Justified Communication Equilibrium

By DANIEL CLARK AND DREW FUDENBERG*

Justified communication equilibrium (JCE) is an equilibrium re-
finement for signaling games with cheap-talk communication. A
strateqy profile must be a JCE to be a stable outcome of non-
equilibrium learning when receivers are initially trusting and
senders play many more times than receivers. In the learning
model, the counterfactual “speeches” that have been informally
used to motivate past refinements are messages that are actually
sent. Stable profiles need not be perfect Bayesian equilibria, so JCE
sometimes preserves equilibria that existing refinements eliminate.
Despite this, it resembles the earlier refinements D1 and NWBR,
and it coincides with them in co-monotonic signaling games.

Cheap-talk communication is available in many of the settings signaling games
are intended to model, and signaling games with or without cheap talk can have
a great many equilibria. This paper provides a learning foundation for justified
communication equilibrium (JCE), which is a new equilibrium refinement for sig-
naling games with costly signals and cheap-talk messages. For a given signal and
strategy profile, a sender type is justified if some conceivable (i.e. undominated)
response makes the type weakly prefer to play the signal rather than conform
to the strategy profile, and makes all other types weakly prefer to conform. A
justified response to a signal is a convex combination of best responses to beliefs
that assign probability 1 to the justified types for that signal. JCE requires that
for every signal, there is at least one message that induces the receiver to play a
justified response.

The restrictions imposed by JCE on off-path play have some of the flavor of
commonly used signaling game refinements, such as the Intuitive Criterion (Cho
and Kreps, |[1987) and D1 (Banks and Sobel, [1987)), but JCE can make very differ-
ent predictions in economically relevant settings. Unlike those refinements, JCE
has a foundation in the theory of learning in games. We provide this foundation
by analyzing the limits of steady states in an overlapping generations learning en-
vironment where agents are patient, have long expected lifetimes, and the senders
on average play many more repetitions of the game than the receivers do. This
fits settings where the senders are institutions and the receivers are individuals
(or families, clans, etc.), since institutions will typically be involved in many more
interactions than individuals. We say that the strategy profiles corresponding to
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these steady states are stable.

We analyze the stable profiles under the assumption that the message space is
large enough that, for each signal and subset of sender types, there is a distinct
message that claims “I am playing this signal and my type is in this set.” We
further assume that receivers are initially trusting, which roughly means that
the receivers’ prior leads them to trust such messages they have not previously
observed to be lies. We view initial trust as a mild and plausible assumption on
how receivers respond to messages. Section [V.C discusses how it relates to past
work on the interpretation of communication.

JCE emerges as a necessary condition for stability in our learning model because
when senders are long-lived most of them play a best response to the aggregate
play of the receivers. A given signal can only be a best response for justified types,
so receivers are very unlikely to encounter a signal being played by a non-justified
type. Initial trust then implies that most receivers will trust a message claiming
to be a justified type, and so play a justified response.

Because we formally add cheap talk to the extensive form of the signaling game,
our analysis can and does specify how receivers respond to each possible message,
including to the “null message” of saying nothing at all, so we can give the first
learning foundation for “speeches” of the sort /Cho and Kreps (1987) used to moti-
vate the Intuitive Criterion. In particular, these speeches are not counterfactual,
but are messages that are actually sent, which lets us determine how receivers
respond to them. Thus, we sidestep the “Stiglitz critique” (Cho and Kreps,
1987; [Rabin and Sobel, [1996) of signaling game refinements, which is based on
iterated arguments about how players believe their opponent “should” interpret
hypothetical deviations, and address the possible complications in adding explicit
communication to the signaling game discussed in Fudenberg and Tirole (1991a).

Our results can be seen as both a validation of and a correction to previous
signaling game refinements, which are only roughly in line with the implications
of non-equilibrium learning. Specifically, none of the traditional equilibrium re-
finements is a necessary condition for stability in our learning model Indeed,
as shown by Example 3| the stable outcomes of our learning model need not be
perfect Bayesian equilibria (Fudenberg and Tirole, [19914), since the response to
an off-path signal can be a mixture over pure best responses corresponding to
different beliefs that need not itself be a best response to a single belief. For this
reason, JCE is not a refinement of perfect Bayesian equilibrium, but instead is
a refinement of perfect Bayesian equilibrium with heterogeneous off-path beliefs
(PBE-H, [Fudenberg and He| (2018)).

We explore the relationships of JCE with previous equilibrium refinements later
in the paper, but we preview a few results here. As the left-hand box in Figure
illustrates, every JCE passes the “Intuitive Criterion Test,” and every JCE is a
rationality-compatible equilibrium (RCE, [Fudenberg and He (2020)), which is the
strongest previous equilibrium refinement for signaling games that has a learning

1 Moreover, as far as we know they have not been shown to be necessary in -any- learning model.
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JCE=NWBR=D1

FicURE 1. JCE AND OTHER RESTRICTIONS OF PBE-H.

foundation. JCE is not nested with D1, but every PBE-H that satisfies NWBR
is path-equivalent to a J CE The right-hand box in Figure |1] depicts the fact
that JCE, NWBR, and D1 are essentially equivalent in the special but important
class of co-monotonic signaling games, which provides a learning justification for
selecting the least-cost separating equilibria in many of these games.

I. Preliminaries
A. Signaling Games with Communication

In a signaling game with communication, the sender (player 1) has a type space
O, a signal space S, and a message space M. The sender observes their type,
which is drawn from a full-support distribution A € A(©), and then chooses a
signal s € S and a message m € M ﬁ The receiver (player 2) observes the sender’s
choice of (s,m), but not the sender’s type, then selects their action a € A, after
which payoffs are realized. We assume that all of these sets are finite. We denote
the set of sender behavior strategies by I} = (A(S x M))®, the set of receiver
behavior strategies by Iy = (A(A))**M  and let II = II; x II; be the set of
strategy profiles.

The utility function of the sender is u1 : © x S x A — R and the utility function
of the receiver is us : @ x S x A — R. Each player’s utility depends on the sender’s

2When we refer to NWBR in this paper we mean “Never a weak best response” in the sense of |(Cho and
Kreps| (1987) and |Cho and Sobel (1990).
3Throughout, we use A(Q) to denote the set of (Borel) probability distributions over a set Q.
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signal and type and the receiver’s action; neither utility depends on the message
of the sender. We will abuse notation slightly and write uy(6,7) and ua(mw) for
the expected payoffs from strategy profile 7 = (71, m2), as well as uy (6, s, a) for
the expected utility of the type 6 sender from playing signal s when the receiver
responds according to o € A(A), and ua(p, s, ) for the expected utility of the
receiver from playing a when the sender plays s and the probability distribution
over their type is p € A(©). Finally, BR(6,s) = argmaxgea uz(f,s,a) denotes
the pure best responses for the receiver to signal s when the sender’s type is 6,
BR(p, s) = arg maxqe 4 uz(p, S, a) denotes the pure best responses for the receiver

to signal s under belief p € A(©), and BR(O, s) = UpeA(é)BR(p, s) denotes the

pure best responses to signal s for some p with support in ©.
B. Definition of Justified Communication Equilibrium

The set of actions that are a best response to some belief about 0 is BR(O, s).
These are the undominated responses to s; the other responses are conditionally

dominated in the sense of Fudenberg and Tirole (1991a). Thus A(BR(O, s)) is the
set of receiver mixed actions that assign probability 1 to undominated responses.

DEFINITION 1 (Fudenberg and He, 2018):  Strategy profile = is a perfect Bayesian
equilibrium with heterogeneous off-path beliefs (PBE-H) if
1) For each 0 € ©, u1(0, 7) = max(s pm)esxm u1(0, s, m2(:|s,m)).
2) For each on-path signal-message pair (s,m), ma(-|s,m) € A(BR(p(sm);$)),
where p(s m) 1s the posterior belief given (s, m) obtained through Bayes’ rule.
3) For each off-path signal-message pair (s,m), ma(:|s,m) € A(BR(O,s)).

Conditions 1 and 2 of Definition [I]are the conditions for a strategy profile to be a
Nash equilibrium. Condition 3 lets the receiver’s response to an off-path signal-
message pair (s, m) be a mixture over several actions, each of which is a response
to a possibly different belief about the sender’s type. Conditions 1-3 together
are slightly weaker than perfect Bayesian equilibria (PBE, Fudenberg and Tirole
(19910)). This is because PBE replaces Condition 3 with the requirement that
the receiver response to each (s,m) is in the set

MBR(O,s) ={a € A(A) : Ip € A(O) s.t. uz(p,s,a) > uz(p, s,a) Ya € A}

of mixed best responses to sﬁ A(BR(©,s)) can be strictly larger than M BR(©, s)
because it can include mixtures over actions that are not best responses to the
same belief.

Justified communication equilibrium adds the “justified-response” condition to
PBE-H. To define this condition, for each type 6, signal s, and strategy profile m,
let

Dy(s,m) ={a € A(BR(0O,s)) : u1(0,s,a) > u1(6,m)}.

4Recall that PBE and sequential equilibrium are equivalent in signaling games.
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This is the set of mixtures over undominated receiver responses to s that would
make type 6 strictly prefer s to their outcome under 7T Let

Dy(s,m) = {a € A(BR(©,5)) : u1(,s,a) = u1(0,7)}

be the corresponding set for which type 8 would be indifferent between s and
their outcome under 7. For every s € S and 7 € II; x I, let

Of(s,m) = {0 € © : Dy(s,7) U DY(s,7) & U9/¢91~)9/(s, )}

be the set of types 6 for which there is some mixed receiver action & € A(BR(O, s))
that makes 6 weakly prefer (s, a) to their outcome under 7 and no other type 6’
strictly prefer (s,«) to their outcome under .

DEFINITION 2: The set of justified types for signal s given profile 7 is

@(S,ﬂ') — @T(svﬂ-) Zf@T(S,T[') #(Z)
) if ©f(s,m) =0
A justified response to signal s given profile 7 is a distribution o« € A(BR(O(s, ), s))
that assigns positive probability only to actions that are best responses to beliefs
with support in O(s, W)ﬁ

Note that in a PBE-H, each type is justified for every signal it plays with positive
probability. This is because every signal-message pair the type is willing to play
must give them their equilibrium payoff, while no other type can get strictly more
than their equilibrium payoff by playing it.

