case at hand, we have a genuine
explanatory task to say why the theoretical apparatus of classical Hamilto-
nian phase spaces with Poisson brackets is successful when the quantum the-
ory does not employ those mathematical tools.

This issue of whether one can give an explanation of the theoretical struc-
ture of classical mechanics from quantum mechanics has been prominent in
the literature. For example, Post formulates the requirement of reductive ex-
planations as the “General Correspondence Principle”: “the principle claims
far more than mere ‘agreement’ on individual instances of factual data found
to be successfully covered by the [reduced theory]. The General Correspon-
dence Principle claims that the [reducing theory] inherits a coherent pattern
of theorems, including some higher levels, from the [reduced theory]”
(1971, 235). Yet, we see a contrasting view from Radder, who claims that
the classical limit does not explain the theoretical structure of classical me-
chanics: “In surveying the whole episode in the history of 20th century phys-
ics we may conclude that, ultimately, the success of the correspondence prin-
ciple appears not to rest upon a conceptual correspondence but rather upon
a combination of numerical and formal correspondence” (1991, 208). Later,
he writes, “Such a formal correspondence between mathematical equations
is by itself insufficient. . . . The formally corresponding terms or quantities
need to have the same experimentally obtainable values in (the neighborhood
of") that limit” (212). And again, “The basic problem is that classical observ-
ables are mathematically represented by functions (on a phase space of general-
ized coordinates), while quantum observables are represented by operators (on
a Hilbert space of state vectors)” (219). My goal in the remainder of the arti-
cle is to show that in the case at hand, one can explain the theoretical structure
of classical mechanics from quantum mechanics. The explanation I provide
will yield exactly what Radder seems to desire and yet asserts is not available.

In fact, I think the explanation Rosaler gives also goes beyond what an
instrumentalist would hope for, but it is worth being clear about the ex-
planandum at the outset. In what follows, I aim to provide an explanation
of why the kinematic structure of classical mechanics is successful. I will
show how classical physics arises as an approximation (and so I go beyond
the instrumentalist), and yet my explanation will also satisfy Rosaler’s desid-
eratum by allowing empirical information concerning allowable errors to
play a role in explaining when classical mechanics is accurate.

In order to lead us into my positive account of the explanation of classical
behavior, I believe it is helpful to pinpoint exactly where in Rosaler’s anal-
ysis this issue arises. Ultimately, Rosaler’s association of quantum states
with classical states proceeds by identifying a quantum state with the clas-
sical state whose definite values for the classical position and momentum
quantities are equal to the expectation values for the quantum position and
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momentum operators. Rosaler’s justification for this is the assumption that
“some mechanism for collapse or effective collapse” (2015a, 335) will allow
us to model a quantum superposition by considering just one component
along one of its branches.! Rosaler is appropriately agnostic about what this
mechanism for collapse might be. However, I do not think this dispels the
worry.

Suppose, as Rosaler does, that there is some collapse-like mechanism
that leads to well-localized wave functions along branches defined by par-
ticular coherent “pointer” states. Even so, there is still a question of why one
is justified in employing classical concepts to describe these quantum states
at all—for example, the notion of a determinate value and a definite trajec-
tory. It is not clear why one should take the expectation values of physical
quantities in a quantum state, which do not represent determinate values of
those physical quantities in general, and think of them as determinate states
in a classical phase space with the structure of a manifold. And furthermore,
it is not clear why one can think of the quantum position and momentum
operators as corresponding to classical quantities of position and momen-
tum, which are functions on a phase space with Poisson structure. Why
can one successfully employ the kinematic framework of classical mechan-
ics to represent a system whose quantum description is in terms of an en-
tirely different kinematic framework?

Rosaler’s analysis using decoherence theory is illuminating, and I believe
it is compatible in many ways with what I will say in the rest of this article.
I only aim to fill this gap—which is small but conceptually important—in
our explanation of classical behavior from quantum mechanics. The next
section (sec. 3) reviews the mathematical tools necessary for my analysis,
and then section 4 uses an interpretation of these tools to present an expla-
nation of the success of classical kinematics from quantum mechanics.

3. The Classical Limit. Although historically the term “quantization” has
been reserved for the process of constructing a quantum theory, modern
mathematical theories of deformation quantization are understood instead
to provide tools for the “inverse” or “dual” process of taking the classical
limit (Rieffel 1989, 1993, 1994; Landsman 1998, 2007, 2017).? This is ac-
complished by constructing a family of algebras, each representing a quan-
tum theory of the same “form” (i.e., with the capacity to represent the same

1. See also Rohrlich (1990, 1410), who claims that the measurement problem prevents a
reductive explanation. Rosaler and I agree that a solution to the measurement problem is
not needed for at least the outlines of a reductive explanation.

2. The role of the classical limit in theory construction, or heuristics, is a further signif-
icant philosophical issue, as can be seen from the discussions in Post (1971) and Radder
(1991).
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physical systems), but with a different value for Planck’s constant /4. As
I attempt to make precise later, each of these algebras can be thought of as
representing the same system in a different system of units. One provides ad-
ditional structure to “glue” these algebras together into a continuous field,
which allows one to specify continuous limits of states and quantities in the
limit as #— 0. There are other limits one might analyze to recover classical
behavior (e.g., the limit N — o of an increasing number of particles), but I
focus on the 7 — 0 limit here.

How is the 7 — 0 limit supposed to explain classical behavior? Imagine
starting with a fully quantum theory in which Planck’s constant takes the
value # = 1 in natural units. Next, “zoom out” from the quantum descrip-
tion and look at larger and larger scales, letting Planck’s constant get smaller
and smaller until # = 0. The theory one obtains is an approximate classical
description of the same system on the appropriate scales.

This is a nice outline, but given the skepticism of Rosaler and others, we
should admit that there are missing pieces. What does it mean to have the
same theory of a physical system but “zoom out”? What exactly is a “scale”
in this context, and how is it related to a value for #? What is the notion of
approximation involved, and how does the # — 0 limit capture this process
in a way that has explanatory force? It is my goal in section 4 to answer these
questions. In order to do so, I will need to use some details of the mathemat-
ical tools surrounding deformation quantization, which I now present in this
section.

