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Abstract—The quantum approximate optimization algorithm
(QAOA) is a promising quantum-classical hybrid algorithm to
solve hard combinatorial optimization problems. The multi-qubit
CPHASE gates used in the quantum circuit for QAOA are
commutative i.e., the order of the gates can be altered without
changing the output state. This re-ordering leads to the execution
of more gates in parallel and a smaller number of additional
SWAP gates to compile the QAOA-circuit. Consequently, the
circuit-depth and cumulative gate-count become lower which is
beneficial for circuit execution time and noise resilience. A less
number of gates indicates a lower accumulation of gate-errors,
and a reduced circuit-depth means less decoherence time for the
qubits. However, finding the best-ordered circuit is a difficult
problem and does not scale well with circuit size. This paper
presents four generic methodologies to optimize QAOA-circuits
by exploiting gate re-ordering. We demonstrate a reduction in
gate-count by ~23.0% and circuit-depth by ~53.0% on average
over a conventional approach without incurring any compilation-
time penalty. We also present a variation-aware compilation
which enhances the compiled circuit success probability by
~62.7% for the target hardware over the variation unaware
approach. A new metric, Approximation Ratio Gap (ARG), is
proposed to validate the quality of the compiled QAQOA-circuit
instances on actual devices. Hardware implementation of a
number of QAOA instances shows ~25.8% improvement in the
proposed metric on average over the conventional approach on
ibmq_16_melbourne.

I. INTRODUCTION

Quantum computing is one of the most transformative tech-
nologies of the present time. Prototypical quantum computers
with 5-128 qubits are available or proposed [1]-[4] from
industry vendors like IBM, Google, Rigetti, etc. Recently,
Google claimed quantum supremacy with a 53-qubit quantum
processor to complete a computational task in 200 seconds
that might take 10000 years (later rectified to 2.5 days [5]) on
the state-of-the-art supercomputers [6]. This is a significant
milestone for quantum computing. Apart from the limited
number of qubits and connectivity, the near-term devices
are plagued with various kind of errors such as gate-error,
decoherence, crosstalk, etc. [7]-[11]. Therefore, quantum error
correction codes (QECCs) [12]-[17] are necessary for fault-
tolerant computation. However, QECCs have prohibitively
high physical qubit overhead. Therefore, variational quantum-
classical algorithms are being explored to gain the quantum
advantage for various problems in physics, chemistry [18]-
[22], optimizations [23]-[27], and machine learning [28]-
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[34]. Quantum Approximate Optimization Algorithm (QAOA)
[35]-[37] is at the forefront of these hybrid algorithms which
is particularly useful to solve optimization problems and touted
as a prime candidate for early demonstration of quantum
supremacy [38]. However, the perceived quantum advantage
through QAOA may be lost due to the accumulation of gate
errors and decoherence [39]-[41]. An optimized circuit can
show greater resilience to noise, and enhance the probability of
generating the correct quantum state. This makes QAOA circuit
optimization an important problem in the NISQ-era [42].

The detailed theoretic discussion on QAOA can be found
in other literature [26], [27], [35]-[38]. QAOA involves pa-
rameter optimization of a multi-level parameterized quantum
circuit (PQC). The PQC runs in a quantum-classical hybrid
optimization loop to minimize (or maximize) the expecta-
tion value of a classical cost function. QAOA performance
improves with added levels in the PQC. The total number
of levels is referred to as ‘p’. However, each level adds
additional two parameters (v, 5) to the PQC which may affect
the convergence and the speed [27], [43]. These parameter
values can be found (without the optimization routines) by
exploiting their relationship among similar instances [44] or
analytically [45].

The PQC to solve the maximum cut (MaxCut) problem of
a 4-node 3-regular graph (Figure 1(a)) with QAOA is shown
in Figure 1(b) (‘p’ = 1). Note that, the PQC has an associated
CPHASE operation in every level of the circuit for every edge
in the problem graph for the MaxCut problem. CPHASE is a
two-qubit unitary parametric quantum gate operating between
a control and a target qubit. The black circle and the square
enclosing the letter Z and the parameter ~ are the control
and target qubits of a CPHASE operation in Figure 1(b) and
(c). Also, note that two consecutive gates can be executed
concurrently if they operate on a different set of qubits. For
example, the first two CPHASE operations in the circuit in
Figure 1(b) can not be executed concurrently as they share a
logical qubit (q2).

The CPHASE operations in a QAOA circuit are commutative
[26], [46] i.e., the order of these CPHASE gates can be
interchanged without affecting the output state of the quantum
circuit. We can use this knowledge to maximize concurrent
gate operations by choosing an optimal order of the gates.
Figure 1(b) shows the QAOA-MaxCut circuit instance with
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Fig. 1. (a) A 4-node 3-Regular graph, (b) a randomly constructed QAOA-MaxCut instance (circ-1) of the 4-node graph with p = 1, (c) an optimized circuit
(circ-2) for the problem with reduced number of layers, (d) SWAP addition during circuit compilation for a target hardware with different layer orders.

randomly ordered CPHASE operations for the problem graph
in Figure 1(a) (circ-1). Figure 1(c) shows an intelligently
gate re-ordered circuit (circ-2). Note that, if these circuits
are executed in quantum hardware with full qubit-to-qubit
connectivity supporting the following basis gates: H, RX, and
CPHASE, circ-1 will require 9 time steps while circ-2 will take
6 time steps (including the measurement operations). If every
gate takes a similar execution time in the hardware, circ-2
will be 50% faster and will experience less decoherence. Re-
ordering these layers of CPHASE gates (e.g. interchanging
layer-2 and layer-3 in circ-2) will not provide any reduction
in the circuit cumulative execution time.

However, if we consider target hardware with limited con-
nectivity such as the 4 linearly coupled physical qubits (pl,
p2, p3. p4) in Figure 1(d), there will be further scope of
optimization in circ-2. For such architectures, SWAP gates are
added between two layers to meet the hardware constraints
[47], [48]. For the initial logical-to-physical qubit assignment
shown in Figure 1(d), interchanging the CPHASE layer 2 and 3
(in circ-2) will reduce the additional SWAP operations from 4
to 3. Therefore, the CPHASE gates that are picked for different
layers will affect the quality of the compiled circuit for such
target architectures.

