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ABSTRACT

Existing drug discovery pipelines take 5-10 years and cost billions of dollars. Computational approaches
aim to sample from regions of the whole molecular and solid-state compounds called chemical space which
could be on the order of 10°°. Deep generative models can model the underlying probability distribution
of both the physical structures and property of drugs and relate them nonlinearly. By exploiting patterns
in massive datasets, these models can distill salient features that characterize the molecules. Generative
Adversarial Networks (GANs) discover drug candidates by generating molecular structures that obey
chemical and physical properties and show affinity towards binding with the receptor for a target disease.
However, classical GANs cannot explore certain regions of the chemical space and suffer from training
instabilities. The practical utility of such models is limited due to the vast size of the search space,
characterized by millions of parameters. A full quantum GAN may require more than 90 qubits even
to generate small molecules with up to 9 heavy atoms. The proposed QGAN-HG model is composed
of a hybrid quantum generator that supports various number of qubits and quantum circuit layers, and,
a classical discriminator. QGAN-HG with less than 20% of the original parameters can learn molecular
distributions as efficiently as its classical counterpart. Another extended version of the proposed QGAN-
HG, that utilizes multiple quantum sub-circuits, considerably accelerates our standard QGAN-HG training
process and avoids the potential gradient vanishing issue of deep neural networks.

INDEX TERMS Algorithms, noisy intermediate-scale quantum algorithms and devices

. INTRODUCTION networks (GANS) [7] and recurrent neural networks (RNNs)
are specifically adopted for learning latent representations
of molecules and generating large amount of drug can-
didates for further high-throughput screening. Deep gen-
erative models have been used for various representation
types of molecules such as, string-based, graph-based and
shape/structure-based [8]-[12] representations. Generative
learning with graph-structured molecules is invariant to the
orderings of atoms [10], [13] and automates the navigation
to a chemical region to which the molecules in training set
are close to. Quantum generative models have the relative
advantage to cover the entire distribution because of the
intrinsically probabilistic nature. The drug discovery process
can be explained using a lock and key model where the
receptor (a protein binding site associated with a disease)
is considered as a lock and the drug is a key (Fig. 1(a)).

The drug development pipeline consists of stages of target
discovery, molecular design, preclinical studies, and clinical
trials, which makes the process of creating a marketable
drug expensive and time consuming [1]. The majority of
new drugs approved by US Food and Drug Administration
are small-molecule drugs whose structural and functional
diversity make their matching with biological binding sites
possible [2]. Searching new drugs can be considered as
navigating through the chemical space, which is an ensemble
of all organic molecules. Navigation in unknown chemical
space falls within the field of de novo drug design [3].

Machine learning techniques have been explored in all
development stages, especially molecular design with de-
sirable properties [1], [4], [5]. Generative models such as,
variational autoencoders (VAEs) [6], generative adversarial
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FIGURE 1. (a) Drug discovery process that shows protein binding site and drug fragments. Only generated molecules that have high affinity towards the receptor
binding sites are considered as valid (evaluated by the docking engine); (b) quantum stage (which is a parameterized quantum circuit with last-layer N measuring
the expectation values) and classical stage (neural network with last-layer out-feature dimension of 512) separated by blue dotted line; (c) application of atom layer
and bond layer for generating atom vectors and bond matrices from which synthetic molecular graphs are reconstructed (one example generated molecule is
shown); (d) a batch of real molecules sampled from training dataset (QM9 in this case) and a batch of synthetic (aka fake in GAN community) molecules generated
from (c) are fed into classical discriminator for prediction of being real or fake and calculation of Frchet Distance (FD) score (which measures the divergence
between real and fake molecules), and drug properties for synthetic molecules are evaluated using RDKit package. The prediction losses from discriminator are
back-forwarded to two neural networks as well as quantum circuit for updating all parameters simultaneously in each training epoch.

If a molecule is structurally complementary to the binding
site, the molecule plugs into the binding site and undergoes a
chemical reaction.