3.1. Continuous Fields of C*-Algebras. In this section, I describe the
mathematical tools used to represent the classical limit. I take a quantum the-
ory to be given by a (noncommutative) C*-algebra representing the bounded
physical quantities of a system including perhaps generalized position and
momentum quantities that satisfy some canonical (anti)commutation rela-
tions (see Petz 1990; Clifton and Halvorson 2001; Ruetsche 2011).? Physi-
cists and philosophers have debated whether C*-algebras are an appropriate
starting point for quantum theories or whether we need the additional struc-
ture of a Hilbert space representation (see, e.g., Arageorgis 1995; Lupher
2008; Ruetsche 2011). I ignore these debates in what follows and simply as-
sume that we start with a C*-algebra for a quantum theory; this should be
uncontroversial because all parties to these debates agree that we require
at least the structure of a C*-algebra (especially for the finite systems consid-
ered here).

A C*-algebra already carries enough structure to define a number of to-
pologies (e.g., norm, weak) that provide different notions of the limit of a

3. T assume familiarity with the theory of C*-algebras in this article. For background, see
Bratteli and Robinson (1987), Kadison and Ringrose (1997), and Landsman (2017).
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net of physical quantities within an algebra (see Feintzeig 2018c). However,
to understand the classical limit, one requires resources for taking the limit of
a family of algebras, where each algebra is understood to represent a full
quantum theory. Such tools are provided in the theory of strict deformation
quantization.

In a strict deformation quantization, one has a family of algebras %, for
each possible numerical value 4 € [0, 1] of Planck’s constant /4. The algebra
2, atthe value 7 = 0 will represent a classical theory, so one requires that A,
contains as a norm dense subset a (complex) Poisson algebra (P, {:, -}). This
Poisson algebra arises from a Hamiltonian formulation of a classical theory,
where the elements of P are smooth functions on a phase space with the
structure of a Poisson manifold and hence can be thought of as physical mag-
nitudes (Landsman 1998). Yet, each algebra 2, for 2 # 0 will be a noncom-
mutative algebra representing a quantum theory.

The core idea of taking the limit of a collection of C*-algebras is to gather
them into a structure known as a continuous field of algebras.

Definition 1. A continuous field of C*-algebras (U )sep.1), KC) consists in a
family of C*-algebras 2, for each value of 72 € [0, 1] and a C*-subalgebra K
of ILon R (ie., each element K€ K is a map that sends each value
he|0, 1] to an element of 2,,).* Foreach /1 € [0, 1], the set {K(h)|K € K} must
be ||-||;-dense in A, where |||, is the C*-norm on 2,,. Furthermore, K must
satisfy:

1. For each K € IC, the map &~ || K(h) ||, is continuous. The elements
of K are called continuous sections of the field.

2. ForeachK e IC, thenormin K is given by || K || = supjeio || K(7) ||,

3. For each feC([0,1]) and each K€ K, the map h~ f(h)K(h) is
in K.

Those familiar with fiber bundles should recognize some concepts here. The
topological space [0, 1] can be understood as a base space, with the fiber 2,
above %€ [0, 1]. Continuous sections are sections of the resulting bundle
with the additional (point-wise) algebraic structure induced by the structure
of the fibers. The classical limit has further structure:

Definition 2. A continuous quantization (4 )se,1), IC, Q) of the (complex)
Poisson algebra (P, {-, -}) consists in a continuous field of C*-algebras
(G )nepo,1, K£) and a linear, *-preserving map Q :P — K such that the
maps Q, : P — 2, defined for each € [0, 1] by

4. See also Rieffel (1994) and Landsman (1998, 2007, 2017). My presentation follows
that of Binz, Honegger, and Rieckers (2004b).



CLASSICAL LIMIT AS APPROXIMATION 621

Qu(A) = QA)(h)
for all 4 € P satisfy:

(Dirac’s Condition) The s-scaled commutator, defined for X, Y € 2, by
[X, Y], = (i/h)(XY — YX), approaches the Poisson bracket in norm as
h—0:

lim] [Q4(4). Qu(B), — Qu({4.B)) [, = 0.

The map Q,, : P — 2, is called the quantization map for the value h € [0, 1]
of Planck’s constant. Dirac’s Condition enforces the canonical commuta-
tion relations as they arise from the classical Poisson bracket in the limit.
Specifying a quantization map uniquely determines a collection of contin-
uous sections that “glues” a family of C*-algebras together into a continu-
ous field (Landsman 1998, theorem 1.2.4, p. 111).

The structure (A, Oy )iepo,1) s also called a strict quantization of P, {-, -},
the name “strict” signifying that 4 is a number rather than a formal param-
eter.> A strict quantization is called a strict deformation quantization if Q,, is
injective for each ~€]0, 1] and Q,[P] is closed under the product in 2,.

It follows from the definition of a continuous quantization (see Lands-
man 1998, Sec. II.1) that for all 4, BeP:

(von Neumann’s condition) lim, .| 9,(4)Q,(B) — Q(4B) |, = 0;
(Rieffel’s condition) the map %+~ || Q,(4) ||, is continuous.

From Dirac’s, von Neumann’s, and Rieffel’s conditions, it follows that the
algebraic relations between Q,(4) and 9, (B) approximate those between A4
and B in the sense that for any ¢ > 0, there is an /4 € (0, 1] such that

Q) [l = (14 [lo] <e
|| 9u(A)Q(B) — Q4(4B) ”h <e (1)
1[Qi(A), Qu(B)] — ({4, B}) [, <¢

for all 2 < /'. This sense of approximation will be important later on, so |
return to the physical interpretation of these inequalities in section 4.

In preparation for the next section, I specify a notion of equivalence that al-
lows one to compare strict quantizations constructed with seemingly different

5. There are other approaches to the classical limit, including “formal deformation quan-
tization” (Waldmann 2015) and “geometric quantization” (see references in Landsman
2007).
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P
1 an 2
2 2

Figure 1.