Conventional compilers can optimize QAOA-circuits using
efficient gate scheduling strategies utilizing the commutation
properties of the gates [49]. However, incorporating gate-
reordering strategies in a compiler is not straight forward.
First, the compiler has to check for the commutative gates in
the given circuit. The complexity of the problem scales with
the size of the quantum circuit. Second, additional constraints
need to be added to the compiler optimization heuristic to
make use of the commutation properties which can affect the
compilation speed. For example, a QAOA-specific compiler
developed in [46] to take advantage of the commutation
properties reported 70 seconds compilation time for simple 8-
qubit circuits. Compiling optimal QAOA-circuits of practical
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significance (e.g. problems requiring ~100 qubits or more)
using such approaches may prove impractical due to the
compilation time overhead.

Note that, recent studies claim that various sources of noise
flatten the solution space of QAOA [39], [40]. Therefore,
finding a mapping with higher reliability (less impacted by
noise) is important to extract maximum performance from
QAOA. Higher gate-count and depth affect the reliability of
the circuit. Moreover, a higher depth quantum circuit increases
execution time and reduces the algorithmic speed. Therefore,
minimizing the depth/gate-count of the compiled circuit is
crucial for QAOA applications. An efficient circuit compiler
will choose the order of the commutative gates in QAOA
circuits intelligently to maximize the compiled circuit quality
in a scalable way (i.e., the methodologies should be applicable
for larger problem sizes for powerful quantum hardware with
200-500 qubits). However, relevant methodologies are absent
in the literature. In this article, we present scalable heuristics
that can be incorporated in conventional compilers to optimize
QAOA-circuits utilizing the commutation properties.

We make the following contributions for QAOA circuits
compilation. We, (a) present a novel Qubit Allocation and
Initial Mapping (QAIM) that chooses an intelligent logical-
to-physical qubit mapping based on the problem characteris-
tics and target coupling graph to reduce the need for qubit
movement in the subsequent SWAP insertion procedure, (b)
propose a greedy heuristic for Instruction Parallelization (IP)
to reduce the circuit depth and execution time, (c) propose an
Incremental Compilation (IC) technique that reduces the need
for added SWAP operations utilizing the dynamic changes in
logical-to-physical qubit mapping during the SWAP insertion
procedure, (d) propose a Variation-aware Incremental Compi-
lation (VIC) technique that enhances compiled circuit success
probability by prioritizing gate operations with higher reliabil-
ity, (e) present detailed comparative analysis of the proposed
methodologies in terms of circuit quality metrics e.g., depth,
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gate-count, compilation time, success probability, and ARG for
a total of 1200 QAOA-MaxCut instances for 3 different qubit
architecture with 15 to 36 qubits and, (f) provide directives
for their appropriate usage and future developments.

To the best of our knowledge, this is the first work to
propose application-specific circuit compilation methodologies
for general-purpose compilers. In the remaining paper, we
cover the basics of quantum computing and circuit compilation
(Sections II and III), discuss our proposed methodologies and
their performance (Sections IV, V and VI), summarize prior
works and draw conclusions (Sections VII and VIII).

II. QUANTUM COMPUTING BASICS

To keep the article self-contained, we briefly review the
basics of quantum computation in this section.

Qubits and Quantum gates: Qubit is analogous to classical
bits however, a qubit can be in a superposition state i.e., a
combination of 0 and 1 at the same time. Quantum gates such
as single qubit (e.g., Pauli-X (o,) gate) or multiple qubit (e.g.,
2-qubit CNOT gate) gates modulate the state of qubits and thus
perform computations.

Gate Error, Decoherence and Crosstalk: Quantum gates
are error-prone. Besides, the qubits suffer from decoherence
i.e., the qubits spontaneously interact with the environment
and lose states. Therefore, the output of a quantum circuit
is erroneous. The deeper quantum circuit needs more time
to execute and gets affected by decoherence. More gates in
the circuit also increase the accumulation of gate error. Thus,
lower depth and number of gates in the circuit improves
noise resiliency. Parallel gate operations on different qubits can
affect each others performance which is known as crosstalk.

Success Probability: The success probability of a gate
is the conjugate of the error-rate (1—error). The success
probability of a circuit is defined as the product of the success
probabilities of individual gates [50], [S1]. A higher value
indicates a higher probability of successful execution of the
circuit on actual hardware.

Basis Gates and Coupling Constraints: A practical quan-
tum computer supports a limited number of single and multi-
qubit gates known as basis (or native) gates of the hardware.
IBM quantum computers offer single-qubit {Ul, U2, U3,
ID} and two-qubit CNOT gate as basis gates. However, the
quantum circuit may contain non-native gates to the target
hardware e.g., the CPHASE gate for IBM quantum computers.
Hence, the gates in a quantum circuit need to be decomposed
into the basis gates before execution. A CNOT decomposition
of a CPHASE gate is shown in Figure 1(d). The native two-
qubit gate may or may not be permitted between all the two-
qubit pairs in the target hardware. These limitations are also
known as coupling constraints. Conventional compilers add
necessary SWAP gates to meet these constraints.

QAOA-circuits: Combinatorial optimization problems can
be formulated using the Ising spin-glass model [24] which
can be directly translated to a Hamiltonian by promoting
each of the binary variables to a Pauli-Z operator. Each
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of the quadratic terms in the Ising model becomes a ZZ-
interaction in the Hamiltonian that can be executed using the
CPHASE gate in quantum computer [24]. In QAOA, such
a Hamiltonian is formed for a given optimization problem
and then, it is executed on a quantum system with controlled
duration followed by a set of rotation gates. This execution
of cost Hamiltonian and rotation gates can be repeated in the
multi-level version of QAOA (‘p’ times for ‘p’-level QAOA).
Therefore, the cost Hamiltonian in QAOA is a collection of
CPHASE gates operating on different qubits e.g., the cost
Hamiltonian for the QAOA-MaxCut problem of the 4-node
3-Regular graph (Figure 1(a)) consists of 6 CPHASE gates
acting between 4 logical qubits shown in Figure 1(b).

QAOA Optimization Flow and Approximation Ratio:
In a QAOA optimization flow, the expectation value of the
cost function is calculated by taking its mean over a finite
number of samples from the QAOA-circuit output [27]. The
parameters of the circuit are iteratively updated to maximize
(or minimize) this expectation value. The circuit outputs are
sampled a finite number of times with the optimal parameter
values. The cost function is evaluated with these samples and
the sample producing the highest (/lowest) cost is taken as the
approximate solution. In such cases, the approximation ratio
(defined as the ratio between the mean cost function value
over these samples and the actual maximum function value)
quantifies the QAOA performance [26], [27].

