
Circuit Compilation Methodologies for Quantum
Approximate Optimization Algorithm

Mahabubul Alam
Pennsylvania State University
University Park, USA

mxa890@psu.edu

Abdullah Ash- Saki
Pennsylvania State University
University Park, USA

axs1251@psu.edu

Swaroop Ghosh
Pennsylvania State University
University Park, USA

szg212@psu.edu

Abstract—The quantum approximate optimization algorithm
(QAOA) is a promising quantum-classical hybrid algorithm to
solve hard combinatorial optimization problems. The multi-qubit
CPHASE gates used in the quantum circuit for QAOA are
commutative i.e., the order of the gates can be altered without
changing the output state. This re-ordering leads to the execution
of more gates in parallel and a smaller number of additional
SWAP gates to compile the QAOA-circuit. Consequently, the
circuit-depth and cumulative gate-count become lower which is
beneficial for circuit execution time and noise resilience. A less
number of gates indicates a lower accumulation of gate-errors,
and a reduced circuit-depth means less decoherence time for the
qubits. However, finding the best-ordered circuit is a difficult
problem and does not scale well with circuit size. This paper
presents four generic methodologies to optimize QAOA-circuits
by exploiting gate re-ordering. We demonstrate a reduction in
gate-count by ≈23.0% and circuit-depth by ≈53.0% on average
over a conventional approach without incurring any compilation-
time penalty. We also present a variation-aware compilation
which enhances the compiled circuit success probability by
≈62.7% for the target hardware over the variation unaware
approach. A new metric, Approximation Ratio Gap (ARG), is
proposed to validate the quality of the compiled QAOA-circuit
instances on actual devices. Hardware implementation of a
number of QAOA instances shows ≈25.8% improvement in the
proposed metric on average over the conventional approach on
ibmq 16 melbourne.

I. INTRODUCTION

Quantum computing is one of the most transformative tech-

nologies of the present time. Prototypical quantum computers

with 5-128 qubits are available or proposed [1]–[4] from

industry vendors like IBM, Google, Rigetti, etc. Recently,

Google claimed quantum supremacy with a 53-qubit quantum

processor to complete a computational task in 200 seconds

that might take 10000 years (later rectified to 2.5 days [5]) on

the state-of-the-art supercomputers [6]. This is a significant

milestone for quantum computing. Apart from the limited

number of qubits and connectivity, the near-term devices

are plagued with various kind of errors such as gate-error,

decoherence, crosstalk, etc. [7]–[11]. Therefore, quantum error

correction codes (QECCs) [12]–[17] are necessary for fault-

tolerant computation. However, QECCs have prohibitively

high physical qubit overhead. Therefore, variational quantum-

classical algorithms are being explored to gain the quantum

advantage for various problems in physics, chemistry [18]–

[22], optimizations [23]–[27], and machine learning [28]–

[34]. Quantum Approximate Optimization Algorithm (QAOA)

[35]–[37] is at the forefront of these hybrid algorithms which

is particularly useful to solve optimization problems and touted

as a prime candidate for early demonstration of quantum

supremacy [38]. However, the perceived quantum advantage

through QAOA may be lost due to the accumulation of gate

errors and decoherence [39]–[41]. An optimized circuit can

show greater resilience to noise, and enhance the probability of

generating the correct quantum state. This makes QAOA circuit
optimization an important problem in the NISQ-era [42].
The detailed theoretic discussion on QAOA can be found

in other literature [26], [27], [35]–[38]. QAOA involves pa-

rameter optimization of a multi-level parameterized quantum

circuit (PQC). The PQC runs in a quantum-classical hybrid

optimization loop to minimize (or maximize) the expecta-

tion value of a classical cost function. QAOA performance

improves with added levels in the PQC. The total number

of levels is referred to as ‘p’. However, each level adds

additional two parameters (γ, β) to the PQC which may affect
the convergence and the speed [27], [43]. These parameter

values can be found (without the optimization routines) by

exploiting their relationship among similar instances [44] or

analytically [45].

The PQC to solve the maximum cut (MaxCut) problem of

a 4-node 3-regular graph (Figure 1(a)) with QAOA is shown

in Figure 1(b) (‘p’ = 1). Note that, the PQC has an associated

CPHASE operation in every level of the circuit for every edge

in the problem graph for the MaxCut problem. CPHASE is a

two-qubit unitary parametric quantum gate operating between

a control and a target qubit. The black circle and the square

enclosing the letter Z and the parameter γ are the control

and target qubits of a CPHASE operation in Figure 1(b) and

(c). Also, note that two consecutive gates can be executed

concurrently if they operate on a different set of qubits. For

example, the first two CPHASE operations in the circuit in

Figure 1(b) can not be executed concurrently as they share a

logical qubit (q2).

The CPHASE operations in a QAOA circuit are commutative
[26], [46] i.e., the order of these CPHASE gates can be

interchanged without affecting the output state of the quantum

circuit. We can use this knowledge to maximize concurrent

gate operations by choosing an optimal order of the gates.

Figure 1(b) shows the QAOA-MaxCut circuit instance with

Authorized licensed use limited to: Penn State University. Downloaded on September 01,2021 at 20:11:39 UTC from IEEE Xplore. Restrictions apply.

RX(H

H

H

H

RX(

RX(

RX(

RX(H

H

H

H

RX(

RX(

RX(

RX(H

H

H

H

RX(

RX(

RX(

RX(H

H

H

H

RX(

RX(

RX(

Fig. 1. (a) A 4-node 3-Regular graph, (b) a randomly constructed QAOA-MaxCut instance (circ-1) of the 4-node graph with p = 1, (c) an optimized circuit
(circ-2) for the problem with reduced number of layers, (d) SWAP addition during circuit compilation for a target hardware with different layer orders.

randomly ordered CPHASE operations for the problem graph

in Figure 1(a) (circ-1). Figure 1(c) shows an intelligently

gate re-ordered circuit (circ-2). Note that, if these circuits

are executed in quantum hardware with full qubit-to-qubit

connectivity supporting the following basis gates: H, RX, and

CPHASE, circ-1 will require 9 time steps while circ-2 will take

6 time steps (including the measurement operations). If every

gate takes a similar execution time in the hardware, circ-2

will be 50% faster and will experience less decoherence. Re-

ordering these layers of CPHASE gates (e.g. interchanging

layer-2 and layer-3 in circ-2) will not provide any reduction

in the circuit cumulative execution time.

However, if we consider target hardware with limited con-

nectivity such as the 4 linearly coupled physical qubits (p1,

p2, p3, p4) in Figure 1(d), there will be further scope of

optimization in circ-2. For such architectures, SWAP gates are

added between two layers to meet the hardware constraints

[47], [48]. For the initial logical-to-physical qubit assignment

shown in Figure 1(d), interchanging the CPHASE layer 2 and 3

(in circ-2) will reduce the additional SWAP operations from 4

to 3. Therefore, the CPHASE gates that are picked for different

layers will affect the quality of the compiled circuit for such

target architectures.

Conventional compilers can optimize QAOA-circuits using

efficient gate scheduling strategies utilizing the commutation

properties of the gates [49]. However, incorporating gate-

reordering strategies in a compiler is not straight forward.

First, the compiler has to check for the commutative gates in

the given circuit. The complexity of the problem scales with

the size of the quantum circuit. Second, additional constraints

need to be added to the compiler optimization heuristic to

make use of the commutation properties which can affect the

compilation speed. For example, a QAOA-specific compiler

developed in [46] to take advantage of the commutation

properties reported 70 seconds compilation time for simple 8-

qubit circuits. Compiling optimal QAOA-circuits of practical

significance (e.g. problems requiring ≈100 qubits or more)
using such approaches may prove impractical due to the

compilation time overhead.

Note that, recent studies claim that various sources of noise

flatten the solution space of QAOA [39], [40]. Therefore,

finding a mapping with higher reliability (less impacted by

noise) is important to extract maximum performance from

QAOA. Higher gate-count and depth affect the reliability of

the circuit. Moreover, a higher depth quantum circuit increases

execution time and reduces the algorithmic speed. Therefore,

minimizing the depth/gate-count of the compiled circuit is

crucial for QAOA applications. An efficient circuit compiler

will choose the order of the commutative gates in QAOA

circuits intelligently to maximize the compiled circuit quality

in a scalable way (i.e., the methodologies should be applicable

for larger problem sizes for powerful quantum hardware with

200-500 qubits). However, relevant methodologies are absent

in the literature. In this article, we present scalable heuristics

that can be incorporated in conventional compilers to optimize

QAOA-circuits utilizing the commutation properties.

