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ABSTRACT
Existing drug discovery pipelines take 5-10 years and cost billions of dollars. Computational approaches

aim to sample from regions of the whole molecular and solid-state compounds called chemical space which

could be on the order of 1060. Deep generative models can model the underlying probability distribution
of both the physical structures and property of drugs and relate them nonlinearly. By exploiting patterns

in massive datasets, these models can distill salient features that characterize the molecules. Generative

Adversarial Networks (GANs) discover drug candidates by generating molecular structures that obey

chemical and physical properties and show affinity towards binding with the receptor for a target disease.

However, classical GANs cannot explore certain regions of the chemical space and suffer from training

instabilities. The practical utility of such models is limited due to the vast size of the search space,

characterized by millions of parameters. A full quantum GAN may require more than 90 qubits even

to generate small molecules with up to 9 heavy atoms. The proposed QGAN-HG model is composed

of a hybrid quantum generator that supports various number of qubits and quantum circuit layers, and,

a classical discriminator. QGAN-HG with less than 20% of the original parameters can learn molecular

distributions as efficiently as its classical counterpart. Another extended version of the proposed QGAN-

HG, that utilizes multiple quantum sub-circuits, considerably accelerates our standard QGAN-HG training

process and avoids the potential gradient vanishing issue of deep neural networks.

INDEX TERMS Algorithms, noisy intermediate-scale quantum algorithms and devices

I. INTRODUCTION

The drug development pipeline consists of stages of target

discovery, molecular design, preclinical studies, and clinical

trials, which makes the process of creating a marketable

drug expensive and time consuming [1]. The majority of

new drugs approved by US Food and Drug Administration

are small-molecule drugs whose structural and functional

diversity make their matching with biological binding sites

possible [2]. Searching new drugs can be considered as

navigating through the chemical space, which is an ensemble

of all organic molecules. Navigation in unknown chemical

space falls within the field of de novo drug design [3].

Machine learning techniques have been explored in all

development stages, especially molecular design with de-

sirable properties [1], [4], [5]. Generative models such as,

variational autoencoders (VAEs) [6], generative adversarial

networks (GANs) [7] and recurrent neural networks (RNNs)

are specifically adopted for learning latent representations

of molecules and generating large amount of drug can-

didates for further high-throughput screening. Deep gen-

erative models have been used for various representation

types of molecules such as, string-based, graph-based and

shape/structure-based [8]–[12] representations. Generative

learning with graph-structured molecules is invariant to the

orderings of atoms [10], [13] and automates the navigation

to a chemical region to which the molecules in training set

are close to. Quantum generative models have the relative

advantage to cover the entire distribution because of the

intrinsically probabilistic nature. The drug discovery process

can be explained using a lock and key model where the

receptor (a protein binding site associated with a disease)

is considered as a lock and the drug is a key (Fig. 1(a)).
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FIGURE 1. (a) Drug discovery process that shows protein binding site and drug fragments. Only generated molecules that have high affinity towards the receptor
binding sites are considered as valid (evaluated by the docking engine); (b) quantum stage (which is a parameterized quantum circuit with last-layer N measuring
the expectation values) and classical stage (neural network with last-layer out-feature dimension of 512) separated by blue dotted line; (c) application of atom layer
and bond layer for generating atom vectors and bond matrices from which synthetic molecular graphs are reconstructed (one example generated molecule is
shown); (d) a batch of real molecules sampled from training dataset (QM9 in this case) and a batch of synthetic (aka fake in GAN community) molecules generated
from (c) are fed into classical discriminator for prediction of being real or fake and calculation of Frchet Distance (FD) score (which measures the divergence
between real and fake molecules), and drug properties for synthetic molecules are evaluated using RDKit package. The prediction losses from discriminator are
back-forwarded to two neural networks as well as quantum circuit for updating all parameters simultaneously in each training epoch.

If a molecule is structurally complementary to the binding

site, the molecule plugs into the binding site and undergoes a

chemical reaction.