III. BACKGROUND AND MOTIVATION

Mapping quantum circuits for target quantum hardware has
been proven to be NP-complete [52], [53]. Two disparate
approaches are followed to solve the problem. In the first
approach, the mapping problem is formulated as a constraint
satisfaction problem and later, powerful reasoning engines
(such as, SMT solver, ILP solver, etc.) are used to find a solu-
tion that meets these constraints [54]-[56]. These approaches
can find the global solution for small problems, but they
lack scalability [55]. The second approach relies on efficient
heuristics that gradually lead towards a solution [47], [57].
These approaches are scalable, however, they may often get
stuck in local optima resulting in sub-optimal mapping.

Any qubit mapping procedure has following basic steps:
(i) selection of physical qubits (qubit allocation or topology
selection), (ii) initial logical-to-physical qubit mapping (initial
placement), and (iii) addition of SWAP gates to meet the
hardware coupling constraints (using heuristics or constraints
solvers). Each of these steps affects the quality of the compiled
circuit i.e., depth, gate-count, and reliability [56], [58].

Qubit Allocation: For topology selection, a natural ap-
proach is selecting a ‘k’-node connected sub-graph from
the ‘n’-node (n>k) hardware coupling graph with maximum
edges to implement a circuit with ‘k’ qubits. The rationale
is that more connectivity will reduce the need for SWAP
operations during the qubit mapping procedure. IBM’s qiskit
compiler uses this optimization technique in one of its many
optimization levels [48]. In an interesting perspective to the
topology selection problem, Variation aware Qubit Allocation
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(VQA) technique selects sub-graph maximizing the cumulative
reliability of the links rather than the total number of links
[50]. The idea is to maximize the success probabilities of dif-
ferent multi-qubit operations within hardware under variability.

Initial Mapping: The initial mapping problem has been
addressed using the reversibility property of quantum circuits
[57]. A reverse traversal approach is proposed where a random
initial mapping is updated by compiling the original circuit and
its reverse iteratively. Between iterations, the final mapping of
the previous compilation step is taken as the initial mapping
for the current one. A few (3) reverse traversals showed
significant performance improvement at the expense of higher
compilation time due to repeated compilations [57]. In [53],
first, the number of logical qubits coupled with a certain
qubit is counted, and then, the algorithm searches for a match
with the outdegree of the physical qubit in the coupling
graph without considering any temporal information [53]. Two
heuristics termed as GreedyE* and GreedyV* are presented in
[59]. In GreedyE* policy, program CNOTS, and their control
and target qubits are placed in a heaviest edge first order
(maximum CNOT operations between two logical qubits).
In GreedyV* policy, program qubits are placed on hardware
qubits in the heaviest qubit first order (qubit involved in the
maximum number of operations).

SWAP Insertion: The majority of the heuristics-guided
SWAP insertion algorithms (including IBM’s qiskit compiler)
partitions the circuit in different layers where each layer
consists of gates that can be executed concurrently in the
hardware (gates operating on a different set of qubits) [47],
[48], [60], and then add necessary SWAP operations between
layers to accommodate all the gate operations within each
layer. Adding SWAP operations to bring two qubits closer
and executing a CNOT operation affects all other subsequent
CNOT operations. Therefore, considering many operations at
the same time may help in reducing the number of aggregated
SWAP operations. In its simplest form, every layer may consist
of a single multi-qubit operation [61] where SWAPs are added
between layers just to meet the coupling constraint for the
target operation. Minimizing the number of SWAPs is often
the optimization goal [61] however, an interesting approach
is proposed that also considers the reliability of these SWAP
operations (VQM) [50]. When multiple paths exist, VQM
chooses the path with higher reliability even if the number
of SWAPs is higher than the other paths.

Motivating Factors: Note that each qubit may interact with
another qubit only once within a level (either 1 CPHASE
or no CPHASE) in QAOA-circuits. Hence, heuristics, such
as GreedyE*, which prioritizes qubit pair placements with
maximum interactions, is not suitable for these circuits. For
QAOA-circuits, a more rational approach would be placing a
group of qubits closer together that interact with each other.
Additionally, the commutation of CPHASE gates can be used
to our advantage to maximize parallel gate operations and
minimize the number of layers, which will eventually help
compilers, such as [47], [48], to generate better quality circuits.
To achieve these objectives, we need to address the following
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questions: (i) how can we perform qubit allocation and initial
qubit placement to ensure that qubits are surrounded by other
qubits they are coupled to? (ii) what can be an efficient way to
parallelize operations so that the existing compilers can come
up with better quality compiled circuits?

IV. PROPOSED METHODOLOGIES

A general-purpose compiler (i.e. qiskit compiler from IBM)
can be used to compile QAOA circuits with random initial
mapping and randomly ordered CPHASE gates. We term this
as the NAIVE approach and use it to quantify the performance
benefits of four proposed methodologies - QAIM, IP, IC, and
VIC - which can be integrated into any conventional compiler.
QAIM is an intelligent qubit allocation and initial mapping
approach which applies to any circuit compilation. IP, IC,
and VIC use a backend compiler to add SWAP operations
into the circuit with various target objectives. Each of these
methods has exclusive benefits and should be adopted based
on the requirements of the target application. The workflow
to incorporate QAIM, IP, IC, and VIC in QAOA-circuit com-
pilation is shown in Figure 2. Starting with a QAOA problem
instance, target hardware coupling graph and hardware calibra-
tion data, QAIM generates an initial logical-to-physical qubit
mapping that is passed to the chosen compilation procedure
(i.e., IP/IC/VIC) which in turn, uses a backend compiler to
generate the hardware compliant circuit. While IP passes a
complete circuit description to the backend, IC and VIC send
partial circuit descriptions in multiple iterations and stitch the
compiled circuits at the end. The details of the individual
procedures are discussed in this section.