We make the following contributions for QAOA circuits

compilation. We, (a) present a novel Qubit Allocation and

Initial Mapping (QAIM) that chooses an intelligent logical-

to-physical qubit mapping based on the problem characteris-

tics and target coupling graph to reduce the need for qubit

movement in the subsequent SWAP insertion procedure, (b)

propose a greedy heuristic for Instruction Parallelization (IP)

to reduce the circuit depth and execution time, (c) propose an

Incremental Compilation (IC) technique that reduces the need

for added SWAP operations utilizing the dynamic changes in

logical-to-physical qubit mapping during the SWAP insertion

procedure, (d) propose a Variation-aware Incremental Compi-

lation (VIC) technique that enhances compiled circuit success

probability by prioritizing gate operations with higher reliabil-

ity, (e) present detailed comparative analysis of the proposed

methodologies in terms of circuit quality metrics e.g., depth,

Authorized licensed use limited to: Penn State University. Downloaded on September 01,2021 at 20:11:39 UTC from IEEE Xplore. Restrictions apply.

gate-count, compilation time, success probability, and ARG for

a total of 1200 QAOA-MaxCut instances for 3 different qubit

architecture with 15 to 36 qubits and, (f) provide directives

for their appropriate usage and future developments.

To the best of our knowledge, this is the first work to

propose application-specific circuit compilation methodologies

for general-purpose compilers. In the remaining paper, we

cover the basics of quantum computing and circuit compilation

(Sections II and III), discuss our proposed methodologies and

their performance (Sections IV, V and VI), summarize prior

works and draw conclusions (Sections VII and VIII).

II. QUANTUM COMPUTING BASICS

To keep the article self-contained, we briefly review the

basics of quantum computation in this section.

Qubits and Quantum gates: Qubit is analogous to classical
bits however, a qubit can be in a superposition state i.e., a

combination of 0 and 1 at the same time. Quantum gates such

as single qubit (e.g., Pauli-X (σx) gate) or multiple qubit (e.g.,

2-qubit CNOT gate) gates modulate the state of qubits and thus

perform computations.

Gate Error, Decoherence and Crosstalk: Quantum gates

are error-prone. Besides, the qubits suffer from decoherence

i.e., the qubits spontaneously interact with the environment

and lose states. Therefore, the output of a quantum circuit

is erroneous. The deeper quantum circuit needs more time

to execute and gets affected by decoherence. More gates in

the circuit also increase the accumulation of gate error. Thus,

lower depth and number of gates in the circuit improves

noise resiliency. Parallel gate operations on different qubits can

affect each others performance which is known as crosstalk.

Success Probability: The success probability of a gate

is the conjugate of the error-rate (1−error). The success

probability of a circuit is defined as the product of the success

probabilities of individual gates [50], [51]. A higher value

indicates a higher probability of successful execution of the

circuit on actual hardware.

Basis Gates and Coupling Constraints: A practical quan-

tum computer supports a limited number of single and multi-

qubit gates known as basis (or native) gates of the hardware.

IBM quantum computers offer single-qubit {U1, U2, U3,
ID} and two-qubit CNOT gate as basis gates. However, the

quantum circuit may contain non-native gates to the target

hardware e.g., the CPHASE gate for IBM quantum computers.

Hence, the gates in a quantum circuit need to be decomposed

into the basis gates before execution. A CNOT decomposition

of a CPHASE gate is shown in Figure 1(d). The native two-

qubit gate may or may not be permitted between all the two-

qubit pairs in the target hardware. These limitations are also

known as coupling constraints. Conventional compilers add

necessary SWAP gates to meet these constraints.

QAOA-circuits: Combinatorial optimization problems can
be formulated using the Ising spin-glass model [24] which

can be directly translated to a Hamiltonian by promoting

each of the binary variables to a Pauli-Z operator. Each

of the quadratic terms in the Ising model becomes a ZZ-

interaction in the Hamiltonian that can be executed using the

CPHASE gate in quantum computer [24]. In QAOA, such

a Hamiltonian is formed for a given optimization problem

and then, it is executed on a quantum system with controlled

duration followed by a set of rotation gates. This execution

of cost Hamiltonian and rotation gates can be repeated in the

multi-level version of QAOA (‘p’ times for ‘p’-level QAOA).

Therefore, the cost Hamiltonian in QAOA is a collection of

CPHASE gates operating on different qubits e.g., the cost

Hamiltonian for the QAOA-MaxCut problem of the 4-node

3-Regular graph (Figure 1(a)) consists of 6 CPHASE gates

acting between 4 logical qubits shown in Figure 1(b).

QAOA Optimization Flow and Approximation Ratio:
In a QAOA optimization flow, the expectation value of the

cost function is calculated by taking its mean over a finite

number of samples from the QAOA-circuit output [27]. The

parameters of the circuit are iteratively updated to maximize

(or minimize) this expectation value. The circuit outputs are

sampled a finite number of times with the optimal parameter

values. The cost function is evaluated with these samples and

the sample producing the highest (/lowest) cost is taken as the

approximate solution. In such cases, the approximation ratio

(defined as the ratio between the mean cost function value

over these samples and the actual maximum function value)

quantifies the QAOA performance [26], [27].

III. BACKGROUND AND MOTIVATION

Mapping quantum circuits for target quantum hardware has

been proven to be NP-complete [52], [53]. Two disparate

approaches are followed to solve the problem. In the first

approach, the mapping problem is formulated as a constraint

satisfaction problem and later, powerful reasoning engines

(such as, SMT solver, ILP solver, etc.) are used to find a solu-

tion that meets these constraints [54]–[56]. These approaches

can find the global solution for small problems, but they

lack scalability [55]. The second approach relies on efficient

heuristics that gradually lead towards a solution [47], [57].

These approaches are scalable, however, they may often get

stuck in local optima resulting in sub-optimal mapping.

Any qubit mapping procedure has following basic steps:

(i) selection of physical qubits (qubit allocation or topology

selection), (ii) initial logical-to-physical qubit mapping (initial

placement), and (iii) addition of SWAP gates to meet the

hardware coupling constraints (using heuristics or constraints

solvers). Each of these steps affects the quality of the compiled

circuit i.e., depth, gate-count, and reliability [56], [58].

Qubit Allocation: For topology selection, a natural ap-

proach is selecting a ‘k’-node connected sub-graph from

the ‘n’-node (n>k) hardware coupling graph with maximum
edges to implement a circuit with ‘k’ qubits. The rationale

is that more connectivity will reduce the need for SWAP

operations during the qubit mapping procedure. IBM’s qiskit

compiler uses this optimization technique in one of its many

optimization levels [48]. In an interesting perspective to the

topology selection problem, Variation aware Qubit Allocation

Authorized licensed use limited to: Penn State University. Downloaded on September 01,2021 at 20:11:39 UTC from IEEE Xplore. Restrictions apply.

(VQA) technique selects sub-graph maximizing the cumulative

reliability of the links rather than the total number of links

[50]. The idea is to maximize the success probabilities of dif-

ferent multi-qubit operations within hardware under variability.

Initial Mapping: The initial mapping problem has been

addressed using the reversibility property of quantum circuits

[57]. A reverse traversal approach is proposed where a random

initial mapping is updated by compiling the original circuit and

its reverse iteratively. Between iterations, the final mapping of

the previous compilation step is taken as the initial mapping

for the current one. A few (3) reverse traversals showed

significant performance improvement at the expense of higher

compilation time due to repeated compilations [57]. In [53],

first, the number of logical qubits coupled with a certain

qubit is counted, and then, the algorithm searches for a match

with the outdegree of the physical qubit in the coupling

graph without considering any temporal information [53]. Two

heuristics termed as GreedyE� and GreedyV� are presented in

[59]. In GreedyE� policy, program CNOTs, and their control

and target qubits are placed in a heaviest edge first order

(maximum CNOT operations between two logical qubits).

In GreedyV� policy, program qubits are placed on hardware

qubits in the heaviest qubit first order (qubit involved in the

maximum number of operations).

SWAP Insertion: The majority of the heuristics-guided

SWAP insertion algorithms (including IBM’s qiskit compiler)

partitions the circuit in different layers where each layer

consists of gates that can be executed concurrently in the

hardware (gates operating on a different set of qubits) [47],

[48], [60], and then add necessary SWAP operations between

layers to accommodate all the gate operations within each

layer. Adding SWAP operations to bring two qubits closer

and executing a CNOT operation affects all other subsequent

CNOT operations. Therefore, considering many operations at

the same time may help in reducing the number of aggregated

SWAP operations. In its simplest form, every layer may consist

of a single multi-qubit operation [61] where SWAPs are added

between layers just to meet the coupling constraint for the

target operation. Minimizing the number of SWAPs is often

the optimization goal [61] however, an interesting approach

is proposed that also considers the reliability of these SWAP

operations (VQM) [50]. When multiple paths exist, VQM

chooses the path with higher reliability even if the number

of SWAPs is higher than the other paths.