Quantum computing can offer unique advantages over

classical computing in many areas such as, chemistry simula-

tion, machine learning, and optimization [14]–[16]. Quantum

GAN is one of the main applications of near-term quantum

computers due to its strong expressive power in learning

data distributions even with much less parameters compared

to classical GANs [17]. Quantum GANs can offer several

opportunities e.g., (i) stronger expressibility and learning

speedup making it possible to learn richer representation

of molecules; (ii) ability to search exponentially growing

chemical space with increasing qubit count and sample from

distributions that may be difficult to model classically.

Quantum GAN is still at its nascent stage due to qubit

constraints on noisy quantum computers. Huang et al. [18]

proposed a quantum patch GAN mechanism to efficiently

use limited qubits for generating hand-written digit images,

however, the method only suits two digits of 0 and 1. QuGAN

[17] aims to learn a data set of hand-written digits, but

the original 784-dimension images were reduced to only 2

dimensions. No known existing quantum GAN mechanisms

can essentially solve real-world complicated learning tasks.

Drug molecules can be represented as graphs where the

nodes and edges correspond to atoms and bonds, respectively.

Given the task complexity of learning molecule distribution,

full quantum GAN can hardly encode all training data quan-

tum mechanically. Take the small molecule dataset QM9

[19] for example. The total number of qubits required for

reconstructing synthetic molecules is log2 5
36 + log2 5

9 >
90 where 36 is the number of bonds, 9 is the number of

atoms, and 5 is the number of bond types and atom types

contained in QM9. At present, no commercially available

gate-based quantum computers excluding quantum annealers

support over 90 qubits for developing the variational quantum

GAN algorithms. However, a hybrid GANmodel, realized by

connecting quantum measurement outcome with a following

neural network (Fig. 1(b)), uses fewer qubits and still exploits

the benefits of quantum computing.

We propose a qubit-efficient quantum GAN mechanism

with hybrid generator and classical discriminator for effi-

ciently learning molecule distributions based on classical

MolGAN [10]. Since the proposed quantum GAN requires

fewer qubits, simulation is still a viable option for training

unlike full quantum GAN with large number qubits that can-

not be simulated using classical computers. We also examine

the patched circuit idea [18] by comparing to the original

single large generator circuit implementation using metric

of Frchet Distance and drug property scores. Fig. 1 shows

the overall workflow of our qubit-efficient hybrid quantum

GANmodel for drug discovery. This work discovers a library

of novel and valid molecules that can be screened by the

docking engine in the next step (Fig. 1(a)). To the best of

our knowledge, this is the first work on drug discovery using

quantum generative models.

We, (1) propose a novel quantum GAN mechanism with

hybrid generator to qubit-efficiently tackle any real-world

learning tasks solvable on classical GANs; (2) generate drug

molecular graphs with quality similar to classical methods

in terms of Frchet Distance (FD) score and drug property

scores, and achieve high training efficiency with less than

20% of the original parameters; (3) design a quantum GAN

with patched sub-circuits which significantly decreases train-

ing time, making the quantum algorithm efficiently exe-

cutable even in simulation environment; (4) provide a new

quantum paradigm for generative models which bypass the

thorny training instability issues; (5) validate the capability

of generating small drug molecules on real IBM quantum

computers by running inference stage of QGAN-HG model.

II. BACKGROUND
A. COMPUTATIONAL DRUG DISCOVERY
Classical generative models [7], [10], [20] have been ex-

plored for discovery of drug molecules with desired proper-

ties by learning drug molecule distribution based on given

chemical dataset, and the potential of quantum machine

learning for drug discovery has also been depicted in [21].
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FIGURE 2. (a-b) A sample molecular graph from QM9 denoted by its
corresponding atom vector A and bond matrix B; (c) all quantum gates used in
this study.

