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A B S T R A C T

We argue against claims that the classical ℏ → 0 limit is “singular” in a way that frustrates an eliminative
reduction of classical to quantum physics. We show one precise sense in which quantum mechanics and
scaling behavior can be used to recover classical mechanics exactly, without making prior reference to the
classical theory. To do so, we use the tools of strict deformation quantization, which provides a rigorous way
to capture the ℏ → 0 limit. We then use the tools of category theory to demonstrate one way that this
reduction is explanatory: it illustrates a sense in which the structure of quantum mechanics determines that
of classical mechanics.
1. Introduction

One often finds skepticism about the significance of the classical
ℏ → 0 limit of quantum mechanics in the foundational literature. For
example, Berry (1994), Batterman (2002), and Bokulich (2008) all claim
that the classical limit is “singular” in a way that is supposed to frustrate
an attempted intertheoretic reduction between classical and quantum
physics. A central aspect of the issue appears to be that quantum me-
chanics (on its own) may not allow for the definition of the structure of
classical physics. These authors seem to identify a barrier to taking an
eliminativist attitude towards classical physics by arguing that any
analysis of the recovery of classical from quantum physics requires prior
reference to classical concepts. For example, Batterman (1995, 2002)
emphasizes the importance of semi-classical approximations, claiming
that they require extra information from classical physics beyond what
one can glean from the representation of the system in quantum theory.
In this paper, we argue—contra Berry, Batterman, and Bokulich—that
there is a strong sense in which the ℏ → 0 limit defines the structure of
classical physics without making prior reference to it. Classical structure
is, indeed, eliminable (although we stop short of advocating for its
elimination!).

Of course, there is much more that may be of philosophical interest in
the works of Berry, Batterman, and Bokulich beyond our point of
contention here. All three authors draw attention to the ways semi-
classical approximations may give rise to novel forms of explanation
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that draw on classical concepts. We do not wish to dispute those broader
issues, and instead we only take up the specific claim that the ℏ → 0 limit
is “singular” in some sense that blocks more familiar forms of explanation
of classical behavior. Quite generally, we are happy to take a pluralistic
attitude and enjoy the understanding gleaned by many different kinds of
explanation. Our purpose in this paper, however, is to investigate in more
detail the kinds of reductive explanations whose impossibility Batterman
takes to motivate considering the other explanatory forms.

Our argument builds on ideas from Butterfield (2011a), who claims
that limiting operations often allow one to define the formalism of
less-fundamental or “top-level” theories from that of more-fundamental or
“bottom-level” ones. In particular, these definitions are often explicit:
roughly, they allow one to eliminate reference to the top-level theory. One
way of defining classical structure in terms of quantum structure is provided
by Landsman (2013), who uses previous work in the framework of strict
deformation quantization (e.g., Landsman, 1998a, 2007) to formulate a
convergent ℏ → 0 limit.1 However, a staunch anti-eliminativist may
saliently note that Landsman's construction of the limit makes prior refer-
ence to the classical theory that it seeks to derive. Our central contribution
in this paper is to use the framework of strict deformation quantization to
prove several results that show that this reference is eliminable. Specifically,
we show that classical kinematics is definable from only the structure of
quantum kinematics and the scaling behavior of physical quantities in
quantum theories. We also present some preliminary results for dynamics
but leave a detailed discussion for future work.
).
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2 Given that we ultimately aim to construct definitions using algebraic objects,
the fit with the usual philosophical vocabulary—formulated in terms of the first-
order predicate calculus—will be rough. Nonetheless, we find the notion of
explicit definability instructive enough to make this imperfect fit worth using.
Moreover, we take our liberal usage of logical terminology to mirror that of
Butterfield (2011b). For a precise formulation of the notion in the usual logical
language, see Butterfield (2011a, p. 949).
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Our results lay the groundwork for a re-assessment of the explanatory
role of the classical limit. Again, we adopt a pluralist attitude towards this
role, one that has room enough for both eliminative reduction and Berry,
Bokulich, and Batterman's coordination of theoretical structures. That is,
we do not wish to critique these authors' positive contribution—we just
seek to show that they are tossing out the champagne with the cork. Still,
while our explicit definition of classical structure provides a kind
of explanation of that structure (i.e., a deductive-nomological one), an
opponent may reasonably demand a more telling explanation. In
particular, it is not immediately clear whether such definitions determine
the structure of classical physics from quantum physics alone. We argue
that this kind of structural determination relation does hold by using the
mathematical tools of category theory, building on previous philosoph-
ical applications of these tools to structural comparisons of theories
(Barrett, 2018; Halvorson, 2012; Hudetz, 2019b; Rosenstock et al., 2015;
Weatherall, 2016a, 2017). We use these tools to show how the physically
significant structure of quantum physics determines the physically sig-
nificant structure of classical mechanics.

The paper proceeds as follows. In x2, we discuss the philosoph-
ical debate over singular limits and pinpoint howwe aim to use the ℏ→ 0
limit to defuse two challenges that they pose to the eliminativist. In x3,
we introduce the tools of strict deformation quantization, which we will
use to analyze the relationship between classical and quantummechanics
in the ℏ → 0 limit. In x4, we summarize existence and uniqueness theo-
rems for the ℏ → 0 limit in this framework, theorems which we argue
provide definitions of classical kinematics without making prior refer-
ence to classical concepts. x5 provides a discussion of the corresponding
definitions for dynamics. The interlude in x6 summarizes the results thus
far, and the significance of our explicit definitions for the debate con-
cerning reduction. The remainder of the paper argues further that the
classical limit is explanatory in the sense that it determines the structure
of classical physics from that of quantum physics. In x7, we introduce the
tools of category theory to prepare for our remarks on the explanatory
status of the classical limit. In x8, we analyze a functor representing the
classical limit from a category of quantum theories to a corresponding
category of classical theories, characterizing features relevant to the
central issue of structural determination. Finally, we conclude in x9 with
further discussion of the philosophical interpretation of the technical
results.

2. Inter-theoretic reduction

This paper addresses whether classical mechanics reduces to quantum
mechanics—in particular, whether quantum theory can recover classical
physics without making prior reference to it. Such a reduction would
provide one way to do classical physics using only quantum-mechanical
tools. This project carries philosophical interest for eliminativists, i.e.,
those who follow Feyerabend (1981, pp. 44–96) in advocating that we
ought to eliminate reference to less-fundamental theories (at least in
some cases). The sort of eliminativist who interests us takes the terms of
classical physics to be vague, ill-defined, or otherwise unsatisfactory
within a quantum paradigm. Nonetheless, they recognize that the func-
tional role of these terms in physical practice is too fruitful to abandon
completely. We do not argue for eliminativism here—indeed, we remain
skeptical of the view's ultimate tenability. But the view is a serious and
interesting one, and mere skepticism is not an argument against it. So our
aim in this paper is to assess whether two prominent arguments against
eliminativism succeed.

These arguments arise from problems with so-called “singular limits”
(Batterman, 2002; Berry, 1994; Bokulich, 2008). We isolate two related
challenges that one might take such limits to pose. The first is that sin-
gular limits might render it impossible to define classical physics in a
particular way—namely, as describing the behavior of quantum systems
in an appropriate limit. The second is that such a definition (if possible)
might never, on its own, impart a proper understanding of the physics. We
will argue that neither challenge succeeds.
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2.1. Definability

To address the first challenge, we follow the familiar Quinean strat-
egy of explication (2013, pp. 239–240). This strategy aims to give an
explicit definition of each classical term using only quantum terms. Such a
definition amounts to an “if and only if” statement with a classical term
on one side and some expression using only quantum terms on the other.
In the language of philosophers, such a definition establishes that the two
expressions co-refer.2 As such, the quantum terms fully recover the
functional use of the classical ones. With such a definition in hand, an
eliminativist is free to claim that only quantum concepts have physical
meaning; one can recover the usage of the older theory's terms while
denying their physical significance.

As Butterfield (2011a) notes, such explicit definitions are precisely
what we use to establish Nagelian reductions (Nagel, 1961, 1998).
Suppose we have some “top-level” or less-fundamental theory Tt that we
wish to reduce to a “bottom-level” or more-fundamental theory Tb. Recall
that the Nagelian strategy seeks to deduce Tt from Tb in conjunction with
bridge laws that link the terms of the two theories. These laws may be
expressed as a set of explicit definitions, D, yielding the schema
(Butterfield, 2011b, p. 1096)

Tb ^ D ⇒ Tt: ðEÞ
Henceforth, we will refer to (E) as the eliminativist's schema. While we

take this schema to provide a useful and general framework, we do not
take it to give the final word on reduction.

In particular, (E) does not make clear how we ought to go about
deriving the top-level theory. One fruitful strategy in mathematical
physics aims to obtain the less fundamental theory as an asymptotic limit
of the more fundamental theory. Drawing inspiration from Nickles
(1973), we can view this strategy as an instance of the eliminativist's
schema. Roughly, Nickles substitutes the set D above with the limit of
some parameter ε in the bottom theory to obtain (Batterman, 2002, p. 18)
what we call Nickles' schema:

lim
ε→0

Tb ¼ Tt: ðE’Þ

While Nickles argues that instances of the schemas (E) and (E0) have
different philosophical functions, these differences will not matter for
what follows since both schemas may be used to capture explanations of
Tt from Tb (Nickles, 1973, fn. 4, p. 185). In our case where Tb is quantum
mechanics, Tt is classical mechanics, and ε ¼ ℏ, Nickles’ schema says that
the limit as ℏ→ 0 of quantummechanics is classical mechanics. So long as
the limiting procedure does not reference any classical terms, the schema
ought to satisfy the eliminativist.

Batterman, however, argues that Nickles's schema “fails to hold” for
classical and quantum physics (2002, p. 79). His argument goes roughly as
follows. Consider one straightforward way of defining classical states in
terms of quantum states: namely, by taking the ℏ → 0 limit of wave-
functions that solve the Schr€odinger equation. As Batterman notes in his
motivating example of the WKB approximation, it turns out that semi-
classical physics is often fruitfully approximated by wavefunctions of the
form ψ(x)¼ aeiS(x)/ℏ for some real-valued function S on configuration space
(and complex constant a). Such functions strictly diverge in the ℏ → 0 limit.
So, according to Batterman, Nickles' schema fails to hold: for these limits,
Batterman claims it is not the case that limε→0Tb ¼ Tt. On the contrary, only
small-ε solutions (or approximations thereof) matter for the physics.
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Batterman recognizes that, in the absence of convergence, he needs to
provide some other explanation for why “bottom up” constructions like
the ℏ → 0 limit ought to link up in any meaningful way with classical
physics. He suggests that reference to the classical theory ought to do the
justificatory work—explicitly, via the “top down” construction of wave-
functions of a similar form directly on the classical phase space (Batter-
man, 2002, pp. 103–104).3 If the recovery of classical concepts includes
these divergent cases—cases that require reference to classical concepts
for their justification—then it cannot provide the definitions the elimi-
nativist seeks.

We do not wish to criticize this explanatory strategy. We are staunch
pluralists about explanation: insofar as the co-ordination of top- and
bottom-level structures yields a powerful (and fruitful) explanatory strat-
egy, we are glad to add it to our toolkit! But when evangelizing the power
of this schema, is Batterman too quick to reject Nickles’ schema? There is
good reason to think so, as the argument above only appeals to one popular
limiting procedure. It seems well worth investigating whether other pro-
cedures yield convergent limits. Of course, convergence on its own is not
enough for the eliminativist. We will also have to check whether such
procedures succeed in avoiding reference to the classical theory.

It turns out that it is possible to construct strictly converging
ℏ→ 0 limits, but it is not immediately clear that such constructions satisfy
the eliminativist's needs. We have in mind Landsman's (1998a; 2007;
2013) definitions of convergent ℏ→ 0 limits using the framework of strict
deformation quantization. Landsman interprets these limits as deter-
mining the kinematics and dynamics of classical theories from those of
quantum theories.4 But couched in the above dialectic, it is easy to spot a
weakness in his approach that the anti-eliminativist may exploit:
Landsman refers to the classical theory in his construction of the
ℏ→ 0 limit. That is, a strict deformation quantization by definition (as we
shall see next) already explicitly contains a classical algebra of quantities
given by smooth functions on a Poisson manifold. So while Landsman's
reduction seems to satisfy Nickles' schema (E0), it is not clear that it
satisfies the eliminativist's schema (E), and hence it is not clear that it
provides what is necessary for eliminating reference to classical physics.