DEFINITION 3: The strategy profile m is a justified communication equi-
librium (JCE) if

1) It is a PBE-H.

2) For each s € S, there is somem € M such that m2(+|s,m) € A(BR(O(s,7),s)).

Every JCE must be a PBE-H. The second condition requires that the receiver’s
response to each signal is justified for at least one message. Since the equilibrium
response to on-path signal-message pairs is justified in any PBE-H, the substance
of JCE comes from the requirement that there be a justified response to every
off-path signal. As we will see, this conclusion only follows from our learning
model when the message space is sufficiently large. However, the definition of
JCE applies for any non-null message space, including the case without cheap
talk, where the message space is singleton.

5This set is very similar to the set Dy used by |Cho and Kreps| (1987) to formulate NWBR; we discuss
the differences in Section

6 Appendix shows that if 7 is a PBE-H, ©%(s,7) = 0 only when s is equilibrium dominated for all
types, so how to define ©(s, ) in this case is not important.
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C. Hiring a Worker

This subsection presents two stylized examples of a firm (the sender) potentially
hiring a worker (the receiver) for a particular job. In both examples, the firm’s
signal s € {Hire, Pass} is its choice of whether to hire the worker. The worker’s
choice of action a € {ey,enr, e} represents how hard they work; ey represents
high effort, ej; medium effort, and ey low effort. The firm has three possible
types, © = {0p,05,0L}: type 0 represents high quality, 03 medium quality,
and 67 low quality[] The payoffs to both parties are normalized to 0 when the
firm does not hire. The examples differ only in their payoff functions when the
firm hires. In the first example JCE rules out an equilibrium that satisfies D1,
and in the second JCE preserves an equilibrium ruled out by D1 (and a fortiori
ruled out by NWBR). Both of these possibilities can happen in more general set-
tings; our goal here is to illustrate the logic of JCE in a simple and economically
sensible setting.

EXAMPLE 1:
GH ey EeM €r, 91\/[ eH emM €y,
Hire [ 16,2 [ 1,0 | =2, —1 Hire [ 8,0 6,1 —4,0
Pass | 0,0 | 0,0 0,0 Pass | 0,0 | 0,0 | 0,0

HL ey em €r,
Hire [4,—-1 1,0 | —1,1
Pass | 0,0 | 0,0 | 0,0

In this example, a hired worker wishes to adjust their costly effort with the
quality of the firm because the worker gains when the firm does well, and firm
quality and worker effort are complements in determining the likelihood of success.
Moreover, the return to effort varies with type so much that the intermediate effort
level is strictly dominated when probability of the intermediate type 63 is small.

All firm types have the same ordinal ranking over outcomes, (Hire,ep) >
(Hire,epns) = Pass = (Hire,er), but they do not have the same ranking of
outcome distributions. For instance, there are mixtures over ey and ej that
make 0 strictly prefer to Hire and 0j, strictly prefer to Pass, while there are
mixtures over eps and ey, that make 0y strictly prefer to Hire while 0 strictly
prefers to Pass. For motivation, suppose that, relative to the low quality 07, firm,
the high quality 0 firm can very efficiently capitalize on a worker exerting high
effort, but does not benefit much from medium effort, and is harmed by a poor
worker exerting low effort. Similarly, there are mixtures over e and ey, that make
0pr strictly prefer to Hire and 0p, strictly prefer to Pass, while there are mixtures

"The conclusions in these examples do not depend on the distribution over types, so we omit \.
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over ey and ey, that make 6 strictly prefer to Hire and 6,; strictly prefer to
Pass. This is the case when, relative to the low quality firm, the medium-quality
firm gains significantly from medium effort, does not gain much from high effort,
and is greatly hurt by low effort.

In every JCE there is a positive probability that the worker is hired. To see
why, consider a strategy profile 7 in which m(Hire|d) = 0 for all 6. Observe
that when o € A({em,en,er}) satisfies da(ey) + alersr) — a(er) > 0, either
16c(eq) + alenr) —2a(er,) > 0 or 8a(er) +6a(enr) —4aler) > 0, so either 5 or
0r strictly prefers Hire whenever 01, weakly prefers Hire. Thus 59L(H ire,m) U
53L (Hire,m) C ]_N)QH(Hire,ﬂ') U 59M(Hire,7r), so 0 ¢ Of(Hire,n). Moreover,
O (Hire, ) is not empty, because some effort distributions make @y prefer Hire
and the other types prefer Pass, so 0, is not a justified type Since it is optimal
for a hired worker to play ey, only when they put positive probability on the firm
being 01, no justified response can use ey with positive probability, so all firm
types strictly prefer to Hire.

Unlike JCE, D1 and weaker equilibrium refinements such as the Intuitive Cri-
terion allow equilibria in which all types Passﬂ The Intuitive Criterion allows
this equilibrium because 67, would obtain a higher payoff from Hire if the worker
responds with either ey or eps, both of which are undominated. Consequently,
the Intuitive Criterion allows the worker respond to Hire with ey, since it is the
best response to 0. Similarly, D1 allows the worker to respond to Hire with
er,, because there is no single type that strictly prefers to Hire whenever 6y,
weakly prefers to do so. In particular, 8y, strictly prefers to play Hire when the
worker responds with (1/7)ex + (6/7)er, though this makes 6y, strictly prefer
to Pass. Likewise, 0 strictly prefers to Hire when the worker responds with
(2/5)enr + (3/5)er, though this makes 0y strictly prefer to Pass. O

Example [1) shows that there are some sensible economic environments where
JCE makes stronger predictions than Dl The reverse can also be true, as
shown in the following example, where JCE allows an outcome that D1 and the
stronger NWBR condition rule out. Because JCE, unlike D1 or NWBR, has a
learning foundation, this highlights the subtlety of the implications of learning
foundations for equilibrium play.

EXAMPLE 2:

As before, a hired worker wishes to exert high effort when hired by a high
quality firm and low effort when hired by a low quality firm. However, here a
hired worker also wishes to exert high effort when hired by a medium quality firm.
Moreover, there is no belief over the sender’s type that makes both high and low

81n fact, the set of justified types for Hire given 7 is ©(Hire,n) = O (Hire, ) = {0,00}-

9Section reviews the formal definitions of the Intuitive Criterion and D1.

100A.7.27n the Online Appendix provides a qualitatively different example concerning job assignment
and corporate culture where JCE is again stronger than D1.
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Oy ey em er, O ey em er,
Hire [16,2 [ 1,0 | =5, -3 Hire [8,1]6,0] —4, 2
Pass | 0,0 |0,0| 0,0 Pass [ 0,0 0,0 0,0

0L eH  eMmM €L

Hire | 4,—-8 | 1,0 | —1,4
Pass | 0,0 | 0,0 | 0,0

effort levels best responses due to concavity in the worker’s payoff.

The firm’s payoffs are similar to Example [1| except here the payoff of the 0
firm from a worker exerting low effort is reduced. This guarantees that, whenever
a type Oy or 0y firm weakly prefers to Hire a worker whose effort concentrates
on ey and ey, type 0y, strictly prefers to Hire.

Every type playing Pass is both a PBE and a JCE outcome. It is a PBE
outcome because all types are deterred from playing Hire when the receiver
responds with e, = BR(0r, Hire). Moreover, 6, is a justified type for Hire
under a strategy profile m where all types pass since there are effort distributions
which make 0, prefer to play Hire and the other types prefer to Pass. Thus, ey,
is a justified response to Hire, so it is a JCE outcome for every type to Pass.

However, every type playing Pass is not a D1 outcome. This is because no
mixed best response to Hire puts positive probability on both ey and e;. Con-
sequently, every mixed best response that makes 6 weakly prefer to Hire, makes
0y strictly prefer to do so. Likewise, for type 6g. The only response to Hire
allowed by D1 is then ey = BR(0)s, Hire), which deters no type from hiring. O

Both Examples [1|and [2| use the setting of a firm hiring a worker, but the point
that JCE and D1 are not nested holds more generally, as we explain in Section

[LIT
II. The Learning Model
A.  Model Overview

Now we sketch the structure of the learning model we use to provide a founda-
tion for JCE, and then explain why the learning model generates the predictions
we saw in the previous examples. (Later subsections provide the remaining details
and formal results of the model, as well as some alternative models with the same
implications.) The model is an overlapping generations learning environment
where time is discrete and doubly infinite, t € {...,—2,—1,0,1,2,...}. For for each
0, there is a continuum of agents of mass A() in the role of a type 6 sender, and
there is a continuum of agents of mass 1 in the receiver role. The agents have ge-
ometric lifespans: agents in sender roles have continuation probability v; € [0, 1),
while agents in the receiver role have continuation probability v2 € [0,1). Each
period newborn agents replace the departing agents so the sizes of the various
populations are constant, and then agents are anonymously matched into sender-
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receiver pairs: Fach sender agent is equally likely to be paired with any of the
current receiver agents and vice-versa. In each match, the sender plays a signal
s and a message m. The receiver observes the chosen (s, m) and responds with
an action a. At the end of each period, both players in a given match observe its
outcome, which consists of the type of the sender, the signal and message chosen
by the sender, and the action chosen by the receiver.

All agents are rational Bayesians who choose policies (maps from past observa-
tions to current play) that maximize their expected discounted payoff. At every
period t, the state of the system is the shares of agents in a given player role
with the various possible histories. The state and the optimal policies induce an
aggregate sender strateqy and an aggregate receiver strategy, and thus an update
rule that maps states in period ¢ to states in period t+ 1. We study this system’s
steady states, which are the fixed points of the update rule.

Because the receivers observe the type of the sender at the end of each match,
neither their continuation probability nor their discount factor impacts their play,
and their optimal dynamic programming policy is to simply choose an action that
maximizes their expected payoff in the current match. Senders’ observations do
depend on their play, so their optimal policies incorporate a value for “experi-
menting” with various signal-message pairs that have the potential to lead to an
increase in payoff. The size of the senders’ experimentation incentive depends
on their continuation probability, their discount factor ¢ € [0, 1), and how much
they have already learned: Inexperienced senders have more incentive to experi-
ment, and senders cease experimenting when they have enough data. Moreover,
different types of sender will choose to experiment in different ways.