1nterpret1ve motivations. I will say that two strict quantizations (th, Qh)hE[O I
and (2, Q,,),,E(,1 of P, {-, -} are equivalent just in case for each /1 € [0, 1], there
is an *-isomorphism «; : Q(h - Ql,, such that the diagram in figure 1 commutes.°
Two strict quantizations are equivalent when the fibers 2 over each point
h € [0, 1] are *-isomorphic, in a way that allows one to identify the contin-
uous sections of each continuous field. If one believes *-isomorphic C*-
algebras have the capacity to represent the same physical systems, then it fol-
lows that equivalent continuous quantizations have the capacity to represent
the classical limits for the same systems.

Later, I construct two strict quantizations with conceptually distinct mo-
tivations. One quantization allows us to interpret varying values of / as cor-
responding to different worlds with different physics—this is the interpreta-
tion I take Rosaler and others to balk at. The other quantization allows us to
interpret varying values of / as representing the same physical world in dif-
ferent systems of units—this is the interpretation I hope to show can be used
to explain classical behavior. However, I will demonstrate that the resulting
two strict quantizations are equivalent, thus allowing us to transfer my pre-
ferred interpretation to the mathematical structure in any of its equivalent
instantiations.

It is worth making two remarks concerning the status of my definition of
equivalent quantizations. First, the significance of equivalence of quantiza-
tions relies on the substantive assumption stated above: that *-isomorphic
C*-algebras have the capacity to represent the same physical systems. This
view about the use of mathematical models, mathematical equivalences, and
representational capacities has been expressed in general terms elsewhere
(Feintzeig 2015; Weatherall 2018; Fletcher 2020). Although the stated claim
is controversial, I will simply take it on as an assumption without further ar-
gument and set the issue aside for present purposes.” One can understand my

6. This definition of equivalence is different from that given in Landsman (1998, 109),
who considers continuous fields of C*-algebras with identical fibers that agree asymp-
totically. I drop the condition that the fibers are identical and instead only require them to
be *-isomorphic; however, the notion of equivalence here requires more than just as-
ymptotic agreement.

7. This assumption about *-isomorphisms in particular is natural for an algebraic impe-
rialist but not necessarily for a Hilbert space conservative (in the sense of Ruetsche
2011).
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conclusions that rely on this assumption to be conditional on its acceptance.
Yet, [ also hope the spoils of this investigation provide some reason for mak-
ing the assumption in the first place.

Second, my main conclusion that one can use the classical limit to explain
classical behavior from quantum mechanics does not rely on the aforemen-
tioned assumption about the connection between equivalence and represen-
tational capacities. To establish this conclusion, I only need to show that
there is some continuous quantization that can be given an interpretation
suitable for the explanation of classical behavior. I believe this can be done
using only the second continuous quantization I define below, which I call
the “factual limit.” I believe it is illustrative to show that my preferred quan-
tization is equivalent to a more standard formulation of the classical limit,
whose interpretation has been deemed problematic. The mathematical equiv-
alence I will demonstrate between these two quantizations is meant to aid our
understanding of the new interpretation I provide. However, the equivalence
is not necessary for my argument that one can give a partial explanation of
classical behavior, and so for the main thesis of the article one need not accept
the (perhaps controversial) assumption about isomorphisms and representa-
tional capacities that motivates my definition of equivalent quantizations.

3.2. Example: The Weyl Algebra. 1now define a particular C*-algebra,
known as the Weyl algebra that is often used to represent certain quantum
systems (see Petz 1990; Clifton and Halvorson 2001).% I will use this exam-
ple to illustrate the concept of a strict deformation quantization. I will then
draw on this example in section 4 when interpreting the classical limit with
a precise notion of “approximation on certain scales.”

Start with a classical theory of a system with finitely many degrees of
freedom and phase space given by R*". Such a system might consist of a fi-
nite number n of particles, each moving in one dimension. Each point
X = (q1 sG> P1» - --» pu) € R”, understood in some canonical coordinate
system, lists the position g; and momentum p; of each of the » particles.

Physical magnitudes of this system can be represented as complex-valued
functions on phase space f : R* — C. Consider the family of functions
Wy(x) : R*" — C for each x € R*" defined by

Wo(x)() = €, @

where - is the standard inner product on R*". The classical Weyl algebra, de-
noted W,, is defined as the C*-algebra containing all norm limits of polynomials

8. Feintzeig (2018a, 2018b), Feintzeig and Weatherall (2019), and Feintzeig et al.
(2019) argue against the use of the Weyl algebra for representing quantum systems.
However, the claims of the current article can be recovered with algebras favored by
those authors.
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of functions of the form W,(x) for x € R*", endowed with the algebraic structure
of point-wise addition, multiplication, and complex conjugation and with the
standard supremum norm.’

One constructs the quantum Weyl algebra by starting from the same gen-
erating magnitudes W,(x) and deforming the commutative point-wise multi-
plication relation to obtain a noncommutative algebra. I denote by W,(x) the
element ¥,(x) understood now as an element of the quantum Weyl algebra.
Define the noncommutative product on the quantum Weyl algebra by

W W) = e Wy(x + ») 3)

for all x, y € R*. Here o is the standard symplectic form on R>":

o((q.p). ¢, P)=q -p—q-pP “4)

forg, p,q', p' € R", where - in the above expression is now the standard inner
product on R". The quantum Weyl algebra WV, is the C*-algebra obtained as
the completion of the collection of all polynomials (now with respect to the
noncommutative multiplication operation) of magnitudes of the form W,(x)
for x € R* in the so-called minimal regular norm (Manuceau et al. 1974;
Binz et al. 2004a, 2004b). The relation in equation (3) is known as the Weyl
form of the canonical commutation relations because when the generators
take their intended forms

VV;,(a, b) - e[(a-Q+b-P) (5)

for the quantum position operator Q and momentum operator P (as in the
Schrodinger representation), equation (3) is equivalent to the familiar relation

[0, P] = ih. (6)