Our first contribution in the present work is to show how to modify
Landsman's ℏ → 0 reduction such that it satisfies the eliminativist's
schema (E). Using several results within the strict deformation quanti-
zation framework in Steeger and Feintzeig (2021), we show that refer-
ence to the classical theory is eliminable. Specifically, we show that
classical kinematics is explicitly definable from only the structure of
quantum kinematics and the scaling behavior of physical quantities in the
quantum theory. We demonstrate some preliminary results for the re-
covery of dynamics, but we leave a more detailed investigation—as well
as a discussion of states—for future work.5
2.2. Understanding

But our response to the challenges of “singular limits” cannot end
here. While Batterman (2002) does claim that Nickles' schema fails to
3 Landsman (2007) notes that this method has connections to an alternative to
strict quantization known as geometric quantization, which we will not treat
here. Note, as well, that we have switched Batterman's labels of “top down” and
“bottom up” to match Butterfield's “top” and “bottom” theories. After all:
“Sometimes down is up. Sometimes up is down. Sometimes, when you're lost,
you're found.”
4 See especially the discussion of the “two questions” in Landsman (2013,

p. 381).
5 Indeed, as shown by the WKB solution, states must be understood differently

to make sense of convergence in the ℏ → 0 limit. As Landsman (2013) shows, a
promising way forward is to understand states algebraically, i.e., directly on the
dynamical C*-algebra of interest. His work suggests that convergence results for
these states, where obtainable, will need to be formulated on a case-by-case
basis. See also Landsman (2007) for a discussion of the classical limit of WKB
states in terms of strict deformation quantization.
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hold, he may ultimately be less concerned with the schema's technical
feasibility than with the understanding that it can provide. This atti-
tude emerges most clearly in the conclusion of his argument against
the schema:

It seems that most investigators maintain a reductionist and even
eliminativist attitude toward classical physics given the many suc-
cesses of the quantum theory. Of course, it is just this attitude that I
have been at pains to question. […] Given that the understanding of
various observed and observable universal behaviors “contained in”
the finer theories ([e.g.,] quantum mechanics) requires reference to
structures present only in the coarser theories to which they are
related by asymptotic limits, it is indeed difficult to see how this
attitude can coherently be maintained. (Batterman, 2002, p. 111,
emphasis ours)

As we emphasize in the quote above, Batterman is chiefly concerned
about achieving adequate understanding of the physics. So even when we
find limiting relations and definitions satisfying the eliminativist's
schema, Batterman would presumably think that it could not engender
the right sort of understanding.

This point is helpfully clarified in a dialogue between Batterman and
Belot. Belot (2005) also notes that the mathematical formalism of the less
fundamental theory is often definable from the formalism of the more
fundamental theory (although he focuses on a different example of Bat-
terman's: geometrical and wave optics). Batterman (2005), however,
asserts in his response to Belot that definability is not his central concern.
He insists that what is at issue is the explanatory status of this relation-
ship. The motivation for investigating the relationship in the first place,
he claims, derives from the physical interpretation of extra information
(e.g., initial or boundary conditions) coming essentially from the less
fundamental theory. He writes:

Thus, although Belot's pure mathematician can be given initial con-
ditions and boundary conditions and be told to investigate the as-
ymptotics of the relevant partial differential equation, those initial
and boundary conditions are not devoid of physical content. They are
‘theory laden’. And, the theory required to characterize them as
appropriate for [the higher level phenomena] in the first place is the
[less fundamental theory]. The so-called ‘pure’ mathematical theory
of partial differential equations is not only motivated by physical
interpretation, but even more, one cannot begin to suggest the
appropriate boundary conditions in a given problem without appeal
to a physical interpretation. In this case, and in others, such sugges-
tions come from an idealized limiting older (or emeritus) theory.
(Batterman, 2005, p. 159)

Batterman emphasizes here that the issue of whether the more
fundamental theory yields understanding is distinct from the question
of whether the less fundamental theory is definable from it. He insists
that one requires a physical interpretation coming from the less
fundamental theory in order to motivate and understand the signifi-
cance of the appropriate conditions, operations, and analyses that lead
one to the less fundamental theory. He ultimately draws the following
moral:

The deeper issue here concerns questions about the nature of applied
vs. pure mathematics. I hold that the pure mathematician Belot en-
visages is mythical. In the context of partial differential equations, I
doubt very much that it is possible to separate the pure mathematics
from the physical interpretation. (Batterman, 2005, p. 163)

These responses help to identify common ground between Batterman
and Belot. Both seek an answer to the why-question, “Why this top-level
behavior?” Batterman demands that a relevant answer show how the
physically interpreted mathematical structure of the bottom-level theory
determines that of the top-level theory, and we take Belot to accept this
demand (charges of “pure mathematics” notwithstanding). However,



7 For further general discussion, see Halvorson and Tsementzis (2017) and
Halvorson (2019). We also mention two specific applications of
category-theoretic tools for internal aspects of interpretation. First, these tools
have been used in specifying the representational capacities of models (Fletcher,
2020; Weatherall, 2018). Second, and relatedly, such interpretive information
helps us settle questions concerning when two formulations of a theory are
equivalent (Barrett, 2019; Rosenstock et al., 2015; Rosenstock & Weatherall,
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these responses also suggest a sense in which Batterman and Belot might
be interested in different interpretative tasks.

Following Dewar (2017), we take physical interpretation to involve at
least two tasks: the “internal” task of identifying which bits of mathe-
matical structure are physically significant, and the “external” task of
specifying what they are significant for. The external task is so-called
because it requires specifying some connections between the theory
and the world, between the theory and experiments, or between the
theory and particular sets of data.

We take the distinction between internal and external aspects of
interpretation to be a fuzzy one. Sometimes, what seems like an external
interpretive task can be partly accomplished through internal means.
(We will give an example of this later by encoding the units of physical
quantities, which one might well take to be a part of the external inter-
pretation of a theory, in terms of the internal structure of a mathematical
object, viz., a bundle of C*-algebras.) Nonetheless, this fuzzy distinction
is useful for sharpening the question of whether an eliminative classical-
to-quantum reduction is possible.

There is reason to believe that the internal aspects of interpretation
are what are at issue in Batterman's opposition to classical-quantum
reduction, but we do not wish to make the strong claim that Batterman
only has internal aspects of interpretation in mind. Indeed, one might
plausibly take external tasks to be the root of Batterman's disagreement
with Belot over the case of geometrical and wave optics. For example,
onemight couple the idea that observations are “theory laden” to a causal
theory of reference, thereby rendering reference to the classical theory an
analytic consequence of terms at play. Very roughly, a reader with this
view might note that the “spherical boundary conditions” imposed on
raindrops originated in the classical theory and conclude that theory is an
ineliminable part of term's reference. These philosophical commitments
squarely concern what the mathematical structures of the relevant the-
ories are physically significant for. We do not wish not to challenge such
commitments. We merely wish to note that they are substantial and
largely separable from internal tasks.6 By focusing on internal aspects of
interpretation, we ask whether reduction is possible while avoiding one
way of ruling it out from the start—namely, with philosophical views that
are (plausibly) relegated to external aspects.

At the very least, we hope that this sharpening of the question pin-
points a part of Batterman's view that needs further elaboration: precisely
which aspects of the interpretation of classical physics he thinks are
necessary for the explanation of interest. Regardless of how that view
shakes out, it at least motivates the question of whether the internal as-
pects of the interpretation of classical physics can be determined by the
internal aspects of the interpretation of quantum physics. That question is
where our present interest lies.

Note well that on our pluralist approach, an affirmative answer to this
question would afford one good explanation of classical behavior among
many. On our approach, the reader is free both to view quantum theory
as fundamental and to accept that classical theory offers explanatory
value. We are thus sympathetic to a view that Bokulich articulates in
response to criticisms from Belot and Jansson (2010) (that are similar to
the ones that Belot levies against Batterman, above):

Even though classical mechanics is not the true fundamental theory,
there are important respects in which it gets things right, and hence
reasoningwith fictional classical structures within the well-established
confines of semiclassical mechanics, can yield explanatory insight and
deepen our understanding. (Bokulich, 2017, p. 206)

We agree that classical structures can yield unique explanatory
insight. But we are omnivorous (and gluttonous). We would be loathe to
6 Another example of an external commitment that might obscure the internal
question is provided by a (broadly) Bohrian approach measurement—i.e., one
that requires macroscopic observables to be rendered in classical terms. For a
modern discussion of such an approach, see Landsman (2007, 2017).
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leave a good reduction on the table. So if Bokulich endorses the claim
that Nickels's schema cannot provide an adequate understanding of the
classical limit (as one might read her (2008) as doing), then our views
diverge.

To show that it can, we make the internal aspects of interpretation
explicit with the language of category theory. As Dewar (2017) notes,
internal tasks can be aided, if not accomplished, by specifying when
apparently mathematically distinct models encode the same physically
significant information (in an appropriate sense). The choice of category
theory for this task is inspired by fruitful recent work applying the tool to
a host of questions in philosophy of science. Halvorson (2012) and
Weatherall (2017), for example, have argued that we should often un-
derstand physical theories not as mere collections of mathematical
models, but rather as coming with further information encoded in re-
lations between models. Their proposal amounts to representing physical
theories by categories, which include information about the embedding
and equivalence relationships among models.7

Category theoretic tools for encoding interpretations of physical
theories also provide the information needed to settle questions con-
cerning definability relations and structural comparisons between the-
ories (Barrett, 2018). As such, they offer a precise and general framework
in which to pursue the questions raised by the Batterman–Belot debate.
However, there has not yet been extensive work applying these mathe-
matical tools to questions concerning intertheoretic reduction.8 In what
follows, we hope to provide just a start to this project of bringing the
literature on reduction together with that on the structure and inter-
pretation of theories using the tools of category theory.

We wish to offer two caveats before proceeding to our contributions.
First, it will suffice for our purposes to note that “explicit definitions” in
the language of propositional logic and “structural determination” in the
language of category theory are somehow similar but have different
strengths. Namely, the former makes clear how our Quinean sub-
stitutions work, and the latter makes clear a precise sense in which these
substitutions amount to removing structure from the quantum theory.
However, the precise relationship between these approaches is fasci-
nating in its own right, and it has been explored thoroughly elsewhere
(e.g., by Barrett (2018) and Hudetz (2019a)). For example, our notion of
“structural determination” fits rather closely with Hudetz's (2019a)
notion of a definable functor (although we will not put our results in these
terms). As Hudetz shows (2019a, Theorems 1-3), in some cases, explicit
definability of one theory from another either implies or is implied by a
functorial relation between the theories' categories of models. In our case
of the ℏ → 0 limit, it is likewise true that all of the structural and func-
torial comparisons we make between classical and quantum physics
follow from our explicit definitions of classical concepts from quantum
concepts. Rather than exploring this relationship, however, we instead
want to highlight that the language of category theory helps address a
substantive further philosophical question: namely, whether the defini-
tions of classical concepts are somehow unnatural. One might worry that
the definitions might somehow depend implicitly on structure beyond
that of quantum theory in a way that is hidden in their syntactic pre-
sentation. Categorical language helps to emphasize that, on the contrary,
2016; Weatherall, 2016a). These investigations have now given rise to an entire
segment of the literature discussing proposed analyses of theoretical equivalence
when using categories to represent scientific theories (Barrett & Halvorson,
2016; Hudetz, 2019b; Weatherall, 2020).
8 Notable recent exceptions include List (2019); Dewar et al. (2019); Feintzeig

(2019).
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the internal task of specifying which classical structures are physically
significant need only depend on the structure of the quantum theor-
y—and so this worry is unfounded.

Second, while we will show that the general structure corre-
sponding to the interpretation of classical physics can be determined
by the structure of quantum physics, we will make no effort to connect
this general classical structure to the features of chaotic quantum
systems that Batterman is primarily concerned with. Specifically,
Batterman suggests that what is needed to explain semiclassical trace
formulae for such systems is knowledge of the periodic solutions to the
classical equations of motion (Belot, 2005, x4 and online Appendix).
Recall, however, that we do not seek to invalidate Batterman's
explanatory strategy, but rather to identify one place where his
negative argument against reduction fails. We hope that a reductive
explanation can also be found for chaotic systems, but it would require
a significant digression to a very different technical setting. In the
spirit of biting off an amount that can be reasonably chewed, we
restrict our attention to the general question about the structural
relation between classical and quantum physics—a question which is
still at play in Batterman's work and which is interesting in its own
right. We believe it is worthwhile to treat this general structural
relation, even without knowing its precise bearing on the chaotic
systems Batterman cares most about.

Those caveats out of the way, we turn to the mathematical pre-
liminaries needed to state our contributions precisely.

3. Mathematical preliminaries

To respond to Batterman's claims about the classical limit, we must
look in detail at its mathematical formulation. Our approach to the ℏ → 0
limit uses the modern mathematical tools of strict deformation quanti-
zation. Before defining this concept, we recall that the background for
strict deformation quantization is the algebraic formulation of physical
theories. On this approach, we represent the physical quantities of a
system with elements of a C*-algebra.9 A C*-algebra A is an associa-
tive, involutive, complete normed algebra satisfying the C*-identity:
kA*Ak ¼ kAk2 for all A 2 A. The canonical examples of C*-algebras are
commutative algebras of bounded functions on a locally compact topo-
logical space and possibly non-commutative algebras of bounded oper-
ators on a Hilbert space. We employ commutative algebras of functions
on a classical phase space in classical physics and non-commutative al-
gebras of operators satisfying a version of the canonical (anti-) commu-
tation relations in quantum theories. Thus, using C*-algebras provides a
unified framework for investigating the relationship between classical
and quantum theories. With this background in place, we can use
C*-algebras to analyze the classical limit.
10 Rieffel (1989, 1993) uses this approach to define a “deformed” product on
the classical algebra, which he uses in turn to specify the quantization condi-
3.1. Strict deformation quantization

A strict quantization provides extra structure to “glue together” a
family of C*-algebras indexed by the parameter ℏ, as follows.