Motivating Factors: Note that each qubit may interact with
another qubit only once within a level (either 1 CPHASE

or no CPHASE) in QAOA-circuits. Hence, heuristics, such

as GreedyE�, which prioritizes qubit pair placements with

maximum interactions, is not suitable for these circuits. For

QAOA-circuits, a more rational approach would be placing a

group of qubits closer together that interact with each other.

Additionally, the commutation of CPHASE gates can be used

to our advantage to maximize parallel gate operations and

minimize the number of layers, which will eventually help

compilers, such as [47], [48], to generate better quality circuits.

To achieve these objectives, we need to address the following

questions: (i) how can we perform qubit allocation and initial

qubit placement to ensure that qubits are surrounded by other

qubits they are coupled to? (ii) what can be an efficient way to

parallelize operations so that the existing compilers can come

up with better quality compiled circuits?

IV. PROPOSED METHODOLOGIES

A general-purpose compiler (i.e. qiskit compiler from IBM)

can be used to compile QAOA circuits with random initial

mapping and randomly ordered CPHASE gates. We term this

as the NAIVE approach and use it to quantify the performance

benefits of four proposed methodologies - QAIM, IP, IC, and

VIC - which can be integrated into any conventional compiler.

QAIM is an intelligent qubit allocation and initial mapping

approach which applies to any circuit compilation. IP, IC,

and VIC use a backend compiler to add SWAP operations

into the circuit with various target objectives. Each of these

methods has exclusive benefits and should be adopted based

on the requirements of the target application. The workflow

to incorporate QAIM, IP, IC, and VIC in QAOA-circuit com-

pilation is shown in Figure 2. Starting with a QAOA problem

instance, target hardware coupling graph and hardware calibra-

tion data, QAIM generates an initial logical-to-physical qubit

mapping that is passed to the chosen compilation procedure

(i.e., IP/IC/VIC) which in turn, uses a backend compiler to

generate the hardware compliant circuit. While IP passes a

complete circuit description to the backend, IC and VIC send

partial circuit descriptions in multiple iterations and stitch the

compiled circuits at the end. The details of the individual

procedures are discussed in this section.

A. Integrated Qubit Allocation and Initial
Mapping (QAIM)

QAIM combines the qubit allocation and initial mapping

procedures in a single step and seeks to achieve three objec-

tives: (i) choosing a sub-graph from the hardware coupling

graph maximizing the connectivity within the physical qubits

(qubit allocation), (ii) minimizing initial distances between the

logically neighboring qubits in the sub-graph (initial mapping),

and (iii) achieving the first two objectives in a scalable way.

QAIM uses efficient heuristics that exploit the following two

profiling statistics:

Hardware Profiling: If a physical qubit has many neigh-
bors, the logical qubit mapped to it is less likely to move

Fig. 2. A generic workflow incorporating the proposed compilation method-
ologies on top of a traditional compiler backend.

Authorized licensed use limited to: Penn State University. Downloaded on September 01,2021 at 20:11:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. (a) Coupling graph of a 20-qubit quantum computer from IBM (ibmq 20 tokyo), (b) connectivity strength metrics of different qubits in ibmq 20 tokyo,
(c) a toy QAOA cost Hamiltonian circuit with qubit activity profiles, (d) QAIM decision metric, and (e) qubit allocation and initial mapping for the toy
example on ibmq 20 tokyo using QAIM.

during compilation. This is the rationale behind allocating

such physical qubits to the heaviest logical qubits in the

GreedyV� heuristic [59]. However, it does not consider the

expected activities in the neighboring qubits in the succeeding

time-steps. If the neighboring physical qubits have sparse

connectivity, the logical qubits mapped to them may need

to move frequently to meet the coupling constraint. In such

scenarios, the heaviest qubit may not need to move that

often, however, its neighbors will move back and forth to

meet connectivity constraints with other qubits, and thereby,

increase the number of added SWAP operations.

To address this issue, we define connectivity strength of a

qubit as the summation of its first and second neighboring

qubits and create a profile of the available physical qubits

based on this metric to assist in the mapping procedure. First

neighbors of a qubit are the qubits connected directly to that

qubit in the hardware coupling graph. Second neighbors are

the unique first neighboring qubits of its first neighbors. For

instance, qubit-0 in ibmq 20 tokyo (Figure 3(a)) has two first

neighbors (qubit-1 and 5) and 5 second neighbors (qubit-2, 6,

7, 10, and 11). Therefore, the connectivity strength of qubit-0

is 7 (=2+5). The complete hardware profile of ibmq 20 tokyo

is shown in Figure 3(b). This profiling can be done once for

every hardware and the associated memory can be accessed

during compilation. Note that for larger qubit architectures,

we may include higher degree neighbors (i.e. third/fourth

neighbors) in qubit connectivity strengths calculation.

Program Profiling: The program profile used in QAIM

is similar to GreedyV� [59]. For any input QAOA-circuit,

we calculate the number of CPHASE operations per logical

qubit to create the program profile. A demonstrative example

is shown in Figure 3(c).

QAIM Procedure: Starting with the list of CPHASE

operations in a QAOA-circuit, target hardware, and program

profiling statistics, QAIM adopts following steps:

Step–1: The logical qubits are sorted (descending order) in
a list based on the number of CPHASE operations per qubit.

Physical qubits are allocated to the logical qubits in this order.

Step–2: The first logical qubit is assigned to the physical
qubit with the highest connectivity strength. After the assign-

ment, the qubit is removed from the list.

Step–3: For the next logical qubit in the list, we check if
any of its logical neighbors (logical qubits that have multi-

qubit operations between themselves are referred to as logical

neighbors) has been already placed. If none of them has

been placed, we pick the unallocated physical qubit with the

highest connectivity strength for allocation. If some of its

logical neighbors are placed, we find the unallocated physical

neighbors of these placed qubits. We pick a qubit from these

neighbors maximizing the cost metric - qubit connectivity

strength/cumulative distance from the placed neighbors. Here,

distance is the shortest path length between the unallocated

qubit and a placed neighbor in the hardware coupling graph.

Distances between physical qubits can be measured once (us-

ing Floyd-Warshall algorithm [57]) and accessed from memory

during QAIM. After the assignment, we remove the logical

qubit from the list.

Step–4: We repeat Step–3 until the list is empty.
Example 1: The QAIM procedure for the QAOA-circuit

in Figure 3(c) is shown in Figure 3(d) and (e). Logical qubit

‘q0’ has two physical qubit candidate - qubit-7 and qubit-

12 (as both have same qubit connectivity strength of 18

each) and qubit-7 is picked randomly in the example (Figure

3(e)(i)). Logical qubit ‘q1’ has 6 possible candidates (as it is

a logical neighbor of ‘q0’), all at a distance of 1 from ‘q0’

(Figure 3(e)(ii)). Physical qubit-12 has the highest connectivity

Authorized licensed use limited to: Penn State University. Downloaded on September 01,2021 at 20:11:39 UTC from IEEE Xplore. Restrictions apply.

RankCumulative
OperationsCPHASE

Qubit

Operations

Fig. 4. Instruction parallelization heuristics with a demonstrative example- (a) input list of CPHASE gates for a certain QAOA instance, (b) program qubit
usage profile, (c) ranking CPHASE operations, (d) sorted CPHASE list based on their ranks, (e) defining empty layers, and (f) assigning CPHASE operations
to different layers.

strength/cumulative distance from the placed neighbors (‘q0’).

Therefore, qubit-12 is chosen for ‘q1’. The other qubits

‘q4’,‘q2’,‘q3’ are placed to qubit-8, qubit-13, and qubit-2

respectively in a similar fashion.

Two graph data structures are used (one for the hardware

coupling graph and another for the program qubit connectivity

graph) to search for all nearest physical/logical neighbors dur-

ing the QAIM procedure using a linear search algorithm. The

cost metric is chosen to prioritize unallocated physical qubits

in qubit selection procedure which have higher connectivity

strengths and are at a closer distance from the already placed

logical neighbors of a logical qubit. Note that, the cost metric

can be modified (e.g. weigh distances based on the number of
multi-qubit operations between the logical qubit and its already

placed neighbors) to apply QAIM effectively in any arbitrary

quantum circuit mapping procedure.

B. Instruction Parallelization (IP)

After allocating physical qubits for the QAOA-circuit logi-

cal qubits using QAIM, we can go through the rest of the steps

in the compilation procedure (SWAP insertion) following two

orthogonal approaches: (i) compile the circuit with randomly

ordered CPHASE gate sequences, or (ii) judiciously order

the CPHASE gate sequences to extract better performance

from the backend compiler. As mentioned before, paralleling

instructions in the QAOA-circuit may help to reduce the

circuit depth due to more concurrent gate operations and assist

compilers (that partitions the circuit into layers of concurrently

executable gates) by reducing the number of layers in the cir-

cuit [47], [48]. To maximize gate parallelization, we formulate

the problem as a binary bin-packing problem and use the first-

fit decreasing greedy heuristic for solution [62]. We refer to

this approach as IP throughout the paper.