One can use these algebraic tools to construct a strict deformation quan-
tization, which can be used to represent the classical limit of the quantum
systems represented by the Weyl algebra. Binz et al. (2004b) show that there
is a Poisson algebra (P, {:, -}), norm dense in W,, containing all “suitably
smooth” magnitudes. Here, {:, -} is just the usual Poisson bracket deter-
mined by the standard symplectic form o. The quantization maps
Q, : P— W, for each h € [0, 1] are defined as the linear extension of

Q(Wo(x)) = Wi(x) (N

for all x € R*". With the quantization maps so defined, the family (W,, Q).
is a strict deformation quantization. Furthermore, one can define a collection

9. This C*-algebra W, is known as the algebra of almost periodic functions on R*"
(Binz, Honegger, and Rieckers 2004a).
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of continuous sections /C as the smallest C*-subalgebra of [ [, con-
taining the maps [h ~ Q,(4)] for each 4 € P. Then with the global quantiza-
tion map Q : P — K defined by

QA)(h) = Qu(4)

for all 4 € P, the structure (WV,)ue0,1), K, Q) becomes a continuous quanti-
zation. Thus, one can encode the classical limit of a quantum system repre-
sented by the Weyl algebra in a continuous field of C*-algebras. I spell out in
more detail in section 4 how one can interpret the mathematical structure
specified by this continuous field of algebras as I use this example to illus-
trate the notion of “approximation on certain scales” at play in the classical
limit.

4. A Notion of Approximation. Now that we have some familiarity with
continuous quantizations, it is the purpose of this section to interpret the math-
ematical tools they provide. Specifically, in this section I argue that contin-
uous quantizations provide tools for interpreting the classical limit of quan-
tum theories through a notion of “approximation on certain scales.” I argue
that the spectral theorem, which already plays a central role in the interpre-
tation of quantum theories, is also essential to this notion of approximation.

4.1. The Spectral Theorem and Numerical Values. The mainidea of my
interpretation of continuous quantizations is that a quantization map can be
interpreted as identifying operators that represent the same physical quantity
in different systems of units. This interpretation is possible because we can
identify projection operators as providing theoretical content that is indepen-
dent of a system of units, and the spectral theorem shows how general quan-
tities are related to projections. My first task in the current section is to make
this interpretation of projections and the spectral theorem precise before pro-
ceeding to their interplay with quantization maps.

To begin, recall that, while a general self-adjoint operator 4 € 2 can be
used to represent a real-valued physical magnitude, one can say more about
the representational capacities of a projection E. Projections are capable of
representing propositions. Since sp(E) = {0, 1}, one can think of the two
possible values of E as true (1) and false (0). The usual rules for calculating
the expectation value of a projection give the probability that the proposition
represented by E is true (a number in [0, 1]), which agrees with the Born rule
for calculating the probabilities of outcomes for magnitudes represented by
self-adjoint operators (see also Scheibe 1973, chaps. 2-3).

I claim that one can interpret general self-adjoint operators as differing
from projections in the following sense: while the values of the physical
magnitudes represented by general self-adjoint operators almost always vary
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in different systems of units, the values of a proposition represented by a pro-
jection stay the same. Suppose, for example, that 4 is a self-adjoint operator
representing a position magnitude for a particle.'® Then changing units of
distance from m to cm changes the possible values the magnitude represented
by A can take on, scaling the numerical values by 100 (e.g., 4 m ~ 400 cm).
But, suppose E,, is a projection representing the proposition “the particle is
located in the region represented by O.” If the particle is located in the region
represented by O, then the proposition represented by E,, is true and takes the
value 1, whereas if the particle is outside of the region represented by O, then
the proposition represented by E,, is false and takes the value 0. These values
are unitless: the particle is either in the region represented by O or not, re-
gardless of whether we refer to O in units of m or cm.

On this interpretation, it follows that while one can hold fixed the projec-
tion operator used to represent a given proposition, one may need to use dif-
ferent self-adjoint operators to represent the same physical magnitude in
different systems of units. In the previous example, while we can use E,
to represent the given proposition in any system of units, if we use 4 to rep-
resent the position magnitude in units of m, then we will need to use some
other operator, whose numerical values are scaled by 100, to represent the
same position magnitude in units of cm. The spectral theorem informs us
as to which self-adjoint operator we should use to represent the same phys-
ical magnitude in a different system of units.

Recall that the spectral theorem (see Reed and Simon 1980, chap. 7;
Kadison and Ringrose 1997, sec. 5.2) states that for every physical magni-
tude represented by a self-adjoint element A4 of a C*-algebra 2L, there is a
projection valued measure E : B(sp(4)) — A™* such that

A= J NdE,, ®)
sp(4)

where N is understood as the identity function on sp(4). Here, B(sp(4)) is
the Borel o-algebra of sp(4), and E takes values in the universal enveloping
W*-algebra A** of 2L.

The spectral theorem tells us we can understand physical magnitudes as
assigning numerical values to associated propositions. For example, the po-
sition magnitude expressed in units of m assigns to the proposition “the par-
ticle is 4 m from the origin” the numerical value 4. The numerical values that
a magnitude assigns to each proposition are fixed by the association of the

10. A C*-algebra will contain only bounded operators capable of representing only
bounded physical quantities and, hence, will not contain a position operator, generally.
Additional complications arise for unbounded operators affiliated with a C*-algebra,
which I ignore because one also has a spectral theorem for unbounded self-adjoint
operators (Kadison and Ringrose 1997, sec. 5.6).
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projections with values A € sp(4) (or really a range of values for A in a Borel
subset). The spectral theorem tells us that this information—a collection of
projections and an association of them with numerical values—is sufficient
to reconstruct the original self-adjoint operator representing the physical
magnitude in the given system of units.

The spectral theorem also informs us about which operator we should use
to represent the same physical magnitude in a different system of units. Gen-
erally, a physical magnitude expressed in different systems of units will as-
sociate the same propositions with different numerical values. For example,
if one changes units from m to cm, the position magnitude then assigns to the
very same proposition “the particle is 4 m from the origin” the new numer-
ical value 400. This is because the projection also represents the (identical)
proposition “the particle is 400 cm from the origin.”