A. Integrated Qubit Allocation and Initial
Mapping (QAIM)

QAIM combines the qubit allocation and initial mapping
procedures in a single step and seeks to achieve three objec-
tives: (i) choosing a sub-graph from the hardware coupling
graph maximizing the connectivity within the physical qubits
(qubit allocation), (ii) minimizing initial distances between the
logically neighboring qubits in the sub-graph (initial mapping),
and (iii) achieving the first two objectives in a scalable way.
QAIM uses efficient heuristics that exploit the following two
profiling statistics:

Hardware Profiling: If a physical qubit has many neigh-
bors, the logical qubit mapped to it is less likely to move

Complete
Circuit

Hardware
Compliant
Circuit

CPHASE(y) q0 q1
CPHASE(y) a1 g2
CPHASE(y) q0 q4 |
CPHASE(y) q0 g3
CPHASE(y) q3 q4

QAOQCA
Program

Stitching
Partial Circuits

Hardware | i Porfial
Calibration circuit |Backend
CNOT 01 1.8e-2 .
o Data S Compiler CNOT 21
oNoT253 2162 Updated™~.____—=
qubit mapping

Fig. 2. A generic workflow incorporating the proposed compilation method-
ologies on top of a traditional compiler backend.
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Fig. 3. (a) Coupling graph of a 20-qubit quantum computer from IBM (ibmq_20_tokyo), (b) connectivity strength metrics of different qubits in ibmq_20_tokyo,
(c) a toy QAOA cost Hamiltonian circuit with qubit activity profiles, (d) QAIM decision metric, and (e) qubit allocation and initial mapping for the toy

example on ibmqg_20_tokyo using QAIM.

during compilation. This is the rationale behind allocating
such physical qubits to the heaviest logical qubits in the
GreedyV* heuristic [59]. However, it does not consider the
expected activities in the neighboring qubits in the succeeding
time-steps. If the neighboring physical qubits have sparse
connectivity, the logical qubits mapped to them may need
to move frequently to meet the coupling constraint. In such
scenarios, the heaviest qubit may not need to move that
often, however, its neighbors will move back and forth to
meet connectivity constraints with other qubits, and thereby,
increase the number of added SWAP operations.

To address this issue, we define connectivity strength of a
qubit as the summation of its first and second neighboring
qubits and create a profile of the available physical qubits
based on this metric to assist in the mapping procedure. First
neighbors of a qubit are the qubits connected directly to that
qubit in the hardware coupling graph. Second neighbors are
the unique first neighboring qubits of its first neighbors. For
instance, qubit-0 in ibmq_20_tokyo (Figure 3(a)) has two first
neighbors (qubit-1 and 5) and 5 second neighbors (qubit-2, 6,
7, 10, and 11). Therefore, the connectivity strength of qubit-0
is 7 (=2+45). The complete hardware profile of ibmq_20_tokyo
is shown in Figure 3(b). This profiling can be done once for
every hardware and the associated memory can be accessed
during compilation. Note that for larger qubit architectures,
we may include higher degree neighbors (i.e. third/fourth
neighbors) in qubit connectivity strengths calculation.

Program Profiling: The program profile used in QAIM
is similar to GreedyV* [59]. For any input QAOA-circuit,
we calculate the number of CPHASE operations per logical
qubit to create the program profile. A demonstrative example
is shown in Figure 3(c).

QAIM Procedure: Starting with the list of CPHASE
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operations in a QAOA-circuit, target hardware, and program
profiling statistics, QAIM adopts following steps:

Step—1: The logical qubits are sorted (descending order) in
a list based on the number of CPHASE operations per qubit.
Physical qubits are allocated to the logical qubits in this order.

Step—2: The first logical qubit is assigned to the physical
qubit with the highest connectivity strength. After the assign-
ment, the qubit is removed from the list.

Step—3: For the next logical qubit in the list, we check if
any of its logical neighbors (logical qubits that have multi-
qubit operations between themselves are referred to as logical
neighbors) has been already placed. If none of them has
been placed, we pick the unallocated physical qubit with the
highest connectivity strength for allocation. If some of its
logical neighbors are placed, we find the unallocated physical
neighbors of these placed qubits. We pick a qubit from these
neighbors maximizing the cost metric - qubit connectivity
strength/cumulative distance from the placed neighbors. Here,
distance is the shortest path length between the unallocated
qubit and a placed neighbor in the hardware coupling graph.
Distances between physical qubits can be measured once (us-
ing Floyd-Warshall algorithm [57]) and accessed from memory
during QAIM. After the assignment, we remove the logical
qubit from the list.

Step—4: We repeat Step—3 until the list is empty.

Example 1: The QAIM procedure for the QAOA-circuit
in Figure 3(c) is shown in Figure 3(d) and (e). Logical qubit
‘q0’ has two physical qubit candidate - qubit-7 and qubit-
12 (as both have same qubit connectivity strength of 18
each) and qubit-7 is picked randomly in the example (Figure
3(e)(i)). Logical qubit ‘ql’ has 6 possible candidates (as it is
a logical neighbor of ‘q0’), all at a distance of 1 from ‘q0’
(Figure 3(e)(ii)). Physical qubit-12 has the highest connectivity
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Fig. 4. Instruction parallelization heuristics with a demonstrative example- (a) input list of CPHASE gates for a certain QAOA instance, (b) program qubit
usage profile, (c) ranking CPHASE operations, (d) sorted CPHASE list based on their ranks, (e) defining empty layers, and (f) assigning CPHASE operations

to different layers.

strength/cumulative distance from the placed neighbors (‘q0’).
Therefore, qubit-12 is chosen for ‘ql’. The other qubits
‘q4’,‘q2’,'q3’ are placed to qubit-8, qubit-13, and qubit-2
respectively in a similar fashion.

Two graph data structures are used (one for the hardware
coupling graph and another for the program qubit connectivity
graph) to search for all nearest physical/logical neighbors dur-
ing the QAIM procedure using a linear search algorithm. The
cost metric is chosen to prioritize unallocated physical qubits
in qubit selection procedure which have higher connectivity
strengths and are at a closer distance from the already placed
logical neighbors of a logical qubit. Note that, the cost metric
can be modified (e.g. weigh distances based on the number of
multi-qubit operations between the logical qubit and its already
placed neighbors) to apply QAIM effectively in any arbitrary
quantum circuit mapping procedure.

B. Instruction Parallelization (IP)

After allocating physical qubits for the QAOA-circuit logi-
cal qubits using QAIM, we can go through the rest of the steps
in the compilation procedure (SWAP insertion) following two
orthogonal approaches: (i) compile the circuit with randomly
ordered CPHASE gate sequences, or (ii) judiciously order
the CPHASE gate sequences to extract better performance
from the backend compiler. As mentioned before, paralleling
instructions in the QAOA-circuit may help to reduce the
circuit depth due to more concurrent gate operations and assist
compilers (that partitions the circuit into layers of concurrently
executable gates) by reducing the number of layers in the cir-
cuit [47], [48]. To maximize gate parallelization, we formulate
the problem as a binary bin-packing problem and use the first-
fit decreasing greedy heuristic for solution [62]. We refer to
this approach as IP throughout the paper.