IP Procedure: IP also utilizes the program profile used in

QAIM to rank the CPHASE operations (in descending order)

in the QAOA-circuit based on a total number of operations on

the control qubit and the target qubit. Operations with similar

ranks are ordered randomly within themselves. The following

steps are adopted to create the CPHASE layers:

Step−1 : Create MOQ (the maximum number of operations

in any qubit in the given QAOA circuit) empty layers of bins

(each bin representing a qubit). This is the minimum limit for

the number of layers that can be reached using IP in the best

case scenario (see Example 2).

Step− 2 : Take the operation from the sorted CPHASE list

with the highest rank. If both of the qubits in the CPHASE

operation are empty in one of the layers, assign the CPHASE

operation to that layer and mark the qubit bins as occupied.
Remove the CPHASE operation from the list. If operations

can not be assigned to any of the layers, move that operation

to a separate list of unassigned CPHASE operations.

Step− 3 : Repeat Step− 2 until the list is empty.

Step − 4 : If unassigned CPHASE operations list is not

empty, repeat from Step− 1 with this list.

Example 2: The input CPHASE gate list and its profiling
statistics for a demonstrative example of IP are shown in

Figure 4(a) and (b). MOQ for this example is 2 (as qubit 1 and

2 are involved in 2 CPHASEs each). As qubit-1 is involved

in 2 CPHASE gates ((1,5), (1,4)), they need to be executed

in at least 2 different layers (i.e., time-steps). Therefore, the
minimum number of required layers for this circuit is (MOQ

=) 2. The ranking of the CPHASE operations is shown in

Figure 4(c). For example, cumulative operations for (2,3) is

3 as qubit-2 (control) is involved in ‘2’ CPHASE operations,

(2,3) and (2,4), qubit-3 (target) is involved in ‘1’ CPHASE

operation, (2,3). Thus, cumulative operations for (2,3) is ‘2 +

1 = 3’. The sorted CPHASE operations (based on their ranks)

are shown in Figure 4(d) (similar ranked CPHASE operations

are ordered randomly). The CPHASE operations in this sorted

list are assigned one-by-one to the available qubit bins in the

2 layers (L1 and L2) shown in Figure 4(e). First, CPHASE

between (1,4) is assigned to L1. Next, the CPHASE between

(2,4) is assigned to L2 as bin 4 is already occupied in L1.

CPHASE between (2,3) is assigned to L1 as both bins 2 and

3 are unoccupied in L1. The remaining CPHASE between

(1,5) is assigned to L2. The steps in the assignment procedure

are shown in Figure 4(f).

The input circuit to the compiler is created by ordering

the CPHASE operations based on their layer assignments. For

the example, the following CPHASE sequence is given as the

input to the compiler (Figure 4(d)): (1,4), (2,3), (2,4), (1,5).

Authorized licensed use limited to: Penn State University. Downloaded on September 01,2021 at 20:11:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Demonstration of the incremental compilation procedure for the initial mapping shown in Figure 3.

C. Incremental Compilation (IC)

Conventional compilers [47], [48] add SWAP operations

before every layers to meet its coupling constraints. The

logical-to-physical qubit mapping changes with every added

SWAP operation. Due to these dynamic changes, some of the

control and target qubits of the remaining CPHASE operations

come closer to each other than the others. If these CPHASE

operations are prioritized in the next layer formation, it may

reduce the need for qubit movement between consecutive

layers. In IP, all the layers are formed at the same time and

the complete circuit is passed to the backend for compilation.

To take advantage of these dynamic changes, we propose an

incremental approach (i.e, IC) to compile QAOA circuits.

IC Procedure: In IC, the circuit layers are formed one-at-
a-time and partial circuits are compiled with single CPHASE

layers. The partial circuits are stitched at the end to construct

the whole circuit. IC adopts the following steps:

Step−1 : CPHASE operations are sorted in ascending order
based on the distance between their control and target qubits

for the initial logical-to-physical mapping. Distance between

two qubits is defined as the shortest path length between them

in the coupling graph. If multiple CPHASE operations have

similar distances, they are ordered randomly. This sorted list

is used to construct a single CPHASE layer using a greedy

approach similar to the one used in IP (CPHASE operations

are assigned to a single layer of bins). A partial circuit is

compiled with this layer and the initial mapping. The final

mapping after SWAP insertion is saved.

Step−2 : The final mapping is set as the initial mapping. We
repeat Step−1 until all the CPHASE operations are assigned
to different layers and the corresponding partial circuits are

compiled.

Step− 3 : We stitch all the compiled partial circuits.
Example 3: A demonstrative example is shown in Figure

5 for the circuit and initial mapping illustrated in Figure 3.

For the initial mapping, control and target qubits of all the

CPHASE operations are at distance 1 except CPHASE(γ) q3
q4 (referred to as Q. Dist. in Figure 5). CPHASE opera-

tions are sorted (ascending order) based on these distances

(CPHASE operations with similar Q. Dist. are ordered within

themselves randomly). CPHASE(γ) q0 q2 and CPHASE(γ) q1
q4 are chosen using a greedy approach (similar to Figure 4(f))

to construct the first layer of the circuit. During compilation,

the backend compiler does not add any SWAP operation for

this layer. The second layer is formed in a similar fashion with

CPHASE(γ) q0 q1 and CPHASE(γ) q3 q4. However, in this
case, the compiler adds a SWAP operation to move q4 closer to

q3. This changes the logical-to-physical qubit mapping which

is used to re-calculate the Q. Dist. of the remaining CPHASE

operations for the next layer. At the end of the procedure,

4 layers are formed and 2 SWAP operations are added to

construct a hardware compliant circuit.

D. Variation-aware IC (VIC)

In IC, the distance between two physical qubits connected

by an edge in the coupling graph is taken as one. Therefore,

for the mapping assignment shown in Figure 6(e) for the

hardware in Figure 6(a), the control and the target qubits

of both CPHASE operations (Op1 and Op2) are at distance

1. One of them can be picked for the first layer formation.

IC will choose one of them randomly. As mentioned before,

variability exists within the available native gate operations

in practical quantum computers. Hypothetical success rates of

different CPHASE operations in the hardware in Figure 6(a)

are shown in Figure 6(b). If we consider the reliability of the

CPHASE operations, it is apparent that Op1 can be executed

more reliably (with 0.90 success rate) than Op2 (success rate

- 0.82) for the current mapping.

Taking Variability into Consideration: We can prioritize
operations that may be executed with higher reliability during

layer formation to maximize the success probability of the

circuit. This will push operations that can not be executed

reliably for the current mapping to later stages so that they

may move towards more reliable paths due to dynamic changes

in the logical-to-physical qubit mapping during the SWAP

insertion procedure. To incorporate such strategy in IC, dis-

tance measurements between various qubits need to reflect the

success probabilities of the intended operations. We term this

approach as a variation-aware incremental compilation or VIC.

VIC Procedure: In IBM quantum computers, the RZ

of the CPHASE gate is implemented virtually. Hence, the

success rate of a CPHASE operation depends on the suc-

cess probability of two consecutive CNOT operations. For a

CNOT success rate of 0.9, the CPHASE success rate will be

Authorized licensed use limited to: Penn State University. Downloaded on September 01,2021 at 20:11:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. (a) A hypothetical 6-qubit quantum computer coupling graph, (b) variations in the native 2-qubit operations reliability in the 6-qubit system, (c)
distance measures between the physical qubits (using Floyd Warshall algorithm), (d) distance measures between qubits when edge weights are taken as the
inverse of the 2-qubit operation reliability.

approximately 0.9*0.9 or 0.81. To reflect this success rate in

distance measurements, we take the inverse of the CPHASE

success rate as the distance between neighboring qubits. If a

CPHASE success rate between qubit-x and qubit-y is 0.80,

the associated edge weight in the coupling graph is taken as

1/0.80 or 1.25. These weighted edges are then used to calculate

distances between qubits. The higher the success rate, the

lower the distance. The rest of the procedure is similar to

IC. The distances between qubits in the hypothetical 6-qubit

hardware (using Floyd-Warshall algorithm) in the IC and the

VIC procedures are shown in Figure 6(c) and (d) respectively.

V. PERFORMANCE EVALUATION

In this section, we present a quantitative performance anal-

ysis of the proposed methodologies individually and with

respect to each other in terms of various circuit quality metrics

using simulations and experiments on actual hardware. When

layers are formed one-by-one in IC/IP, we can choose to popu-

late the layers with gates to the fullest. However, the number of

coupling constraints for a single layer scales with the number

of gates packed in that layer. We investigate the impact of

layer packing density on the compilation performance at the

end of this section.