Quantum computing can offer unique advantages over
classical computing in many areas such as, chemistry simula-
tion, machine learning, and optimization [14]-[16]. Quantum
GAN is one of the main applications of near-term quantum
computers due to its strong expressive power in learning
data distributions even with much less parameters compared
to classical GANs [17]. Quantum GANSs can offer several
opportunities e.g., (i) stronger expressibility and learning
speedup making it possible to learn richer representation
of molecules; (ii) ability to search exponentially growing
chemical space with increasing qubit count and sample from
distributions that may be difficult to model classically.

Quantum GAN is still at its nascent stage due to qubit
constraints on noisy quantum computers. Huang et al. [18]
proposed a quantum patch GAN mechanism to efficiently
use limited qubits for generating hand-written digit images,
however, the method only suits two digits of 0 and 1. QuGAN
[17] aims to learn a data set of hand-written digits, but
the original 784-dimension images were reduced to only 2
dimensions. No known existing quantum GAN mechanisms
can essentially solve real-world complicated learning tasks.

Drug molecules can be represented as graphs where the
nodes and edges correspond to atoms and bonds, respectively.
Given the task complexity of learning molecule distribution,
full quantum GAN can hardly encode all training data quan-
tum mechanically. Take the small molecule dataset QM9
[19] for example. The total number of qubits required for
reconstructing synthetic molecules is log, 53¢ + log, 57 >
90 where 36 is the number of bonds, 9 is the number of
atoms, and 5 is the number of bond types and atom types
contained in QMY. At present, no commercially available
gate-based quantum computers excluding quantum annealers
support over 90 qubits for developing the variational quantum
GAN algorithms. However, a hybrid GAN model, realized by
connecting quantum measurement outcome with a following
neural network (Fig. 1(b)), uses fewer qubits and still exploits
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the benefits of quantum computing.

We propose a qubit-efficient quantum GAN mechanism
with hybrid generator and classical discriminator for effi-
ciently learning molecule distributions based on classical
MolGAN [10]. Since the proposed quantum GAN requires
fewer qubits, simulation is still a viable option for training
unlike full quantum GAN with large number qubits that can-
not be simulated using classical computers. We also examine
the patched circuit idea [18] by comparing to the original
single large generator circuit implementation using metric
of Frchet Distance and drug property scores. Fig. 1 shows
the overall workflow of our qubit-efficient hybrid quantum
GAN model for drug discovery. This work discovers a library
of novel and valid molecules that can be screened by the
docking engine in the next step (Fig. 1(a)). To the best of
our knowledge, this is the first work on drug discovery using
quantum generative models.

We, (1) propose a novel quantum GAN mechanism with
hybrid generator to qubit-efficiently tackle any real-world
learning tasks solvable on classical GANSs; (2) generate drug
molecular graphs with quality similar to classical methods
in terms of Frchet Distance (FD) score and drug property
scores, and achieve high training efficiency with less than
20% of the original parameters; (3) design a quantum GAN
with patched sub-circuits which significantly decreases train-
ing time, making the quantum algorithm efficiently exe-
cutable even in simulation environment; (4) provide a new
quantum paradigm for generative models which bypass the
thorny training instability issues; (5) validate the capability
of generating small drug molecules on real IBM quantum
computers by running inference stage of QGAN-HG model.

Il. BACKGROUND

A. COMPUTATIONAL DRUG DISCOVERY

Classical generative models [7], [10], [20] have been ex-
plored for discovery of drug molecules with desired proper-
ties by learning drug molecule distribution based on given
chemical dataset, and the potential of quantum machine
learning for drug discovery has also been depicted in [21].
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FIGURE 2. (a-b) A sample molecular graph from QM9 denoted by its
corresponding atom vector A and bond matrix B; (c) all quantum gates used in
this study.