IP Procedure: IP also utilizes the program profile used in
QAIM to rank the CPHASE operations (in descending order)
in the QAOA-circuit based on a total number of operations on
the control qubit and the target qubit. Operations with similar
ranks are ordered randomly within themselves. The following
steps are adopted to create the CPHASE layers:

Step—1 : Create MOQ (the maximum number of operations
in any qubit in the given QAOA circuit) empty layers of bins
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(each bin representing a qubit). This is the minimum limit for
the number of layers that can be reached using IP in the best
case scenario (see Example 2).

Step — 2 : Take the operation from the sorted CPHASE list
with the highest rank. If both of the qubits in the CPHASE
operation are empty in one of the layers, assign the CPHASE
operation to that layer and mark the qubit bins as occupied.
Remove the CPHASE operation from the list. If operations
can not be assigned to any of the layers, move that operation
to a separate list of unassigned CPHASE operations.

Step — 3 : Repeat Step — 2 until the list is empty.

Step — 4 : If unassigned CPHASE operations list is not
empty, repeat from Step — 1 with this list.

Example 2: The input CPHASE gate list and its profiling
statistics for a demonstrative example of IP are shown in
Figure 4(a) and (b). MOQ for this example is 2 (as qubit 1 and
2 are involved in 2 CPHASEs each). As qubit-1 is involved
in 2 CPHASE gates ( (1,5), (1,4) ), they need to be executed
in at least 2 different layers (i.e., time-steps). Therefore, the
minimum number of required layers for this circuit is (MOQ
=) 2. The ranking of the CPHASE operations is shown in
Figure 4(c). For example, cumulative operations for (2,3) is
3 as qubit-2 (control) is involved in “2° CPHASE operations,
(2,3) and (2,4), qubit-3 (target) is involved in ‘1’ CPHASE
operation, (2,3). Thus, cumulative operations for (2,3) is 2 +
1 = 3’. The sorted CPHASE operations (based on their ranks)
are shown in Figure 4(d) (similar ranked CPHASE operations
are ordered randomly). The CPHASE operations in this sorted
list are assigned one-by-one to the available qubit bins in the
2 layers (L1 and L2) shown in Figure 4(e). First, CPHASE
between (1,4) is assigned to L1. Next, the CPHASE between
(2,4) is assigned to L2 as bin 4 is already occupied in LI.
CPHASE between (2,3) is assigned to L1 as both bins 2 and
3 are unoccupied in L1. The remaining CPHASE between
(1,5) is assigned to L2. The steps in the assignment procedure
are shown in Figure 4(f).

The input circuit to the compiler is created by ordering
the CPHASE operations based on their layer assignments. For
the example, the following CPHASE sequence is given as the
input to the compiler (Figure 4(d)): (1,4), (2,3), (2,4), (1,5).
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Fig. 5. Demonstration of the incremental compilation procedure for the initial mapping shown in Figure 3.

C. Incremental Compilation (IC)

Conventional compilers [47], [48] add SWAP operations
before every layers to meet its coupling constraints. The
logical-to-physical qubit mapping changes with every added
SWAP operation. Due to these dynamic changes, some of the
control and target qubits of the remaining CPHASE operations
come closer to each other than the others. If these CPHASE
operations are prioritized in the next layer formation, it may
reduce the need for qubit movement between consecutive
layers. In IP, all the layers are formed at the same time and
the complete circuit is passed to the backend for compilation.
To take advantage of these dynamic changes, we propose an
incremental approach (i.e, IC) to compile QAOA circuits.

IC Procedure: In IC, the circuit layers are formed one-at-
a-time and partial circuits are compiled with single CPHASE
layers. The partial circuits are stitched at the end to construct
the whole circuit. IC adopts the following steps:

Step—1 : CPHASE operations are sorted in ascending order
based on the distance between their control and target qubits
for the initial logical-to-physical mapping. Distance between
two qubits is defined as the shortest path length between them
in the coupling graph. If multiple CPHASE operations have
similar distances, they are ordered randomly. This sorted list
is used to construct a single CPHASE layer using a greedy
approach similar to the one used in IP (CPHASE operations
are assigned to a single layer of bins). A partial circuit is
compiled with this layer and the initial mapping. The final
mapping after SWAP insertion is saved.

Step—2 : The final mapping is set as the initial mapping. We
repeat Step — 1 until all the CPHASE operations are assigned
to different layers and the corresponding partial circuits are
compiled.

Step — 3 : We stitch all the compiled partial circuits.

Example 3: A demonstrative example is shown in Figure
5 for the circuit and initial mapping illustrated in Figure 3.
For the initial mapping, control and target qubits of all the
CPHASE operations are at distance 1 except CPHASE(7) q3
g4 (referred to as Q. Dist. in Figure 5). CPHASE opera-
tions are sorted (ascending order) based on these distances
(CPHASE operations with similar Q. Dist. are ordered within
themselves randomly). CPHASE() q0 q2 and CPHASE(7) q1
g4 are chosen using a greedy approach (similar to Figure 4(f))
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to construct the first layer of the circuit. During compilation,
the backend compiler does not add any SWAP operation for
this layer. The second layer is formed in a similar fashion with
CPHASE(7) q0 ql and CPHASE(7) q3 g4. However, in this
case, the compiler adds a SWAP operation to move g4 closer to
q3. This changes the logical-to-physical qubit mapping which
is used to re-calculate the Q. Dist. of the remaining CPHASE
operations for the next layer. At the end of the procedure,
4 layers are formed and 2 SWAP operations are added to
construct a hardware compliant circuit.

D. Variation-aware IC (VIC)

In IC, the distance between two physical qubits connected
by an edge in the coupling graph is taken as one. Therefore,
for the mapping assignment shown in Figure 6(e) for the
hardware in Figure 6(a), the control and the target qubits
of both CPHASE operations (Opl and Op2) are at distance
1. One of them can be picked for the first layer formation.
IC will choose one of them randomly. As mentioned before,
variability exists within the available native gate operations
in practical quantum computers. Hypothetical success rates of
different CPHASE operations in the hardware in Figure 6(a)
are shown in Figure 6(b). If we consider the reliability of the
CPHASE operations, it is apparent that Opl can be executed
more reliably (with 0.90 success rate) than Op2 (success rate
- 0.82) for the current mapping.

Taking Variability into Consideration: We can prioritize
operations that may be executed with higher reliability during
layer formation to maximize the success probability of the
circuit. This will push operations that can not be executed
reliably for the current mapping to later stages so that they
may move towards more reliable paths due to dynamic changes
in the logical-to-physical qubit mapping during the SWAP
insertion procedure. To incorporate such strategy in IC, dis-
tance measurements between various qubits need to reflect the
success probabilities of the intended operations. We term this
approach as a variation-aware incremental compilation or VIC.