We focus on the limits of steady-state play when -y; and =9 tend to 1, so senders
and receivers can acquire enough observations to outweigh their prior, and v
tends to 1 quicker than <2, so that the typical sender plays many more times
than the typical receiver. This means that most receivers only ever match with
senders who have substantially more experience than them. We also assume that
0 goes to 1, to ensure that the senders experiment enough to rule out limits that
are not Nash equilibria. We call the profiles that correspond to this limit the stable
proﬁles This limit provides an idealized version of long-run behavior in settings
where the senders are institutions who both have an incentive to experiment and,
over time, interact with a large number of individuals in the role of the receivers;
one example is firms signaling their knowledge about their productivity, future
growth, etc. to potential workers via offers of incentive pay. While workers
may interact with a large number of firms over their lifetime, or observe family
members and other relations do so, it is unlikely that any given individual will
be involved in (or have access to information concerning) as many interactions as
the typical large firm.

Preliminary lemmas show that every stable profile must be a PBE-H. The

11 As Section [V.A explains, our results hold under other models of the population structure that also
have relatively experienced senders.
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optimality of sender play follows from the fact that patient and long-lived senders
eventually stop experimenting and play a best response to the aggregate receiver
strategy. The beliefs of long-lived receivers are almost entirely driven by their
data as opposed to their priors, ensuring that they respond optimally to on-
path signal-message pairs, and because receivers are myopic, their off-path play
is always a best response to some beliefs, as PBE-H requires.

Our main result, which shows that all stable profiles are JCE, uses two addi-
tional assumptions. First, we assume that the sender message space is sufficiently
large that for each signal s € S and subset of sender types ©® C O, there is a
distinct message m_ 5 that can be interpreted as “I am playing s and my type

)

is in (:).” We also assume that the receiver “trusts” the message provided that
they have not previously encountered a sender with any other type 6 ¢ © playing
s and sending m_ 5. We discuss these assumptions in more detail in Section

With them we prove the following result:
THEOREM 1: If 7 is stable, then it is a justified communication equilibrium.
B. Hiring a Worker, Revisited

We now discuss our learning model in the context of the two “hiring a worker”
examples. In particular, we explain why the model rules out the “All Pass” out-
come in Example [I| where it is consistent with D1 but not JCE, while the model
does allow “All Pass” in Example [2| where it is consistent with JCE but not D1.

EXAMPLE 1 CONTINUED:

To see why there is no stable profile where all firms Pass, recall that with
enough experience, firms learn the aggregate effort distribution and exhaust the
option value of continued experimentation. Experienced firms then either hire
and optimally communicate with workers or Pass. If the stable outcome is for
all types of firm to Pass, it must be that the aggregate effort distribution puts
positive probability on effort e; regardless of how a hiring firm communicates.
However, low effort is only optimal for a worker if they assign positive probability
to the hiring firm being type 0. Initially-trusting workers will exert high or low
effort when a hiring firm claims to not be type 61, unless they have previously
experienced deception by type 67 firms. Since the typical firm has many more
interactions over its lifetime than the typical worker, most workers only ever
match with experienced firms. Thus, in order for a significant share of workers to
experience deception by 0r, firms, 0, firms must learn that it is optimal to Hire
and play mry, (0, 9,,1- However, either 0y or 6y type firms strictly prefer to Hire
whenever a 0, weakly prefers to Hire, so one of these types will not Pass because
it will learn it is strictly optimal to Hire. [J

12The literal content of m_ 5 need not be “I am playing s and my type is in . Instead, m_ g might

,©
be a statement like “I am playing signal s so you should believe my type is in © because...”
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EXAMPLE 2 CONTINUED:

Online Appendix Section OA.6.1 shows that the outcome where every type
plays Pass is stable by demonstrating that there are steady-state profiles in which
most sufficiently experienced firms play Pass, but type 01, firms experiment with
Hire much longer than the other types do. This means that the vast majority of
workers who have previously been employed were only hired by low quality firms,
which leads them to exert effort ey the next time they are hired. In contrast,
initially-trusting workers who have not previously experienced employment will
exert high effort when first hired by a firm claiming to be of high or medium
quality, so the aggregate worker effort distributions will concentrate on ey and
er,. As observed earlier, under such effort distributions, whenever type 6 or 6
weakly prefers to Hire, type 6 strictly prefers to do so. This is what drives
type 0, firms to experiment with Hire much more than the other types, which
supports the desired steady states.

D1 eliminates the “All Pass” outcome while our learning model allows it be-
cause D1 only considers receiver mixed best responses. However, in a learning
model, there is no reason that the prevailing aggregate receiver strategy must
be a mixed best response, and the steady states described above have aggregate
worker responses that put positive probability on both both ey and er: Inexpe-
rienced workers exert effort ey, while most of the experienced workers learn that
it is optimal to exert effort e;. [J

C. Details of the Learning Model

We now fill in the remaining details about the learning environment we study,
provide formal statements of our assumptions, and prove our main result. We
also discuss alternative interpretations of the stable profiles, and related versions
of stability that correspond to different ways of passing to the limit. Readers who
are more interested in the implications of JCE than its learning foundation can
skip ahead to Section [[II}

At the beginning of their lives, senders have a non-doctrinaire prior g; €
A(IIy) over the aggregate receiver behavior strategy me, and receivers have a
non-doctrinaire prior go € A(A(O xS x M)) over ¢ € A(O xS x M), the prevail-
ing distribution of sender types, signals, and messages)™°| (To simplify notation,
we assume there is a single prior for all agents in a given player role, but all
of our results extend to any finite number of priors per role.) Upon observing
the outcome of a match, agents update their beliefs in accordance with Bayes’
rule, which is always applicable because the priors assign positive probability

13Here “non-doctrinaire” means “has a continuous density function that is strictly positive on the interior
of the probability simplex.” Since (8, s, m) = A(0)71(s,m|0) is the distribution over (6, s, m) induced
by the sender type distribution A and the aggregate sender behavior strategy 71, it would be equivalent
to define the receivers’ beliefs as elements of A(A(©) x IIy).
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to any finite sequence of observations. Define H;; = (S x M x A)! to be the
histories that a sender of age t could have observed, with the convention that
(S x M x A)° =0, and let H; = UtenH1,t be the collection of all such histories.
Likewise, the relevant pieces of information for the receiver are the type, signal
choice, and message choice of the sender. Let Ha; = (O x S x M) denote the set
of sequences of such triples that a receiver agent with age ¢ could have observed,
and let Ha = UenHo, be the collection of all such sequences.

All agents maximize their expected discounted payoff. The receivers use a policy
y : Ho — AS*M which maps their histories to pure strategies to maximize

EQQ Z Z f}éQ(Qasam)u2(0787y(87m‘h2,t))

t=0 6,s,m,a

Type 6 senders use an optimal policy Xgm : Hi1 — Sx M that maps their histories
to signal-message pairs to maximize

Eg, | Z(571)t7f2(a|xg’71(hl,t))ul(evxgm(hl,t%a)]

t=0 s,m,a

We will focus on the case where both § and «; are near 1, so the senders have
maximal incentives to experiment 9]

At every period , the state of the system, denoted ju; = (14, fi2,¢) € (A(H1))® x
A(Hz), gives the shares of agents in a given player role with the various possible

histories. Given p, the profile x%7 = {xg’“}ge@ of sender policies induces a

sender behavior strategy 0(15’71 (p1+) € II; that we call the aggregate sender play.

Similarly, the receiver policy y induces a receiver behavior strategy o2(u2+) € Ila
that we call the aggregate receiver play. We call 097 (1) = (0(15’71 (1), 02(p2,)) €
II; x IIs the aggregate strategy profile. (Appendix@ gives formal definitions of the
mappings afm : (A(H1))® — 11y and o9 : A(Hz2) — Iy, as well as other objects
introduced in this subsection.)

A policy profile generates an update rule £57:72 : (A(H1))® x A(Hz) — (A(H1))® x
A(Hs2), taking the state in period t to the state in period ¢ + 1, a mapping
(@fm : IIs — II; that describes the limit of the aggregate play of the senders
as t — oo when the aggregate receiver play is fixed at m, and a mapping
ZF : 1y — Iy that describes the limit of the aggregate receiver play as t —
oo when the aggregate sender play is fixed at m;. We refer to the mapping
RO (1) = (%fm (m2), #9*(m1)) as the aggregate response mapping. OA.2.1
verifies that this mapping is continuous.

14Here we slightly abuse notation by having both components of xg"“ enter the utility function, though

it does not depend on the sender’s message.
15Recall from [Fudenberg and Kreps| (1988) and |[Fudenberg and Levine (1993) that with impatient players
learning need not lead to Nash equilibrium, let alone to refinements of it.
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We study this system’s steady states, those u satisfying £471:72 (1) = p. We call
the corresponding aggregate strategy profiles the steady-state profiles, and denote
them by I1*(g, §, y1,v2) C II3 x II3. As OA.2.2 shows, these are the fixed points of
the aggregate response mapping. Continuity of the aggregate response mapping,
along with Brouwer’s fixed point theorem, then implies that steady-state profiles
always exist.

PROPOSITION 1: 1I*(g,d,7v1,7v2) consists of the strategy profiles that are fized
points of the aggregate response mapping, and it is non-empty for all g = (g1, 92),
6; and V1,72

We consider the iterated limit lim., 1 lims_q lim, 1 IT*(g, 6,71,72). That is,
we focus on strategy profiles that are limits of steady states corresponding to
some sequence of parameters 4, 1, and o satisfying this iterated limit. We will
call these the stable profiles['] A corollary of Proposition 1]is that there are stable
strategy profiles.

COROLLARY 1: Stable strategy profiles exist.
D. Key Assumptions

Our results about stable profiles use two additional assumptions. First, we
assume that the sender message space is sufficiently rich.