GAN consists of two networks, namely generator (G) and
discriminator (D), competing with each other. The generator
takes noise as input to generate a synthetic data sample
whereas the discriminator flags if the sample is real or fake
with a binary classifier. Generator G(z;6,) maps random
input noise z to synthetic chemical data space p,, while
discriminator D(x; 64) outputs a single scalar indicating the
probability that  come from real data rather than p,. D is
trained to maximize the probability to assign correct label
and G is trained to minimize the difference between real and
fake log(1 — D(G(z))). The two-player minimax game is
trained based on the following value function:

minmax V(D,G) =E

0, 04

T~Ddata(T) [lOgD(.’B)]
+ Eznp. (»)[log(l — D(G(2)))]

Chemical compounds can be represented as graphs with
nodes and edges designating various atoms and their bonds,
respectively. For example, Fig. 2(a-b) shows a molecule and
its graph representation where atom types of N and O are
encoded as 2 and 3 in atom vector, and bond types of single
and double are encoded as 1 and 2 in bond matrix. If the gen-
erated structure is chemically stable and exhibits high affinity
towards the receptor binding sites then it can be treated as
a valid drug molecule. The generator and discriminator are
trained using example drugs/molecules until the synthetic
chemical distribution is close to real chemical space. The
quality of GAN outcome are measured by Frchet Distance
and RDK:it (for chemical properties) [22].

B. QUANTUM MACHINE LEARNING

Quantum systems have atypical patterns that classical com-
puters cannot produce efficiently [14]. Machine learning
tasks are sometimes hard to train on classical computers due
to large-scale and high-dimensional data set. Quantum neural
networks (QNNs) can represent a given dataset, either quan-
tum or classical, and be trained using a series of parameter
dependent unitary transformations. QNN architecture is de-
pendent on qubit count, quantum circuit layer, and quantum
gates applied because the architecture is essentially a vari-
ational quantum circuit. Therefore, the following quantum
computing concepts are helpful in understanding a quantum
neural network.
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FIGURE 3. Parameterized quantum circuit to obtain feature vector of N
dimensions. The circuit is composed of initialization layers, repeatable
parameterized layers and measurement layer. Each RZZ gate is composed of
two CNOT gates and one parametric RZ gate.

Quantum Circuit: Quantum circuits consist of gates that
modulate the state of the qubits to perform computation.
Quantum gates could be applied on 1 qubit (e.g., rotation
gates R, and R.) or 2 qubits (e.g., CNOT gate), as shown
in Fig. 2(c). Finally, measurement is applied to obtain the ex-
pectation value after certain number of shots. Fig. 3 displays
the quantum circuit used in QGAN-HG. A patched quantum
circuit [18] refers to multiple separate quantum sub-circuits
whose measurement results are concatenated to construct
an output vector of larger dimension. The patched quantum
circuit creates no entanglement between qubits in different
sub-circuits but allows us to simulate large quantum systems
efficiently on classical machines.

Quantum Noise: Noisy Intermediate-Scale Quantum
(NISQ) computers [23] suffer from noise sources such as,
T1 relaxation time, T2 dephasing time, gate errors and
readout errors. These are also called qubit quality metrics.
Crosstalk, qubit-to-qubit variation and temporal variations
in qubit quality also exist. Low quantum noise level is not
detrimental for QNNs, rather it can even be beneficial for
quantum machine learning applications as shown in [24],
[25]. However, its potential benefits in QGAN-HG models
are not specifically evaluated since it is not the focus of
the present study and could be a separate work. Instead,
noise resilience of quantum GANSs is verified by running the
inference for the patched version of QGAN-HG on a real
IBM quantum computer.