GAN consists of two networks, namely generator (G) and

discriminator (D), competing with each other. The generator

takes noise as input to generate a synthetic data sample

whereas the discriminator flags if the sample is real or fake

with a binary classifier. Generator G(z; θg) maps random
input noise z to synthetic chemical data space pg , while
discriminator D(x; θd) outputs a single scalar indicating the
probability that x come from real data rather than pg . D is

trained to maximize the probability to assign correct label

and G is trained to minimize the difference between real and

fake log(1 − D(G(z))). The two-player minimax game is
trained based on the following value function:

min
θg

max
θd

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]

Chemical compounds can be represented as graphs with

nodes and edges designating various atoms and their bonds,

respectively. For example, Fig. 2(a-b) shows a molecule and

its graph representation where atom types of N and O are

encoded as 2 and 3 in atom vector, and bond types of single

and double are encoded as 1 and 2 in bond matrix. If the gen-

erated structure is chemically stable and exhibits high affinity

towards the receptor binding sites then it can be treated as

a valid drug molecule. The generator and discriminator are

trained using example drugs/molecules until the synthetic

chemical distribution is close to real chemical space. The

quality of GAN outcome are measured by Frchet Distance

and RDKit (for chemical properties) [22].

B. QUANTUM MACHINE LEARNING
Quantum systems have atypical patterns that classical com-

puters cannot produce efficiently [14]. Machine learning

tasks are sometimes hard to train on classical computers due

to large-scale and high-dimensional data set. Quantum neural

networks (QNNs) can represent a given dataset, either quan-

tum or classical, and be trained using a series of parameter

dependent unitary transformations. QNN architecture is de-

pendent on qubit count, quantum circuit layer, and quantum

gates applied because the architecture is essentially a vari-

ational quantum circuit. Therefore, the following quantum

computing concepts are helpful in understanding a quantum

neural network.

Initialization 
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FIGURE 3. Parameterized quantum circuit to obtain feature vector of N
dimensions. The circuit is composed of initialization layers, repeatable
parameterized layers and measurement layer. Each RZZ gate is composed of
two CNOT gates and one parametric RZ gate.

Quantum Circuit: Quantum circuits consist of gates that

modulate the state of the qubits to perform computation.

Quantum gates could be applied on 1 qubit (e.g., rotation

gates Ry and Rz) or 2 qubits (e.g., CNOT gate), as shown

in Fig. 2(c). Finally, measurement is applied to obtain the ex-

pectation value after certain number of shots. Fig. 3 displays

the quantum circuit used in QGAN-HG. A patched quantum
circuit [18] refers to multiple separate quantum sub-circuits

whose measurement results are concatenated to construct

an output vector of larger dimension. The patched quantum

circuit creates no entanglement between qubits in different

sub-circuits but allows us to simulate large quantum systems

efficiently on classical machines.

Quantum Noise: Noisy Intermediate-Scale Quantum

(NISQ) computers [23] suffer from noise sources such as,

T1 relaxation time, T2 dephasing time, gate errors and

readout errors. These are also called qubit quality metrics.

Crosstalk, qubit-to-qubit variation and temporal variations

in qubit quality also exist. Low quantum noise level is not

detrimental for QNNs, rather it can even be beneficial for

quantum machine learning applications as shown in [24],

[25]. However, its potential benefits in QGAN-HG models

are not specifically evaluated since it is not the focus of

the present study and could be a separate work. Instead,

noise resilience of quantum GANs is verified by running the

inference for the patched version of QGAN-HG on a real

IBM quantum computer.