ASSUMPTION 1: (Richness) |[M| > 2/9l|5|.

Assumption 1 requires that the message space is large enough to have a distinct
element, m_ g € M, for each signal s € S and subset of sender types © C ©. This

allows mgg to be interpreted as “I am playing s and my type is in 0.7 Our
next assumption is that when the sender plays s and sends the message m, & the
receiver “trusts” the message provided that they have not previously encountered
a sender with any other type 0 ¢ 5) playing s and sending mg g

ASSUMPTION 2: (Initial Trust) For every s € S and © C O, there is some

m g € M such that y(s,msyé\hg) € BR(O,s) for every hy € Ha in which

(¢, 5,m 5) has not been observed for any 0" ¢ o.

Initial trust says that receivers give the sender the “benefit of the doubt” and
act in accordance with certain claims they have not previously seen proved false
It does not require that the receivers are certain that these claims are true, only

16Formally, strategy profile 7 is stable if there is a sequence {72, ; }jen — 1, sequences {; 1 }j,xen with
limy, o0 0,5 = 1 for all j, and sequences {v1,j,k,1}jk,1en With lim;_, oo v1 5k, = 1 for all j,k, such
that m = lim; oo limg_y o0 limy_y o0 7 1,1 for some sequence ;11 € I1*(g, 01 4.k V1.5.k.01,V2.5)-

17Initial trust is similar in spirit to the “believe-unless-refuted” condition of [Lipman and Seppi (1995)),
and is also related to notions of credibility in |[Rabin (1990), [Farrell (1993), and |Clark| (2020). We
discuss these connections in more detail in Section
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that they give them a sufficiently high probability of being true. Of course, the
receiver may quickly learn to distrust claims that prove to be false, which is why
Assumption [2]is only applied to claims for which no direct contradictory evidence
exists ']

We maintain Assumptions [1] and 2] throughout the main text. Section
discusses alternatives to initial trust that give refinements of PBE-H that are
similar to JCE.

Without communication, or with communication but no assumptions on the
receivers’ prior beliefs about the meaning of previously unobserved messages,
stability offers little predictive power and the theorem is false. In particular,
it then allows implausible outcomes, as shown by example in OA.7.1. In the
example, there are two sender types, 67 and 63, and two signals, In and Out.
Out is strictly dominant for 6o, and 61 prefers to play In if the receiver responds
to In with the best response to 1, so the reasonable outcome seems to be one
where 6 plays In and 6 plays Out. Indeed, this is the unique JCE as well
as the unique equilibrium outcome that satisfies weaker refinements such as the
Intuitive Criterion. However, if the receivers are “initially skeptical” so that when
they first witness (In,m) they believe it probably came from 65 regardless of m,
there are stable profiles in which both types play Out. This is because, if very few
senders play In, the aggregate receiver response to In concentrates on the best
response to s, which ensures that almost all senders in the population learn that
it is optimal to play Out Intuitively, cheap talk has no effect in “babbling”
equilibria where messages are meaningless, and effective communication requires
some restrictions on how people interpret messages they have never seen before.

E.  Proof of Theorem[1
THEOREM [} If 7 is stable, then it is a justified communication equilibrium.

To prove this theorem we first show that a stable profile is a PBE-H. Condition
3 of the definition of PBE-H follows from the fact that the receivers in our model
myopically optimize because their observations do not depend on their play. We
establish the two other conditions of Definition [I| as well as the additional re-
quirement of JCE given in Definition [3} using three supporting lemmas, whose
proofs are in Appendix [B]

The following lemma shows that stable profiles satisfy Condition 1 of Definition
[

LEMMA 1: Suppose that  is stable. Then for each 6 € ©, m(-|0) puts support
only on those sender signal-message pairs that are optimal for type 0 under the
recetver behavior strateqy mo.

181nitial trust implicitly places restrictions on the receivers’ prior go. For simplicity, we state it directly
on receiver behavior.
19The same argument shows that this outcome is also stable when cheap talk is not feasible.
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The proof of Lemma (1| shows that for fixed 2 € [0, 1), aggregate sender play is
optimal given the aggregate receiver play when first 4 — 1 and then § — 1. Asin
Fudenberg and Levine (1993)), this holds because each sender type will experiment
enough to drive the option value of experimentation to 0, so that aggregate sender
play is optimal in the limit. The conclusion of Lemma [1] follows from combining
this with the fact that the sender best response correspondence (in the underlying
two-player game) has a closed graph.

The next lemma shows that stable profiles satisfy Condition 2 of Definition

LEMMA 2: Suppose that 7 is stable. Then for any sender signal-message pair
(s,m) that occurs with positive probability under m, ma(:|s, m) puts support only
on recewer actions that are best-responses to s and the posterior belief induced by
A and {m1(s,m|0)}gco.

The proof of Lemma [2| shows that receivers will get enough observations of on-
path play for their data to swamp their priors. By the law of large numbers their
sample converges to the population distribution with high probability, and since
receivers myopically optimize, the lemma follows.

Neither Lemma [I] nor Lemma [2] requires Assumptions 1 or 2. The next lemma
does require both assumptions. The lemma shows that, for fixed s € S and
O C 0, if every type 6 & O strictly prefers their payoff under 7 to their payoff
from playing (s,m, g) (and having the receiver respond with m3(:|s,m, g)), then
the aggregate receiver response to (s, msé) must be supported on BR((:j, s).

The proof of the lemma, and thus of Theorem [1] fails without Assumption
and a fortiori in settings where cheap-talk messages are not available. Moreover,

the example in OA.7.1 shows that without initial trust, there can be stable profiles
that are not JCE.

LEMMA 3: Suppose that 7 is stable. Fizs € S and© C ©. Ifur (0, s, ma(-[s,m 5)) <
uy(0,7) for all 6 & ©, then ﬂg(BR(é,s)|s,mS 5 =1L

Here we give some intuition for this result. When wu(6,s,ma(:|s,m, g5)) <

u1 (0, ) for all § ¢ é, the proof of Lemma (1| shows that, for fixed 72, the ag-
gregate probability that a type outside of © plays (577"5,@) is small when first
v1 — 1 and then § — 1. For any fixed receiver continuation probability, the share
of receivers in the population who have witnessed a sender with type outside of 5)
play the signal-message pair (s, msé) becomes arbitrarily small as the aggregate

probability of such play by types outside of 5) _approaches 0. Recall that receivers
who have never observed a type outside of © play (s,ms (:)) would respond to

(s,m, g) with some action in BR(©,s). Combining these facts, it follows that

the share of receivers who play some action in BR(6, s) in response to (s, m.g)
becomes arbitrarily close to 1 in the iterated limit.
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PROOF OF THEOREM 1:

Let 7 be a stable profile. We have already established that m must be a PBE-
H. We now show that the justified response condition in Definition [3| holds. Fix
s € §. Since 7 is a PBE-H, u1(0, s, m(-[s,m 5(; ) < ui(f,m) holds for all
0 € O(s,m). By definition, whenever a receiver response weakly deters all justified
types from playing a given signal, it must strictly deter every non-justified type.
Thus, u1(0, s, m2(-|s,m g5 ) < ui(6,m) for all § ¢ O(s, ). Applying Lemma

to © = ©(s, ) then implies that m5(-[s,m, 5, ) € A(BR(O(s,7),s)). W

Theorem [1] shows that only JCE can be stable. Not all JCE are stable, because
non-doctrinaire priors prevent receiver agents from ever using weakly dominated
strategies, and there can be JCE using weakly dominated receiver strategies. It
is difficult to give an exact characterization of stable profiles for general games,
because all non-doctrinaire initially-trusting priors must be considered to show
that a given profile is not stable. Instead, we use direct proofs to show that certain
equilibria or classes of equilibria are stable. Proposition [C1]in Appendix [C] gives
a partial converse to Theorem It shows that all uniformly justified JCE in
strictly monotonic games are stable for all non-doctrinaire priors, including those
that do not satisfy initial trust. We also give direct proofs of stability in Example
and most of our other examples. The general approach in these proofs is to
modify the aggregate response mapping so that its fixed points coincide with the
target strategy profile in the limit, and then show that these fixed points are also
fixed points of the true aggregate response mapping.

III. Relation to Other Equilibrium Refinements

We have seen by example that JCE and D1 are not nested. We now study
their relationship in more detail, as well as the relationship between JCE and
other refinements. As a preliminary step, we show that stable profiles need not
be PBE, and a fortiori need not satisfy any refinements of PBE This is the
reason that JCE is defined as a refinement of PBE-H.

EXAMPLE 3:
The type space is © = {601,02}, the signal space is S = {In,Out}, and the
action space is A = {a1, as,as}. The payoffs are given by these tables:

91 al a9 as 92 al a9 as
In [=2,1]1,1]1,-1 In [1,-1]1,1] =21
Out | 0,0 [ 0,0 0,0 Out | 0,0 [ 0,0 | 0,0

20The equilibrium refinements in [Fudenberg and He (2018) and |[Fudenberg and He (2020) also relax PBE
to PBE-H, but those papers do not show that this relaxation is needed.
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This game does not have a PBE in which both types play Out, because 0, prefers
to play Out only if there is positive probability that the receiver responds to In
with a;, while 62 prefers to play Out only if the receiver’s response to In uses
a3 with positive probability, yet there is no mixed best response to In where the
receiver assigns positive probability to both a; and as. Nevertheless, the profile
7 in which both sender types play Out and the receiver always responds to In
with (1/2)a; + (1/2)as is a JCE, because both sender types are justified and so
a1 = BR(01,In) and a3 = BR(02, In) are each justified responses.