lll. QUANTUM GENERATIVE ADVERSARIAL NETWORKS
A. QUANTUM GAN FLAVORS

Quantum GAN has a few flavors of the generator and dis-
criminator implementations depending on their execution en-
vironments, either on quantum computers, classical machines
or quantum simulators. The flavor with quantum discrimina-
tor is not applicable here due to limited number of qubits on
near-term quantum computers. Real data shown in Fig. 1(d)
has to engage the state preparation stage, usually through
amplitude encoding, for embedding the classical data in a
quantum state which takes N log(M) qubits where N is the
training set size and M is feature dimension [18], [26]. The
flavor with a pure quantum generator is not directly applica-
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FIGURE 4. Metrics of Frchet Distance and molecule properties for real data points: (a) Frchet Distances (with lower bound of zero) calculated based on 90
dimensional samples with both Atom and Bond (A+B) for batch sizes of 128 and 512; (b) Frchet Distances calculated based on 81 dimensional samples with only
Bond (B) for batch sizes of 128 and 512; (c) three major drug properties (QED - druglikeness, logP - solubility, SA - synthesizability) evaluated on sample batches of
128 molecules from (a). Note that these 50 samples are independently sampled from QM9.

ble either considering the complicated task of drug discovery.
As noted in Section I, more than 90 qubits are needed
to discover QM9-like molecules (not suitable for near-term
quantum computers). Thus we propose a new quantum GAN
with hybrid generator and classical discriminator to exploit
the quantum benefits.

B. QUANTUM GAN WITH HYBRID GENERATOR
Quantum GAN with hybrid generator (QGAN-HG) is com-
posed of a parameterized quantum circuit to get a feature
vector of qubit size dimension, and a classical deep neural
network to output an atom vector and a bond matrix for
the graph representation of drug molecules. Another patched
quantum GAN with hybrid generator (P-QGAN-HG) is con-
sidered as the variation of QGAN-HG where the quantum
circuit is formed by concatenating few quantum sub-circuits.

QGAN-HG Quantum Circuit: In this variant, a quan-
tum layer is added for exploiting the strong expressive
power of variational quantum circuits which perform low-
rank matrix computations in O(poly(log(M))) time [18],
[27]. The variational quantum circuit (Fig. 3) consists of 3
stages, namely initialization, parameterized (repeatable for L.
layers with L(2N — 1) parameter count) and measurement
stages. In the parameterized layers, each single-qubit RY
gate contains an angle parameter, and each two-qubit RZZ
gate, following the naming convention of IBM [28], has one
angle parameter. Two parameters z; and 29 are uniformly
sampled from [—, 7], which essentially substitute the ran-
dom Gaussian noise input for classical GANs. After applying
the initialization layers, the input state in mathematical form
[v0(21,22)) = (Rz(22)Ry (21)]0))®¥ is prepared. Let us
denote the parameterized layers repeated for L times as
unitary matrix U (). The final quantum state is of the form
|U) = U(0) |¢o(21, 22)). A series of measurement operators
are applied to obtain the expectation value for each qubit and
further form the feature vector to be fed to classical neural
network.

QGAN-HG Neural Network: The classical stage of hy-
brid generator is a standard neural network with input layer
receiving the feature vector of expectation values. The final
layer consists of the separate atom and bond layers for
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creating atom vectors and bond matrices, respectively. Like
MOolGAN [10], a categorical re-parameterization step with
Gumbel-Softmax [29], which supports gradient calculation
in the backward pass, is taken to obtain discrete fake molec-
ular graphs. Note that, 85.07% and 98.03% of generator
parameters are dropped by reducing major linear layers from
classical GAN [10] to demonstrate the strong expressive
power of quantum circuits. Due to the necessity of recon-
structing QMO-like molecules (with structure of X € R?X®
for atoms and A € R9%9%5 for bonds), neural network
architecture can hardly be further reduced.