III. QUANTUM GENERATIVE ADVERSARIAL NETWORKS
A. QUANTUM GAN FLAVORS
Quantum GAN has a few flavors of the generator and dis-

criminator implementations depending on their execution en-

vironments, either on quantum computers, classical machines

or quantum simulators. The flavor with quantum discrimina-

tor is not applicable here due to limited number of qubits on

near-term quantum computers. Real data shown in Fig. 1(d)

has to engage the state preparation stage, usually through

amplitude encoding, for embedding the classical data in a

quantum state which takes N log(M) qubits where N is the

training set size and M is feature dimension [18], [26]. The

flavor with a pure quantum generator is not directly applica-
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FIGURE 4. Metrics of Frchet Distance and molecule properties for real data points: (a) Frchet Distances (with lower bound of zero) calculated based on 90
dimensional samples with both Atom and Bond (A+B) for batch sizes of 128 and 512; (b) Frchet Distances calculated based on 81 dimensional samples with only
Bond (B) for batch sizes of 128 and 512; (c) three major drug properties (QED - druglikeness, logP - solubility, SA - synthesizability) evaluated on sample batches of
128 molecules from (a). Note that these 50 samples are independently sampled from QM9.

ble either considering the complicated task of drug discovery.

As noted in Section I, more than 90 qubits are needed

to discover QM9-like molecules (not suitable for near-term

quantum computers). Thus we propose a new quantum GAN

with hybrid generator and classical discriminator to exploit

the quantum benefits.

B. QUANTUM GAN WITH HYBRID GENERATOR
Quantum GAN with hybrid generator (QGAN-HG) is com-

posed of a parameterized quantum circuit to get a feature

vector of qubit size dimension, and a classical deep neural

network to output an atom vector and a bond matrix for

the graph representation of drug molecules. Another patched

quantum GAN with hybrid generator (P-QGAN-HG) is con-

sidered as the variation of QGAN-HG where the quantum

circuit is formed by concatenating few quantum sub-circuits.

QGAN-HG Quantum Circuit: In this variant, a quan-
tum layer is added for exploiting the strong expressive

power of variational quantum circuits which perform low-

rank matrix computations in O(poly(log(M))) time [18],
[27]. The variational quantum circuit (Fig. 3) consists of 3

stages, namely initialization, parameterized (repeatable for L

layers with L(2N − 1) parameter count) and measurement
stages. In the parameterized layers, each single-qubit RY

gate contains an angle parameter, and each two-qubit RZZ

gate, following the naming convention of IBM [28], has one

angle parameter. Two parameters z1 and z2 are uniformly

sampled from [−π, π], which essentially substitute the ran-
dom Gaussian noise input for classical GANs. After applying

the initialization layers, the input state in mathematical form

|ψ0(z1, z2)〉 = (RZ(z2)RY (z1) |0〉)⊗N is prepared. Let us

denote the parameterized layers repeated for L times as

unitary matrix U(θ). The final quantum state is of the form

|Ψ〉 = U(θ) |ψ0(z1, z2)〉. A series of measurement operators

are applied to obtain the expectation value for each qubit and

further form the feature vector to be fed to classical neural

network.

QGAN-HG Neural Network: The classical stage of hy-
brid generator is a standard neural network with input layer

receiving the feature vector of expectation values. The final

layer consists of the separate atom and bond layers for

creating atom vectors and bond matrices, respectively. Like

MolGAN [10], a categorical re-parameterization step with

Gumbel-Softmax [29], which supports gradient calculation

in the backward pass, is taken to obtain discrete fake molec-

ular graphs. Note that, 85.07% and 98.03% of generator

parameters are dropped by reducing major linear layers from

classical GAN [10] to demonstrate the strong expressive

power of quantum circuits. Due to the necessity of recon-

structing QM9-like molecules (with structure of X ∈ R
9X5

for atoms and A ∈ R
9X9X5 for bonds), neural network

architecture can hardly be further reduced.