VIC Procedure: In IBM quantum computers, the RZ
of the CPHASE gate is implemented virtually. Hence, the
success rate of a CPHASE operation depends on the suc-
cess probability of two consecutive CNOT operations. For a
CNOT success rate of 0.9, the CPHASE success rate will be
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(a) A hypothetical 6-qubit quantum computer coupling graph, (b) variations in the native 2-qubit operations reliability in the 6-qubit system, (c)

distance measures between the physical qubits (using Floyd Warshall algorithm), (d) distance measures between qubits when edge weights are taken as the

inverse of the 2-qubit operation reliability.

approximately 0.9%0.9 or 0.81. To reflect this success rate in
distance measurements, we take the inverse of the CPHASE
success rate as the distance between neighboring qubits. If a
CPHASE success rate between qubit-x and qubit-y is 0.80,
the associated edge weight in the coupling graph is taken as
1/0.80 or 1.25. These weighted edges are then used to calculate
distances between qubits. The higher the success rate, the
lower the distance. The rest of the procedure is similar to
IC. The distances between qubits in the hypothetical 6-qubit
hardware (using Floyd-Warshall algorithm) in the IC and the
VIC procedures are shown in Figure 6(c) and (d) respectively.

V. PERFORMANCE EVALUATION

In this section, we present a quantitative performance anal-
ysis of the proposed methodologies individually and with
respect to each other in terms of various circuit quality metrics
using simulations and experiments on actual hardware. When
layers are formed one-by-one in IC/IP, we can choose to popu-
late the layers with gates to the fullest. However, the number of
coupling constraints for a single layer scales with the number
of gates packed in that layer. We investigate the impact of
layer packing density on the compilation performance at the
end of this section.

A. Evaluation Metrics

Circuit depth, gate-count, compilation time, and success
probability: These metrics are the natural choices to compare
various compilation strategies [47], [57]. The length of the
critical path in a quantum circuit (the path with the highest
number of gate operations) is defined as the circuit depth.
The circuit depth is correlated to the circuit execution time
on real hardware. A higher-depth circuit is more suscepti-
ble to decoherence errors. Gate-count is the total number
of native gate operations in the compiled circuit. A lower
gate-count generally translates to less accumulation of gate
errors. Compilation time is the time taken by the compiler to
generate the hardware compliant circuit. A faster compilation
is desired for scalability. The circuit success probability metric
is useful to quantify performance benefits with variation-aware
compilation strategies.

Approximation Ratio Gap: The straight forward approach
to judge the quality of the compiled QAOA-circuits would
be running the quantum-classical optimization loop with the
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target hardware and compare the performance in terms of run-
time, final solution, etc. It will require too many cloud-based
access to the hardware which can be time-intensive with public
devices. To circumvent this issue, we propose a new metric,
Approximation Ratio Gap (ARG), to compare the performance
of compiled QAOA-circuits on actual hardware.

We propose to find optimal QAOA-circuit parameters ana-
lytically [45] (or, for small problem size, running the algorithm
in simulation) and use these values to compile the QAOA-
circuit. We sample the output of the circuit (using a simulator
such as qiskit [48]) a finite number of time to calculate the
approximation ratio of the given cost function (rg). Next,
we run the circuit on the target hardware and calculate the
approximation ratio (r) using the same number of samples.
We define the percentage difference between these approxi-
mation ratios {100 x (rg-rp)/ro} as the approximation ratio
gap or ARG. A lower ARG value is desired as it indicates a
performance closer to the noiseless scenario.

B. Problem Sets and Compiler Backend

We use qiskit as the backend circuit compiler (run on an
Intel Core i-7 processor at 3.41 GHz frequency). We choose
20-qubit ibmq_20_tokyo, 15-qubit ibmq_16_melbourne, and
a hypothetical 36-qubit grid (6x6) architectures as the target
hardware. Randomly chosen (up to 36-nodes) erdos-renyi
random graphs (with varied edge probabilities) and regular
graphs (with a varied number of edges/node) are used for
the validation purpose inspired from recent works on QAOA
[26], [27]. An edge probability of 0.5 means an edge between
any two nodes in the graph is 50% likely to be included in
a random sample. A randomly chosen n-regular graph has
exactly n-edges/node. The exact node-to-node connectivity is
different in two randomly chosen n-regular graphs. Graphs
with higher edge probabilities or higher number of edges/node
are dense graphs that require many CPHASE gates in their
corresponding QAOA-MaxCut circuits.

C. QAIM vs. GreedyV* [59]/NAIVE

In this section, we compare QAIM with two other initial
logical-to-physical qubit mapping procedures (GreedyV* and
NAIVE) to quantify its impact on circuit compilation.

Varying Connectivity: We have varied the edge proba-
bility from 0.1 to 0.6 (for erdos-renyi random graphs) and
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edges/node from 3 to 8 (for regular graphs) and randomly
picked 50 20-node graphs in each case. We have compiled
the corresponding QAOA-MaxCut circuits (with randomly
ordered CPHASE gates at ‘p’ = 1) by selecting the initial
mapping using the NAIVE approach, GreedyV* approach, and
QAIM. We plot the ratio of the mean depth and gate-counts of
the compiled circuits (50 instances per bar) between Greedy*
vs. NAIVE, and QAIM vs. NAIVE in Figure 7(a), (b), (c) and,
(d). Compilation time was found to be similar.

Note that, for sparse graphs , QAIM performs considerably
better than both the NAIVE and GreedyV* approach. For
example, for the erdos-renyi random graphs with an edge
probability of 0.1, QAIM produces circuits with 12% and
10.3% shorter depth than NAIVE and GreedyV* respectively.
The gate-counts are also 20.5% and 16.5% smaller. For the
regular graphs with 3 edges/node, QAIM circuit depths are
15.3% and 12.6% shorter than NAIVE and GreedyV* ap-
proaches. The gate-counts are also 21.3% and 16.88% smaller.
For dense graphs, all these three approaches perform similarly.
The reason is the higher number of logical neighbors of a
logical qubit for dense graphs than the number of physical
neighbors of any hardware qubit. For any qubit placement,
some of the logical neighbors will remain far from a logical
qubit placed in a physical qubit. Therefore, we do not note
any performance improvement with intelligent placements.