Patched QGAN-HG: The patched quantum GAN with
hybrid generator consists of the same two ingredients as
above. The patched quantum circuit splits the circuit into
independent multiple quantum sub-circuits by removing the
entangled RZZ gates among sub-circuits. Then the patched
circuit is integrated by concatenating the expectation vales
from each sub-circuit [18]. Theoretically, P-QGAN-HG has
its pros and cons relative to QGAN-HG with an integral
quantum circuit. P-QGAN-HG requires less quantum re-
sources because multiple sub-circuits can be executed se-
quentially or in parallel. Another benefit is that each cir-
cuit can be simulated more efficiently, which speeds up the
learning process accordingly. However, one of the obvious
drawbacks is reduced expressive power since quantum state
dimension is reduced from 2V to 2V/2 (say two circuits
with half size) in Hilbert space. The performance of patched
QGAN-HG is compared with QGAN-HG in the following
section.

Discriminator and Optimizer: The discriminator is kept
the same as MolGAN [10] since its parameter size is on par
with the hybrid generator. However, the reward network is
discarded since the reward value is too minuscule to notice-
ably contribute to training the model. Generated molecules
are evaluated using RDKit together with Frchet Distance
based metric. Quantum gate parameters and weights in neural
network are updated simultaneously using a single optimizer
while discriminator employs a separate one to be updated
alternatively.
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FIGURE 5. Training comparison among various GAN flavors: (a) Frchet Distances for MolGAN, moderately reduced (14.93%) MolGAN and QGAN-HG; (b) Frchet
Distances for highly reduced (1.97%) MolGAN and QGAN-HG; (c) learning curves for highly reduced QGAN-HG with quantum circuit level L = 2 and N = 10,
respectively; (d) learning curves for patched QGAN-HG with two sub-circuits and four sub-circuits; (e) training epochs with lowest Frchet Distances for all GAN
flavors; (f) training times elapsed (early stopping at epochs from (e)) for all GAN flavors. All QGAN variants in (a, b, d) are composed of 8 qubits and a single
quantum layer. Abbreviation: QGAN/MolGAN MR - QGAN/MolGAN with moderately reduced generator; QGAN/MolGAN HR - QGAN/MolGAN with highly reduced
generator; QGAN L2 - QGAN with quantum circuit depth of 2; QGAN Q10 - QGAN with 10-qubit quantum circuit; P2/4-QGAN - Patched QGAN with 2/4 sub-circuits;

MGAN - MolGAN.

IV. EXPERIMENTAL SETUP

Dataset, metrics and implementation details that support the
findings of this study are available in the GitHub repository
https://github.com/jundeli/quantum-gan.

A. DATASET AND METRICS

Dataset: All the experiments are conducted with quantum
machine learning benchmarking QM9 [19] dataset which
contains 133,885 molecules with up to 9 heavy atoms of
types of carbon, nitrogen, oxygen, and fluorine.

Frchet Distance: Learning results of the proposed GANs
are evaluated with Frchet Distance metric which measures
the similarity between real and generated molecule distri-
butions. Generated molecule distribution is approximately
created by generating a batch of molecules, and real one
is approximately formed by randomly sampling the same
number of molecules from QM9 dataset. Each sample batch
of molecules is concatenated and considered as a multi-
dimensional point in the distribution, then Frchet Distance
is calculated using 50 of these points (sampled for 50 batches
from both distributions). Fig. 4 shows Frchet Distances cal-
culated for two batch sizes of 128 and 512, and molecule
batches are independently sampled for 50 times. FD A+B
(see Fig. 4(a)) is calculated based on 90 dimensional samples
with both atom vectors (9 entries) and bond matrices (81
entries); while FD B (see Fig. 4(b)) based on 81 dimensional
samples with only bond matrices. FD A+B includes more
random noises due to extra 9 dimensional atom vectors
and is projected to severely disturb the similarity between
real molecule batches. Interestingly, FD A+B correlates well
with the FD B, indicating the strong inherent connection
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between atoms and bonds. The means (12.3342, 12.6387)
and variations (0.7057, 0.7849) between FD calculated for
128 and 512 batch sizes are close. Generated molecules are
considered realistic enough once the preset FD cut-off point
of 12.5 is reached during the learning process. Thus, all
following experiments are evaluated with FD A+B metric
and 128 batch size.