Moreover, Online Appendix Section OA.6.2 shows that both types playing Out
can be a stable outcome, because there are steady-state profiles in which the
aggregate receiver strategy plays ag with probability less than 1/4 in response to
In combined with any message. Under such receiver play, for every message m,
it can be optimal for at most one sender type to play (In,m). Thus, if in the
limit the aggregate strategy of type 61 plays (In,m) with positive probability,
then the aggregate strategy of type #2 must play (In,m) with 0 probability, and
the receivers must learn to respond to (In,m) with a; = BR(61,In). But this
response strictly deters type 0; from playing (In,m), and an analogous argument
applies for the type 62 senders. [J

Unlike JCE, the Intuitive Criterion (Cho and Kreps, 1987), D1 (Banks and
Sobel, [1987)), and NWBR (Kohlberg and Mertens, [1986; (Cho and Kreps, 1987)
were all formulated as refinements of PBE. However, the procedures they use
to restrict out-of-equilibrium beliefs and equilibrium outcomes can be adapted to
develop tests for any PBE-H, which lets us more naturally compare the predictions
of the modified versions of these refinements with JCE. As we will see, JCE is
stronger than the modified version of the Intuitive Criterion. JCE and D1 are not
nested, although JCE is nested inside the set of equilibria that satisfy a modified
version of D1 we call co-D1. JCE and NWBR are particularly similar, and in
some sense JCE is an adaptation of NWBR with a learning foundation.

We begin by showing that JCE is stronger than a modified version of the In-
tuitive Criterion we call the Intuitive Criterion Test. Let E(s,m) = {6 € © :
maXqcpr(o,s) U1(0,s,a) > u1(0,7)}. These are the types for whom s is not equi-
librium dominated by profile 7 in the sense of Cho and Kreps (1987).

DEFINITION 4 (Cho and Kreps, 1987): Strategy profile 7 passes the Intu-
itive Criterion Test if, for every s € S and 6 € E(s, ), mingepr(p(sx),s) 1(0, s,
(%5} (9, 7T) .

PROPOSITION 2: If 7 is a justified communication equilibrium, then w is a
PBE-H that passes the Intuitive Criterion Test.

The key step of the proof is to show that in a PBE-H, unless s is equilibrium
dominated for every type, s is not equilibrium dominated for any justified type,
i.e. O(s,m) C E(s,m) when E(s,m) # (). This implies that if there is a justified
response that deters all types from playing s, then the profile passes the Intuitive
Criterion Test. The proof of Proposition [2]is given in Appendix

a)

IN
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To compare JCE with D1 and NWBR, we first develop some notation. For
every § € ©, s € S, and w € II; x Iy, let Dy(s,m7) = {« € MBR(O,s) :
u1(0,s,a) > u1(0,m)} be the set of receiver mixed best responses to s that give
type 0 strictly more than their equilibrium payoff, and let DJ(s,7) = {a €
MBR(©,s) :ui(f,s,a) =u1(0,m)} be the mixed best responses that give type ¢
their equilibrium payoff. These are the analogs of the sets Dy(s, 7) and 5g(5, )
when A(BR(O, s)) is replaced by M BR(0O, s).

To define D1, let ©HPY(s,7) = {6 € © : V' # 0, Dy(s,7) U Dy(s,7) &
Dy(s,m)}, and let ©P1(s, 1) C © be the set of types given by

~ ohPl(s, ) if @HP1(s, 1) # ()
0P (s,m) = ’ ’ :
(5771') {@ if @i’Dl(S,ﬂ') =0

Also, let MBR(O,s) = {a € A(A) : 3p € A(O) s.t. ua(p, s,) > us(p, s,a) Va €
é} denote the set of mixed best responses to s for beliefs supported on a given
0 Co.

DEFINITION 5 (Banks and Sobel, 1987):  Strategy profile = satisfies D1 if for
every s € S, there is an o € MBR(OP(s,7),s) such that uy(0,s, o) < ui(6,7)
for all 0 € O.

D1 can be stronger than JCE (and rule out some stable profiles) because it
only considers receiver mixed-best responses, both in finding possible responses
to off-path signal-message pairs and in the construction of the sets of sender types
to which the receiver must be best-responding. As we have seen, however, the
larger convex hull of receiver best responses emerges in our learning model rather
than the receiver mixed best responsesﬂ

To see the difference this makes, for every s € § and 7 € II; x Ilg, let
OFPL(s 1) ={0 € ©:V0 +£0, Dy(s, W)UDO(S 7) € Dy/(s, )} be the set of types
0 where, for every 6’ # 6, there is some mixed receiver action « € A(BR(0, s))
that makes 6 weakly prefer (s,«) to their equilibrium outcome and 6 weakly

prefer their equilibrium outcome to (s, «). Let @Dl(s, m) C © be the set

Dl _ ohPl(s, ) if @HPl(s, 1) # ()
S (5771') - {@ if @TDI( ):Q)

DEFINITION 6: A PBE-H w is co-D1 if for every s € S, there is an « €
A(BR(@Dl(s, 7),s)) such that ui(0,s,a) < wui(0,m) for all 6 € O.

PROPOSITION 3: If w is a justified communication equilibrium, then m is a
PBE-H that is co-D1.

2IFudenberg and Kreps (1988) and [Sobel, Stole and Zapater| (1990) recognized that the convex hull of
best responses is more natural in a learning setting, but neither paper showed that restricting attention
to the receiver mixed best responses rules out a profile that is stable in a learning model.
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Co-D1 is more permissive than JCE because it strikes fewer types. Appendix
gives the proof of Proposition |3, which shows that O(s,7) C @Dl(s, m) for all s;
Example [1|shows that the inclusion is sometimes strict.

To define NWBR, let ©¥(s,7) = {6 € © : D)(s,7) € Up29Dp (s, )}, which
are the 0 for which there is a mixed receiver best response a € M BR(©, s) that
makes 0 indifferent between (s, «) and their equilibrium outcome and every other
type weakly prefer their equilibrium outcome to (s, ). Let (:)(3, ) C O be the

set
A | eks,m) if O s,m) £0
Os,m) = {@ if ©f(s,m) =0

DEFINITION 7 (Kohlberg and Mertens, 1986; Cho and Kreps, 1987): Strategy pro-
file 7 satisfies never a weak best response (NWBR) if, for every s € S, there

is some o € MBR(O(s, ), s) such that uy(0,a) < ui(0,7) for all § € ©.

Up to path-equivalence, JCE selects the same profiles as NWBR would if the
mixed best responses M BR(0©,s) were replaced with the convex hulls of best
responses A(BR(O,s)). Indeed, as shown in OA.1, it would be equivalent to
define JCE by setting Of(s,7) = {# € © : ﬁg(s,ﬂ) Z Ugr;,ggf?gr(s,ﬂ)}, rather
than Of(s,7) = {# € © : Dy(s,7) U 58(8,7‘1’) Z Ugl#gﬁg/(s,ﬂ')}. Thus JCE
modifies NWBR in much the same way that co-D1 modifies D1, so NWBR is a
stronger refinement than JCE.

PROPOSITION 4: Any PBE-H that satisfies NWBR is path-equivalent to a
PBE that is a JCEP?

A PBE-H 7 that satisfies NWBR is not necessarily a PBE, since the receiver’s
response to off-path play need not be a best reply to any single belief over the
sender’s type. However, every such profile is path-equivalent to a PBE, since
the receiver’s response to a given off-path (s, m) can always be replaced by some
o € MBR(O(s, ), s) that deters the sender types from playing it. Appendix
completes the proof of Proposition [ by showing that an “NWBR type” is always
a justified type. That is, for a given signal and PBE-H, @(s 7) C O(s, ) for all
s and all PBE-H 7.

The converse of Proposition [4]is in general false, as shown earlier by Example
However, there are important settings in which NWBR, and JCE are path-
equivalent. One is when there are at most two undominated receiver responses to
each signal, because then mixed best responses and convex hulls of best responses
are the same. We now explore a different class of games where this equivalence

holds.

22Path equivalence is needed in this statement because, unlike JCE, NWBR. does not impose requirements
about the receiver’s actual responses to off-path play.
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IV. Co-Monotonic Signaling Games

This section highlights an important class of commonly studied games in which
JCE, D1, and NWBR are path-equivalent, so the learning foundation for JCE
applies to D1 and NWBR as well. In these co-monotonic signaling games, all
sender types share the same preference over mixtures over BR(0, s).

DEFINITION 8: A signaling game is co-monotonic if, for all 6,0’ € ©, s € S,
and a,o/ € A(BR(0,5s)), u1(0,s,a) > u1(0,s,a) if and only if ui(6',s,a) >
ur (0, s,a).

This is a subset of the monotonic signaling games studied in |(Cho and Sobel
(1990), where the sender types are required to share the same preference only
over the receiver mixed best responses M BR(O, s) rather than the convex hull of
those responses.

A sufficient condition for a signaling game to be co-monotonic is that there be
functions v : S X A - R, w: 0O xS = Riy, and ¢ : © x S — R such that
u1(0,s,a) = w(l,s)v(s,a)+(0,s) forall § € ©, s € S, and a € A. Many games,
including the following simple economic example, satisfy this condition.

EXAMPLE 4:

Like Examples [I] and [2] this example concerns a firm hiring a worker, except
here the firm offers incentive pay to their prospective employee. The firm is
better informed about the productivity of the worker’s effort; their information
is represented by their type § € © = {1, 2,3}, with each type equally likely. The
firm’s signal s = (s1,s2) € {0,1/4,1/2,3/4,1} x {0,1,2,...,100} consists of a
share of profits s; and a base wage so which the worker is offered, and the action
a € {0,5,10,...,60} represents the worker’s choice of effort level. The expected
profit given the firm’s type 6 and the worker’s effort a is fa. Thus, the payoffs to
the sender and receiver are u1(6,s,a) = 0(1 — s1)a — so and ua(0, s,a) = Os1a +
s9—a? /40, which satisfy the sufficient condition for co-monotonic signaling games
given above. OA.6.3 in the Online Appendix shows that JCE selects equilibria
that approximate the least-cost separating equilibrium of this game. [

We now explore JCE’s relationship with other refinements in co-monotonic
games. Co-monotonicity implies that, for all s, any mixture over receiver best
responses a € A(BR(O,s)) has a corresponding receiver mixed best response
o € MBR(©,s) such that uy(6,s,a) = ui(6,s,a’) for all §. This ensures that

J— ~

O(s,m) = O(s,m) for every PBE-H .

LEMMA 4: In a co-monotonic signaling game, O(s,7) = é(S,ﬂ') forallse S
and PBE-H 7 € 11.