Varying Problem Size: Later we vary the problem size by
picking 3-regular graphs with the number of nodes varying
between 12 to 20 (20 randomly chosen graphs for each node-
size) and compile the corresponding QAOA-MaxCut circuits
using NAIVE, GreedyV*, and QAIM approaches. We plot
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the ratio of the mean depth and gate-counts of the compiled
circuits against the node-size between Greedy* vs. NAIVE,
and QAIM vs. NAIVE in Figure 8(a) and (b), respectively.
For smaller problem sizes both GreedyV* and QAIM per-
formed better than NAIVE. The reason is the avoidance of
physical qubits with smaller connectivity (e.g. qubit-0 and
qubit-15 in ibmq_20_tokyo) in the selection procedure by
both GreedyV* and QAIM for smaller problem sizes which
translates to a smaller number of SWAP operations during
compilation. For the smallest problem size (12), QAIM gener-
ated circuits with 21.8% smaller depth and 26.8% smaller gate-
counts than the NAIVE approach. Compared to GreedyV*,
circuit depth and gate-counts were 12.2% and 17.2% smaller.

D. IC/IP vs. QAIM

In this section, we quantify benefits of IP and IC over
QAIM-only compilation. We compiled the QAOA-MaxCut
instances of randomly chosen erdos-renyi and regular graphs
using QAIM (+random CPHASE sequence), IP (+QAIM),
and IC (+QAIM). The ratio of the mean depth, gate-count,
and compilation time (50 instances per bar) of IP vs. QAIM
and IC vs. QAIM are shown in Figure 9. Note that, both
IP and IC generated circuits with significantly smaller depths
than the QAIM-only approach and the differences were more
pronounced for dense graphs. For example, IC generated
circuits with 39.3% less depth than QAIM for 3-regular graphs
(Figure 9(d)) and it further went down to 68% for 8-regular
graphs. On average, IC circuits had 13.2% smaller depth than
IP (Figure 9(a) and (d)). A similar trend is observed in the
gate-count as well for IC. On average, IC produced circuits
with 16.67% and 16.6% smaller gate-counts than QAIM and
IP respectively (Figure 9(b) and (e)). However, IP circuits had
more or less similar gate-counts to QAIM.

The result is expected as a reduced number of layers
translates to smaller depth and compilation time for both IP
and IC. IC boosts the performance further by considering
dynamic changes in the mapping. A smaller distance between
control and target qubits of the CPHASE operations in the
subsequent layer helped the compiler to come up with the
nearest neighbor compliant mapping with less number of
additional SWAP operations in IC. Consequently, the gate-
count is found to be smaller in IC compared to IP. However,
sorting the remaining CPHASE operations before every layer
formation increased the compilation time for IC. On average,
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IP compilation time was 37% faster than IC (Figure 9(c) and
(f)). Even in the worst cases, IC compilation time remained
close to QAIM.

E. VIC vs. IC

VIC adds variation awareness to IC with the goal to
increase the success probability of the compiled circuits. To
quantify the efficacy of VIC over IC, we picked erdos-renyi
random graphs (edge probability of 0.5) and regular graphs
(6 edges/node) with varied problem sizes (13, 14, and 15
nodes/graph) and compiled the corresponding QAOA-MaxCut
circuits using IC and VIC approach for the 15-qubit melbourne
architecture (the CNOT error rates used in VIC is shown in
Figure 10(a)). The ratio of the mean success probability of the
circuits between VIC and IC is shown in Figure 10(b) and (c)
(mean of 20 instances). VIC showed an 80% better success
probability over IC on average for the random graphs as shown
in Figure 10(b) (157% for node size 15). For the regular graphs
(Figure 10(c)), we observed a 45.3% better success probability
on average (72.2% for node-size 14).

Some of the nodes in a randomly picked erdos-renyi random
graph can have a higher number of edges than the others. On
the other hand, in the regular graphs, all the nodes have the
same number of edges. In our experiments, the number of
CPHASE operations in each layer (after parallelization) was
higher for the regular graphs than the erdos-renyi ones. The
reason behind this is - all the CPHASE operations involving a
certain qubit need to be allocated in different layers. Therefore,
if a node is connected to other nodes disproportionately, it
increases the number of layers in the QAOA-circuit during
parallelization. A lower number of CPHASE operations in a
layer can be placed in the best pairs of qubits. However, if a
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layer is fully packed, most of the qubit pairs will be used. This
is why the improvement in the success probability is found to
be quite smaller for the regular graphs (where layers were
heavily packed) compared to the erdos-renyi random graphs
(where layers were sparsely packed).

E. Performance Summary

The mean value of the compiled circuit depths, gate-counts,
and compilation times (of 600 QAOA 20-node graph MaxCut
instances) for the NAIVE, QAIM (+random gate sequences),
IP (+QAIM), IC (+QAIM), and VIC (+QAIM) approaches are
shown in Figure 11(a) (normalized by the NAIVE approach
values). For VIC, the CNOT error-rates for different qubit pairs
are picked randomly from a normal distribution (1 = 1.0e-2, o
= 0.5e-2). On average, 45% reduction in the compilation time
has been achieved using IP over the NAIVE approach. IC
and VIC both provided similar performance in reducing depth
(by ~=53%), gate-count (by ~23%), and compilation time (by
~15%). Note that, even though VIC and IC show similar
performance, VIC offers higher success probability than IC
as depicted in Figure 10(b) and (c).

G. Hardware Validation

We ran the quantum-classical optimization loop (L-BFGS-B
classical optimizer used from SciPy library [63] with conver-
gence limit set to ¢~%) to find the QAOA-MaxCut optimal
parameter values (‘p’ = 1) for 20 12-node erdos-renyi random
graphs with edge probability of 0.5 and 20 regular graphs
with 6 edges/node. We compiled the QAOA-circuits with these
optimal parameter values with the proposed strategies for
ibmq_16_melbourne architecture. We then sampled the output
of every circuit 40960 times from hardware experiments and
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used the results to calculate their corresponding ARG’s (using
the same set of physical qubits). VIC (+QAIM), IC (+QAIM),
and IP (+QAIM) all provided smaller ARG values compared
to the QAIM-only circuits (Figure 11(b)). On average, IC pro-
vided 8.53% smaller ARG values than IP. VIC provided 7.36%
smaller ARG than IC. The results reflect the improvement in
the compiled circuits in terms of depth, gate-count, and success
probability.

H. Impact of Packing Density

In all the preceding compilation tasks, we tried to pack every
layers to the fullest using the greedy approach. To investigate
the impact of packing density, we have picked a 36-qubit
grid qubit architecture and compiled QAOA-MaxCut circuits
of 20 erdos-renyi random graphs (edge probability 0.5) and
20 15-regular graphs (36-nodes) with varying packing limits
(maximum allowed number of CPHASE gates per layer is
limited) using the IC (+QAIM) approach.