Drug Properties: Molecule properties are the metrics for
drug quality evaluation during inference stage. Three primary
properties include, (i) quantitative estimate of druglikeness
(QED) which measures the likelihood of compound being a
drug; (ii) log octanol-water partition coefficient (logP) which
measures the solubility of a compound; and (iii) and synthetic
accessibility (SA) which quantifies the ease of a compound
being synthesized in pharmaceutical factory. Fig. 4 (c) shows
the property scores normalized to range [0, 1]. The three
curves display the possible ranges of real drug properties
in terms of QED, logP, and SA which are also indicators
for the learning quality of all GAN variants discussed in
this study. Together with other properties, they are measured
using RDKit.

B. IMPLEMENTATION DETAILS

The quantum circuits can be executed either on a simulator
or real quantum machine. The simulator supports customized
setting of noise levels and sources (noiseless environment is
set in this paper), while real quantum devices have different
noise characteristics across different machines.

Training: We modify the classical MolGAN [10] to im-
plement our QGAN-HG and P-QGAN-HG algorithms. As
mentioned in Section III, some linear layers and reward
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network are dropped in our experiments to evaluate the
expressive power of quantum circuit and to use drug property
metrics fairly. Our QGAN variations are trained with a mini-
batch of 128 molecules using the Adam optimizer on a single
RTX 2080 Ti GPU for the classical part and the PennyLane
platform [30] with the default qubit plugin for the quantum
stage. As explained in Section I, the real quantum machine is
not utilized during the training stage due to the long queuing
time on IBM Q machines. The learning rate is initially set to
0.0001 for both generator and discriminator and starts decay-
ing uniformly at a factor of 1/2000 after 3000 epochs. Total
training epoch is set with 5000, and early stopping based on
Frchet Distance is applied if model collapse happens.

Inference: Only hybrid generator is involved during infer-
ence stage. Since QGAN is well trained, the quantum circuit
in the generator is executed on both PennyLane simulator
and real quantum device of ibmg_quito [28] for comparison.
Drug quality for generated molecules are evaluated by prop-
erties such as, QED, logP, and SA, among others, all of which
are normalized to be within [0, 1]. Finally, GAN variations
are compared by taking 1000 generated molecules.

V. EVALUATION RESULTS
A. QGAN-HG RESULTS
Fig. 3 shows QGAN-HG performance may rely on both
qubit count N and repeatable layer count L. Higher qubit
count and layer count presumably correspond to stronger
expressive power of hybrid generator. We reduce the neural
network parameter count to two levels, namely, 14.93% (MR-
moderately reduced) and 1.97% (HR-highly reduced) of gen-
erator parameters of original MolGAN to demonstrate the
expressive power of the hybrid generator. Fig. 5(a-b) show
the training performance comparison between MolGAN and
QGAN-HG for moderately and highly reduced architectures,
respectively. One can observe from Fig. 5(a) that all mech-
anisms can achieve a reasonably good training point (see
Fig. 4 for benchmark) within 5000 epochs. However, mod-
erately reduced MolGAN takes around 4000 iterations while
baseline MolGAN and QGAN-HG take only 2500 iterations
or so. Also note that, MolGAN and QGAN-HG both reach
a slightly lower Frchet Distance than the reduced classical
counterpart. As shown in Fig. 5(b), MolGAN with highly
reduced architecture can hardly be trained though a slight
downward trend is observed. The weak learning ability of
MOolGAN-HR is attributed to mainly two reasons: (1) the
features of QM9 drug molecules cannot be well represented
using a light-weight neural network; (2) parameter count of
generator is not at par with that of discriminator. Intriguingly,
a sharp downward learning curve for QGAN-HG is still
observed. It is worth mentioning that only 15 gate parameters
are used in the quantum circuit. These are clear evidences of
strong expressive power of variational quantum circuits.
Model collapsing occurs for GAN variations if Frchet
Distances (approximate indicator of learning quality) start
increasing after a certain training point. We adopt early stop-
ping technique (the lowest reached point of Frchet Distance)
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to somewhat prevent the training instability issue in GANSs.
To measure the effects of circuit layer and qubit count, we
also implement QGAN-HG with L = 2 and N = 10 sepa-
rately. All other quantum variants are configured with default
single layer L = 1 and 8 qubits NV = 8, if not specified
otherwise. However, the enhanced QGAN-HG variants with
more circuit layer and qubits (see Fig. 5(c, e)) do not help
accelerate learning process much relative to the QGAN-HG
in Fig. 5(b).