Definition 1. (Landsman, 1998a). A strict quantization of a Poisson
algebra ðP; f�; �gÞ consists in a locally compact topological space I⊆R
containing 0, a family of C*-algebras ðAℏÞℏ2I and a family of linear
quantization maps ðQℏ : P → AℏÞℏ2I . We require that P⊆A0, Q0 is the
inclusion map, and for each ℏ 2 I,Qℏ½P� is norm dense inAℏ. Further, we
require that the following conditions hold for all A;B 2 P:
9 We will not review the basic theory of C*-algebras here. Instead, we refer the
reader to Sakai (1971), Dixmier (1977), Kadison and Ringrose (1997), and
Landsman (2017). See Bratteli and Robinson (1987, 1996) and Haag (1992) for
the C*-algebraic approach to quantum physics. See also Clifton and Halvorson
(2001), Halvorson (2007), and Ruetsche (2011) for introductions intended for a
philosophical audience.
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(i) Von Neumann’s condition. limℏ→0kQℏðAÞQℏðBÞ � QℏðABÞkℏ ¼ 0;
(ii) Dirac’s condition. limℏ→0k i

ℏ ½QℏðAÞ;QℏðBÞ� � QℏðfA;BgÞkℏ ¼ 0;

(iii) Rieffel’s condition. the map ℏ 7! kQℏðAÞkℏ is continuous.

A strict deformation quantization is a strict quantization that satisfies
the additional requirement that for each ℏ, Qℏ½P� is closed under
multiplication and is nondegenerate, i.e., QℏðAÞ ¼ 0 if and only if
A ¼ 0.10

We can use a strict deformation quantization to represent the classical
limit of a quantum theory whose kinematics is represented by Aℏ for
some ℏ > 0. In many of the examples of physical interest, Aℏ is
*-isomorphic to Aℏ

0 for any ℏ, ℏ0 > 0 and so one could take any of the
algebras away from ℏ ¼ 0 to represent the kinematics of the quantum
theory. Feintzeig (2020) argues that given a classical quantity A 2 P, we
can understand QℏðAÞ and Qℏ

0 ðAÞ for ℏ 6¼ ℏ0 > 0 to represent the same
physical quantity in the quantum theory in different systems of units,
namely units in which Planck's constant takes on either the value ℏ or ℏ0,
respectively. It is in this sense that a strict deformation quantization
carries not only the structure of the quantum kinematics (encoded in the
algebra Aℏ), but also information about what we call the scaling behavior
of the quantum system. One can understand this scaling behavior as
arising from a partial interpretation of the abstract elements of a
C*-algebra that assigns them to unitful physical quantities. A strict
deformation quantization provides substantive and physically significant
relationships between algebras at different values of ℏ—information
encoded in the quantization maps, which “glue” the algebras together.

This interpretation motivates us to understand the classical limit of a
quantity QℏðAÞ in Aℏ in the quantum theory to be the classical quantity
A 2 P. Similarly, we can take classical limits of states by defining a
continuous field of states as a family of states ωℏ 2 SðAℏÞ for each ℏ 2 I
such that the map ℏ 7! ωℏðQℏðAÞÞ is continuous for each A 2 P. In this
case, the classical limit of such a continuous field of states is understood
to be the classical state ω0 2 SðA0Þ. Thus, a strict deformation quanti-
zation provides enough structure to represent the classical limits of states
and quantities in quantum theories. In the present paper, we will mostly
ignore classical limits of states and restrict our focus to constructing
explicit definitions of kinematical observables and their associated dy-
namics. We leave a more thorough treatment of states for future work.11

In general, there may be different strict deformation quantizations of
the same Poisson manifold. If two strict quantizations Qℏ and Q0

ℏ of a
given Poisson algebra P employ the same family of C*-algebras, but
possibly differ in their quantization maps, then the quantizations are
called equivalent just in case

lim
ℏ→0

��QℏðAÞ � Q0
ℏðAÞ

��
ℏ
¼ 0 (1)

for all A 2 P. Equivalent quantizations share the same behavior in the
limit as ℏ → 0. One can encode this common behavior in a further object,
variously called a continuous bundle or field of C*-algebras, which itself
has enough structure to understand the classical limits of quantities and
states. We will work with a recent treatment of bundles of C*-algebras
due to Steeger and Feintzeig (2021), designed to analyze the cases of
interest in this paper.
tions. Our goal is to work in the opposite direction, defining the elements of the
classical algebra using information away from ℏ ¼ 0. We will mostly ignore the
deformation condition, but still refer to strict deformation quantizations to
distinguish them from other approaches like geometric quantization.
11 Note, however, that there is a close connection between the satisfaction of
Rieffel's condition in a strict quantization and the existence of a continuous field
of states converging to each classical state. See the proof of Thm. 4 in Landsman
(1993, p. 33).
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3.2. Bundles of C*-Algebras

The maps ½ℏ 7! QℏðAÞ� for each A 2 P are clearly significant in the
structure of a strict deformation quantization. However, for many pur-
poses it suffices to deal with any map from values of ℏ 2 I to observables
in algebras Aℏ that is suitably continuous. A bundle of C*-algebras takes
these continuous maps as primary (themselves forming a C*-algebra) and
forgets the particular quantization map that generates them. We define
these bundles now. In what follows, UCb(I) denotes the collection of
uniformly continuous and bounded functions on a metric space I.

Definition 2. (Steeger and Feintzeig, 2021). A uniformly continuous
bundle of C*-algebras12 over a metric space (I, d) is a family of
C*-algebras ðAℏÞℏ2I , a C*-algebra A called the collection of uniformly
continuous sections, and a family of *-homomorphisms ðφℏ : A → AℏÞℏ2I
called evaluation maps, which we require to satisfy the following
conditions:

(i) Fullness. Each evaluation map φℏ is surjective and the norm of each
a 2 A is given by kak ¼ supℏ2Ikφℏ(a)kℏ.

(ii) Uniform completeness. For each f 2UCb(I) and a 2 A, there is an
element fa 2 A such that φℏ(fa) ¼ f(ℏ)φℏ(a).

(iii) Uniform continuity. For each a 2 A, the function Na: ℏ7!kφℏ(a)kℏ is
in UCb(I).

In general, we will restrict our attention to uniformly continuous
bundles of C*-algebras whose base space is a locally compact metric
space. We will often think of the C*-algebras Aℏ as fibers above the
values ℏ 2 I, hence forming a bundle structure over I. A uniformly
continuous bundle of C*-algebras determines the continuity structure of
the bundle by specifying the collection A of uniformly continuous sec-
tions through the bundle.

It follows from a result of Landsman (1998a, Theorem 1.2.4, p. 111)
that, given a strict quantization, there is a unique uniformly continuous
bundle of C*-algebras containing among its sections the curves traced out
by the quantization maps as ℏ varies. More formally: given a strict
quantization ððAℏ;QℏÞℏ2I ; PÞ, there is a unique uniformly continuous
bundle of C*-algebras ððAℏ;φℏÞℏ2I ;AÞ such that for each A 2 P, there is a
continuous section a 2 A with φℏðaÞ ¼ QℏðAÞ for all ℏ 2 I. We can thus
speak of the uniformly continuous bundle generated by a strict quanti-
zation. Moreover, Landsman's theorem shows equivalent quantizations
generate the same bundle. In this sense, the bundles encode an invariant
structure among different quantization maps capturing the same
behavior in the ℏ → 0 limit.13

The association of a C*-algebra of uniformly continuous sections in
this definition allows one to use many familiar tools to analyze such
bundles. In the next section, we will formulate our central question about
quantum mechanics recovering its classical limit as follows. Suppose one
knows the quantum kinematics for ℏ > 0 but has no knowledge of the
corresponding classical kinematics, i.e., suppose one has a bundle of C*-
algebras ððAℏ;φℏÞℏ2ð0;1�;AÞ over the base space consisting only of
parameter values ℏ > 0. Under what conditions is there a unique algebra
A0 that, when appropriately glued to the given bundle of algebras, pro-
vides an extended continuous bundle?

Before proceeding to make this question precise and provide an
answer, we mention one more definition we will use. In what follows, we
will also need to use a notion of morphism, or structure-preserving map,
between uniformly continuous bundles of C*-algebras, which we define
12 Steeger and Feintzeig (2021) establishes an equivalence between a category
of uniformly continuous bundles of C*-algebras and categories of models spec-
ified by other related definitions of bundles of C*-algebras, including continuous
fields of C*-algebras (Dixmier, 1977) and (vanishingly) continuous bundles of
C*-algebras (Kirchberg & Wasserman, 1995).
13 See also Steeger and Feintzeig (2021) for more detail on the functorial
determination of a bundle of C*-algebras from a strict deformation quantization.
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as follows. First, recall that a metric map α: I→ J is one satisfying dJ(α(x),
α(y)) � dI(x, y) for all x, y 2 I, where dI and dJ are the metrics on I and J,
respectively. A homomorphism σ : AI → BJ between uniformly continuous
bundles of C*-algebrasAI ¼ ððAℏ;φI

ℏÞℏ2IÞ;A) and BJ ¼ ððBℏ;φJ
ℏÞℏ2JÞ;B) is

a pair of maps

σ ¼ ðα; βÞ; (2)

where α: I→ J is a metric map, β : A → B is a *-homomorphism, and the
following condition of compatibility is satisfied: for all a1; a2 2 A and ℏ 2
I, if φI

ℏða1Þ ¼ φI
ℏða2Þ, then φJ

αðℏÞðβða1ÞÞ ¼ φJ
αðℏÞðβða2ÞÞ. The condition of

compatibility between α and β ensures that β preserves fibers in the sense
that it defines, for each ℏ 2 I, a *-homomorphism from the fiberAℏ to the
fiber BαðℏÞ. A homomorphism of bundles σ ¼ (α, β) is an isomorphism if α
is an isometry and β is a *-isomorphism.

In the next section, we will use uniformly continuous bundles of
C*-algebras to analyze the existence and uniqueness of limits of families
of C*-algebras, of which the classical limit is one example.

4. Existence and uniqueness of the classical limit

Recall from x2.1 that one aspect of the question of whether classical
mechanics reduces to quantum mechanics concerns whether classical
physics is explicitly definable from quantum physics. One way to
formulate this issue mathematically is to ask after the existence and
uniqueness of a classical limit given only a quantum theory for ℏ > 0.

We formulate the problem of the existence and uniqueness of the
classical limit as follows. Suppose one has a strict deformation quanti-
zation of a Poisson manifold over the base space given by the closed
interval I¼ [0, 1]. This structure, and its associated uniformly continuous
bundle of C*-algebras A½0;1�, can be used to represent the ℏ → 0 limit of
the quantum theory whose kinematics is represented by the algebraAℏ at
the fiber ℏ ¼ 1 of A½0;1�. But we seek to answer Batterman's challenge (or
one aspect of it) to provide a formulation of the classical limit that does
not make prior reference to the classical theory. As such, we want to
consider the case where we begin with only information about the
quantum theory and no information about the corresponding classical
limit. In other words, suppose we are given only the restriction of our
uniformly continuous bundle of C*-algebras to a bundle over the base
space given by the half-open interval (0, 1]. One can always canonically
restrict a bundle of C*-algebras over the base space J to a base space I if
one is given a metric embedding α: I→ J. The restriction simply removes
the fibers outside of α[I] and truncates continuous sections from J to α[I]
⊆ J (See Steeger and Feintzeig (2021) for more details.). In particular,
one can use the natural inclusion map α: (0, 1] → [0, 1] to define a
restricted bundle Að0;1� over the base space (0, 1] resulting from a strict
deformation quantization as above. Such a restricted bundle represents
only the information in the quantum theory for ℏ> 0 with no reference to
the corresponding classical theory at ℏ ¼ 0.

Given such a restriction, our questions are: can one reconstruct the
C*-algebra of classical quantities A0 from this restricted continuous
bundle? And can one continuously glue A0 to the restricted bundle in a
way that recovers the original information about the ℏ → 0 limit? We
answer both questions in the affirmative. The result is a two-step pro-
cedure for constructing explicit definitions of classical concepts from
quantum ones, which we call “extension-and-restriction”. Starting with a
bundle representing only quantum theory and scaling information for ℏ
> 0, we (uniquely) extend the bundle to one containing information at
the privileged accumulation point ℏ ¼ 0; then we (uniquely) restrict this
new bundle to the fiber algebra ℏ ¼ 0 to exactly recover the classical
theory.

We pause here to respond to a potential objection to the philosophical
relevance of this extension-and-restriction procedure for intertheoretic
reduction. A supporter of the anti-reductionist view might object that
understanding a quantum theory to come with the structure of a



15 We have only here dealt with one example of a bundle of C*-algebras using
the Weyl algebra. We believe this reasoning about rescaling units of physical
quantities should generalize, not to arbitrary bundles of C*-algebras, but to
those bundles that can be used to represent quantum systems.
16 We use the term “dense embedding” above to mean something slightly
different for α and for β. For α to be a dense embedding, it must be an isometric
isomorphism between its domain and its image (equipped with the subspace
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uniformly continuous bundle of C*-algebras already smuggles in the
structure of classical physics. After all, as discussed in x3, the algebra of
uniformly continuous sections is typically determined by a quantization
map, whose definition itself relies on prior knowledge of a classical
theory and its algebraic structure.

We concede that the algebra of continuous sections, and hence the
continuity structure of the associated bundle, are typically defined via a
quantization map, and that if the continuity structure relied on the
quantization map, then this would pose a problem for our view of the
reductive classical limit. However, we believe this objection fails because
the continuity structure does not rely on a quantization map. Another
way of putting the point is to recall our earlier remarks that we are
focused on recovering internal aspects of the interpretation of classical
physics from internal aspects of the interpretation of quantum physics. To
accomplish this task, we are free to stipulate that the continuity structure
of the bundle is physically significant straightaway.