A. Evaluation Metrics

Circuit depth, gate-count, compilation time, and success
probability: These metrics are the natural choices to compare
various compilation strategies [47], [57]. The length of the

critical path in a quantum circuit (the path with the highest

number of gate operations) is defined as the circuit depth.

The circuit depth is correlated to the circuit execution time

on real hardware. A higher-depth circuit is more suscepti-

ble to decoherence errors. Gate-count is the total number

of native gate operations in the compiled circuit. A lower

gate-count generally translates to less accumulation of gate

errors. Compilation time is the time taken by the compiler to

generate the hardware compliant circuit. A faster compilation

is desired for scalability. The circuit success probability metric

is useful to quantify performance benefits with variation-aware

compilation strategies.

Approximation Ratio Gap: The straight forward approach
to judge the quality of the compiled QAOA-circuits would

be running the quantum-classical optimization loop with the

target hardware and compare the performance in terms of run-

time, final solution, etc. It will require too many cloud-based

access to the hardware which can be time-intensive with public

devices. To circumvent this issue, we propose a new metric,

Approximation Ratio Gap (ARG), to compare the performance

of compiled QAOA-circuits on actual hardware.

We propose to find optimal QAOA-circuit parameters ana-

lytically [45] (or, for small problem size, running the algorithm

in simulation) and use these values to compile the QAOA-

circuit. We sample the output of the circuit (using a simulator

such as qiskit [48]) a finite number of time to calculate the

approximation ratio of the given cost function (r0). Next,
we run the circuit on the target hardware and calculate the

approximation ratio (rh) using the same number of samples.
We define the percentage difference between these approxi-

mation ratios {100 ∗ (r0-rh)/r0} as the approximation ratio

gap or ARG. A lower ARG value is desired as it indicates a

performance closer to the noiseless scenario.

B. Problem Sets and Compiler Backend

We use qiskit as the backend circuit compiler (run on an

Intel Core i-7 processor at 3.41 GHz frequency). We choose

20-qubit ibmq 20 tokyo, 15-qubit ibmq 16 melbourne, and

a hypothetical 36-qubit grid (6x6) architectures as the target

hardware. Randomly chosen (up to 36-nodes) erdos-renyi

random graphs (with varied edge probabilities) and regular

graphs (with a varied number of edges/node) are used for

the validation purpose inspired from recent works on QAOA

[26], [27]. An edge probability of 0.5 means an edge between

any two nodes in the graph is 50% likely to be included in

a random sample. A randomly chosen n-regular graph has

exactly n-edges/node. The exact node-to-node connectivity is

different in two randomly chosen n-regular graphs. Graphs

with higher edge probabilities or higher number of edges/node

are dense graphs that require many CPHASE gates in their

corresponding QAOA-MaxCut circuits.

C. QAIM vs. GreedyV� [59]/NAIVE

In this section, we compare QAIM with two other initial

logical-to-physical qubit mapping procedures (GreedyV� and

NAIVE) to quantify its impact on circuit compilation.

Varying Connectivity: We have varied the edge proba-

bility from 0.1 to 0.6 (for erdos-renyi random graphs) and

Authorized licensed use limited to: Penn State University. Downloaded on September 01,2021 at 20:11:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Comparison among NAIVE, GreedyV� [59], and QAIM in terms of (a) depth and, (b) gate-count ratios for erdos-renyi random graphs; (c) depth
and, (d) gate-count for regular graphs (mean of 50 randomly chosen 20-node MaxCut-QAOA instances for each bars, ibmq 20 tokyo target hardware, qiskit
backend, and a lower value is better).

Fig. 8. Comparison among NAIVE, GreedyV� [59], and QAIM in terms of
(a) depth and, (b) gate-count ratios for 3-regular graphs with varying problem
sizes (mean of 20 randomly chosen MaxCut-QAOA instances for each data
points, ibmq 20 tokyo target hardware, qiskit backend, and a lower value is
better).

edges/node from 3 to 8 (for regular graphs) and randomly

picked 50 20-node graphs in each case. We have compiled

the corresponding QAOA-MaxCut circuits (with randomly

ordered CPHASE gates at ‘p’ = 1) by selecting the initial

mapping using the NAIVE approach, GreedyV� approach, and

QAIM. We plot the ratio of the mean depth and gate-counts of

the compiled circuits (50 instances per bar) between Greedy�

vs. NAIVE, and QAIM vs. NAIVE in Figure 7(a), (b), (c) and,

(d). Compilation time was found to be similar.

Note that, for sparse graphs , QAIM performs considerably

better than both the NAIVE and GreedyV� approach. For

example, for the erdos-renyi random graphs with an edge

probability of 0.1, QAIM produces circuits with 12% and

10.3% shorter depth than NAIVE and GreedyV� respectively.

The gate-counts are also 20.5% and 16.5% smaller. For the

regular graphs with 3 edges/node, QAIM circuit depths are

15.3% and 12.6% shorter than NAIVE and GreedyV� ap-

proaches. The gate-counts are also 21.3% and 16.88% smaller.

For dense graphs, all these three approaches perform similarly.

The reason is the higher number of logical neighbors of a

logical qubit for dense graphs than the number of physical

neighbors of any hardware qubit. For any qubit placement,

some of the logical neighbors will remain far from a logical

qubit placed in a physical qubit. Therefore, we do not note

any performance improvement with intelligent placements.

Varying Problem Size: Later we vary the problem size by

picking 3-regular graphs with the number of nodes varying

between 12 to 20 (20 randomly chosen graphs for each node-

size) and compile the corresponding QAOA-MaxCut circuits

using NAIVE, GreedyV�, and QAIM approaches. We plot

the ratio of the mean depth and gate-counts of the compiled

circuits against the node-size between Greedy� vs. NAIVE,

and QAIM vs. NAIVE in Figure 8(a) and (b), respectively.

For smaller problem sizes both GreedyV� and QAIM per-

formed better than NAIVE. The reason is the avoidance of

physical qubits with smaller connectivity (e.g. qubit-0 and

qubit-15 in ibmq 20 tokyo) in the selection procedure by

both GreedyV� and QAIM for smaller problem sizes which

translates to a smaller number of SWAP operations during

compilation. For the smallest problem size (12), QAIM gener-

ated circuits with 21.8% smaller depth and 26.8% smaller gate-

counts than the NAIVE approach. Compared to GreedyV�,

circuit depth and gate-counts were 12.2% and 17.2% smaller.

D. IC/IP vs. QAIM

In this section, we quantify benefits of IP and IC over

QAIM-only compilation. We compiled the QAOA-MaxCut

instances of randomly chosen erdos-renyi and regular graphs

using QAIM (+random CPHASE sequence), IP (+QAIM),

and IC (+QAIM). The ratio of the mean depth, gate-count,

and compilation time (50 instances per bar) of IP vs. QAIM

and IC vs. QAIM are shown in Figure 9. Note that, both

IP and IC generated circuits with significantly smaller depths

than the QAIM-only approach and the differences were more

pronounced for dense graphs. For example, IC generated

circuits with 39.3% less depth than QAIM for 3-regular graphs

(Figure 9(d)) and it further went down to 68% for 8-regular

graphs. On average, IC circuits had 13.2% smaller depth than

IP (Figure 9(a) and (d)). A similar trend is observed in the

gate-count as well for IC. On average, IC produced circuits

with 16.67% and 16.6% smaller gate-counts than QAIM and

IP respectively (Figure 9(b) and (e)). However, IP circuits had

more or less similar gate-counts to QAIM.

The result is expected as a reduced number of layers

translates to smaller depth and compilation time for both IP

and IC. IC boosts the performance further by considering

dynamic changes in the mapping. A smaller distance between

control and target qubits of the CPHASE operations in the

subsequent layer helped the compiler to come up with the

nearest neighbor compliant mapping with less number of

additional SWAP operations in IC. Consequently, the gate-

count is found to be smaller in IC compared to IP. However,

sorting the remaining CPHASE operations before every layer

formation increased the compilation time for IC. On average,

Authorized licensed use limited to: Penn State University. Downloaded on September 01,2021 at 20:11:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Comparison among QAIM (+random CPHASE sequences), IP (+QAIM), and IC (+QAIM) in terms of (a) depth and, (b) gate-count, and (c) compilation
time ratios - for erdos-renyi random graphs; (d) depth and, (e) gate-count, and (f) compilation time ratios - for regular graphs (mean of 50 randomly chosen
20-node MaxCut-QAOA instances for each bars, ibmq 20 tokyo is the target hardware, qiskit used as the backend compiler, and a lower value is better).

IP compilation time was 37% faster than IC (Figure 9(c) and

(f)). Even in the worst cases, IC compilation time remained

close to QAIM.