This is all the information we need to figure out which operator we should
use to represent the same physical magnitude in a new choice of units be-
cause it tells us to replace the identity function A in the integral expression
of equation (8) with a different Borel function f : sp(4) — C. For example,
in the unit change from m to cm, the function fis f(\) = 100\ for all
\ € sp(4). This new function fassociated with the unit change can be thought
of as either reassigning the physical magnitude new numerical values by re-
scaling them or equivalently reassociating the spectral projections £, with
new numerical values f(N).

Knowing the new numerical values we want to associate with a physical
magnitude, we now know that we should use the operator

A= j FONdE, ©)

p(A)

to represent the same physical magnitude we previously used A4 to represent,
now considered in the new system of units. To summarize, the interpretation
I'am advocating entails that we can use the operators 4 and A’ = f(A4)to rep-
resent the same physical magnitude in different systems of units. In our ex-
ample, while we use the operator A to represent the position magnitude in
units of m, we should now use 4’ = f(4) = 1004 to represent the position
magnitude in units of cm. Heuristically, we might say that the unit change
induces a “transformation” 4 ~ f(4). All we mean by this, though, is that
we should in general use a different operator to represent the same physical
magnitude when we work in a different system of units.

The reason the foregoing is important is that a quantization map provides
us with precisely the tools we need to explicitly identify which elements of
an algebra represent the same physical magnitude. In particular, if 4%,
represents a physical magnitude in a classical theory, then we will understand
9,(A) to represent the same physical magnitude in a quantum theory in units
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in which Planck’s constant takes on the numerical value /. Reflecting on unit
changes helps us see the relationship between Q ,(4) and Q ,(4) for different
numerical values 4, /' of Planck’s constant. In other words, we will see that
one can express Q ,(A) as f(Q ,(A)) for a function 1 : sp(Q;(4)) — C speci-
fying a change of units.

In the next subsection, I make the preceding remarks about quantization
maps precise using the interpretation outlined in this section. Note, however,
that I am not claiming that the interpretation just offered of the relationship
between self-adjoint operators and projections is the only one available. An
alternative interpretation in which projections “transform” under unit changes
may also be possible, but I will not consider it here. I have offered one coher-
ent and precise interpretation that will be helpful as we proceed; I claim only
that one can take this interpretation but not that one is forced to. This is suf-
ficient for my goal, which is only to show that it is possible to give an inter-
pretation in which the classical limit can be used to explain the success of clas-
sical physics.

4.2. Units, Scales, and (Counter)factual Limits. When interpreting lim-
its of physical constants like #Z — 0, there are two different approaches one
can take. Following Fletcher (2019) (who draws on Rohrlich 1989), I will
call these the counterfactual and factual approaches to interpreting the clas-
sical limit."!

Just as Gamow’s Mr. Tompkins dreams of a world in which macroscopic
objects like billiard balls display the strangeness of the quantum world (Ga-
mow 1993, chap. 7), the counterfactual approach attempts to answer the ques-
tion, “How would the world be different if Planck’s constant 7 were to take a
different value?” The counterfactual interpretation appears to answer ques-
tions only about other possibilities apart from the actual world. But, the factual
approach attempts to answer the question, “In the actual world, how do quan-
tities behave in different systems of units in which Planck’s constant / takes
different values?” Thus, the two approaches differ on whether they are con-
cerned with modeling the actual world with the actual observations and exper-
iments (factual interpretation) or alternative physical possibilities (counter-
factual interpretation).

It seems that only the factual interpretation can answer explanatory ques-
tions about approximate classical behavior in our world. So if one thought
current mathematical resources required a counterfactual interpretation,

11. Fletcher (2019) works out these approaches in the context of the Newtonian limit
¢ — o for general relativity. Here, I adapt the analysis to quantum theories. Fletcher has
changed his terminology since the writing of the current article from “(counter)factual” to
“(counter)legal” to avoid confusion with other associations of the term “counterfactual.”



CLASSICAL LIMIT AS APPROXIMATION 629

there would appear to be a conceptual gap. And indeed, the passages quoted
in section 2 suggest that Nickles, Radder, and Rosaler have something like a
counterfactual interpretation in mind when they object to the explanatory
power of the # — 0 limit. In what follows, I establish the viability and the
significance of a factual interpretation of the #— 0 limit. I take this factual
interpretation to provide a response to the preceding worries and also to
make precise the sense in which the 7Z— 0 limit explains the theoretical
structure of classical mechanics. I begin by clarifying the counterfactual in-
terpretation so that we can use it for comparison.

4.2.1. Counterfactual Quantization. It is not hard to see how one would
give a counterfactual interpretation of the continuous quantization of the
Weyl algebra specified at the end of section 3. On this interpretation, one
represents a different “world” for each value of 7 by taking the physical
quantities of the system to form a distinct algebra 2, = W,. One can keep
ﬁxed the classical “world” in which quantitiesczgre represented by elements of
Qlo = W,. The counterfactual quantization map Q, = Q, defined in equation (7)
then identifies the “same” or “counterpart” magnitudes in distinct worlds.

This indeed defines a strict and continuous deformation quantization
(with counterfactual continuous sections K = K), as discussed previously.
And the apparatus so defined matches the intuition of the counterfactual ap-
proach that each “world” can be interpreted as being governed by distinct
laws because each world realizes a different commutation relation:

W) Wi(y) = X Wy(x + y) (10)

for all x, y € R*. Thus, one can understand the “worlds” represented by the
counterfactual quantization to really be physically different. [ think it is under-
standable that other authors would balk at such a structure as useful for giving
explanations in our own world. 1 agree with the insinuations of Nickles,
Radder, and Rosaler quoted in section 2: the significance of the counterfactual
interpretation is opaque.