Nonetheless, we would like to motivate this choice, and we would like
to do so without referencing the classical theory. At the very least, we can
motivate it by noting that the particular quantization map (out of a family
of equivalent quantization maps) used to take the classical limit is not
physically significant as long as one has the continuity structure of a bundle
of C*-algebras. But, ideally, we would prefer to avoid reference to quan-
tization maps altogether. Thus, we now argue for one sense in which the
invariant bundle structure is physically significant within quantum theory
itself. Specifically, we show that the continuity structure of a bundle of C*-
algebras over (0, 1] representing quantum theories for ℏ > 0 can be
physically motivated (externally) and defined (internally) with no refer-
ence to or dependence on a classical theory or quantization map.

The basic point comes from the interpretation provided by Feintzeig
(2020) of the classical limit. As such, we will use the example employed in
that paper of the classical limit of the Weyl algebra14 for a system with
classical phase space R2n. We start with an external task: following Feint-
zeig, we interpret different numerical values ℏ 6¼ ℏ0 2 (0, 1] as the values of
Planck's constant in different systems of units. On this interpretation, the
numerical values of quantities like position Q and momentum P are like-
wise rescaled in different systems of units. The Weyl algebra has a basis
constituted by elements W(a, b) for a; b 2 R2n understood (at least in
regular representations) as related to position and momentum by

Wða; bÞ � eiða �Qþb �PÞ:

This relationship motivates the commutation relations for the Weyl
algebra from the canonical commutation relations for Q and P. And more
importantly for our purposes, this relationship allows us to understand
how the quantities W(a, b) are rescaled in different systems of units.
Feintzeig (2020) argues from dimensional analysis that changing from
units in which Planck's constant takes on the value ℏ0 2 (0, 1] to units in
which Planck's constant takes on the value ℏ 2 (0, 1] yields the change

eiða �Qþb �PÞ 7! ei
�
a

ffiffiffiffiffiffiffi
ℏ=ℏ

0p
�Qþb

ffiffiffiffiffiffiffi
ℏ=ℏ

0p
�P
�
;

which can be represented in the Weyl algebra as the change

Wða; bÞ 7! W
� ffiffiffiffiffiffiffiffiffiffi

ℏ=ℏ
0

q
� a;

ffiffiffiffiffiffiffiffiffiffi
ℏ=ℏ

0
q

� b
�
:

On the interpretation of different values of Planck's constant as cor-
responding to different systems of units, then, for each a; b 2 R2n, we
should understand the one-parameter family generated from ℏ0 ¼ 1 and
varying ℏ 2 (0, 1] to be a continuous section of a corresponding bundle of
Weyl algebras. In other words, this interpretation motivates our choice
for an internal task—namely, our specification of a particular continuity
14 See, e.g., Clifton and Halvorson (2001) or Petz (1990) for background on the
Weyl algebra, which is one particular C*-algebra used to represent quantum
theories.
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structure as a physically significant one. Explicitly, one should stipulate
that the maps

ℏ 2 ð0; 1� 7! W
� ffiffiffi

ℏ
p

� a;
ffiffiffi
ℏ

p
� b
�

are continuous sections and use them to generate a C*-algebra of
continuous sections. In fact, Feintzeig (2020) proves that this gives rise to
the same continuity structure for a bundle of Weyl algebras as the stan-
dard Weyl or Berezin quantization maps, which employ a classical,
commutative algebra (Binz et al., 2004). However, since the motivation
and construction just outlined do not employ the classical Weyl algebra
or a quantizationmap, this shows that thinking about rescalings of values
of quantities with changes of units is enough to motivate and determine
the continuity structure of a bundle over (0, 1] from only the physical
information encoded in a quantum theory and its unitful scaling
behavior. Of course, the scaling behavior encoded in the continuity
structure of the bundle is extra information not contained in the
Weyl algebra itself; however, we take the scaling behavior to be
well-motivated by the physical interpretation of the Weyl algebra as it
represents quantities in a quantum theory alone, without any consider-
ation of its corresponding classical limit.15

Asflagged in x2.2, what we have done here is takewhat onemight view
as an external aspect of the interpretation of quantum physics—the units of
physical quantities—and encoded at least a part of this inter-
pretation—namely, how quantities with related units rescale—internally
in the mathematical structure of bundles of C*-algebras, which we use to
represent a quantum theory. We think that this interpretation and math-
ematical structure are appropriately treated as part of quantum theory
alone, with no reference to classical physics. We hope this small digression
also serves to clarify just what physical interpretation we are presupposing
when we begin with a uniformly continuous bundle of C*-algebras.

Thus, we believe that one can understand bundles of C*-algebras over
(0, 1] to represent the structure of quantum theories alone. And so, the
question of the existence and uniqueness of extensions to the larger base
space [0, 1] takes on immediate philosophical relevance. The existence
and uniqueness results that we now summarize for such bundle exten-
sions obtain in full generality for the case where the base space I is an
arbitrary locally compact metric space. Such general results then
apply immediately to the case where the base space is either I ¼ (0, 1] or
I ¼ f1 =N jN 2 Ng, which are the most typical base spaces used in
analyzing limits of quantum theories. As such, we define a general notion
of extension.

Definition 3. Let AI ¼ ððAℏ;φI
ℏÞℏ2I ;AÞ and BJ ¼ ððBℏ;φJ

ℏÞℏ2J ;BÞ be
uniformly continuous bundles of C*-algebras over a locally compact
metric spaces I and J, respectively.

� BJ is an extension of AI if there is a monomorphism of uniformly
continuous bundles of C*-algebras σ : AI → BJ , i.e. a homomorphism
σ ¼ (α, β), where α and β are both injective.

� BJ is a minimal extension of AI if, moreover, α and β are both dense
embeddings.16
topology) and its image must be dense in J (equipped with the metric topology).
Sometimes we will call α a “dense, isometric embedding” for emphasis;
although, note that we do not require α to be bijective. For β to be a dense
embedding, nothing more is required other than that its image must be dense in
B (according to the algebra's norm)—this condition, in conjunction with
injectivity, makes β a *-isomorphism (Kadison & Ringrose, 1997, p. 243).



J. Steeger, B.H. Feintzeig Studies in History and Philosophy of Science 88 (2021) 263–279
In either case, we say that the extension BJ is associated with α via σ.

We are especially interested in minimal extensions, since these
encompass the extension from the base space (0, 1] to [0, 1], thus con-
taining ℏ ¼ 0. Thankfully, one can show that a minimal extension is
guaranteed to exist for any accumulation point of interest.

Theorem 1. (Steeger and Feintzeig (2021)) LetAI ¼ ððAℏ;φI
ℏÞℏ2I ;AÞ be

a uniformly continuous bundle of C*-algebras over a locally compact metric
space I. Suppose α: I → J is a dense, isometric embedding. Then there exists a

minimal extension eAJ of AI associated with α.

We provide a summary of the construction here for use in our con-
ceptual discussion. The idea of the construction of eAJ is to define a C*-
algebra Aj for each j 2 (J \ α[I]) and then glue these algebras to the
original fibers, as follows.

� Definition of fibers. For each j 2 (J \ α[I]), consider a Cauchy net (iδ) in I
such that α(iδ) converges to j in J. Define Kj as the collection of
continuous sections a 2 A such that limiδ→jkφI

iδ ðaÞkiδ ¼ 0. It turns out
that Kj is a closed two-sided ideal in A, which allows us to define the
fiber C*-algebra by Aj :¼ A=Kj.

� Gluing new fibers to the bundle. One can keep the same collection of
sections A (and so β is dense, as it is the identity map). Define new
maps φJ

j , which are the same as φI
j when j 2 α[I] and give the

appropriate limits when j 2 (J \ α[I]). The appropriate limit turns out
to be φJ

j ðaÞ ¼ ½a�Kj
, where ½a�Kj

2 A=Kj is the equivalence class cor-

responding to a 2 A.

The result is a uniformly continuous bundle of C*-algebras eAJ as
desired. Hence, a minimal extension exists for any given “completion” of
the parameter space with an accumulation point of interest.

However, in order to use this minimal extension to talk of the classical
theory defined by quantum theory, we require something further: a clear
sense in which this extension is unique. It turns out that all minimal
extensions associated with a dense embedding α are isomorphic to each
other—and so it makes good sense to talk of both the minimal extension
of a bundle and the classical theory that it defines.

Theorem 2. (Steeger and Feintzeig (2021)) Let AI be a uniformly
continuous bundle of C*-algebras over a locally compact metric space I.
Suppose that BJ and CJ are two minimal extensions of AI associated with a
given dense, isometric embedding α: I → J. Then BJ and CJ are isomorphic as
uniformly continuous bundles of C*-algebras.

Theorems 1 and 2 together allow us to refer to eAJ as the minimal
extension of a uniformly continuous bundle of C*-algebras AI associated
with a given dense embedding α: I→ J. Moreover, Theorem 2 allows us to
refer to the algebra Aj as the algebra at the accumulation point j 2 (J \
α[I]). We will do so for the remainder of the paper. In particular, to
represent the classical limit of a quantum theory we can set I ¼ (0, 1],
J ¼ [0, 1], and look at the minimal extension associated with the inclu-
sion map α: (0, 1] → [0, 1].

5. Explicit definitions

5.1. Kinematics

The construction underlying the existence and uniqueness of bundle
extensions leads immediately to explicit definitions of classical kinematic
concepts in terms of quantum kinematics through the classical limit. The
recipe for building these definitions is present in our sketch of the proof
of Theorem 1, but it is instructive to fill it in. To keep things general,

suppose that eAJ is the minimal extension of AI for α with the privileged
point 0 2 J \ α[I]. Given quantities in the quantum theory whose scaling
behavior is described by sections a; b 2 A, we explicitly define the
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classical limits of a and b as elements A, B of A0 with definitions and
algebraic operations given by

A :¼ ½a�K0
B :¼ ½b�K0

Aþ B :¼ ½aþ b�K0

A �B :¼ ½a � b�K0

c �A :¼ ½c � a�K0

A* :¼ ½a*�K0

�
D1

�

for c 2 C. The limit construction shows that physical information at ℏ >

0 contains enough information to uniquely fix kinematical quantities and
their algebraic relations at ℏ ¼ 0—and such a construction is precisely
what one needs to give explicit definitions like the ones above.

In addition to defining the algebraic structure of observables at ℏ ¼ 0,
our setup can also be used to define the classical Poisson bracket.
Consider any pair of sections a; b 2 A and suppose that there exists a
section fa; bg 2 A such that

lim
ℏ→0

���� i
jℏj ½ϕℏðaÞ;ϕℏðbÞ� � ϕℏðfa; bgÞ

����
ℏ

¼ 0; (3)

where we define |ℏ| as the distance between ℏ and 0 using the metric of J.
Note, in particular, that if the minimal extension is generated by a strict
quantization, then {a, b} is guaranteed to exist for each pair A, B in the
domain P⊆A0 of the quantization maps. We may now define a partial
binary operation on A0 using just the information in AI by

fA;Bg :

¼
� ½fa; bg�K0

if an fa; bg 2 A satisfying ð3Þ exists;
undefined otherwise:

�
D2

�
Note that the operation {⋅, ⋅} is a Poisson bracket where it is defin-

ed—it is anticommutative and bilinear, and it satisfies both Leibniz's rule
and the Jacobi identity (all properties that it inherits from the commu-
tator on the algebra of uniformly continuous sections). Clearly, in the
case that the minimal extension is generated by a strict quantization, {A,
B} recovers the usual Poisson bracket structure of the Poisson algebra P.
Thus, the information encoded in the commutator of the quantum theory
allows us to explicitly define the Poisson bracket on the algebra of clas-
sical observables.

So far, we have shown that one can use the information encoded in a
quantum theory along with its scaling behavior for ℏ—formalized using
uniformly continuous bundles of C*-algebras—to explicitly define the
classical kinematics—formalized in the algebraic structure of a commu-
tative C*-algebra and a Poisson bracket. Next, we show that under suit-
able conditions, one can furthermore explicitly define the classical
dynamics from a given quantum dynamics without prior reference to the
classical theory.

5.2. Dynamics

Our general strategy for constructing explicit definitions of classical
dynamics mirrors that for kinematics. We start with dynamics on all
quantum systems in a uniformly continuous bundle satisfying the mini-
mal requirement that these dynamics scale continuously with ℏ. Then we
repeat our two-step extension-and-restriction procedure from before.
That is, we first extend the dynamics on the entire bundle to a dynamics
on the unique extended bundle with a privileged accumulation point
guaranteed by Theorems 1 and 2. Then we restrict the dynamics on the
extended bundle to the fiber algebra at that privileged point. Although
this construction is abstract and general, wewill show that for a relatively
broad class of systems, it reproduces the standard classical Hamiltonian
dynamics.