B. PATCHED QGAN-HG (P-QGAN-HG) RESULTS

The patched QGAN-HG mechanism is developed on the
basis of [18]. However, the proposed P-QGAN-HG uses all
qubits for creating feature vector and has no specific qubits
for non-linear mapping because of the following classical
neural network. We demonstrate the expressive power of
two patched QGAN-HG variants, i.e., P2-QGAN with two
sub-circuits (each has 4 qubits and 7 gate parameters) and
P4-QGAN with four sub-circuits (each has 2 qubits and 3
gate parameters). These gate parameters refer to the theta
angles shown in the parameterized layers of Fig. 3. Sur-
prisingly, the learning quality of these patched QGANSs are
comparable to QGAN with an integral circuit, as shown in
Fig. 5(a, d), though patched QGANs have even fewer gate
parameters. Further, the simulation time (see Fig. 5(f)) for
patched quantum circuits are significantly reduced because
of smaller qubit count and early convergence. Therefore, we
consider patched QGAN-HG with multiple sub-circuits is an
alternative to classical GAN since GAN training issues such
as instability and vanishing gradients can be mitigated by
shortening neural network depth. When a larger variational
quantum circuit is adopted, the quantum algorithms would be
further accelerated if executed on a dedicated real quantum
computer.

C. DRUG PROPERTIES

The training of GAN variants is evaluated by Frchet Dis-
tance, whereas the quality of drug molecules generated from
GANSs is specifically evaluated using a series of molecule
property metrics, three of which are visualized in Fig. 4(c).
The drug property evaluation is performed by a specific
inference stage. All GAN variations pick a point with lowest
Frchet Distance within 5000 epochs for inference. We run the
inference stage for QGAN-HG on IBM Q quantum machines
as well. Drug properties are calculated using 1000 sampled
molecules. Table 1 displays the drug property results which
are generally consistent with Frchet distance results. Note
that diversity and novel scores for all models are high,
whereas synthetic accessibility is low relative to bench-
mark shown in Fig. 4(c). P2-QGAN-HG results executed
on the simulator and the real quantum computer are quite
close, indicating the noise resilience of QGAN algorithms.
Though the benchmark MolGAN shows higher valid score,
the performances of the following GAN variants, MolGAN,
MolGAN MR, QGAN-HG MR, QGAN-HG HR Q10, P2-
QGAN-HG MR, P4-QGAN-HG MR, and P2-QGAN-HG
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TABLE 1. Drug properties evaluated from 1000 generated molecules for all GAN variations with complexity. Best results are shown in bold. Zeros indicate all
generated molecules are either reconstructed with NONE type by RDKit, or not drug-like, soluble and synthesizable. Values in parenthesis denote the standard
deviations for corresponding properties. Novelty scores for all GAN variants are 1, thereby not showing in an extra column. Note that, the last column displays the
model complexities for all GAN variants. (n QGP) denotes the corresponding model has n extra quantum gate parameters.