The proof of Lemma [4] is in Appendix
In co-monotonic games, all types agree about which receiver best responses
are least desirable. Combining this with Lemma [4| shows that JCE and NWBR



VOL. VOLUME NO. ISSUE JUSTIFIED COMMUNICATION EQUILIBRIUM 21

(Definition |7)) select the same profiles up to path-equivalence. JCE thus provides
a learning foundation for the predictions of NWBR in the class of co-monotonic
games.

PROPOSITION 5: In a co-monotonic signaling game, every justified commu-
nication equilibrium is a PBE-H that satisfies NWBR, and every PBE-H that
satisfies NWBR is path-equivalent to a justified communication equilibrium.

PROOF:

Suppose that 7 is a PBE-H that satisfies NWBR. Then, by Proposition [4] 7 is
path-equivalent to a JCE.

If 7 is a JCE, it is a PBE-H. Moreover, for every s € S, there is some

as € A(BR(O(s,),s)) such that ui(0,s,as) < ui(f,m) for all § € ©. Be-

cause the game is co-monotonic, there exists as € BR(O(s, ), s) such that as €
argmin ¢ g p 55 1)) ui(0,s,a) forall @ € O, s0u1(0,s,as) <ui(f,n)foralld € O.

~

Since the game is co-monotonic, Lemmaimplies that a; € BR(O(s,m),s), so
is a PBE-H that satisfies NWBR. R

Combining Proposition 5| with the observation that every PBE-H that satisfies
NWRBR is path-equivalent to a PBE shows that in co-monotonic signaling games,
every JCE is path-equivalent to a PBE that satisfies NWBR. Moreover, as shown
by |Cho and Sobel (1990), NWBR and D1 coincide in monotonic games, so JCE
is also path-equivalent to D1 in co-monotonic games.

COROLLARY 2: In a co-monotonic signaling game, every justified communi-
cation equilibrium is path-equivalent to a PBE that satisfies NWBR and D1, and
every PBE-H that satisfies NWBR or D1 is path-equivalent to a justified commu-
nication equilibrium.

Thus, JCE provides a learning foundation for restricting attention to D1 equilibria
in co-monotonic games, as in e.g. Nachman and Noe (1994), [DeMarzo and Duffie
(1999), and DeMarzo, Kremer and Skrzypacz (2005)@

In various co-monotonic games, such as that of DeMarzo and Duffie| (1999),
JCE selects the least-cost separating equilibrium outcome, often called the “Riley
outcome” (Riley, 1979). Moreover, (Cho and Sobel| (1990) showed that NWBR
selects the Riley outcome in a class of monotonic games with a continuum of
actions. The definition of JCE can be applied as is to signaling games with infinite
actions, and the equivalence of JCE and NWBR in Proposition [5|continues to hold
in all co-monotonic signaling games. Thus, JCE selects the Riley outcome in all
co-monotonic games that satisfy the additional assumptions of |[Cho and Sobel
(1990) and, by a closed graph argument, also only selects equilibria that are close

23Technically, the game analyzed in|DeMarzo, Kremer and Skrzypacz (2005) is not a traditional signaling
game because of the presence of multiple senders, but this distinction is not important.
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to the Riley outcome when the action space is a sufficiently fine finite grid, as in

Example

V. Discussion
A.  Alternate Models

The key to our analysis is that we consider a limit where most senders and
receivers have substantial experience, but typical senders have significantly more
experience, so that most receivers never encounter inexperienced senders. Because
it is inexperienced senders who are the most likely to “experiment” with signal-
message pairs that depart from the limit strategy profile, most receivers have little
experience with off-path play by the senders, which facilitates the analysis of the
stable profiles.

We can obtain this situation with many different specifications of the popula-
tions of agents and how they interact. For example, suppose that senders and re-
ceivers have geometric lifetimes with common continuation probability v € [0, 1),
so that they all have expected lifetime 7' = 1/(1 — ). Every period, each sender
is matched with a receiver, but each receiver only gets matched with some i.i.d.
probability p € (0, 1)@ A given receiver is expected to have Ny = pT matches
over their lifetime, while a sender is expected to have N; = T matches. For every
steady state in this alternate model, there is a corresponding steady state in our
main model with the same aggregate strategy profile when the receiver’s continu-
ation probability is 42 = (1—1/T)Ny/(1+(1—1/T)N3), which we demonstrate in
Online Appendix Section OA.10. Since 42 — N2/(1+ N2) € [0,1) as T — oo for
any fixed Ny € Ry and No/(14+N2) — 1 as Ny — oo, the iterated limit where first
T — oo (so that both sender and receiver agents become long-lived) then § — 1
(so that sender agents become patient) then No — oo (so that receiver agents
become experienced) generates precisely the same predictions as our notion of
stability.

Moreover, we can also obtain the same set of stable profiles in models where
agents do not have geometric lifetimes: To illustrate, suppose that agents have
deterministic lifetimes, and that sender agents are matched every period, while
receiver agents are matched every K periods during their life. Suppose that sender
agents are involved in Vi matches over the course of their lifetime, while receiver
agents are involved in Ny. Focusing on the profiles that emerge in the limit where
first N1 — oo then § — 1 then Ny — oo generates exactly the same predictions
as stability in the geometric lifetime models. Thus, the unequal lifetimes of our
baseline model are simply a modeling convenience, and not an essential feature.

However, we do need some sort of asymmetry in the interaction structure to

24As noted by e.g. [Fudenberg and Tirole| (1991a), it may seem odd that adding a type with a small
probability € can make a large change in the Riley outcome. Stability tracks this change in the Riley
outcome because we hold the prior fixed as we take the iterated limit.

25Correspondingly set the population mass of senders to be p times that of the receivers.
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derive our results. When both populations have the same expected number of
interactions, we have not been able to derive interesting restrictions on the stable
profiles. When the receivers have many more interactions (as would be the case
in our baseline model in the limit where first 75 — 1 then v; — 1), all stable
profiles must be PBE and not only PBE-H, but we do not know whether stability
has additional implications.

B. Orders of Limits

We require senders to become long-lived (73 — 1) before they become patient
(6 — 1) so that near the limit very few senders will choose to experiment. (This is
why we need the model to have a discount factor parameter.) Asin
Levine (1993| 2006) and [Fudenberg and He (2018|2020}, [2021)), it seems difficult
to establish in general what happens when a player’s patience level 0 goes to 1
before their lifetime become long, as in this case we do not know how to show
that most players stop experimenting. The order with which ~5 and § go to 1 is
not crucial; we specify that § converges to 1 before «9 because it affords slightly
cleaner results and simpler proofs. All profiles that we prove are stable in our
examples would also be stable under a more general version of the iterated limit
where first 41 — 1 and then (0,72) — (1, 1). Moreover, OA.9 shows that Theorem
[I's conclusion applies under this general limit to all stable profiles satisfying an
additional condition, such as on-path strict incentives for the receiver.

C. Related Work

Fudenberg and Kreps| (1988)) introduced the analysis of non-equilibrium learn-
ing in extensive-form games, and announced a program of deriving equilibrium
refinements from learning foundations, but did not provide details. Our steady-
state formulation is in the spirit of [Fudenberg and Levine| (1993). |[Fudenberg
and Levine (1993) and Fudenberg and Kreps| (1994) provided conditions for ra-
tional players to do enough experimentation to rule out non-Nash outcomes
Fudenberg and Levine| (2006]) used a steady-state learning model to study equi-
librium refinements in a class of games of perfect information, and showed that
all “subgame-confirmed” equilibria are stable.

In signaling games without cheap talk, [Fudenberg and He (2018) analyzed the
steady states of a model where senders and receivers have identically-distributed
geometric lifetimes. It assumed that the senders’ prior beliefs over the aggregate
receiver responses are independent across signals, so that the senders’ optimal

28Kalai and Lehrer| (1993), [Lehrer and Solan (2007), [Espondal (2013), [Battigalli et al. (2019) studied
rational learning without assuming that agents are patient. [Battigalli| (1987),|/Rubinstein and Wolinsky
(1994), [Dekel, Fudenberg and Levine| (1999), [Espondal (2013), [Battigalli et al.[(2015)), and [Fudenberg
land Kamada (2015, 2018), among other papers, studied equilibrium concepts motivated by rational
learning without analyzing an explicit learning model, and e.g. [Binmore and Samuelson|(1999), [Noldeke|
[and Samuelson| (1993)), [Hart (2002)),Jehiel and Samet| (2005) studied evolutionary or boundedly rational
learning dynamics in extensive form games.
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policy is given by the Gittins index (Gittins, 1979), and used this to derive re-
strictions on equilibria. [Fudenberg and He| (2020)) extended [Fudenberg and He
(2018) by supposing that the senders assign probability 0 to receivers playing
conditionally dominated actions, and gave a learning foundation for rationality-
compatible equilibrium (RCE). If we treat the signal-message pair (s,m) as a
signal when evaluating the conditions of RCE, then RCE collapses to the Intu-
itive Criterion when the message space is not singleton because messages have no
effect on payoffs. If we instead compare RCE to JCE in a game with a singleton
message space, RCE is again weaker. For example, the “All Pass” outcome of
Example [1] is consistent with RCE but not JCEP7| Moreover, OA.3 shows that
every JCE is an RCE, because types that are “less compatible” with a given
signal in the sense of RCE can never be justified. This paper obtains a stronger
refinement than RCE without assuming independent priors by explicitly modeling
cheap-talk messages and combining this with the assumptions of initially-trusting
receivers and relatively long-lived senders.

We view initial trust as a plausible and appealingly simple assumption. It
has a similar form to the “believe-unless-refuted” condition of |[Lipman and Seppi
(1995), which is an equilibrium refinement for signaling games with multiple re-
ceivers and partial provability. There, each receiver can learn from refutations
provided by other receivers. Initial trust is also related to the restrictions imposed
by Rabin (1990), Farrell (1993), and |Clark (2020) on how receivers respond to
“credible” messages in signaling games In these papers, common knowledge
of the equilibrium to be played figures heavily in determining the credibility of
messages; such restrictions do not fit with our model of non-equilibrium learning.
Moreover, deriving restrictions on equilibria from a learning model yields more
insight than imposing the restrictions directly.