I will not attempt to show that facts about other possible worlds can be
used to explain facts about the actual world. Instead, I believe it is worth-
while to develop an alternative factual interpretation. I will do so in the
remainder of this section by defining an alternative strict quantization that
encodes varying values of 7 as representing the same world in different sys-
tems of units. I will establish that this structure indeed forms a strict and con-
tinuous deformation quantization by showing it is equivalent to the counter-
factual quantization. If one accepts my interpretation of equivalence from
section 3, then it follows that one could just as well give a factual interpretation
of the counterfactual quantization structure. But even if one rejects my inter-
pretation of equivalence, I will still have shown that a factual interpretation
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of the 77— 0 limit is possible, and it is this interpretation that I take to be
explanatory.

4.2.2. Factual Quantization. On the factual approach, one wants to
specify algebras 2l, that represent physical quantities in the actual world and
use the index / only to investigate how these quantities change in different sys-
tems of units. Since one wants to model quantities in only the actual world, one
can start with the constraint that all of the algebras Ql,, be identical. So let us fix
our world in units where # = 1 and define th =W, forall 1€ (0,1]. OFf course,
since one wants to explain classical behavior, one still needs to let A, = W,.
One then uses a quantization map to identify how each physical quantity changes
in the actual world when one changes units so that the numerical value of Planck’s
constant changes as i’ ~ h (for arbitrary &, i € (0, 1]). In other words, we will pro-
ceed to define Qh so that for each 4 € P, Q,(A) represents the same physical mag-
nitude as 4 in the quantum theory expressed in a system of units in which Planck’s
constant /7 takes the numerical value 4.

To think about these changes of units, let us start by analyzing the
classical quantities. It will be helpful to specify a canonical coordinate sys-
tem (¢, ..., ¢u P1»---» Pu) ON the classical phase space R* and expand the
operators Wy(x), where x = (ai, ..., a,, b1, ..., b,):
Wolay, ... @ biy i BYG1s vy Gy Py ey Py) = @0 Tt dbrtthe) (]
For concreteness, suppose that the unit change that induces the change in the
numerical value of Planck’s constant /2’ — / is a change of distance units (e.g.,
cm to m).'? To understand how this affects the numerical values of quantities
involved, recall that Planck’s constant has units ((mass - distance’)/time),
each position quantity ¢, has units (distance), and each momentum quantity
p; has units ((mass - distance)/time). Since Planck’s constant involves units
of distance?, while position and momentum involve units only of distance, if
one changes units of distance in a way that induces a change in numerical val-
ues /' ~ h, this will change the numerical values of position and momentum by

h
g~ W'%

h
pi F'Pj—

Now, let us shift focus to the magnitudes W(a,,..., a,, b,,..., b,) for the
corresponding quantum system. In this case, if one restricts attention to the

(*)

12. One can in an exactly analogous way define equivalent factual continuous quantiza-
tions for mass and time unit changes.
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(regular) Schrodinger representation (7, L*(R")) of the Weyl algebra,'® then
the Weyl unitaries take the following form (cf. eq. [5]):

T(Wl(al, o a,,, b], o, b")) — ei(alQ,Jr..A+(1,,Q,,+[J,P,+...+b,,P,,) (12)

for self-adjoint unbounded operators Q,,..., O,, P, ..., P, representing the
quantized position and momentum magmtudes Although generally O, and P,
will not belong to any C*-algebra th because they are unbounded, one may
restrict attention to the Schrodinger representation in which the spectral the-
orem still applies.

So suppose Q; is a position magnitude affiliated with the quantum sys-
tem. Let £ denote the projection valued measure in the Schrodinger repre-
sentation associated with Q;:

0 = J NdE,. (13)
sp(Q)

On the interpretation of projections and self-adjoint operators outlined
above, a unit change that induces the change in numerical values of
Planck’s constant /' — & leaves each projection £ fixed but changes the val-
ues that Q; associates to E according to the scale factor \/h/h’ as per equa-
tion (*). This yields a change

Q,-HQf=J b \dE, =10, (14)
sp(Q)) h h

Similarly, suppose P, is a momentum magnitude affiliated with the quantum
system, understood as the standard momentum operator in the Schrodinger
representation of the Weyl algebra associated with projection valued mea-
sure F"

P = J NdF,. (15)
sp(P;)

Again, a change of units that induces the change in numerical values of
Planck’s constant 4’ — & leaves each projection F fixed but changes the values
that P, associates to F' according to the scale factor /% /h’ as per equation (*).
This yields a change

ijp,.':J \/E,-xdﬂ:\/z,-g. (16)
sp(P)) h h

13. See Feintzeig (2017, 2018a, 2018b), Feintzeig and Weatherall (2019), and Feintzeig
etal. (2019) for reasons to focus on regular representations of the Weyl algebra, of which
the Stone—von Neumann theorem tells us the Schrodinger representation is the unique
irreducible one.
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Now, let us use this change of units to define the factual quantization map
0,: P-4, First, we can simplify our expressions by recalling that we wish
to model changing units from 2, = W, in which the numerical value of
Planck’s constant is # = 4" = 1. So this unit change induces the change
in numerical values 1 — & with scaling factor \/4/h" = \/h. This motivates
defining the factual quantization map as the linear continuous extension of

F
Q.Woay, ..., an, by, ....,b)) = W\(Vh-ay,....Nh-ay, Vh-by,...,Nh-b,)

)

forall (ay,...,a,, bi,...,b,) € R This appears in the Schrodinger repre-
sentation as

aW,\Vh-an,....\Nh-a,, Vh-b,...,\Nh- b))

(a0 +. .. +a,Nh-Q,+bVi-Pi+. . +b\h-P,)

(18)

= e

with each Q; and P, scaled by the factor v/7 as desired. More succinctly, one
can write

é,,(Wo(x)) = w,(Vh - x) (19)

for all x e R™".
Notice that the operators W,(x) for x € R*" obey the standard commuta-
tion relation

WEOWi(y) = e Wi(x + y) (20)

for all x, y € R*. This relation remains fixed in each of the algebras A, = W,
indicating that the physical laws remain the same in the one “world” we
represent.

With this factual quantization map, one can follow the procedure of sec-
tion 3.2 to construct a continuous quantlzatlon ((Q(Iz)hef)l IC Q) Define the
collection of factual continuous sections K as the smallest C*-subalgebra
of [T th containing the - maps [h - Qh(A)] for all 4 € P. Define the factual
global quantization map Q Pk by

OU)(h) = O,(4).