To start, we treat dynamics as maps taking observables at an initial
time to observables at some later time t while preserving their algebraic
relations—that is, we view dynamics as (at the very least) encoded in a
one-parameter automorphism group ðτt : C → CÞt2R for an algebra of
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interest C. These automorphisms may be generated by some classical or
quantum Hamiltonian, but we will not demand that they be so for the
moment. Suppose again that AI ¼ ððAℏ;φI

ℏÞℏ2I ;AÞ is a uniformly
continuous bundle of C*-algebras and allow ðτt;ℏÞt2R to denote the dy-
namics on each fiber algebra Aℏ. To enforce that these dynamics scale
continuously with ℏ, we require that they lift to an automorphism group
on the algebra of sections. That is, we require the existence of a one-
parameter automorphism group ðτtÞt2R on A satisfying

τt;ℏ ∘ ϕI
ℏ ¼ ϕI

ℏ ∘ τt for all ℏ 2 I; t 2 R: (4)

This is just the requirement that we are considering (in some sense)
the “same” quantum dynamics at different scales.

Now we turn to the extension-and-restriction procedure. Let J be a
locally compact metric space with dense metric embedding α: I → J, and

let eAJ again be the minimal extension ofAI associated with α. Recall that
we can choose theminimal extension to have the same algebra of sections
A, without loss of generality (by Theorem 2). The lifting to automor-
phisms ðτtÞt2R on A by (4) then immediately defines dynamical auto-

morphisms on the algebra of sections of the extended bundle eAJ .
Moreover, this naturally defines an extended dynamics on any other
minimal extension of AI because Theorem 2 guarantees all such exten-
sions are bundle isomorphic. All that remains is to restrict these dynamics
to the algebra at the privileged point, which we again denote by 0 2 (J \
α[I]). Given dynamics τt on the sections, we define a one-parameter
automorphism group ðτt;0Þt2R representing the dynamics for the observ-
ables in A0 by

τt;0ðAÞ :¼ ½τtðaÞ�K0
for all t 2 R;

�
D3

�
where a 2 A and A 2 A0 are associated via (D1). In other words, we
define the classical dynamics by enforcing the analog of (4), given by the
condition

τt;ℏ ∘ ϕJ
ℏ ¼ ϕJ

ℏ ∘ τt for all ℏ 2 J; t 2 R (5)

now on the extended bundle over J. This completes our two-step explicit
definition. Moreover, the extended dynamics and its restriction to any
given fiber are unique up to dynamics-preserving bundle isomorphism,
which justifies us in referring to the dynamics defined through the bundle
extension. Notice that in the particular case where I ¼ (0, 1] and J ¼ [0,
1], this defines a classical dynamics at ℏ ¼ 0 from only the information
encoded in the quantum theory, now including dynamics, at ℏ > 0.

One might still worry about whether our abstract definition of the
classical dynamics agrees with the usual notion of the dynamics of a
classical mechanical system. We now proceed to show that for a class of
classical Hamiltonian dynamics, our definition does indeed recover the
standard form.

To show this, we now restrict attention to the case of interest where ℏ
takes values in I¼ (0, 1] or its extension J¼ [0, 1]. First, we use the extra
structure of a quantization map to prove a convergence result for arbi-
trary automorphism groups that do not need to be generated by a
particular Hamiltonian. Our conclusion then follows by a similar
convergence result due by Landsman, which we state in the Appendix.
Landsman's result holds when a Hamiltonian vanishing at infinity gen-
erates both the quantum and the classical dynamics (and we discuss
generalizations to broader classes of Hamiltonians below). So if such a
Hamiltonian generates the quantum dynamics τt;ℏ, then the classical
dynamics τt defined by (D3) agrees with the standard classical Hamilto-
nian dynamics.17

Proposition 1. Suppose the maps ðQℏ : P → AℏÞℏ2½0;1� form a strict defor-

mation quantization generating the bundle A½0;1� ¼ ððAℏ;φ
½0;1�
ℏ Þℏ2½0;1�;AÞ.
17 We provide proofs in the Appendix for all propositions that are not proved in
references.
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Suppose further we have a one-parameter automorphism group ðτtÞt2R on A,
and that for each ℏ 2 [0, 1], we have one-parameter automorphism groups (τt;ℏ)
on Aℏ satisfying (5). Then for any A 2 P,

lim
ℏ→0

��Qℏðτt;0ðAÞÞ � τt;ℏðQℏðAÞÞ
��
ℏ
¼ 0: (6)

Proposition 1 implies that our definition of classical dynamics in (8)
recovers standard Hamiltonian dynamics for the class of quantum the-
ories on a Hilbert space L2ðRnÞ, with corresponding classical limit
formulated on the phase space T*Rn, as follows.

Theorem 3. Suppose the maps ðQℏ : P → AℏÞℏ2½0;1� form a strict defor-
mation quantization with P⊆C0ðT*RnÞ and Aℏ⊆BðL2ðRnÞÞ for ℏ > 0,

generating the bundle eAJ ¼ ððAℏ;φJ
ℏÞℏ2J ;AÞ. Suppose further we have a one-

parameter automorphism group ðτtÞt2R on A, and that for each ℏ 2 [0, 1],
we have one-parameter automorphism groups (τt;ℏ) on Aℏ satisfying (5) with
J¼[0,1]. If there is an H 2 P such that for each ℏ > 0 and B 2 Aℏ

τt;ℏðBÞ ¼ e�iQℏðHÞtBeiQℏðHÞt; (7)

then for any A 2 P, if τt;0ðAÞ 2 P for all t 2 R, then

d
dt
τt;0ðAÞ ¼ fH;Ag: (8)

We emphasize that our general convergence result (6) in Proposi-
tion 1 holds for any dynamics, regardless of whether it is generated by a
Hamiltonian. When, in addition, the quantum dynamics are generated
by the quantization of a Hamiltonian vanishing at infinity, Landsman's
convergence result implies that the ℏ → 0 limit recovers the classical
dynamics defined by that Hamiltonian. Landsman (1998a, 2007)
proves a number of further propositions providing variations on the
convergence result. Notably, one result (Landsman, 1998a, Cor. 2.5.2,
p. 141) implies that the conclusion of Theorem 3 holds as well for any
quantization equivalent to Weyl quantization when H is an unbounded
polynomial at most quadratic in momentum p and configuration q. This
means that the dynamics of free particles and harmonic oscillators are
both in the purview of the result. He also proves slightly weaker
convergence results for other Hamiltonians (Landsman, 1998a, xII.2.7).
However, it is still unclear whether any convergence result of this sort is
general enough to cover the kinds of dynamics that are Batterman's
focus, i.e., those of chaotic systems. Thus, a staunch opponent to
eliminativism may justly demand more. Nonetheless, our result already
shows how a large class of classical dynamics is definable from quan-
tum dynamics without prior reference to the classical theory, making
great headway on filling in the eliminativist's schema. We leave further
investigation of unbounded Hamiltonians and chaotic systems for
future work.

6. Interlude

We now pause to summarize the philosophical significance of our first
contribution concerning explicit definability before moving on to the
issue of the understanding such definitions engender. Recall that our goal
is to argue against the claims of Batterman, Berry, and Bokulich that the
classical ℏ → 0 limit of quantum mechanics is “singular” in a way that
prevents an eliminativist reduction of classical to quantummechanics. By
paying close attention to mechanisms of Landsman's ℏ→ 0 limit, we have
shown that the eliminativist's case is more robust than previously un-
derstood. On one pass, this case relies on the construction of explicit
definitions to justify the elimination of reference to the classical theor-
y—and we have shown how to extract such definitions from a modifi-
cation of Landsman's methods.

As flagged in x2.1, this modification enables us to align two schemas
of reduction: the eliminativist's schema, on the one hand, and Nickles's
schema, on the other. With uniformly continuous bundles of C*-algebras,
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we have shown how our top-level theory Tt (classical mechanics) is, at
least partially, both explicitly defined by and recovered in the strict
ℏ → 0 limit of our bottom-level theory Tb (quantum mechanics). The
sense in which our limit satisfies Nickles's schema (E0) is clear enough
from the above work and Landsman's work. However, it is worth taking a
moment to spell out how our limit satisfies the eliminativist's schema (E),
as characterized by Butterfield.

Recall that the eliminativist's schema (E) takes the bottom-level the-
ory Tb in conjunction with a set of explicit definitions D to derive the top-
level theory Tt. In our case, we take the bottom-level theory to be
quantum mechanics with instructions on how quantities scale with
ℏ—that is, a uniformly continuous bundle of C*-algebrasAI defined over
the base space I¼ (0, 1]. Our theory includes two further bits of structure:
the commutator [ ⋅, ⋅ ]ℏ on each fiber (itself definable from the C*-alge-
braic structure) and the continuously-scaling dynamics τt on the algebra
of sections A. All in all, we can define

Tb :¼ ðAI ; ½ � ; � �I ; τtÞ; (9)

where [ ⋅, ⋅ ]I denotes the family of all the commutators. Our top-level
theory is classical mechanics on algebraic approach. So we have a
commutative C*-algebra A0 with a densely defined18 Poisson bracket
{ ⋅, ⋅ } and dynamics τt;0 generated by the bracket and some Hamiltonian
H via (8), yielding

Tt :¼ ðA0; f � ; � g; τt;0Þ (10)

Finally, we let D denote the conjunction of our three explicit
definitions,

D :¼ D1 ^ 2 ^ 3: (11)

Now we can construct a partial explicit definition of a classical theory
in terms of the quantum theory. To ensure that this definition recovers
the desired classical theory in the Hamiltonian framework, the elimina-
tivist needs to check a number of conditions. First, suppose we explicitly
define the algebra A0 via (D1) and equip it with the Poisson bracket
defined by (D2). Our eliminativist can check whether there exists a dense
Poisson subalgebra P⊆A0, closed under the operations defined in (D1)
and (D2) satisfying the following. The first condition is that the minimal
extension of our bundle to J¼ [0, 1] is generated by a strict quantization.
That is to say, the eliminativist can confirm:
There is a family of quantization maps ðQℏ : P → AℏÞℏ2J satisfying Von Neumann’s;
Dirac’s; and Rieffel’s conditions such that eAJ is generated by Qℏ:

	
C1




The second condition is that the dynamics defined by (D3) on the P in
(C1) preserves that algebra, i.e., the eliminativist can check whether:

For all A 2 P; τt;0ðAÞ 2 P for all t 2 R: ðC2Þ

Finally, the third condition needed is that the quantum dynamics are
generated by an element of the P in (C1) of the appropriately vanishing
sort, i.e., the eliminativist can assess the following claim:

There exist faithful representations ðπℏÞℏ2J of the Poisson algebra at ℏ
¼ 0 and of the C*-algebras at ℏ > 0 such that

π0½P�⊆C0ðT*RnÞ; πℏ½Aℏ�⊆B
�
L2ðRnÞ� for all ℏ > 0;

�
C3

�

18 Note that we do not include a particular dense Poisson subalgebra of A0 in
the structure of the classical theory, to reflect that the choice of such a Poisson
subalgebra (e.g., the compactly supported smooth functions, or the Paley-
Wiener functions) does not make a substantive difference to the physics.
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and there is some H 2 P for which (7) holds for each ℏ > 0 and B 2 Aℏ.
We denote the conjunction of these “explicit definition conditions” by

C, i.e.,19

C :¼ C1 ^ C2 ^ C3: ðCÞ

This yields the following partial instantiation of the eliminativist's
schema:

If C; then Tb ^ D ⇒ Tt: (12)

But what about the cases where C fails to hold? In this case, our
construction still defines a theory at ℏ ¼ 0, but it is unclear precisely how
it links up with classical concepts. Specifically, we obtain in general

Tb ^ D ⇒ T*
t ; where T*

t :¼
�
A*

0; f � ; � g*; τ*t;0
�
; (13)

where the C*-algebra A*
0 is defined by (D1), the binary operation { ⋅, ⋅ }*

is some (possibly partial) Poisson bracket defined by (D2), and τ*t;0 is the
family of automorphisms defined by (D3). At this juncture, the elimina-
tivist is free to view T*

t as the proper description of classical physics,
given their commitment to Tb as the proper description of the quantum
theory and its scaling structure. But it may or may not be the case that this
theory relates in an interesting way to the usual classical concepts in
some cases where C fails to hold. We wager that T*

t recovers standard
classical Hamiltonian mechanics with more generality,20 but we leave
the evaluation of this conjecture for future work.

So the eliminativist's work is far from finished! We are not yet able to
provide explicit definitions of all classical terms on the algebraic
approach. Nonetheless, we take our work to dismantle a possible objec-
tion to the eliminativist's project that draws inspiration from Batterman's
criticisms. Namely, as discussed in x2.1, Batterman's comments might be
taken to imply that any attempt to fulfill the eliminativist's schema is
doomed to failure. But as shown above, there is at least a partial fulfill-
ment of the schema, and the eliminativist is free to reject using the in-
stances of classical terms not covered by it.

Now we move on to the further issue introduced in x2.2 concerning
whether the explicit definitions we have provided of classical concepts
are enough to provide understanding of classical physics. Equation (12)
already provides an explanation of a sort—namely, a deductive-
nomological one, where the law-like explananda are the quantum kine-
matic and dynamical structures encoded in Tb and the explanans is the
classical kinematic and dynamical structure encoded in Tt. But as dis-
cussed in x2.2, one might reasonably demand a more telling explanation,
or at least a clarification of which bits of quantum structure are relevant
for fixing which bits of classical structure. We will address this question
with category-theoretic tools. The end result will show how the physi-
cally interpreted mathematical structure of quantum mechanics de-
termines the corresponding structure of classical physics—and we take
this determination to impart one useful way of understanding classical
behavior.
19 Note that we are somewhat loose in our notation here: the Poisson algebra
referenced in (C1)-(C3) must be the same, i.e., an existential quantifier over P
must enclose the entire conjunction.
20 In particular, we conjecture that one can loosen the requirements on the
Hamiltonian H in (C3).