Patched QGAN-HG: The patched quantum GAN with

hybrid generator consists of the same two ingredients as

above. The patched quantum circuit splits the circuit into

independent multiple quantum sub-circuits by removing the

entangled RZZ gates among sub-circuits. Then the patched

circuit is integrated by concatenating the expectation vales

from each sub-circuit [18]. Theoretically, P-QGAN-HG has

its pros and cons relative to QGAN-HG with an integral

quantum circuit. P-QGAN-HG requires less quantum re-

sources because multiple sub-circuits can be executed se-

quentially or in parallel. Another benefit is that each cir-

cuit can be simulated more efficiently, which speeds up the

learning process accordingly. However, one of the obvious

drawbacks is reduced expressive power since quantum state

dimension is reduced from 2N to 2N/2 (say two circuits

with half size) in Hilbert space. The performance of patched

QGAN-HG is compared with QGAN-HG in the following

section.

Discriminator and Optimizer: The discriminator is kept
the same as MolGAN [10] since its parameter size is on par

with the hybrid generator. However, the reward network is

discarded since the reward value is too minuscule to notice-

ably contribute to training the model. Generated molecules

are evaluated using RDKit together with Frchet Distance

based metric. Quantum gate parameters and weights in neural

network are updated simultaneously using a single optimizer

while discriminator employs a separate one to be updated

alternatively.
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FIGURE 5. Training comparison among various GAN flavors: (a) Frchet Distances for MolGAN, moderately reduced (14.93%) MolGAN and QGAN-HG; (b) Frchet
Distances for highly reduced (1.97%) MolGAN and QGAN-HG; (c) learning curves for highly reduced QGAN-HG with quantum circuit level L = 2 and N = 10,
respectively; (d) learning curves for patched QGAN-HG with two sub-circuits and four sub-circuits; (e) training epochs with lowest Frchet Distances for all GAN
flavors; (f) training times elapsed (early stopping at epochs from (e)) for all GAN flavors. All QGAN variants in (a, b, d) are composed of 8 qubits and a single
quantum layer. Abbreviation: QGAN/MolGAN MR - QGAN/MolGAN with moderately reduced generator; QGAN/MolGAN HR - QGAN/MolGAN with highly reduced
generator; QGAN L2 - QGAN with quantum circuit depth of 2; QGAN Q10 - QGAN with 10-qubit quantum circuit; P2/4-QGAN - Patched QGAN with 2/4 sub-circuits;
MGAN - MolGAN.

IV. EXPERIMENTAL SETUP
Dataset, metrics and implementation details that support the

findings of this study are available in the GitHub repository

https://github.com/jundeli/quantum-gan.

A. DATASET AND METRICS

Dataset: All the experiments are conducted with quantum
machine learning benchmarking QM9 [19] dataset which

contains 133,885 molecules with up to 9 heavy atoms of

types of carbon, nitrogen, oxygen, and fluorine.

Frchet Distance: Learning results of the proposed GANs
are evaluated with Frchet Distance metric which measures

the similarity between real and generated molecule distri-

butions. Generated molecule distribution is approximately

created by generating a batch of molecules, and real one

is approximately formed by randomly sampling the same

number of molecules from QM9 dataset. Each sample batch

of molecules is concatenated and considered as a multi-

dimensional point in the distribution, then Frchet Distance

is calculated using 50 of these points (sampled for 50 batches

from both distributions). Fig. 4 shows Frchet Distances cal-

culated for two batch sizes of 128 and 512, and molecule

batches are independently sampled for 50 times. FD A+B

(see Fig. 4(a)) is calculated based on 90 dimensional samples

with both atom vectors (9 entries) and bond matrices (81

entries); while FD B (see Fig. 4(b)) based on 81 dimensional

samples with only bond matrices. FD A+B includes more

random noises due to extra 9 dimensional atom vectors

and is projected to severely disturb the similarity between

real molecule batches. Interestingly, FD A+B correlates well

with the FD B, indicating the strong inherent connection

between atoms and bonds. The means (12.3342, 12.6387)

and variations (0.7057, 0.7849) between FD calculated for

128 and 512 batch sizes are close. Generated molecules are

considered realistic enough once the preset FD cut-off point

of 12.5 is reached during the learning process. Thus, all

following experiments are evaluated with FD A+B metric

and 128 batch size.