[ Method [ QED [ logP [ SA [ Diversity [ Validity [ Uniqueness [ Model Complexity ]
MolGAN™ [10] 0.51(0.05) [ 0.66(0.15) [ 0.08(0.04) [ 1.0 (0.00) 0.86 0.18 1.0 (0 QGP)
MolGAN MR 0.48 (0.05) | 0.70 0.17) | 0.120.11) | 1.0 (0.01) 0.41 0.61 0.15 (0 QGP)
MolGAN HR 0 0 0 1.0 (0.00) 0.10 1.0 0.02 (0 QGP)
QGAN-HG MR (proposed) 0.51 (0.06) | 0.49(0.15) | 0.11(0.09) | 1.0 (0.00) 0.44 0.54 0.15 (15 QGP)
QGAN-HG HR (proposed) 0 0 0 0.99 (0.02) 0.29 1.0 0.02 (15 QGP)
QGAN-HG HR L2 (proposed) 0 0 0 1.0 (0.00) 0.04 1.0 0.02 (30 QGP)
QGAN-HG HR Q10 (proposed) 0.48 (0.03) | 0.46(0.09) | 0.07 (0.01) | 0.97 (0.09) 0.04 1.0 0.02 (19 QGP)
P2-QGAN-HG MR (proposed) 0.49 (0.05) | 0.62(0.19) | 0.120.10) | 1.0(0.02) 0.52 0.41 0.15 (14 QGP)
P4-QGAN-HG MR (proposed) 0.49 (0.05) | 0.50(0.19) | 0.120.09) | 1.0 (0.00) 0.57 0.46 0.15 (12 QGP)
P2-QGAN-HG MR (on ibmq_quito) | 0.49(0.05) | 0.61(0.19) | 0.11(0.08) | 1.0(0.01) 0.48 0.43 0.15 (14 QGP)

MolGANT refers to MolGAN [10] trained in the present study.

MR (on ibmgq_quito), are similar in terms of the drug proper-
ties for generated molecules because of the tradeoff between
validity and uniqueness, indicating the lowest unique score
for MolGAN. Drug quality is evaluated by considering all
metrics rather than a single metric.

D. SUMMARY OF OUR FINDINGS
Our findings can be summarized as follows:

o Classical MolGAN is cumbersome and requires mil-
lions of parameters to learn molecular distributions.

o Classical MolGAN with 85.07% reduced parameters
(i.e., moderately reduced MolGAN) cannot learn prop-
erly, however our QGAN-HG with only 15 extra quan-
tum gate parameters combined with reduced MolGAN
can achieve the same accuracy.

o Proposed QGAN-HG with 98.03% reduced parameters
(i.e., highly reduced MolGAN) is significantly efficient
than the highly reduced MolGAN.

o The patched quantum GAN achieves comparable learn-
ing accuracy in terms of drug properties with only 12
extra gate parameters, and considerably accelerates the
quantum GAN with an integral circuit.

o Moderately reduced MolGAN takes more than 5000
epochs for convergence while its quantum counterpart
takes around 2500 epochs (i.e., quantum version con-
verges faster). Highly reduced MolGAN hardly learns
but its quantum version shows good learning quality.

o Inferencing in real quantum hardware shows similar
performance as simulations.

o Our study provides a new quantum paradigm for GANs
to alleviate possible gradient vanishing problem in neu-
ral networks due to short chain of gradients.

VI. CONCLUSION

We propose a novel quantum GAN with a hybrid generator
for discovery of new drug molecules. Our hybrid GAN with
patched quantum circuits concatenates feature vectors from
different patches. We propose several variants of hybrid GAN
namely, moderately reduced QGAN, highly reduced QGAN,
advanced QGAN with 2 layers and 10 qubits, highly reduced
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QGAN with 2 quantum patches and 4 patches, and compare
them with benchmark classical MolGAN. Hybrid quantum
generative models can learn complex data distributions on
near-term quantum computers since they are noise resilient.
Phenomenal representation power of quantum circuit speeds
up the progress of learning molecular distribution in terms
of training epochs. Light QGAN models with shallow depth
are achieved by reducing up to 98.03% of generator param-
eters, which also helps preventing possible training issue of
vanishing gradients in classical neural networks.
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