E. VIC vs. IC

VIC adds variation awareness to IC with the goal to

increase the success probability of the compiled circuits. To

quantify the efficacy of VIC over IC, we picked erdos-renyi

random graphs (edge probability of 0.5) and regular graphs

(6 edges/node) with varied problem sizes (13, 14, and 15

nodes/graph) and compiled the corresponding QAOA-MaxCut

circuits using IC and VIC approach for the 15-qubit melbourne
architecture (the CNOT error rates used in VIC is shown in

Figure 10(a)). The ratio of the mean success probability of the

circuits between VIC and IC is shown in Figure 10(b) and (c)

(mean of 20 instances). VIC showed an 80% better success

probability over IC on average for the random graphs as shown

in Figure 10(b) (157% for node size 15). For the regular graphs

(Figure 10(c)), we observed a 45.3% better success probability

on average (72.2% for node-size 14).

Some of the nodes in a randomly picked erdos-renyi random

graph can have a higher number of edges than the others. On

the other hand, in the regular graphs, all the nodes have the

same number of edges. In our experiments, the number of

CPHASE operations in each layer (after parallelization) was

higher for the regular graphs than the erdos-renyi ones. The

reason behind this is - all the CPHASE operations involving a

certain qubit need to be allocated in different layers. Therefore,

if a node is connected to other nodes disproportionately, it

increases the number of layers in the QAOA-circuit during

parallelization. A lower number of CPHASE operations in a

layer can be placed in the best pairs of qubits. However, if a

layer is fully packed, most of the qubit pairs will be used. This

is why the improvement in the success probability is found to

be quite smaller for the regular graphs (where layers were

heavily packed) compared to the erdos-renyi random graphs

(where layers were sparsely packed).

F. Performance Summary

The mean value of the compiled circuit depths, gate-counts,

and compilation times (of 600 QAOA 20-node graph MaxCut

instances) for the NAIVE, QAIM (+random gate sequences),

IP (+QAIM), IC (+QAIM), and VIC (+QAIM) approaches are

shown in Figure 11(a) (normalized by the NAIVE approach

values). For VIC, the CNOT error-rates for different qubit pairs

are picked randomly from a normal distribution (μ = 1.0e-2, σ
= 0.5e-2). On average, 45% reduction in the compilation time

has been achieved using IP over the NAIVE approach. IC

and VIC both provided similar performance in reducing depth

(by ≈53%), gate-count (by ≈23%), and compilation time (by
≈15%). Note that, even though VIC and IC show similar

performance, VIC offers higher success probability than IC

as depicted in Figure 10(b) and (c).

G. Hardware Validation

We ran the quantum-classical optimization loop (L-BFGS-B

classical optimizer used from SciPy library [63] with conver-

gence limit set to e−6) to find the QAOA-MaxCut optimal

parameter values (‘p’ = 1) for 20 12-node erdos-renyi random

graphs with edge probability of 0.5 and 20 regular graphs

with 6 edges/node. We compiled the QAOA-circuits with these

optimal parameter values with the proposed strategies for

ibmq 16 melbourne architecture. We then sampled the output

of every circuit 40960 times from hardware experiments and

Authorized licensed use limited to: Penn State University. Downloaded on September 01,2021 at 20:11:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. (a) Coupling graph of ibmq 16 melbourne with reported CNOT operation error rates after calibration on 4/8/2020; comparison between IC(+QAIM)
and VIC(+QAIM) compiled circuit success probabilities for (b) erdos-renyi random graphs, and (c) regular graphs (mean of 20 randomly chosen MaxCut-QAOA
instances for each bars).

Fig. 11. (a) Performance (normalized by NAIVE) of QAIM, IP, IC, and
VIC (ibmq 20 tokyo), (b) mean approximation ratios for various problems
in hardware experiments on ibmq 16 melbourne (mean of 20 12-node erdos-
renyi random graphs with edge probability of 0.5, and 20 12-node 6-regular
graphs - for each bars).

used the results to calculate their corresponding ARG’s (using

the same set of physical qubits). VIC (+QAIM), IC (+QAIM),

and IP (+QAIM) all provided smaller ARG values compared

to the QAIM-only circuits (Figure 11(b)). On average, IC pro-

vided 8.53% smaller ARG values than IP. VIC provided 7.36%

smaller ARG than IC. The results reflect the improvement in

the compiled circuits in terms of depth, gate-count, and success

probability.

H. Impact of Packing Density

In all the preceding compilation tasks, we tried to pack every

layers to the fullest using the greedy approach. To investigate

the impact of packing density, we have picked a 36-qubit

grid qubit architecture and compiled QAOA-MaxCut circuits

of 20 erdos-renyi random graphs (edge probability 0.5) and

20 15-regular graphs (36-nodes) with varying packing limits

(maximum allowed number of CPHASE gates per layer is

limited) using the IC (+QAIM) approach.

Impact on depth: The mean depth of the compiled circuits
is shown in Figure 12(a) against the packing limit. Note that,

the depth tends to decrease with an increase in the packing

limit at first. However, when it went beyond 11, the qiskit

compiler started to produce solutions with poor quality in

terms of the circuit depth. In the previous examples, for the 20-

node graphs, each layer had at most 10 operations. Therefore,

the reported depth was most possibly the lowest that could

have been achieved with the qiskit compiler. Compiling the

circuits multiple times with different packing limits may help

to generate circuits with desired circuit depth.

Impact on gate-count: Gate-count is found to increase

with packing limit as shown in Figure 12(b). The increase is

rather small for the packing limit between 3 to 11 i.e., 12.7%

for the random graphs, and 16.18% for the regular graphs.

However, the gate-count increases sharply beyond the packing

limit of 11. If circuit depth is of a lesser concern (e.g. target

hardware qubits have large enough coherence time), compiling

circuits with the minimum packing limit may result in the best

performance in terms of gate-counts.

Impact on compilation time: Packing more operations

reduces the total number of circuit layers as well as the

number of required SWAPs or permutation layers [47]. As

the compiler has to satisfy coupling constraints of a fewer

number of layers, it may translate to reduced compilation

time. Figure 12(c) shows the mean compilation time for the

random and regular graph QAOA-MaxCut instances where

compilation time consistently reduced with increasing packing

limit. If compilation time is of concern, packing the layers to

the fullest may provide the best performance. However, this

may not hold true for even larger architectures.

VI. DISCUSSION

Comparative analysis: Since QAOA circuit compilation

techniques is a new area, we are unable to perform extensive

comparative analysis. A related work [46] took 70 sec for

a QAOA circuit with only 8 qubits whereas we achieved

reasonably good quality solutions for QAOA circuits with 36

qubits within 10s using qiskit compiler backend on a standard

desktop machine (i.e., 7X faster for 4.5X bigger problems). For

a 8-qubit cyclic hardware architecture, IC generated circuits

with 8.51% smaller depth and 12.99% smaller gate-count on

average for 50 instances of 8-node erdos-renyi random graphs

with exactly 8 edges compared to [46] (‘p’=1).

Usage of methodologies: QAIM is a generic qubit alloca-

tion and initial mapping procedure that can be incorporated

in any QAOA-circuit compiler without adding any significant

overhead. Among IP, IC, and VIC - the appropriate choice

depends on the application requirements. For example, if

reducing the circuit depth with faster compilation time is the

prime requirement of the target application - IP will be the

prudent choice. However, if reducing gate-count is equally

significant, then IC will be a better choice. VIC can provide

Authorized licensed use limited to: Penn State University. Downloaded on September 01,2021 at 20:11:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 12. (a) Depth (scaled by 283), (b) gate-count (scaled by 1428), and (c) compilation time (scaled by 9.48 seconds) against packing limit (maximum
allowed CPHASE/layer) in IC(+QAIM) for a 36 qubit grid architecture (20 randomly chosen 36-node graphs for each data point, edge probability 0.5 for the
erdos-renyi random graphs, 15 edges/node for the regular graphs, native gates similar to ibmq 16 melbourne, and qiskit used as the compiler backend).

additional benefits by enhancing the compiled circuit success

probability when reliable calibration data is available.
Applicability beyond QAOA-MaxCut: The cost Hamilto-

nian of any arbitrary NP-hard problem can be formulated in the

Ising format consisting of ZZ-interactions [24]. Each of these

ZZ-interactions can be implemented with a CPHASE gate

similar to the QAOA-MaxCut problem. Hence, the proposed

compilation methodologies can be applied to other classes of

QAOA instances. QAIM can be useful for arbitrary quantum

circuits to a varied extent. IP, IC, and VIC can be useful for

quantum circuits with large number of commuting operators

such as the UCCSD ansatz for VQE [64], [65].
Crosstalk: Excessive gate parallelization may increase

crosstalk-errors. Murali et al. [66] demonstrated that only a

subset of couplings is highly crosstalk prone and proposed

sequentialization of parallel operations on those couplings. For

example, in IBM Poughkeepsie, they found only 5 couplings

out of 221 to be highly crosstalk prone. A similar optimization

step can be added in our flow to sequentialize only the high-

crosstalk parallel operations post-compilation when the actual

gate pulses are scheduled.