Drug Properties: Molecule properties are the metrics for
drug quality evaluation during inference stage. Three primary

properties include, (i) quantitative estimate of druglikeness

(QED) which measures the likelihood of compound being a

drug; (ii) log octanol-water partition coefficient (logP) which

measures the solubility of a compound; and (iii) and synthetic

accessibility (SA) which quantifies the ease of a compound

being synthesized in pharmaceutical factory. Fig. 4 (c) shows

the property scores normalized to range [0, 1]. The three

curves display the possible ranges of real drug properties

in terms of QED, logP, and SA which are also indicators

for the learning quality of all GAN variants discussed in

this study. Together with other properties, they are measured

using RDKit.

B. IMPLEMENTATION DETAILS

The quantum circuits can be executed either on a simulator

or real quantum machine. The simulator supports customized

setting of noise levels and sources (noiseless environment is

set in this paper), while real quantum devices have different

noise characteristics across different machines.

Training: We modify the classical MolGAN [10] to im-

plement our QGAN-HG and P-QGAN-HG algorithms. As

mentioned in Section III, some linear layers and reward
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network are dropped in our experiments to evaluate the

expressive power of quantum circuit and to use drug property

metrics fairly. Our QGAN variations are trained with a mini-

batch of 128 molecules using the Adam optimizer on a single

RTX 2080 Ti GPU for the classical part and the PennyLane

platform [30] with the default qubit plugin for the quantum

stage. As explained in Section I, the real quantum machine is

not utilized during the training stage due to the long queuing

time on IBM Q machines. The learning rate is initially set to

0.0001 for both generator and discriminator and starts decay-

ing uniformly at a factor of 1/2000 after 3000 epochs. Total
training epoch is set with 5000, and early stopping based on

Frchet Distance is applied if model collapse happens.

Inference: Only hybrid generator is involved during infer-
ence stage. Since QGAN is well trained, the quantum circuit

in the generator is executed on both PennyLane simulator

and real quantum device of ibmq_quito [28] for comparison.
Drug quality for generated molecules are evaluated by prop-

erties such as, QED, logP, and SA, among others, all of which

are normalized to be within [0, 1]. Finally, GAN variations

are compared by taking 1000 generated molecules.

V. EVALUATION RESULTS
A. QGAN-HG RESULTS
Fig. 3 shows QGAN-HG performance may rely on both

qubit count N and repeatable layer count L. Higher qubit
count and layer count presumably correspond to stronger

expressive power of hybrid generator. We reduce the neural

network parameter count to two levels, namely, 14.93% (MR-

moderately reduced) and 1.97% (HR-highly reduced) of gen-

erator parameters of original MolGAN to demonstrate the

expressive power of the hybrid generator. Fig. 5(a-b) show

the training performance comparison between MolGAN and

QGAN-HG for moderately and highly reduced architectures,

respectively. One can observe from Fig. 5(a) that all mech-

anisms can achieve a reasonably good training point (see

Fig. 4 for benchmark) within 5000 epochs. However, mod-

erately reduced MolGAN takes around 4000 iterations while

baseline MolGAN and QGAN-HG take only 2500 iterations

or so. Also note that, MolGAN and QGAN-HG both reach

a slightly lower Frchet Distance than the reduced classical

counterpart. As shown in Fig. 5(b), MolGAN with highly

reduced architecture can hardly be trained though a slight

downward trend is observed. The weak learning ability of

MolGAN-HR is attributed to mainly two reasons: (1) the

features of QM9 drug molecules cannot be well represented

using a light-weight neural network; (2) parameter count of

generator is not at par with that of discriminator. Intriguingly,

a sharp downward learning curve for QGAN-HG is still

observed. It is worth mentioning that only 15 gate parameters

are used in the quantum circuit. These are clear evidences of

strong expressive power of variational quantum circuits.