22 In what follows, we employ the terminology of Nguyen et al. (2020) by
reserving the term “structure” for the pre-theoretical notion meaning (roughly)
“information encoded in a mathematical tool” and using the term “structure*” to
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7. Category-theoretic preliminaries

Recall from x2.2 that our strategy is to mathematically encode at least
parts of the physical interpretations of the structure of classical and
quantum physics, and show that the latter structurally determines the
former. Following Dewar (2017), we believe that certain aspects of
interpretation, which we are calling internal, can be encoded mathe-
matically using the tools of category theory. Specifically, category theory
provides a setting for reasoning about structure-preserving maps, and the
internal task of saying which mathematical features of a theory are
physically significant (separate from the external task of saying what in
the world they represent) is often accomplished by restricting attention
to those mathematical features invariant under the structure-preserving
maps. In other words, one can specify physically significant structures
by specifying the collection of maps between objects that preserve them.
We will use these tools to show that internal aspects of the interpretation
of quantum physics, encoded in a category of mathematical objects
representing quantum theories, structurally determines internal aspects
of the interpretation of classical physics, encoded in a category of
mathematical objects representing classical theories. In this section, we
introduce the necessary category-theoretic tools21 as well as the cate-
gories encompassing quantum and classical theories that we work with.

A category C consists in a collection of objects and a collection of ar-
rows or morphisms, each with a source and target. We denote a morphism
by f: A → B for source A and target B. We will sometimes denote the
collection of morphisms with source A and target B by HomC(A, B).
Moreover, a category contains an operation of morphism composition,
denoted ◦, which is total in the sense that for each f: A→ B and g: B→ C,
there is an h: A → C such that h ¼ g◦f. The composition operation is
required to be associative, and moreover, each object A has a unique
identity morphism 1A whose composition with other morphisms leaves
them unchanged. We call a morphism f: A → B an isomorphism if there
exists a morphism f�1: B → A such that f�1◦f ¼ 1A and f◦f�1 ¼ 1B. It is
instructive to think of morphisms as maps preserving relevant structure
for the objects in the category and of isomorphisms as maps identifying
when two objects have the “same” structure, relative to the kind of
structure encoded in the category.

The primary example of a category we are concerned with is the
category of uniformly continuous bundles of C*-algebras, which we
define now.

Definition 4. The category UBunC*Alg consists in:

� objects: uniformly continuous bundles of C*-algebras whose base
space is a locally compact metric space,

AI ¼
��
Aℏ;φ

I
ℏ

�
ℏ2I ;A

�
;

� morphisms: bundle homomorphisms σ : AI → BJ .
The category UBunC*Alg encodes the structure picked out by the
definition of uniformly continuous bundles of C*-algebras.
One can use objects in this category to represent quantum theories
with information about the scaling behavior of physical quantities.
One other example of a category that we will use is the category of C*-
algebras, defined as follows.

Definition 5. The category C*Alg consists in:

� objects: C*-algebras;
� morphisms: *-homomorphisms.

The category C*Alg encodes the structures picked out by the axioms
for C*-algebras. We will think of certain objects in this category—in
21 For more background on category theory, see, e.g., Awodey (2010).
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particular, the commutative C*-algebras, which form a subcategory—as
representing classical theories.

We are now concerned with whether the explicit definitions (D1)-
(D3), which amount to the construction of an object in C*Alg from an
object in UBunC*Alg, preserve the structure encoded in these different
categories. In other words, we are interested in structure-preserving
maps between categories. Such maps are given by the notion of a
functor. A functor F between two categories C and D consists in two
maps: one map between the objects of C and the objects of D, and
another map between the morphisms of C and the morphisms of D. We
denote both maps by F and require that if f: A → B is a morphism in C,
then F(f): F(A) → F(B) in D (i.e., if f 2HomC(A, B)), then F(f)
2HomD(F(A), F(B))). Moreover, we require that F preserves the
composition of arrows in the sense that if f: A → B and g: B → C are
morphisms in C, then F(f◦g) ¼ F(f)◦F(g).

We will use functors to compare the structure represented in different
categories encoding partial interpretations of classical and quantum
physics—in general, we can do this by analyzing the information that a
functor “forgets.” A useful schema for identifying precisely what a
functor forgets is to consider each category as a collection of stuff
equipped with structure* that has some properties22—for example, the
category of groups consists of sets of elements (stuff) equipped with a
group operation (structure*) satisfying the usual axioms (properties).
Intuitively, the natural embedding of the category of abelian groups in
the category of all groups ought to preserve the stuff and the structure*
(the set and group operation, respectively) but forget a property (abe-
lianness). Following Baez et al. (2004), we make this intuition precise
with the following scheme.

Suppose we have a functor F: C → D. We call F full if for each pair of
objects A, B in C, the map F: HomC(A, B) → HomD(F(A), F(B)) is surjec-
tive. We call F faithful if for each pair of objects A, B in C, the map F:
HomC(A, B) → HomD(F(A), F(B)) is injective. We call F essentially sur-
jective if for each object A0 in D, there is some object A in C such that F(A)
is isomorphic to A0 in D. We employ the following rough interpretations
of these technical features of functors. We say that a functor forgets only
stuff when it is not faithful, but it is essentially surjective and full. We say
that a functor forgets only structure* if it is not full, but it is essentially
surjective and faithful. We say that a functor forgets only properties if it is
not essentially surjective, but it is faithful and full. Note that the natural
embedding of the category of abelian groups in the category of all groups
is faithful and full, but not essentially surjective—so this schema char-
acterizes it as preserving stuff and structure* and forgetting just a prop-
erty, as desired. If a functor is full, faithful, and essentially surjective,
then we say that it forgets nothing and call it a categorical equivalence.
Categorical equivalence provides a relevant standard for when two cat-
egories share the same structure.23 Later on, we will establish that the
classical limit can be interpreted as a functor that forgets stuff and
structure*. We will provide additional discussion of these notions of
forgetfulness in x9, but we note here that interpretations of these notions
of forgetfulness have been discussed extensively already in the literature
(Bradley & Weatherall, 2020; Weatherall, 2017). We encourage the
reader to review those discussions for further introduction.

We now proceed to summarize how, when our bundles are under-
stood to form a category, the ℏ → 0 limit can be represented as a functor
from (a subcategory of) UBunC*Alg to C*Alg. We analyze what this
functor forgets and argue for a sense in which the structure of quantum
physics determines the structure of classical physics.
refer to the technical notion due to Baez et al. (2004). Note that stuff, structure*,
and properties are all special sorts of structure, as we use the term.
23 For more on applications of this classification scheme in philosophy of
physics, see Weatherall (2016b, 2017).
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8. Functoriality of the classical limit

In x4, we analyzed the classical limit in terms of extensions of uni-
formly continuous bundles to larger base spaces. Recall that we supposed
our quantum theories to come with at least enough interpretation to
make sense of the scaling behavior of quantities in different systems of
units. That information in the quantum theory can be modeled as a
bundle over the base space (0, 1]—representing values of ℏ > 0. The
extension of this bundle to the larger base space [0, 1] would encompass
the corresponding classical theory—including the limit at ℏ ¼ 0. Recall
that Theorems 1 and 2 established the existence and uniqueness of
exactly this kind of bundle extension under quite general conditions. The
result was the explicit definition (D1) of an algebra of observable quan-
tities at ℏ ¼ 0, i.e., the fiber algebra representing the classical limit.

In this section, we argue that the construction yielding (D1) moreover
determines the structure of the classical theory at the limit. In service of
this goal, we will understand the classical limit as the composition of two
functors. First, there is a functor F implementing the extension of a uni-
formly continuous bundle of C*-algebras as in Theorems 1 and 2. Second,
there is a functor G representing the restriction from a bundle to the
C*-algebra of the classical theory in the fiber over ℏ ¼ 0. We understand
the classical limit to be the functor L obtained from the composition G◦F.
We show in the Appendix that F forgets nothing, but G forgets structure*
and stuff; it then follows immediately that L forgets structure* and stuff.
We interpret this result to establish a sense in which the structure of a
classical theory is determined by that of its corresponding quantum
theory. Due to constraints of space, this section gives only an informal
summary of the construction of these functors provided in Steeger and
Feintzeig (2021). We focus on discussing the philosophical significance
of these functors and what they forget.
8.1. Extension functor

Recall that an extension of a bundle of C*-algebras from some base
space I to a larger base space J by the construction in x4 always proceeds
relative to a dense isometric embedding α: I → J. The extension from the
base space I ¼ (0, 1] for values of ℏ > 0 to the space J ¼ [0, 1] with
ℏ¼ 0 included can be naturally understood to proceed with respect to the
standard inclusion mapping (0, 1] → [0, 1]. But to represent bundle
extensions functorially, we need a common way of extending all bundles
in a category, or a corresponding common way of providing a dense
isometric embedding of every base space in a larger metric space. To that
end, we think of the extension from (0, 1] to [0, 1] as an instance of the
more general construction of the one-point compactification (see,
e.g., Engelking, 1989, p. 169, Theorem 3.5.11), which can be applied to a
broad class of base spaces. We summarize the construction of a functor
representing bundle extensions associated with the one-point compacti-
fication, following the more detailed presentation in Steeger and Feint-
zeig (2021).

To use the one-point compactification for our purposes, we must
impose some conditions on the base spaces of our bundles and the
morphisms between them we consider. First, we consider only mor-
phisms between bundles that act as proper maps between base spaces
because only these maps are guaranteed to have continuous extensions to
the one-point compactification. Second, we consider only those base
spaces that are locally compact, non-compact metric spaces with met-
rizable one-point compactifications, and whose embedding in their one-
point compactification is an isometric map. This class of base spaces in-
cludes I ¼ (0, 1], but rules out I ¼ R since the embedding of the latter in
its one-point compactification (the circle S1) is not an isometric map. We
denote the collection of such base spaces by I . We will work with the
subcategory of uniformly continuous bundles of C*-algebras whose base
spaces belong to I , and where morphisms act as proper maps between
base spaces, which we denote by UBunC*AlgI . This category forms the
domain of our extension functor.
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Next, we need to specify the codomain category for our extension
functor. We again impose some conditions on the base spaces of our
bundles and the morphisms between them. First, we focus only on those
base spaces that are obtained as the one-point compactification of some
base space in I , a collection we denote CðIÞ. Second, we consider only
morphisms between bundles whose actions on base spaces preserve the
way a base space is embedded in its one-point compactification. We call
the category of uniformly continuous bundles satisfying these conditions
UBunC*AlgCðIÞ, which will form the codomain of our extension functor.
The additional condition on morphisms in this category means only that
such bundles have enough structure to distinguish the original base space
from the added limit point obtained in the one-point compactification.
For example, we understand such bundles to come with enough structure
to pick out (0, 1] as a privileged subspace of [0, 1]. The physical moti-
vation for this condition is that there is a physically significant difference
between the quantum theories at ℏ > 0 and the corresponding classical
theory at ℏ ¼ 0. We have thus endowed our bundles with enough
structure to reflect this physical distinction.

The extension functor F : UBunC*AlgI → UBunC*AlgCðIÞ is defined
as follows. First, F acts on objects by taking any bundle to its unique
extension associated with the one-point compactification guaranteed by
Theorems 1 and 2. Second, F acts on arrows by taking the unique
continuous extension of any proper isometric map between base spaces
to a map between their one-point compactifications and leaving the
*-homomorphisms between algebras of continuous sections unchanged.
Notice that the condition on *-homomorphisms between algebras of
sections makes sense because in the construction of the extended bundle,
we employ the same algebra of sections and only define new evaluation
maps to extend those sections continuously to new points in the base
space. Steeger and Feintzeig (2021) establish that this assignment F of
objects and morphisms is indeed a functor. Here, we note that the functor
F representing bundle extensions forgets nothing.

Proposition 2. The extension functor F is a categorical equivalence.

Thus, relative to the conditions specified above, or in other words
relative to the structure encoded in the categories UBunC*AlgI and
UBunC*AlgCðIÞ, any uniformly continuous bundle of C*-algebras over a
base space I completely determines the structure of its extension asso-
ciated with the one-point compactification of I. Since the functor real-
izing this extension is an equivalence, there is a sense in which these
objects have precisely the same structure.

8.2. Restriction functor

We now aim to encode the remainder of the classical limit in the
restriction from the base space [0, 1] to the structure of classical physics
at ℏ ¼ 0. Since we are representing the extension from (0, 1] to [0, 1] as
an instance of an extension associated with the one-point compactifica-
tion, we will treat one-point compactifications more generally and
generically denote the added point to a base space I by 0I. The restriction
functor G we now describe has the category of extended bundles
UBunC*AlgCðIÞ as its domain, which is the codomain of the extension
functor F. The codomain category of the restriction functor G is the
category C*Alg of C*-algebras.