VII. RELATED WORKS

A number of compilation-work (not QAOA-specific) dis-

cusses QAOA as an example [46], [67], [68]. Machine-level

gate pulse optimization has been explored [67] to reduce the

execution time (latency) of a QAOA circuit. The compiler

checks for gate-commutativity and combines multiple high-

level gates to find a machine-level pulse sequence using the

GRAPE algorithm. The new pulse will have a shorter duration

than the high-level gates. A 2X–10X reduction in execution

time has been reported for quantum systems up to 10 qubits.
However, the time and memory requirement of the GRAPE

algorithm grows exponentially with the problem size (i.e., #

of qubits) leading to a high compilation latency.
The high compilation latency of GRAPE is addressed with

a ‘partial compilation’ approach in [68]. It creates sub-circuit

blocks with non-parametric (strict) and parametric (flexible)

gates. Then, they pre-compute pulse sequences for each of

the blocks. In future instances, the pre-computed pulses can

be reused to execute a circuit and curtail the compilation

time. However, quantum hardware suffers from the temporal

variation [69]. Therefore, pre-computed pulses may not give

optimal operation fidelity in a future instance.

A more traditional approach is explored in [46] to exploit

gate commutation for aggressive QAOA circuit optimization

by formulating the mapping problem as a planning problem

and using off-the-shelf temporal planners for compilation. The

problem with such compilation approach is: the solution is

often as good as the plans. To this point, their plans did not

incorporate (i) constraints to exploit initial mapping (exploited

by QAIM), (ii) constraints for reordering the CPHASE oper-

ations involving a certain qubit (exploited by IC), and (iii)

constraints to exploit qubit-to-qubit variation (exploited by

VIC). Moreover, the solutions lacked scalability which has

been tackled by heuristics in our solutions.

Two contemporary works use iterative compilation that re-

compiles QAOA-circuits with updated gate-orders until the re-

compiled circuits do not exhibit any performance improvement

in terms of circuit depth, gate-count or success probability

[70], [71]. The procedure is guided by a branch-and-bound

optimization heuristic that incurs significant compilation time

penalty due to repeated compilations (≈10X-600X reported

with qiskit compiler backend for similar problem sets as used

in this work).

VIII. CONCLUSION

We present four novel methodologies to compile QAOA

circuits. Our methodologies can be integrated with any conven-

tional compiler to improve the quality of the compiled QAOA-

circuits. We validate performance improvement through exper-

iments on real quantum devices from IBM. We demonstrate up

to ≈53.0% reduction in circuit-depth, ≈23% reduction in gate-

counts and ≈45% reduction in compilation time over a NAIVE

approach. We also demonstrate up to ≈25.8% improvement in

the approximation ratio gap through practical experiments of

selected QAOA-MaxCut problems on ibmq 16 melbourne.

ACKNOWLEDGEMENTS

The work is supported in parts by National Science Foun-

dation (NSF) (CNS- 1722557, CCF-1718474, DGE-1723687

and DGE-1821766) and seed grants from Penn State Institute

for Computational and Data Sciences and Penn State Huck

Institute of the Life Sciences.

Authorized licensed use limited to: Penn State University. Downloaded on September 01,2021 at 20:11:39 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] W. Knight, “Ibm raises the bar with a 50-qubit quantum computer,
news,” 2018.

[2] J. Kelly, “A preview of bristlecone, google’s new quantum processor,”
Google Research Blog, vol. 5, 2018.

[3] J. Hsu, “Ces 2018: Intel’s 49-qubit chip shoots for quantum supremacy,”
IEEE Spectrum Tech Talk, 2018.

[4] C. Rigetti, “The rigetti 128-qubit chip and what it means for quantum,”
Medium, 2018.

[5] E. Pednault, J. Gunnels, D. Maslov, and J. Gambetta, “On “quantum
supremacy”,” IBM Research Blog, vol. 21, 2019.

[6] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett,
Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,
E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff,
K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho,
M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang,
D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov,
F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà,
J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen,
M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu,
E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan,
N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D.
Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh,
A. Zalcman, H. Adam, and J. M. Martinis, “Quantum supremacy using
a programmable superconducting processor,” Nature, vol. 574, no. 7779,
pp. 505–510, 2019.

[7] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and
W. D. Oliver, “A quantum engineer’s guide to superconducting qubits,”
Applied Physics Reviews, vol. 6, no. 2, p. 021318, 2019.

[8] K. R. Brown, A. C. Wilson, Y. Colombe, C. Ospelkaus, A. M. Meier,
E. Knill, D. Leibfried, and D. J. Wineland, “Single-qubit-gate error
below 10- 4 in a trapped ion,” Physical Review A, vol. 84, no. 3, p.
030303, 2011.

[9] J. Chow, J. M. Gambetta, L. Tornberg, J. Koch, L. S. Bishop, A. A.
Houck, B. Johnson, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf,
“Randomized benchmarking and process tomography for gate errors in
a solid-state qubit,” Physical review letters, vol. 102, no. 9, p. 090502,
2009.

[10] J. Wenner, M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, A. D.
O’Connell, D. Sank, H. Wang, M. Weides, A. N. Cleland, Cleland,
and J. M. Martinis, “Wirebond crosstalk and cavity modes in large
chip mounts for superconducting qubits,” Superconductor Science and
Technology, vol. 24, no. 6, p. 065001, 2011.

[11] G. Falci, A. D’arrigo, A. Mastellone, and E. Paladino, “Initial decoher-
ence in solid state qubits,” Physical review letters, vol. 94, no. 16, p.
167002, 2005.

[12] P. W. Shor, “Scheme for reducing decoherence in quantum computer
memory,” Physical review A, vol. 52, no. 4, p. R2493, 1995.

[13] A. M. Steane, “Error correcting codes in quantum theory,” Physical
Review Letters, vol. 77, no. 5, p. 793, 1996.

[14] A. Steane, “Multiple-particle interference and quantum error correction,”
Proceedings of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences, vol. 452, no. 1954, pp. 2551–2577,
1996.

[15] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, “Perfect quantum
error correcting code,” Physical Review Letters, vol. 77, no. 1, p. 198,
1996.

[16] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters,
“Mixed-state entanglement and quantum error correction,” Physical
Review A, vol. 54, no. 5, p. 3824, 1996.

[17] A. Ekert and C. Macchiavello, “Error correction in quantum communi-
cation,” arXiv preprint quant-ph/9602022, 1996.

[18] P. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean,
R. Barends, J. Kelly, P. Roushan, A. Tranter, and N. Ding, “Scalable
quantum simulation of molecular energies,” Physical Review X, vol. 6,
no. 3, p. 031007, 2016.

[19] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M.
Chow, and J. M. Gambetta, “Hardware-efficient variational quantum
eigensolver for small molecules and quantum magnets,” Nature, vol.
549, no. 7671, pp. 242–246, 2017.

[20] D. Wang, O. Higgott, and S. Brierley, “Accelerated variational quantum
eigensolver,” Physical review letters, vol. 122, no. 14, p. 140504, 2019.

[21] R. M. Parrish, E. G. Hohenstein, P. L. McMahon, and T. J. Martı́nez,
“Quantum computation of electronic transitions using a variational
quantum eigensolver,” Physical review letters, vol. 122, no. 23, p.
230401, 2019.

[22] J. M. Bowman, T. Carrington, and H.-D. Meyer, “Variational quan-
tum approaches for computing vibrational energies of polyatomic
molecules,” Molecular Physics, vol. 106, no. 16-18, pp. 2145–2182,
2008.

[23] S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel, D. Venturelli, and
R. Biswas, “From the quantum approximate optimization algorithm to a
quantum alternating operator ansatz,” Algorithms, vol. 12, no. 2, p. 34,
2019.

[24] G. Nannicini, “Performance of hybrid quantum-classical variational
heuristics for combinatorial optimization,” Physical Review E, vol. 99,
no. 1, p. 013304, 2019.

[25] Z. Wang, S. Hadfield, Z. Jiang, and E. G. Rieffel, “Quantum approximate
optimization algorithm for maxcut: A fermionic view,” Physical Review
A, vol. 97, no. 2, p. 022304, 2018.

[26] G. E. Crooks, “Performance of the quantum approximate opti-
mization algorithm on the maximum cut problem,” arXiv preprint
arXiv:1811.08419, 2018.