Model collapsing occurs for GAN variations if Frchet

Distances (approximate indicator of learning quality) start

increasing after a certain training point. We adopt early stop-

ping technique (the lowest reached point of Frchet Distance)

to somewhat prevent the training instability issue in GANs.

To measure the effects of circuit layer and qubit count, we

also implement QGAN-HG with L = 2 and N = 10 sepa-
rately. All other quantum variants are configured with default

single layer L = 1 and 8 qubits N = 8, if not specified
otherwise. However, the enhanced QGAN-HG variants with

more circuit layer and qubits (see Fig. 5(c, e)) do not help

accelerate learning process much relative to the QGAN-HG

in Fig. 5(b).

B. PATCHED QGAN-HG (P-QGAN-HG) RESULTS
The patched QGAN-HG mechanism is developed on the

basis of [18]. However, the proposed P-QGAN-HG uses all

qubits for creating feature vector and has no specific qubits

for non-linear mapping because of the following classical

neural network. We demonstrate the expressive power of

two patched QGAN-HG variants, i.e., P2-QGAN with two

sub-circuits (each has 4 qubits and 7 gate parameters) and

P4-QGAN with four sub-circuits (each has 2 qubits and 3

gate parameters). These gate parameters refer to the theta

angles shown in the parameterized layers of Fig. 3. Sur-

prisingly, the learning quality of these patched QGANs are

comparable to QGAN with an integral circuit, as shown in

Fig. 5(a, d), though patched QGANs have even fewer gate

parameters. Further, the simulation time (see Fig. 5(f)) for

patched quantum circuits are significantly reduced because

of smaller qubit count and early convergence. Therefore, we

consider patched QGAN-HG with multiple sub-circuits is an

alternative to classical GAN since GAN training issues such

as instability and vanishing gradients can be mitigated by

shortening neural network depth. When a larger variational

quantum circuit is adopted, the quantum algorithms would be

further accelerated if executed on a dedicated real quantum

computer.

C. DRUG PROPERTIES
The training of GAN variants is evaluated by Frchet Dis-

tance, whereas the quality of drug molecules generated from

GANs is specifically evaluated using a series of molecule

property metrics, three of which are visualized in Fig. 4(c).

The drug property evaluation is performed by a specific

inference stage. All GAN variations pick a point with lowest

Frchet Distance within 5000 epochs for inference. We run the

inference stage for QGAN-HG on IBM Q quantum machines

as well. Drug properties are calculated using 1000 sampled

molecules. Table 1 displays the drug property results which

are generally consistent with Frchet distance results. Note

that diversity and novel scores for all models are high,

whereas synthetic accessibility is low relative to bench-

mark shown in Fig. 4(c). P2-QGAN-HG results executed

on the simulator and the real quantum computer are quite

close, indicating the noise resilience of QGAN algorithms.

Though the benchmark MolGAN shows higher valid score,

the performances of the following GAN variants, MolGAN,

MolGAN MR, QGAN-HG MR, QGAN-HG HR Q10, P2-

QGAN-HG MR, P4-QGAN-HG MR, and P2-QGAN-HG
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This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TQE.2021.3104804,
IEEE Transactions on Quantum Engineering

Li et al.: Quantum Generative Models for Small Molecule Drug Discovery

TABLE 1. Drug properties evaluated from 1000 generated molecules for all GAN variations with complexity. Best results are shown in bold. Zeros indicate all
generated molecules are either reconstructed with NONE type by RDKit, or not drug-like, soluble and synthesizable. Values in parenthesis denote the standard
deviations for corresponding properties. Novelty scores for all GAN variants are 1, thereby not showing in an extra column. Note that, the last column displays the
model complexities for all GAN variants. (n QGP) denotes the corresponding model has n extra quantum gate parameters.