This structure provides a continuous quantization of P, as I establish next
by showing it is equivalent to the counterfactual quantization.'*

4.2.3. Factual Interpretation. Now that we have constructed two math-
ematical structures with quite different motivations—the counterfactual

14. I leave it as an exercise to the reader to use the material of sec. 4.2.2 to relate Weyl
unitaries for dlfferent values of 4 in the form Qh Wo(x)) = /(Q,( Wy(x))) for some Borel
function f: Sp(Q,,(WO(x))) — C, as promised in sec. 4.1.
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quantization for alternative possible worlds and the factual quantization for
our world—I will establish that both mathematical structures have the same
representational capacities. That is, I will show that the counterfactual
(o> K, Q) and the factual (Ay)eo1, K, Q) continuous quantizations are
equivalent. cFF

For each % € (0, 1], define o, : 2, » 2, as the unique linear, norm contin-
uous extension of'?

a,(W(x) = W(Vh - x). @1
It suffices to notice that
Wi(Vh-x) - (VI -y) = W (Vh(x + ) (22)

for all x, y € R*" due to the fact that o(v/% - x, VA - y) = h - a(x, y). This es-
tablishes that o, is an *-isomorphism for each 4 € (0, 1] and, by construction,

N (23)

Hence, the two quantizations are equivalent.

This establishes that the factual quantization defined above is indeed a con-
tinuous quantization. Furthermore, this shows that even the counterfactual
quantization (i.e., the quantization presented in sec. 4.2.1) can be interpreted
as showing that classical kinematics holds in our world “approximately on
certain scales.” That is, one can import the notion of “approximation on cer-
tain scales” from the factual quantization to either of these mathematical struc-
tures. So what is the notion of “approximation on certain scales” in the factual
quantization?

In the factual continuous quantization, suppose we are given arbitrary
classical quantities 4, B € P and a chosen numerical error bound ¢ > 0. It now
follows from equation (1), repeated below for emphasis, that there is a choice
of units (i.e., some combination of distance, time, and mass units) in which
Planck’s constant / takes on a numerical value % such that in this system of
units the behavior of Q,(A4) and Q,(B) is “within £” of the behavior of 4 and B:

) [ls = 14 flo] <&
| Qu()Qu(B) — Qu(AB) |, <& (24)
[1Qi(A), Qu(B)] — Qu({4, B} ||, <e.
Similarly, for every &' < h, the inequalities (24) will hold with / replaced by /.
Notice further that this implies that for any state w on 2,

CF F
15. We can take o to be the identity on 2, = 2A,.
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|0~’(Qh(A)Qh(B)) - w(Qh(AB))| <e
(25)
|([Q(A), Qu(B)]) — (Qi({4, B})| <&,

and so the expectation values of relevant physical quantities are within ¢ of one
another. Thus, Q,(4) and Q,(B) approximate 4 and B at all “scales” above the
one defined by the value of the error bound & and the system of units in which
Planck’s constant / takes the numerical value 4.

The notion of “scale” here has a particular precise meaning. It corre-
sponds to the physical size of the interval that the number ¢ determines.
The very same numerical error bound & determines a physically larger or
smaller interval as we change units. This is because the same number, when
viewed in different systems of units, may represent a larger or smaller phys-
ical quantity. It follows from the inequalities in equation (25) that even when
the numerical (expectation) values of the physical magnitudes Q,(4)Q9,(B)
and 9,(4B) differ wildly in one choice of units, they will be close together
in another. Thus, we recover the intuitive notion that as 7 — 0, we “zoom
out” from the quantum system by caring less and less about the microscopic
details. The way one coarse-grains from the microscopic details is by fixing a
numerical error bound ¢ and changing units so that ¢ represents a physically
larger interval of allowable error. The typical interpretation is that experi-
ments probe the system on larger “scales” because qualitative precision de-
creases as allowable error increases.

Notice that the spectral theorem plays a crucial role in this interpretation.
In order to understand the 7 — 0 limit under this notion of “approximation at
certain scales,” one understands a change in the numerical value /4 to corre-
spond to a change of units. This can be accomplished precisely because one
has spectral projections for each physical magnitude, which are held fixed
even as units change. Thus, the spectral projections and the relations among
them represent the “invariant” (under unit changes) physical content of the
theory.

It is worth stressing that on the current interpretation, a choice of units on
its own does not define a scale. Instead, a scale is determined by both the nu-
merical value of the error bound ¢ and the units in which it is expressed. This
means that a scale is not set by the system being measured but rather by the
measurement procedure one uses to probe the system. One might object that
this is not the notion of “scale” used colloquially in the physics community.
I do not claim that this is the only notion of scale used by physicists, but
I do believe it is one that has been employed to understand the classical
limit (e.g., see Emch 1983, 418), and I believe this notion of scale helps
make precise a way of understanding the classical limit that is conceptually
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significant.'® I am optimistic that this notion of scale is analogous to, or help-
ful for, making sense of scales and coarse-graining in other contexts like
renormalization theory because it seems that particle physicists often have
something like this notion of scale in mind.'” My optimism may be unfounded,
but I believe the interpretation just given is important in its own right regard-
less of future applications.

One might still worry about the notion of approximation I have just laid
out. We are never in the position of specifying our tolerable error as a unitless
number ¢; the error tolerated by a measuring apparatus is typically specified
in the units in which our apparatus displays measured values. But the anal-
ysis just given can be adapted immediately to this situation, as follows. To fix
the units in which the error bound is expressed, one first needs to fix ¢ > 0
(say, fix ¢ = 1). The facts captured in equations (24) and (25) tell us that
there is some system of units in which 7 takes the value 4 € (0, 1], and in
this system of units the number & provides a tolerable bound. Now, compar-
ing one’s preferred choice of units (e.g., natural units with 7 = 1) to the
choice of units that yields the value 4 for Planck’s constant provides a
way of converting the error ¢ from the system of units defined by # = h
to the system of units defined by # = 1. The necessary unit change here will
depend on the physical dimensions of the magnitudes considered, which
align with the dimensions of e. The important result is that if we fix a system
of units, there exists an error bound (the number ¢, reexpressed in preferred
units) such that the difference of values of the relevant physical quantities
lies within that error bound.