D. FExtensions

We can obtain similar solution concepts by replacing initial trust with alter-
native assumptions. For example, if receivers know the payoff functions of the
senders, as in|Fudenberg and He (2020), then receivers who are long-lived may feel
that they have acquired a good sense of each sender type’s equilibrium payoff. In
0OA 8.1, we discuss a weakened version of initial trust which only requires receivers
to trust previously unencountered claims if they are consistent with the receiver’s
evaluation of the senders’ incentives. Any stable profile under this assumption
must satisfy a refinement that is similar to, but weaker, than JCE. OA.8.2 shows
that we can capture an iterated procedure similar to that of divinity and universal
divinity (Banks and Sobel, [1987) by strengthening initial trust: If the only types

27TRCE also permits equilibria ruled out by JCE and D1 in co-monotonic games like Example E

28Rabin (1990) and [Farrell (1993) only analyzed cheap-talk games, but their refinements can be extended
to games where the sender also has costly signals. [Matthews, Okuno-Fujiwara and Postlewaite| (1991},
Blume and Sobel|(1995)), | Zapater|(1997),|Olszewski (2006)), |Chen, Kartik and Sobel| (2008), and |Gordon
et al.| (2021) also studied refinements in cheap-talk games.
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who have lied about being in O are elements ofN(:)’ , then the receiver responds to
a claim of © as if the sender’s type belongs to © U ©’.

An extensive experimental literature shows that a non-trivial share of experi-
mental subjects tell the truth even when this earns less compensation, and thus
behave as if they face a cost of lying. (See the papers surveyed in |Abeler, Nosenzo
and Raymond (2019).) Kartik, Ottaviani and Squintani (2006)) and [Kartik (2009)
incorporated messages with such lying costs into models of strategic communica-
tion. OA.8.3 discusses how our analysis can be extended to signaling games with
costly lying. Intuitively, lying costs make it less appealing for a non-justified type
to falsely represent themself as justified.

Finally, JCE has no cutting power in games where the sender’s only actions are
cheap-talk messages. Developing learning foundations for refinements in these
games is a promising area for future research, and could lead to learning-based
refinements for settings with cheap talk and multiple audiences, as in |Goltsman
and Pavlov (2011).

VI. Conclusion

Adding cheap-talk communication to signaling games let us provide a learning-
theoretic foundation for the concept of justified communication equilibrium. We
recovered some of the intuitions that underlie traditional equilibrium refinements
for signaling games, whose predictions were by and large sensible in the games
where they were used. We also confirmed that some of the worries in the literature
about the details of these refinements were well founded, and pointed out how
those refinements need to be modified to accord with the implications of non-
equilibrium learning

Of course, there are multiple ways to formulate models of non-equilibrium learn-
ing, just as there are many definitions of forward induction, and several variants of
the [Kohlberg and Mertens| (1986]) axioms. In our opinion, it is easier to judge the
plausibility of assumptions on learning models than of axiomatic conditions on
equilibrium concepts, especially axioms that are imposed without any reference
to how equilibrium play might arise. For this reason, our work makes a valu-
able contribution even in settings such as co-monotonic signaling games, where
the predictions of JCE coincide with those of past work. Outside of those cases,
not only does JCE have the benefit of a learning foundation, it is also easier to
compute, which may make it more appealing to use.
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APPENDIX A: OTHER REFINEMENTS

Al.  Intuitive Criterion

LEMMA Al: Ifr is a JCE, then, for every s € S, either
1) ©f(s,m) £ 0, or
2) u1(0,s,a) <uy(f,m) for all® € © and a € BR(O, s).

PROOF:

Let m be a JCE. Fix s € S and suppose that ©f(s,7) = 0. Let A =
{a € A(BR(©,s)) : u1(0,s,a) < ui(0,7) ¥0 € O} be the set of mixtures
over receiver best responses that make playing s strictly worse for every type
than their outcome under m. Similarly, let A, = {a € A(BR(0O,s)) : 30 €
O s.t. ui(0,s,a) > ui(0,7)} be the set of mixtures over receiver best responses
that make some type strictly better off by playing s than under 7. A_ and
A, are disjoint open subsets of A(BR(0,s)), and A_ U A, = A(BR(0©,s))
since ©f(s,7) = 0. As A(BR(O,s)) is connected, either A(BR(0©,s)) = A_ or
A(BR(0,s)) = Ay. A(BR(©,s)) = Ay is not possible when 7 is a JCE since
then, for every a € A(BR(O(s, ), s)), there is a 6 such that u (6, s, ) > uy (0, 7).
Thus A(BR(©,s)) =.A_, so ui(0,s,a) <wui(0,n) for all a € BR(O,s). B

PROOF OF PROPOSITION 2:

If E(s,7) # 0, there is some § and o € BR(O, s) such that u; (0, s,a) > ui(0, ).
By Lemma [A1] ©f(s,7) # 0, so ©(s, 7) = ©f(s, 7). Moreover ~@(5 m) C E(s, ),
because max,epr(o,s) t1(0, s, a) < u1(0, ) implies Dg(s,w) UDy(s,m) =0 C Dy

for any ¢ € ©. Thus, BR(O(s,7),s) C BR(E(s,),s). Hence, for all § € ©,
minaeBR(E(Svﬂ),s) u1(9, S, a) < minaeBR@(s’ﬂ%s) u1(9, S, a) < u1(0, 7T). |

A2. Co-DI1

PROOF OF PROPOSITION 3: o
Fix s € S. We will argue that O(s,m7) C ©  (s,m). This, along with the
justified response criterion of JCE and the fact that every JCE is a PBE-H,

implies that 7 is co-D1.

If ©f(s,m) # 0, then O(s,7) = Of(s, 7). Let 6 be a type such that § ¢
@Dl(s,ﬂ). Then there is some type 6 # 6 such that Dy(s, ) U Dy(s,m) C
Dy (s,m). This implies that 6/ ¢ O(s,7), so O(s,n) C @Dl(s,ﬂ') follows. If
Of(s,m) = 0, by Lemma [A1] ui(6,s,a) < ui(f,7) for all a € BR(©,s). Thus
O"PL(s,m) =0 as Dy(s, 7)UDY(s, ) C Dy(s, ) forall 6,0" € ©. Thus, O(s,7) =

0=0"(s,7). M
A3. NWBR

LEMMA A2: ©%(s,7) C Of(s,7) for all s € S and 7 € 1I.
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PROOF: N N

If § ¢ O©f(s,7), then by definition Dg(s, 7) C Ugrzg Do (s, 7). For av € Dg(s,w),
a € MBR(©,s) C A(BR(0,s)) and u1(0,s,a) = ui(0,7),s0 o € 53(3, 7). Since
53(5, m) C Ug/#ﬁgr(s, ), there is some 0" # 6 such that ui(0', s, «) > uy (¢, 7), or
equivalently oo € Dy (s, 7). As «v is an arbitrary element of Dg (s,m), we conclude
that Dg(s,ﬂ') - U9/¢9D9/(S,7T), so 6 & @I(S,ﬂ'). ]

LEMMA A3: Ifn is a PBE-H that satisfies NWBR, then, for every s € S, either
1) ©i(s,m) £ 0, or
2) u1(0,s,a) <ui(0,m) for all® € © and a € BR(O, s).

The proof of Lemma[A3]is analogous to that of Lemma and is given in Online
Appendix Section OA.5.

PROOF OF PROPOSITION 4:
Let m be a PBE-H that satisfies NWBR, and for every off-path s, let as €

~

MBR(O(s,7),s) be such that u;(0,s,a) < ui(f,m) for all 6 € ©. We will show
that é(s,w) C O(s, ) for all s, so the profile 7 = (my,T2) in which 72 coincides
with o for all on-path s and dictates «; for all off-path s is a JCE that is path-
equivalent to . R

If ©%(s,m) # 0, then by Lemma Ol(s,m) C Of(s,m), so O(s,m) C O(s, ).
If ©%(s,m) = 0, then by Lemma ui(0,s,a) < ui(0,m) for all # € © and

a € BR(©,s), so Of(s,7) =0 and O(s,7) = O(s,7) = 0. W

PROOF OF LEMMA 4: B N

Fix PBE-H 7. We show that, for all s € S and 6 € ©, Dy(s,7) U Dy(s, )
Ug/;,gglsg/(s, 7) if and only if DY(s, 7) Z Ugr 29Dy (s, 7). This means that O (s, 7) =
©%(s,m), which implies that (s, 7) = O(s, 7).

Suppose that DY(s, ) € Ug29Dg (s, m). Then there is some o € M BR(O, s)
such that u1(0, s, @) = u1(0,7) and uq (¢, s, ) < uy (¢, 7) for all @ # 6. Since o €
A(BR(©,s)), this immediately implies that 59(3, ) U 52(3, ) & Ugr;,,ggﬁg/(s, ).

Suppose that Dg(s, T) U 52(3,#) Z U9/¢959/(S,7T). Then there is some o €
A(BR(0,s)) such that u1(0,s,a) > ui(0,7) and ui(0',s,) < uy(¢, ) for all
0’ # 6. Moreover, since 7 is a PBE-H, there is some o/ € A(BR(O,s)) such
that uy(6,s,a’) < ui(f,7). By continuity, there exists some o € MBR(O,s)
such that u1(0,s,a”) = ui(0,7) < uy(6,s, ). Because the game is co-monotonic,
ur (0, s,0") < ur(#,s,a) < ui(@,m) holds for all ¢ # 6. Thus, DJ(s,7) &
U@/#ng/(S,ﬂ'). |

APPENDIX B: SUPPORTING RESULTS FOR THEOREM [I]

We use the following lemma in several proofs and examples. We omit its proof,
which closely follows that of Proposition 5 in [Fudenberg and He| (2018).
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LEMMA Bl: Givenvy, € [0,1), suppose that my, = (1,4, T2,4,) = liMp_so0 M0 Ty 11
for some sequence of steady-state profiles m., 1.1 € I1*(g, 0k, Y1,k,1, V2), where limy_,o 6 =
1 and limy_yoo v,y = 1 for all k. Then, for each § € O, 1 4,(:|0) puts support

only on the (s,m) that are optimal for type 6 against T ., .