[27] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quantum
approximate optimization algorithm: Performance, mechanism, and im-
plementation on near-term devices,” Physical Review X, vol. 10, no. 2,
p. 021067, 2020.

[28] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp.
195–202, 2017.

[29] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum algorithms
for supervised and unsupervised machine learning,” arXiv preprint
arXiv:1307.0411, 2013.

[30] V. Dunjko, J. M. Taylor, and H. J. Briegel, “Quantum-enhanced machine
learning,” Physical review letters, vol. 117, no. 13, p. 130501, 2016.

[31] P.-L. Dallaire-Demers and N. Killoran, “Quantum generative adversarial
networks,” Physical Review A, vol. 98, no. 1, p. 012324, 2018.

[32] S. Lloyd and C. Weedbrook, “Quantum generative adversarial learning,”
Physical review letters, vol. 121, no. 4, p. 040502, 2018.

[33] L. Hu, S.-H. Wu, W. Cai, Y. Ma, X. Mu, Y. Xu, H. Wang, Y. Song, D.-L.
Deng, C.-L. Zou, and L. Sun, “Quantum generative adversarial learning
in a superconducting quantum circuit,” Science advances, vol. 5, no. 1,
p. eaav2761, 2019.

[34] M. Schuld and N. Killoran, “Quantum machine learning in feature
hilbert spaces,” Physical review letters, vol. 122, no. 4, p. 040504, 2019.

[35] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[36] E. Farhi, J. Goldstone, S. Gutmann, and H. Neven, “Quantum algorithms
for fixed qubit architectures,” arXiv preprint arXiv:1703.06199, 2017.

[37] E. Farhi, J. Goldstone, S. Gutmann, and L. Zhou, “The quantum ap-
proximate optimization algorithm and the sherrington-kirkpatrick model
at infinite size,” arXiv preprint arXiv:1910.08187, 2019.

[38] E. Farhi and A. W. Harrow, “Quantum supremacy through the quantum
approximate optimization algorithm,” arXiv preprint arXiv:1602.07674.

[39] M. Alam, A. Ash-Saki, and S. Ghosh, “Analysis of quantum approximate
optimization algorithm under realistic noise in superconducting qubits,”
arXiv preprint arXiv:1907.09631, 2019.

[40] C. Xue, Z.-Y. Chen, Y.-C. Wu, and G.-P. Guo, “Effects of quantum
noise on quantum approximate optimization algorithm,” arXiv preprint
arXiv:1909.02196, 2019.

[41] M. Alam, A. Ash-Saki, and S. Ghosh, “Design-space exploration of
quantum approximate optimization algorithm under noise,” in 2020
IEEE Custom Integrated Circuits Conference (CICC). IEEE, 2020,
pp. 1–4.

[42] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018.

[43] M. Alam, A. Ash-Saki, and S. Ghosh, “Accelerating quantum approxi-
mate optimization algorithm using machine learning,” in 2020 Design,
Automation Test in Europe Conference Exhibition (DATE), 2020, pp.
686–689.

[44] D. Wecker, M. B. Hastings, and M. Troyer, “Training a quantum
optimizer,” Physical Review A, vol. 94, no. 2, p. 022309, 2016.

[45] M. Streif and M. Leib, “Training the quantum approximate optimization
algorithm without access to a quantum processing unit,” Quantum
Science and Technology, vol. 5, no. 3, p. 034008, 2020.

Authorized licensed use limited to: Penn State University. Downloaded on September 01,2021 at 20:11:39 UTC from IEEE Xplore. Restrictions apply.

[46] D. Venturelli, M. Do, E. Rieffel, and J. Frank, “Compiling quantum
circuits to realistic hardware architectures using temporal planners,”
Quantum Science and Technology, vol. 3, no. 2, p. 025004, 2018.

[47] A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for map-
ping quantum circuits to the ibm qx architectures,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2018.

[48] A. Cross, “The ibm q experience and qiskit open-source quantum
computing software,” in APS Meeting Abstracts, 2018.

[49] G. G. Guerreschi and J. Park, “Gate scheduling for quantum algorithms,”
ArXiv e-prints, 2017.

[50] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: a
case for variability-aware policies for nisq-era quantum computers,” in
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2019, pp. 987–999.

[51] A. Ash-Saki, M. Alam, and S. Ghosh, “Qure: Qubit re-allocation in
noisy intermediate-scale quantum computers,” in Proceedings of the 56th
Annual Design Automation Conference 2019. ACM, 2019, p. 141.

[52] A. Botea, A. Kishimoto, and R. Marinescu, “On the complexity of
quantum circuit compilation,” in Eleventh Annual Symposium on Com-
binatorial Search, 2018.

[53] M. Y. Siraichi, V. F. d. Santos, S. Collange, and F. M. Q. Pereira,
“Qubit allocation,” in Proceedings of the 2018 International Symposium
on Code Generation and Optimization, 2018, pp. 113–125.

[54] P. Murali, A. Javadi-Abhari, F. T. Chong, and M. Martonosi, “Formal
constraint-based compilation for noisy intermediate-scale quantum sys-
tems,” Microprocessors and Microsystems, vol. 66, pp. 102–112, 2019.

[55] R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits
to ibm qx architectures using the minimal number of swap and h
operations,” in Proceedings of the 56th Annual Design Automation
Conference 2019. ACM, 2019, p. 142.

[56] D. Bhattacharjee, A. A. Saki, M. Alam, A. Chattopadhyay, and S. Ghosh,
“Muqut: Multi-constraint quantum circuit mapping on nisq computers,”
in 38th IEEE/ACM International Conference on Computer-Aided De-
sign, ICCAD 2019. Institute of Electrical and Electronics Engineers
Inc., 2019, p. 8942132.

[57] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem
for nisq-era quantum devices,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 1001–1014.

[58] A. Paler, “On the influence of initial qubit placement during nisq circuit
compilation,” in International Workshop on Quantum Technology and
Optimization Problems. Springer, 2019, pp. 207–217.

[59] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi,
“Noise-adaptive compiler mappings for noisy intermediate-scale quan-
tum computers,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 1015–1029.

[60] A. Zulehner, H. Bauer, and R. Wille, “Evaluating the flexibility of a* for
mapping quantum circuits,” in International Conference on Reversible
Computation. Springer, 2019, pp. 171–190.

[61] P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H. Nguyen,
and C. H. Alderete, “Full-stack, real-system quantum computer studies:
architectural comparisons and design insights,” in Proceedings of the
46th International Symposium on Computer Architecture, 2019, pp. 527–
540.

[62] G. Dósa and J. Sgall, “First fit bin packing: A tight analysis,” in 30th
International Symposium on Theoretical Aspects of Computer Science
(STACS 2013). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2013.

[63] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, and J. Bright,
“Scipy 1.0: fundamental algorithms for scientific computing in python,”
Nature methods, pp. 1–12, 2020.

[64] J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J. Love,
and A. Aspuru-Guzik, “Strategies for quantum computing molecular
energies using the unitary coupled cluster ansatz,” Quantum Science
and Technology, vol. 4, no. 1, p. 014008, 2018.

[65] H. R. Grimsley, D. Claudino, S. E. Economou, E. Barnes, and N. J.
Mayhall, “Is the trotterized uccsd ansatz chemically well-defined?”
Journal of Chemical Theory and Computation, 2019.

[66] P. Murali, D. C. McKay, M. Martonosi, and A. Javadi-Abhari, “Software
mitigation of crosstalk on noisy intermediate-scale quantum computers,”
in Proceedings of the Twenty-Fifth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems,
2020, pp. 1001–1016.

[67] Y. Shi, N. Leung, P. Gokhale, Z. Rossi, D. I. Schuster, H. Hoffmann,
and F. T. Chong, “Optimized compilation of aggregated instructions
for realistic quantum computers,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 1031–1044.

[68] P. Gokhale, Y. Ding, T. Propson, C. Winkler, N. Leung, Y. Shi,
D. I. Schuster, H. Hoffmann, and F. T. Chong, “Partial compilation of
variational algorithms for noisy intermediate-scale quantum machines,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 266–278.

[69] M. Alam, A. Ash-Saki, and S. Ghosh, “Addressing temporal variations
in qubit quality metrics for parameterized quantum circuits,” in 2019
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED). IEEE, 2019, pp. 1–6.

[70] M. Alam, A. Ash-Saki, and S. Ghosh, “An efficient circuit compilation
flow for quantum approximate optimization algorithm,” in 2020 Design
Automation Conference (DAC), 2020.

[71] ——, “Noise resilient compilation policies for quantum approximate
optimization algorithm: Invited talk,” in 2020 International Conference
on Computer-Aided Design (ICCAD), 2020.

Authorized licensed use limited to: Penn State University. Downloaded on September 01,2021 at 20:11:39 UTC from IEEE Xplore. Restrictions apply.