The restriction functor G : UBunC*AlgCðIÞ → C*Alg is defined as fol-
lows. First, G acts on objects by taking any extended bundle over I [{0I}
to the fiber C*-algebra over 0I. Second, G acts on morphisms by con-
structing from any bundle morphism between bundles over base spaces I
and J a *-homomorphism between the fibers at 0I and 0J by factoring
through the corresponding evaluation maps. As remarked already, a
bundle morphism (α, β) always determines morphisms between the fiber
algebras over ℏ 2 I and α(ℏ) 2 J. To see that this gives rise to a morphism
between the fibers over 0I and 0J, one only needs to note that if α is the
extension of a proper map between base spaces I;J 2 I , then α(0I) ¼ 0J.
Hence, it follows that there is a unique *-homomorphism between the
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fiber algebras at 0I and 0J determined by a bundle morphism. Steeger and
Feintzeig (2021) establish that this assignment G of objects and mor-
phisms is indeed a functor. Here, we note that the functor G representing
bundle restrictions forgets structure* and stuff.

Proposition 3. The restriction functor G is essentially surjective but neither
full nor faithful.

We note briefly that the proof that G is essentially surjective relies
only on constructing a trivial bundle whose fibers all are isomorphic to
whatever limit algebra one wants to reproduce (see Appendix). This
somewhat artificial construction does not suffice to show that every
classical theory is the classical limit of some quantum theory as onemight
hope.

But given Proposition 3, we can interpret G as forgetting stuff and
structure*. It should be unsurprising that G forgets stuff. After all, a
uniformly continuous bundle is much larger than the algebra over 0I; as
such, we can understand the stuff that G forgets to be the fibers Aℏ above
all other points ℏ 6¼ 0I. We return in x9 to the physical interpretation of
the stuff that G forgets and how it bears on our central philosoph-
ical questions concerning structural determination and intertheoretic
reduction.

It is a bit more difficult to characterize the structure* that G forgets.
To understand this structure*, consider our initial motivation for
employing continuous bundles of C*-algebras—namely, that they arise in
a natural way from strict deformation quantizations. Recall that a strict
deformation quantization relies for its definition on the further structure
of a Poisson bracket in the classical theory. However, objects in C*Alg do
not contain the structure of a Poisson bracket and morphisms in this
category need not preserve a Poisson bracket when one exists. As such, if
we are given two continuous bundles of C*-algebras AI and BI over the
base space I ¼ [0, 1], and AI is determined from a strict deformation
quantization, then there will, in general, be morphisms in C*Alg between
the fibers A0 andB0 at ℏ ¼ 0 that do not preserve the Poisson bracket on
A0. However, morphisms between continuous bundles determined by a
strict deformation quantization are generally constrained to preserve the
Poisson bracket in a classical theory. The proof that G is not full in
Proposition 3 proceeds, roughly, by showing that there are *-homor-
phisms σ0 between the fibers A0 and B0 that cannot be mapped to by
G because they fail to preserve the induced Poisson bracket in the clas-
sical limit. One way to understand this fact is that morphisms in
UBunC*AlgCðIÞ encode not only the structure of the symmetric Jordan
product on the fibers, but also the structure of the anti-symmetric Lie
bracket determined by the commutator on the fibers, which corresponds
in the classical limit with Poisson structure. Morphisms in C*Alg that do
not preserve the Poisson structures of classical theories (of which there
are many) will not in general lie in the range of the functor G. So we can
understand G to forget the structure* of the Lie brackets determined by
the commutators on fibers in UBunC*AlgCðIÞ, and thus to forget the
structure* that encodes the classical Poisson bracket in the classical limit.

8.3. Limit functor

We are now in a position to describe a single functor from quan-
tum theories to classical theories. Recall that so far, we have an
extension functor associated with the one point compactification
F : UBunC*AlgI → UBunC*AlgCðIÞ, which forgets nothing, and a re-

striction functor G : UBunC*AlgCðIÞ → C*Alg, which forgets stuff and
structure*. We now define the classical limit L:¼G◦F as the composi-
tion of the two. It follows immediately that L is a functor, which is
characterized by the following proposition.

Proposition 4. The functor L is essentially surjective but neither full nor
faithful.

Now we have characterized the classical limit with the functor L. This
functor takes any quantum theory defined only for the values ℏ > 0 by a
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bundle of C*-algebras, extends this structure to a bundle whose base
space includes the value ℏ ¼ 0, and then restricts attention to the unique
fiber C*-algebra glued on at ℏ ¼ 0. The functor L forgets stuff and
structure*. We take this fact to show that classical theories have less
structure than quantum theories, demonstrating a sense in which the
structure of the latter determines that of the former.

However, one should be careful in explicating the sense in which this
claim is true. First, quantum mechanics determines its classical limit only
when quantum mechanics is given a physical interpretation strong
enough to motivate the use of the category UBunC*AlgI . It is not the
mathematical structure of quantum mechanics that determines the
structure of classical physics on its own, but rather the structure we un-
derstand quantum theories to possess when they are interpreted in a way
that can be represented by the category UBunC*AlgI . Since we represent
quantum theories not by the fiber C*-algebras at a fixed value of ℏ, but
rather by an entire bundle of C*-algebras, we are understanding quantum
theories to come with enough of an interpretation that we understand
their scaling behavior as ℏ varies. The choice of morphisms in
UBunC*AlgI is motivated by our focus on maps that preserve the scaling
behavior of quantum theories as we vary ℏ.

Further, the sense in which classical physics has less structure than
quantum physics holds only relative to the functor L and so only when
classical physics is given a physical interpretation weak enough to
motivate the use of the category C*Alg. This assumption is actually
somewhat unnatural. The use of C*-algebras in classical physics provides
only enough information to recover the topological structure of a phase
space—it does not provide enough information to recover the Poisson or
even the differentiable structure of a phase space as a manifold. If one
thinks that this structure is essential to classical kinematics, then our
results so far will not be satisfying. Further, none of these results so far
relate classical dynamics to quantum physics.

However, we now summarize briefly some further technical results
that show a sense in which both Poisson and dynamical structure in
classical theories is determined from that in quantum theories. Steeger
and Feintzeig (2021) show that the assignment defined by L sends
(under mild conditions) any morphism of bundles defined by strict
quantizations to a classical morphism that preserves the Poisson
structure. And further, the assignment defined by L sends any mor-
phism that preserves quantum dynamics to a classical morphism that
preserves dynamics. This means that one can define adapted functors LP
and LD capturing the classical limit on adapted categories of bundles
that encode Poisson and dynamical structure, respectively. One can
then analyze what these functors forget.

First, we discuss the functor LP preserving Poisson structure.

� LP is not faithful for precisely the same reason L is not faithful. One
can interpret this to just show LP forgets the same stuff that L does.

� As far as we can tell, the question of whether LP is essentially sur-
jective is open. Recall that this is the question of whether every
classical theory is (isomorphic to) the classical limit under LP of some
quantum theory. In other words, this is just the question of how broad
a collection of classical theories we can quantize with strict defor-
mation quantization. It is known that one can construct Weyl-type
quantizations for the almost periodic functions on a phase space
that is the dual space to a symplectic topological vector space (Binz
et al., 2004). It is also known that when one does not have a phase
space with the linear structure of a vector space, one can still
construct a Weyl-type quantization for a C*-algebra with an isometric
action of Rd (Rieffel, 1993); for some generalizations, see Landsman
(1998b) and Bieliavsky and Gayral (2015). Each of these construc-
tions induces a bundle whose classical limit is the associated struc-
ture. These examples may provide enough generality to encompass
many of the models of physical systems used in classical physics. But
we do not know whether there is a construction general enough to
quantize arbitrary classical theories.
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� Similarly, it is an open question (as far as we can tell) whether LP is
full. We know only for particular kinds of morphisms σ0 in the cate-
gory of classical theories that there is some morphism σ in the cate-
gory of quantum theories with LP(σ) ¼ σ0. For example, if σ0 is an
automorphism of a classical Weyl algebra given by some combination
of Bogoliubov transformations and gauge transformations (i.e.,
determined by an element of the affine symplectic group of the un-
derlying symplectic vector space), then this holds (Binz et al., 2004,
x5.3). But these are only very special cases of morphisms in the
category of classical theories. The results of Proposition 5.15 (p. 74)
and Proposition 8.40 (p. 142) of Bieliavsky and Gayral (2015) are
closely related and provide significantly more generality, but further
scrutiny is needed to determine whether they settle the question
about the fullness of LP.

Finally, we briefly discuss the functor LD preserving dynamical
structure.

� LD is not faithful for precisely the same reason L is not faithful. One
can again interpret this to just show LD forgets the same stuff that L
does.

� LD is essentially surjective for precisely the same reason L is: one can
always define a trivial bundle whose fibers all look like the limit
theory one wants to reproduce, which gets mapped by L or LD to the
desired object.

� LD also fails to be full for precisely the same reason as L. There are
morphisms of classical theories that preserve dynamics, but not
Poisson structure, that cannot be recovered as the classical limit of
any morphism of quantum theories.

It is also worth noting that LD factors into an extension and restriction
functor in just the same way as L. In this case, the extension of the dy-
namics also gives rise to a categorical equivalence while the restriction of
the dynamics to ℏ ¼ 0 is represented by a functor that forgets stuff and
structure*.

This discussion of Poisson structure and dynamics only briefly sum-
marizes the constructions in Steeger and Feintzeig (2021), where more
details can be found. The next and concluding section of this paper
returns to the interpretation of these functors and argues that they pro-
vide a sense in which the structure of quantum physics determines the
structure of classical physics. This, we claim, suffices to show that in-
ternal aspects of the interpretation of quantum physics determine inter-
nal aspects of the interpretation of classical physics.24

9. Discussion

In this paper, we have argued against the claims of Batterman, Berry,
and Bokulich that the classical ℏ → 0 limit of quantum mechanics is
“singular” in a way that frustrates intertheoretic reduction. We took on
two tasks. First, x1–6 provided (partial) explicit definitions of classical
structure in terms of quantum structure. We summarized the results of
those sections in x6. But one may still rightly worry about whether this
definability entails understanding. We took on this task in x7–8, which
we now discuss.

We have argued that if the issue is whether the structure of quantum
physics determines that of classical physics, then the issue can be
24 We have taken the internal interpretation as given, although it is often
motivated by external factors, as in the discussion of changes of units in the
Weyl algebra in x4. We leave open whether the internal structure of bundles of
C*-algebras can be justified in the same way for all cases. But what we have now
shown is that if bundles of C*-algebras encode the internal interpretation of
quantum physics, then they determine the internal interpretation of classical
physics, as long as that interpretation is encoded by commutative C*-algebras
(possibly with extra structure).
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resolved: structural determination does, indeed, hold, in a precise sense,
for kinematics, Poisson structure, and dynamical structure. We have
argued for this claim by formulating the classical limit as a functor from a
relevant category capturing the (partially) physically interpreted math-
ematical structure of quantum mechanics to a category capturing the
(partially) physically interpreted mathematical structure of classical
mechanics. In the remainder of the discussion, we focus on the functor L
determining the kinematics, and ignore the extra technical and inter-
pretive complications that arise in the consideration of Poisson and
dynamical structure. We showed in x8 that this functor L can be inter-
preted as forgetting stuff and structure*.

It is worth returning once again to the question of the interpretation
of our results, since here stuff and structure* are themselves technical
notions. What is the philosophical significance of L forgetting stuff and
structure*? Specifically, what is the sense in which this forgetfulness
demonstrates structural determination?

First, we remark that the existence of the classical limit as a functor
already provides a sense in which quantum kinematics determines clas-
sical kinematics in a natural way. The naturalness of the construction is
captured by the functor acting in what we interpret as “the same way” on
all models of quantum kinematics and all morphisms between them. The
functor provides a way of matching the structure-preserving maps in the
category capturing quantum kinematics to structure-preserving maps in
the category capturing classical kinematics. Moreover, the morphisms in
the category of quantum theories naturally determine a subset of the
classical ones; this is just what it means for L to fail to be full. As a general
heuristic, fewer structure-preserving maps suggests more structure* (see,
e.g., Barrett, 2015, p. 814). In at least this sense, quantum kinematics
determines possibly even more structure* than that captured by our
category representing classical kinematics.

The fact that L forgets structure* shows that its domain, the category
of quantum theories, contains strictly more relevant physical information
than its codomain, the category of classical theories. This approach to
forgetting structure* has been offered already in the literature (e.g.,
Weatherall, 2016b); philosophers often describe a theory represented by
one category as possessing “surplus structure” relative to another. We can
justify the applicability of this talk to our case by comparing with the
alternative functor LP. The classical limit determines at least the Poisson
structure of classical kinematics in addition to C*-algebraic structure, and
so the functor L can be thought of as forgetting Poisson structure in virtue
of the choice of category representing classical kinematics. In sum, the
stuff (fiber algebras away from ℏ ¼ 0) and structure* (Poisson bracket)
forgotten by L each have a natural physical interpretation—and these
interpretations provide the sense in which L witnesses structural
determination.

There is a subtlety worth discussing regarding the significance of L
forgetting stuff: although this forgetfulness witnesses a clear case of
structural determination in our case, it need not do so in general. As
Bradley and Weatherall (2020) note in a response to Nguyen et al.
(2020), there are cases of functors forgetting stuff where the codomain
seems to havemore structure than the domain. Their paradigm example is
a functor from a category of two-dimensional vector spaces to a category
of two-dimensional vector spaces with a fixed ordered basis. The functor
they provide is essentially surjective and full, but not faithful—so it
forgets only stuff. What stuff? The freedom to choose a basis—a freedom
that, Bradley and Weatherall argue, intuitively denotes more structure in
vector spaces with ordered bases than in vector spaces simpliciter. Thus,
there are some examples where a functor forgetting stuff signifies that the
codomain category has more structure than the domain category.