Method QED logP SA Diversity Validity Uniqueness Model Complexity

MolGAN∗ [10] 0.51 (0.05) 0.66 (0.15) 0.08 (0.04) 1.0 (0.00) 0.86 0.18 1.0 (0 QGP)

MolGAN MR 0.48 (0.05) 0.70 (0.17) 0.12 (0.11) 1.0 (0.01) 0.41 0.61 0.15 (0 QGP)

MolGAN HR 0 0 0 1.0 (0.00) 0.10 1.0 0.02 (0 QGP)

QGAN-HG MR (proposed) 0.51 (0.06) 0.49 (0.15) 0.11 (0.09) 1.0 (0.00) 0.44 0.54 0.15 (15 QGP)

QGAN-HG HR (proposed) 0 0 0 0.99 (0.02) 0.29 1.0 0.02 (15 QGP)

QGAN-HG HR L2 (proposed) 0 0 0 1.0 (0.00) 0.04 1.0 0.02 (30 QGP)

QGAN-HG HR Q10 (proposed) 0.48 (0.03) 0.46 (0.09) 0.07 (0.01) 0.97 (0.09) 0.04 1.0 0.02 (19 QGP)

P2-QGAN-HG MR (proposed) 0.49 (0.05) 0.62 (0.19) 0.12 (0.10) 1.0 (0.02) 0.52 0.41 0.15 (14 QGP)

P4-QGAN-HG MR (proposed) 0.49 (0.05) 0.50 (0.19) 0.12 (0.09) 1.0 (0.00) 0.57 0.46 0.15 (12 QGP)

P2-QGAN-HG MR (on ibmq_quito) 0.49 (0.05) 0.61 (0.19) 0.11 (0.08) 1.0 (0.01) 0.48 0.43 0.15 (14 QGP)

MolGAN∗ refers to MolGAN [10] trained in the present study.

MR (on ibmq_quito), are similar in terms of the drug proper-
ties for generated molecules because of the tradeoff between

validity and uniqueness, indicating the lowest unique score

for MolGAN. Drug quality is evaluated by considering all

metrics rather than a single metric.

D. SUMMARY OF OUR FINDINGS
Our findings can be summarized as follows:

• Classical MolGAN is cumbersome and requires mil-

lions of parameters to learn molecular distributions.

• Classical MolGAN with 85.07% reduced parameters

(i.e., moderately reduced MolGAN) cannot learn prop-

erly, however our QGAN-HG with only 15 extra quan-

tum gate parameters combined with reduced MolGAN

can achieve the same accuracy.

• Proposed QGAN-HG with 98.03% reduced parameters

(i.e., highly reduced MolGAN) is significantly efficient

than the highly reduced MolGAN.

• The patched quantum GAN achieves comparable learn-

ing accuracy in terms of drug properties with only 12

extra gate parameters, and considerably accelerates the

quantum GAN with an integral circuit.

• Moderately reduced MolGAN takes more than 5000

epochs for convergence while its quantum counterpart

takes around 2500 epochs (i.e., quantum version con-

verges faster). Highly reduced MolGAN hardly learns

but its quantum version shows good learning quality.

• Inferencing in real quantum hardware shows similar

performance as simulations.

• Our study provides a new quantum paradigm for GANs

to alleviate possible gradient vanishing problem in neu-

ral networks due to short chain of gradients.

VI. CONCLUSION
We propose a novel quantum GAN with a hybrid generator

for discovery of new drug molecules. Our hybrid GAN with

patched quantum circuits concatenates feature vectors from

different patches. We propose several variants of hybrid GAN

namely, moderately reduced QGAN, highly reduced QGAN,

advanced QGAN with 2 layers and 10 qubits, highly reduced

QGAN with 2 quantum patches and 4 patches, and compare

them with benchmark classical MolGAN. Hybrid quantum

generative models can learn complex data distributions on

near-term quantum computers since they are noise resilient.

Phenomenal representation power of quantum circuit speeds

up the progress of learning molecular distribution in terms

of training epochs. Light QGAN models with shallow depth

are achieved by reducing up to 98.03% of generator param-

eters, which also helps preventing possible training issue of

vanishing gradients in classical neural networks.
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