Impact on depth: The mean depth of the compiled circuits
is shown in Figure 12(a) against the packing limit. Note that,
the depth tends to decrease with an increase in the packing
limit at first. However, when it went beyond 11, the qiskit
compiler started to produce solutions with poor quality in
terms of the circuit depth. In the previous examples, for the 20-
node graphs, each layer had at most 10 operations. Therefore,
the reported depth was most possibly the lowest that could
have been achieved with the qiskit compiler. Compiling the
circuits multiple times with different packing limits may help
to generate circuits with desired circuit depth.
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Impact on gate-count: Gate-count is found to increase
with packing limit as shown in Figure 12(b). The increase is
rather small for the packing limit between 3 to 11 i.e., 12.7%
for the random graphs, and 16.18% for the regular graphs.
However, the gate-count increases sharply beyond the packing
limit of 11. If circuit depth is of a lesser concern (e.g. target
hardware qubits have large enough coherence time), compiling
circuits with the minimum packing limit may result in the best
performance in terms of gate-counts.

Impact on compilation time: Packing more operations
reduces the total number of circuit layers as well as the
number of required SWAPs or permutation layers [47]. As
the compiler has to satisfy coupling constraints of a fewer
number of layers, it may translate to reduced compilation
time. Figure 12(c) shows the mean compilation time for the
random and regular graph QAOA-MaxCut instances where
compilation time consistently reduced with increasing packing
limit. If compilation time is of concern, packing the layers to
the fullest may provide the best performance. However, this
may not hold true for even larger architectures.

VI. DISCUSSION

Comparative analysis: Since QAOA circuit compilation
techniques is a new area, we are unable to perform extensive
comparative analysis. A related work [46] took 70 sec for
a QAOA circuit with only 8 qubits whereas we achieved
reasonably good quality solutions for QAOA circuits with 36
qubits within 10s using giskit compiler backend on a standard
desktop machine (i.e., 7X faster for 4.5X bigger problems). For
a 8-qubit cyclic hardware architecture, IC generated circuits
with 8.51% smaller depth and 12.99% smaller gate-count on
average for 50 instances of 8-node erdos-renyi random graphs
with exactly 8 edges compared to [46] (‘p’=1).

Usage of methodologies: QAIM is a generic qubit alloca-
tion and initial mapping procedure that can be incorporated
in any QAOA-circuit compiler without adding any significant
overhead. Among IP, IC, and VIC - the appropriate choice
depends on the application requirements. For example, if
reducing the circuit depth with faster compilation time is the
prime requirement of the target application - IP will be the
prudent choice. However, if reducing gate-count is equally
significant, then IC will be a better choice. VIC can provide
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additional benefits by enhancing the compiled circuit success
probability when reliable calibration data is available.

Applicability beyond QAOA-MaxCut: The cost Hamilto-
nian of any arbitrary NP-hard problem can be formulated in the
Ising format consisting of ZZ-interactions [24]. Each of these
ZZ-interactions can be implemented with a CPHASE gate
similar to the QAOA-MaxCut problem. Hence, the proposed
compilation methodologies can be applied to other classes of
QAOA instances. QAIM can be useful for arbitrary quantum
circuits to a varied extent. IP, IC, and VIC can be useful for
quantum circuits with large number of commuting operators
such as the UCCSD ansatz for VQE [64], [65].

Crosstalk: Excessive gate parallelization may increase
crosstalk-errors. Murali et al. [66] demonstrated that only a
subset of couplings is highly crosstalk prone and proposed
sequentialization of parallel operations on those couplings. For
example, in IBM Poughkeepsie, they found only 5 couplings
out of 221 to be highly crosstalk prone. A similar optimization
step can be added in our flow to sequentialize only the high-
crosstalk parallel operations post-compilation when the actual
gate pulses are scheduled.

VII. RELATED WORKS

A number of compilation-work (not QAOA-specific) dis-
cusses QAOA as an example [46], [67], [68]. Machine-level
gate pulse optimization has been explored [67] to reduce the
execution time (latency) of a QAOA circuit. The compiler
checks for gate-commutativity and combines multiple high-
level gates to find a machine-level pulse sequence using the
GRAPE algorithm. The new pulse will have a shorter duration
than the high-level gates. A 2X-10X reduction in execution
time has been reported for quantum systems up to 10 qubits.
However, the time and memory requirement of the GRAPE
algorithm grows exponentially with the problem size (i.e., #
of qubits) leading to a high compilation latency.

The high compilation latency of GRAPE is addressed with
a ‘partial compilation’ approach in [68]. It creates sub-circuit
blocks with non-parametric (strict) and parametric (flexible)
gates. Then, they pre-compute pulse sequences for each of
the blocks. In future instances, the pre-computed pulses can
be reused to execute a circuit and curtail the compilation
time. However, quantum hardware suffers from the temporal
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variation [69]. Therefore, pre-computed pulses may not give
optimal operation fidelity in a future instance.

A more traditional approach is explored in [46] to exploit
gate commutation for aggressive QAOA circuit optimization
by formulating the mapping problem as a planning problem
and using off-the-shelf temporal planners for compilation. The
problem with such compilation approach is: the solution is
often as good as the plans. To this point, their plans did not
incorporate (i) constraints to exploit initial mapping (exploited
by QAIM), (ii) constraints for reordering the CPHASE oper-
ations involving a certain qubit (exploited by IC), and (iii)
constraints to exploit qubit-to-qubit variation (exploited by
VIC). Moreover, the solutions lacked scalability which has
been tackled by heuristics in our solutions.

Two contemporary works use iterative compilation that re-
compiles QAOA-circuits with updated gate-orders until the re-
compiled circuits do not exhibit any performance improvement
in terms of circuit depth, gate-count or success probability
[70], [71]. The procedure is guided by a branch-and-bound
optimization heuristic that incurs significant compilation time
penalty due to repeated compilations (=10X-600X reported
with qiskit compiler backend for similar problem sets as used
in this work).

VIII. CONCLUSION

We present four novel methodologies to compile QAOA
circuits. Our methodologies can be integrated with any conven-
tional compiler to improve the quality of the compiled QAOA-
circuits. We validate performance improvement through exper-
iments on real quantum devices from IBM. We demonstrate up
to ~53.0% reduction in circuit-depth, ~23% reduction in gate-
counts and ~45% reduction in compilation time over a NAIVE
approach. We also demonstrate up to ~25.8% improvement in
the approximation ratio gap through practical experiments of
selected QAOA-MaxCut problems on ibmq_16_melbourne.
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