This notion of approximation is both weaker and stronger than one might
like. It is weaker because one cannot arbitrarily choose both the error bound
¢ and the units in which it is expressed. If one fixes the number ¢, then we
know there exists a system of units for ¢ in which the approximation in equa-
tions (24) and (25) holds, but this may not agree with the units we prefer. Yet,
if one fixes a system of units, then the value of the error bound will be de-
termined by the existence of the unit transformation to be applied to &, which
again may not yield the error bound we prefer. This makes sense because
classical and quantum mechanics make different predictions; one cannot be
expected to make them coincide unless one is willing to lose precision in
measurements.

But, the notion of approximation is also quite strong. For given physical
magnitudes, the number ¢ provides a uniform bound on the tolerable error

16. For further remarks on error bounds in reductive explanations, see Scheibe (1986) or
the discussion of “limits of validity” in Rohrlich (1990, 2002).

17. Recent philosophical work on renormalization describes theories related by
renormalization group transformations as “alternative descriptions of the same physical
system” (Fraser 2019, 22). See also similar remarks in Rosaler and Harlander (2019).



636 BENJAMIN H. FEINTZEIG

for expectation values of the magnitudes in all states. This is important be-
cause if one only considered one state at a time, it would be no surprise that
one could make quantum expectation values close to classical expectation
values by accepting a large enough error. What is surprising and significant
is that there is a single notion of closeness, or a single error bound, that
makes the expectation values of all states close enough.'® This is what allows
us to interpret the approximation as explaining the theoretical structure of
classical mechanics. The uniform approximation of the norm and product
explains the spectral properties of each magnitude (i.e., why it has a certain
range of possible values). The uniform approximation of Poisson brackets
by commutators explains why magnitudes have certain theoretical relations
to each other that are encoded in the geometry of the classical phase space. It
is the approximation of theoretical properties and relations of kinematic
quantities that allows us to explain the theoretical structure of classical me-
chanics from quantum mechanics.

5. Discussion. Ihave now shown a sense in which the classical limit, when
given a factual interpretation, can be used to explain the theoretical structure
of classical mechanics from quantum mechanics. This explanation proceeds
by establishing that in our world, the properties and relations of quantum
magnitudes are “close” to the properties and relations of classical magni-
tudes. Here, “close” means that there is a uniform error bound for the differ-
ence between the predictions given by the quantum and classical expectation
values; this error bound is uniform in the sense that it provides a single
bound for all possible states. Mathematically, this error bound is encoded
in a numerical value ¢ and a choice of units specified by the numerical value
of Planck’s constant. It is the choice of units that varies as # — 0 and together
with the number ¢ determines a “scale” for probing the system.

My analysis here agrees with Rosaler (2015a) that empirical information
is needed to determine the appropriate error bound for a given situation or
experiment.'” The classical limit does not guarantee that use of classical me-
chanics will suffice for arbitrary levels of precision, and so it may not suffice
for a given empirical situation. But, the classical limit entails the existence
of some level of precision on which one can apply the structure of classical
mechanics, if one allows for a large enough error bound.

My analysis differs from Rosaler’s in that I only explain the kinematic
structure of classical mechanics. I have completely ignored dynamics, which
is Rosaler’s central concern and perhaps the reason he approaches the prob-
lem through decoherence theory. This difference is not a disagreement; it

18. Compare Primas (1998, 95) for a contrasting claim that a uniform approximation is
not possible.

19. See also the discussion of context in Primas (1998).
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shows that our concerns are orthogonal in one respect. I believe results from
Landsman (1998, Sec. 11.2.7) may serve to extend the interpretation offered
here to dynamical structure. But I also believe the treatment of dynamics and
decoherence Rosaler offers is important and complementary to my approach.

My position differs from Rosaler’s in a further substantive way. Rosaler
only explains the success of the empirical predictions of classical mechanics,
while I claim that one can go further and explain its theoretical structure. In
this way, I also disagree with Radder (1991), and I provide at least one ex-
ample of a reductive explanation along the lines of what is advocated for by
Post (1971). Whereas Rosaler’s results are restricted to approximations for
expectation values of individual states as in equation (25), I claim that the
approximations captured by equation (24) are of central importance. Only
these uniform approximations of products and commutators can serve to
explain the spectral structure of classical quantities, which encodes their pos-
sible values, and their Poisson structure, which encodes their geometrical
relations.?’

Finally, I take my interpretation to be compatible with the common under-
standing of the Z— 0 limit that treats the parameter / as a “dimensionless
ratio.” Recall that this interpretation is advocated for by Batterman (2002,
99 n. 1) and also by Landsman (2017, 247). I believe the dimensionless ratio
interpretation especially helps us understand the classical limits of quantum
states (or continuous fields of states) because particular states can determine
the values of quantities like temperature, length, or momentum that one
needs to compare to / to construct the appropriate dimensionless ratio.
My explanation of the kinematic structure of classical mechanics does not
depend on such a choice of a continuous field of states. But this should
not suggest that my dimensionful interpretation of the classical limit is in
conflict with the dimensionless ratio interpretation.

On my view, it would be all the better if there were multiple ways of inter-
preting the mathematical structures used to model the classical limit. I only
claim the interpretation given above in terms of “approximation on certain
scales” is one possibility. This interpretation is useful for capturing the ex-
planatory utility of the classical limit, although it may not be the only inter-
pretation or the best one for all purposes. I have argued that the classical
/2 — 0 limit, understood in terms of continuous fields of C*-algebras, gives
rise to one way of explaining the success of the kinematic framework of clas-
sical mechanics; I believe this explanation deserves both recognition and
philosophical attention.

20. See Rosaler (2018) for discussion of the relation between his views and formal de-
formation quantization.
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