Bradley and Weatherall's diagnosis is of interest, but we believe it is
not applicable to the cases studied in this paper. Bradley and Weatherall
aim to establish a sense in which surplus structure and representational
redundancy pull in opposite directions: the more redundancy in repre-
sentational tools, the more freedom in choosing which tools to use—and
hence the more structure. But in our case, neither the stuff nor the
structure* that L forgets is representationally redundant: the codomain
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loses its capacity to represent both the observables in algebras at ℏ > 0
(quantum stuff) and their Poisson or commutator structures (quantum
structure*). So our L does not fit with Bradley and Weatherall's
discussion.

There is another way of arguing for this point from our construction of
the functor L. We showed that L is the composition of two functors, i.e. L
¼ G◦F. The functor F extends a quantum theory from values of ℏ in (0, 1]
to values of ℏ in [0, 1], and the functor G then restricts to the value ℏ¼ 0.
F is an equivalence, so all of L's forgetfulness comes from G's forgetful-
ness. But surely the extension of values of ℏ to [0, 1] already provides
enough structure to represent the classical theory at ℏ¼ 0. In other words,
the fact that F is an equivalence shows that the structure encoded in the
“frame theory” containing values of ℏ in [0, 1]—of which the classical
kinematics at ℏ ¼ 0 is a part—is equivalent to the structure of the
quantum theory for values of ℏ in (0, 1]. Since the structure of classical
kinematics at ℏ¼ 0 is part of the structure of the “frame theory” and since
the latter is equivalent to the structure of the quantum theory, this shows
the classical kinematics can be captured as part of the structure of the
quantum theory. We interpret the fact that the extension functor F forgets
nothing, but the restriction functor G forgets structure* and stuff, as
showing a sense in which classical kinematics has strictly less structure
than quantum kinematics—structure determined from quantum kine-
matics through the classical limit.

Lastly, we make one caveat about the essential surjectivity of the
functor L. As it is stated in this paper, the essential surjectivity of L does
not have the philosophical significance one would like: it does not show
that all desired classical theories can be obtained as the ℏ → 0 limit of
desired quantum theories via a strict quantization. The proof given in the
Appendix constructs, for any C*-algebra, a trivial uniformly continuous
bundle of C*-algebras containing the initial algebra as its limit. But the
bundle constructed will not contain anything that looks like a familiar
quantum algebra of observables in its fibers. The specific question of how
broad a class of classical theories can be subject to strict deformation
quantization, thus leading to their own recovery in the ℏ → 0 limit, is an
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open question, as the domain of applicability of strict quantization con-
tinues to be extended in the literature (Bieliavsky & Gayral, 2015;
Landsman, 1998a; Rieffel, 1993). We believe this open question clearly
has philosophical significance for the extent to which quantum me-
chanics determines the structure of classical physics. We take our com-
ments in x8 to make a small contribution to this literature by framing the
philosophical significance of this question. But note well that the functor
L simply does not address this question.

In sum, we have shown a precise sense in which the structure of
quantum kinematics determines the structure of classical kinematics
though the classical ℏ → 0 limit. This sense of structural determination
should be amenable to the view, shared by Batterman and Belot, that
appropriate intertheoretic reductions should explain the physically-
interpreted structures—rather than just the mathematical formalisms
alone—of less fundamental theories frommore fundamental theories. We
have mathematically encoded internal aspects of the interpretation of
classical and quantum physics in a category-theoretic framework. Along
the way, we have shown that applying category theoretic tools to ques-
tions concerning structural determination imparts a fruitful way of un-
derstanding classical behavior, at least in part by producing interesting
results bearing on philosophical questions about intertheoretic reduc-
tion. There is much further work to be done in this direction.
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Appendix

This appendix includes proofs of all new propositions stated in the body of the paper.
Proof of Proposition 1. For ease of notation, we define the global quantization map Q : P → A by

QðAÞ :¼ ½ℏ 7! QℏðAÞ�

for each A 2 P (cf. continuous quantization in Landsman, 1998a, p. 112). Notice that Qℏ ¼ φJ
ℏ ∘Q, and also recall that (5) yields

τt;0 ∘ ϕJ
0 ¼ ϕJ

0 ∘ τt:

Moreover, since ϕJ
0 ∘Q ¼ Q0 ¼ idP , the above immediately implies

ϕJ
0 ∘Qðτt;0ðAÞÞ ¼ τt;0

�
ϕJ
0ðQðAÞÞ� ¼ ϕJ

0ðτtðQðAÞÞÞ

for all A 2 P. Then we have for any A 2 P that

lim
ℏ→0

��Qℏðτt;0ðAÞÞ � τt;ℏðQℏðAÞÞ
��
ℏ ¼ lim

ℏ→0

��ϕJ
ℏ ∘Qðτt;0ðAÞÞ � τt;ℏ

�
ϕJ
ℏ ∘QðAÞ���

ℏ

¼ lim
ℏ→0

��ϕJ
ℏ ∘Qðτt;0ðAÞÞ � ϕJ

ℏðτt ∘QðAÞÞ��
ℏ

¼ 0

by the previous equation, since both Qðτt;0ðAÞÞ and τt ∘QðAÞ are uniformly continuous sections (belonging to A) that agree at ℏ ¼ 0.
Theorem 3 then follows immediately from a convergence result of Landsman (1998a), which we now state. The upshot is that if we take (7) and (8)

to define the dynamics, rather than using the dynamics defined by (D3), then one gets convergence in the limit ℏ → 0 in precisely the same sense as in
Proposition 1.

Lemma 1. (Landsman, 1998a, Proposition 2.7.1, p. 148) Suppose the maps fQℏ : P → Aℏgℏ2½0;1� form a strict deformation quantization with P⊆C0ðT*RnÞ
and Aℏ⊆BðL2ðRnÞÞ for ℏ > 0. Suppose further that dynamics τt;ℏ are defined from a given Hamiltonian H 2 P by (7) for each ℏ > 0 and (8) for ℏ ¼ 0. Then for
each A 2 P, if τt;0ðAÞ 2 P for all t 2 R, then (6) holds.
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Proof of Theorem 3. Every continuous section has a unique limit; thus, the theorem follows from the fact that (6) holds for both the dynamics defined
for Lemma 1 and the dynamics defined by (D3) for Proposition 1.

We now characterize what the functors F, G, and L of x8 forget. For more detailed definitions and preliminaries, see Steeger and Feintzeig (2021).
Note that we have two changes of notation from Steeger and Feintzeig (2021). First, we denote the one-point compactification by C rather than C1 since
it is the only extension of base spaces we consider. Second, we here denote by UBunC*AlgCðIÞ a subcategory of what Steeger and Feintzeig (2021) call
UBunC*AlgCðIÞ in which all morphisms preserve the embeddings of base spaces in their one-point compactifications (i.e., for a morphism α: C(I)→ C(J)
between base spaces C(I) and C(J), we require α◦αI[I] ⊆ αJ[J]). All other notation is the same as in that reference.

Proof of Proposition 2. We consider faithfulness, essential surjectivity, and fullness in turn.

1. Faithfulness. Suppose that for two morphisms (α1, β1) and (α2, β2) between FðAIÞ ¼ eACðIÞ and FðBJÞ ¼ eBCðJÞ, we have F(α1, β1) ¼ F(α2, β2). Then it
immediately follows that β1 ¼ β2 from the definition of F. Moreover, we have C(α1) ¼ C(α2), which implies αJ◦α1 ¼ C(α1)◦αI ¼ C(α2)◦αI ¼ αJ◦α2,
which implies α1 ¼ α2 because αJ is injective.

2. Essential surjectivity. Consider an arbitrary bundle ACðIÞ in UBunC*AlgCðIÞ. The canonical restriction ACðIÞjI along αI is a bundle in UBunC*AlgI ,

and since ACðIÞ is an extension of ACðIÞjI associated with αI, it follows from Theorem 2 of Part I that ACðIÞ is isomorphic in UBunC*AlgCðIÞ to

F0ðACðIÞjIÞ ¼ eACðIÞ.
3. Fullness If σ ¼ (α, β) is a morphism in UBunC*AlgCðIÞ, then σ ¼ F(σ0) for the morphism σ0 ¼ (α◦αI, β) in UBunC*AlgI .

Proof of Proposition 3. We consider faithfulness, fullness, and essential surjectivity in turn.

1. Faithfulness. Let I ¼ (0, 1] so that C(I) ¼ [0, 1]. Suppose AJ and BI are objects in UBunC*Alg
0
CðIÞ and σ ¼ ðα; βÞ : AJ → BI is a morphism in

UBunC*Alg
0
CðIÞ. Then so is the morphism σ

0 ¼
	

1
2 α;β



: AJ → BI . But G(σ) ¼ G(σ0). Hence, G fails to be faithful.

2. Fullness. We consider two particular objectsAI and BJ in UBunC*Alg
0
CðIÞ. First, fix I¼ J ¼ [0, 1], and consider some Riemannian manifoldM.AI will

be the trivial bundle, each of whose fibers is isomorphic to the abelian C*-algebra C0(T*M). BJ will be the nontrivial bundle determined by the Weyl
quantization Qℏ of T*M. Explicitly,

AI :¼
��
Aℏ;φ

I
ℏ

�
ℏ2I ;A

�
; BJ :¼

��
Bℏ;ψ J

ℏ

�
ℏ2J ;B

�
;

A0 :¼ C0ðT*MÞ; B0 :¼ C0ðT*MÞ;
Aℏ :¼ C0ðT*MÞ for all ℏ 2 ð0; 1�; Bℏ :¼ K�

L2ðMÞ� for all ℏ 2 ð0; 1�;

A :¼ ffa j f 2 Cð½0; 1�Þ; a 2 C0ðT*MÞg; B :¼
�
a 2 Q

ℏ2J
Bℏ

����� a 2 C*ðQÞ
)
;

ϕI
ℏðfaÞ :¼ f ðℏÞa for each fa 2 A; ψ J

ℏðaÞ :¼ aðℏÞ for each a 2 B:

Now consider the identity map idC0ðT*MÞ on the fiber C0(T*M) at ℏ¼ 0 in C*Alg. Wewill show that there is nomorphism σ : BJ → AI inUBunC*Alg
0
CðIÞ

with GðσÞ ¼ idC0ðT*MÞ.

Suppose σ ¼ ðα; βÞ : BJ → AI is a morphism in UBunC*Alg
0
CðIÞ. Fix any A;B 2 C∞

c ðT*MÞ with {A, B} 6¼ 0. We will show that G(σ)({A, B}) ¼ 0, thus
establishing that G(σ) is not injective. It then follows that GðσÞ 6¼ idC0ðT*MÞ.

Denote the corresponding continuous sections by a ¼ ½ℏ 7! QℏðAÞ� and b ¼ ½ℏ 7! QℏðBÞ� in B. Further, let c be the continuous section given by
c ¼ ½ℏ 7! QℏðfA;BgÞ� in B.

We know from Dirac's condition in a strict deformation quantization that

lim
ℏ→0

����ψ J
ℏðcÞ �

i
ℏ

�
ψ J

ℏðaÞ;ψ J
ℏðbÞ


 ����
ℏ

¼ 0:

Moreover, let c0 2 B be the continuous section defined by

ψ J
ℏðc

0 Þ ¼ i
ℏ

�
ψ J

ℏðaÞ;ψ J
ℏðbÞ




for each ℏ 2 [0, 1]. Now we have limℏ→0kψJ
ℏðc � c

0 Þkℏ ¼ 0. Further, by Lemma 3 in the Appendix to Part I, the map ψJ
ℏðdÞ 7! φI

ℏðβðdÞÞ for d 2 B is a
*-homomorphism, so it follows that

φI
ℏðβðc

0 ÞÞ ¼ i
ℏ

�
ϕI
ℏðβðaÞÞ;ϕI

ℏðβðbÞÞ

 ¼ 0

for each ℏ 2 [0, 1] because A is abelian. Now, we have

lim
ℏ→0

��ϕI
ℏðβðcÞÞ

��
ℏ
¼ lim

ℏ→0

��ϕI
ℏðβðc� c

0 ÞÞ��
ℏ
� lim

ℏ→0

��ψ J
ℏðc� c

0 Þ��
ℏ
¼ 0;

which implies ϕI
0ðβðcÞÞ ¼ 0.

It follows that GðσÞðfA;BgÞ ¼ ϕI
0ðβðcÞÞ ¼ 0, so G(σ) is not injective and hence GðσÞ 6¼ idC0ðT*MÞ. Therefore, G fails to be full.
278
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3. Essential surjectivity. Consider an arbitrary C*-algebra A and I 2 I . Define a trivial bundle by ACðIÞ ¼ ððAℏ;φ
CðIÞ
ℏ Þℏ2CðIÞ; ÂÞ, where

Aℏ :¼ A for all ℏ 2 CðIÞ;
Â :¼ ffa j f 2 C0ðCðIÞÞ; a 2 Ag;

φCðIÞ
ℏ ðfaÞ :¼ f ðℏÞa for each ℏ 2 CðIÞ:

Then ACðIÞ is an object in UBunC*Alg
0
CðIÞ and GðACðIÞÞ ffi A. Hence, G is essentially surjective.

Proof of Proposition 4. Immediate from Propositions 2 and 3.
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