PROOF OF LEMMA 1:

Let {ﬂ'j’k’l € I1*(g, 0j.k> V1,5, 0 ’)’2,j)}j,k,leN be a sequence of steady-state profiles
such that lim; o0 limy oo limy o0 75 1 = 7, where lim; oo v2j = 1, limp 00 651 =
1 for all j, and limy_,oc vk = 1 for all j,k. By Lemma E, for every 0 € O,
Ty, (+0) = limg 00 limy_s00 71 . 1,1(-|6) puts support only on signal-message pairs
that are best replies to w2, . = limg o0 limy 00 2 j 1 Combining this with the
upper hemicontinuity of optimal play implies that m(-[0) = lim; oo 714, (|6)
puts support only on signal-message pairs that are best replies to mo = lim;j 00 2,4, ;-
|

PROOF OF LEMMA 2:

Let q(6,s,m) = A(@)m1(s,m|@) be the distribution over (6, s,m) induced by
A and 71, let X°" be the set of sender signal-message pairs that occur with
positive probability under 7, and let p(s,m)(ﬁ) denote the conditional probabil-
ity of 6 given (s,m) € X°* Fore > 0, let Q- = {¢ € A(O x S x M) :
max g s.m) [¢'(6, s,m) — q(0,s,m)| < }. Because best response correspondences
are upper hemicontinuous, there is an € > 0 such that every receiver whose belief
g2 € A(A(O x S x M)) puts probability at least 1 —e on @ will respond to every
(s,m) € X°" with some a € BR(p(s,m), 5)-

Given the non-doctrinaire prior g2, Theorem 4.2 of [Diaconis and Freedman
(1990) implies that there is some 7' > 0 such that a receiver who has lived
more than T periods assigns posterior probability of at least 1 — & to probability
distributions ¢’ within /2 distance of whatever empirical distribution they have
observed. Moreover, by the law of large numbers, for any n > 0 we can take this
T to be such that, with probability at least 1 —7/2, a receiver who has lived more
than T' periods assigns probability of at least 1 — & to Q. ».

Fix sequences {3, }nen, {V1,n}tnen, and {2, }nen, and let m, = (71,5, m2,) €
IT* (g, 6n, 71,n, Y2,n) be a sequence of steady-state profiles such that lim, o Y2, =
1 and lim; oo m1,, = 7. The share of receivers in the population who have
lived more than T periods is fyg: n» Which converges to 1 as n — oo. Moreover,
qn(0,5,m) = AN(O0)m1 n(s,m|0) — q as n — oo. Thus, for every (s,m) € X" and
n > 0, there exists some N € N such that 72,(BR(p(sm), $)|s,m) > 1 —n for all
n>N. R

PROOF OF LEMMA 3:

Let {mj k1 € II*(g, 05k, V1,560, 72,5) }j klen be a sequence of steady-state profiles
such that lim; o limp oo limy o0 75 1 = 7, where lim; o v2j = 1, limp 00 651 =
1 for all j, and limjo 1 jk; = 1 for all j, k. Since ul(ﬁ,s,ﬂg(-]s,msﬁé)) <
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u1(0, ) for all 0 o4 O, Lemma E implies that there is some J € N such that,
for all ¢/ ¢ © and j > J, limg_,o0 limy_o Wj,k,l(svm&éw,) = 0. Receivers who
have never observed the signal-message pair (s,(:)) played by a type outside
of © would respond to this pair with an action belonging to BR((:j,s). Thus
limp o0 limy o0 72 j 11 (BR(O, 5)|s, ms’é) = 1if im0 imy—y00 5 11 (S, m&élﬁ’) =
0 for all 6 ¢ ©. Since this holds for all j > J, m5(BR(6, 5)[s,m g) =1. B

APPENDIX C: A SUFFICIENT CONDITION FOR STABILITY

DEFINITION C1: A signaling game is strictly monotonic if, for all 0,6’ € O,
s€ S, and a,a’ € MBR(©,s),

1) ui(0,s,) > ui(0,s,a) if and only if u1(0',s,) > ui(0',s,0'), and

2) u1(0,s,a) = ui(0,s,a’) implies « = o'

Here the first condition is exactly the monotonicity of (Cho and Sobel| (1990).
The second condition requires that the sender preference is a strict order on
MBR(0O,s).

For a given strategy profile w, let X°" be the set of on-path signal-message
pairs, let p(s,,)(#) denote the conditional probability of 6 given (s,m) € X°", let
S°" be the set of on-path signals, and let S°ff be the set of off-path signals.

DEFINITION C2: The JCE 7 is uniformly justified if
1) Forallf € O, there is some sy € S such that max,,eps ui(0, sg, ma(-|sg, m)) >
MmaXstsymeM U1(0, S, 7T2('|S, m));
2) For everyx = (s,m) € X, there is some a; € A such that uz(p(s m), s, az) >
MaXg£a, U2 (p(s,m)v S, CL),
8) For all s € S, uy(0,s,a) < u1(0,7) for all € © and a € BR(O(s, ), s).

Condition 1 says that every sender type plays exactly one signal and that they
have strict incentives to do so. Condition 2 says that the receiver has a strictly
optimal action in response to every on-path signal-message pair. Condition 3
says that all types are strictly deterred from playing any off-path signal for any
justified response.

PROPOSITION C1: If m is a uniformly justified JCE in a strictly monotonic
signaling game, it induces the same distribution over © X S X A as a stable profile
for all non-doctrinaire priors g1, g2, including those that do not satisfy initial
trust.

OA 4 in the Online Appendix contains the proof of Proposition [C1. Because 7
is uniformly justified, there is a receiver behavior strategy that makes each type
strictly prefer to play their corresponding signal in 7, and, when each type does
so, leads to the same distribution over © x S x A as w. The proof modifies the
aggregate response correspondences so that the receiver response matches this
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behavior strategy with high probability whenever the aggregate sender play is
such that some type gives their corresponding signal in 7 too little probability.
Lemma [BI implies the aggregate sender play given by the fixed points of the
modified aggregate response correspondence is optimal in the iterated limit. The
modification to the receiver aggregate response thus ensures that the limit ag-
gregate sender strategy uses the signals prescribed by 7 with high probability
Additionally, by strict monotonicity and the optimality of the aggregate sender
play, the receiver response to any on-path signal-message pair must only depend
on the signal, and because receivers strictly prefer to conform to m, the receiver
response to any on-path signal-message pair matches the response in 7. We show
that this, along with the fact that « is uniformly justified, implies that, in the
limit, each sender type uses the same distribution over signals as in m;. Con-
sequently, the modified aggregate receiver response matches the true aggregate
receiver response, and the fixed points of the modified response mapping are valid
steady-state profiles that in the limit induce the same distribution over © x .S x A
as .

APPENDIX D: DETAILS OMITTED FROM SECTION [[1]

Strategy Mapping: The map 0% : (A(H1))® x A(Hz) — Iy x II, taking
the state in period t to the aggregate strategy profile has component mappings
Ufm : (A(H1))® — TI; and o9 : A(Hs) — IIy given by Ufm(m)[s’mw] =
Zhlzxg”” (h1)=(s,m) polha] and oa(u2)lals, m] = Zhg:y(s,m\hg):a p2lha].

Update Rule: The rule that maps the state in period ¢ to the state in period
t+1, £97172 0 (A(H1))® x A(Ha) — (A(H1))® x A(Hz), has the following compo-
nents: The mapping fgm D (A(H1))® x A(Hz2) — A(Hy) is given by fgm (w)[0] =
1 — 7, and fg’71(u)[(h1,(s,m7a))] = 'ylug[hl]igm(hl,s,m)ag(,u)[a].s,m], where
(h1,(s,m,a)) € Hy is the concatenation of the history hy; € H; with a period
where the sender plays (s, m) and the receiver responds with a, and igm (h1,s,m)
equals 1 if a type 6 sender with history h; plays (s,m) under policy xg and
equals 0 otherwise. Likewise, fgm"m C (A(H1))® x A(Ha) — A(H,) is given by
£ 772 ()[0] = 1=, and £57 72 () (ha, (8, 5,m))] = 72p12(h2lA(0)o ™ ()5, m].
where (hg, (0,s,m)) € Ha is the concatenation of the history hy € Ho with a pe-
riod where the receiver is matched with a type 6 sender who plays (s, m).

Aggregate Response Mapping: To define the aggregate response mapping,
we first define mappings 3157“/1 : Ty — (A(H1))® and Z)% : TI; — A(Hz), which
output the resulting ¢ — oo limit of the distribution of histories in the sender
and receiver populations when the aggregate play of the opposing population is

30Fudenberg and Levine|(2006]) and [Fudenberg and He (2020) proved that some strategy profiles are stable
by considering priors that assign high probability to a neighborhood of the target profile. Modifying
the aggregate response mapping lets us prove stability for a broad class of priors.
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held fixed at a given behavior strategy. For each 6 € ©, .,%6’71 (m)[0] =1 —m
is the share of type 6 senders with the null history. The share of type 6 senders
with histories hi; of length ¢ > 0 is defined by induction: For each hj;_1, we
pair the signal-message pair a type 6 sender with that history would use with the
aggregate receiver strategy mo to compute the distribution of period-t outcomes
(s¢, my, a;) these senders observe, and assign the corresponding probabilities to
the concatenation of these period-t outcomes and hj;—1. (We do this formally
in OA.2.1 in the Online Appendix.) Likewise, .2,”*(m1)[0] = 1 — ~2 is the share
of receiver agents with the null history. A similar induction procedure gives the
share of receiver agents with various histories of length ¢ > 0: For each history
of length ¢ — 1, we take the strategy these agents would use, pair this with the
distribution of sender types A and the aggregate sender strategy m; to compute
the distribution of period-t outcomes (6, s¢, m;) these agents observe, and assign
the corresponding probability to the concatenation of the period-t outcomes and
the previous history.

The components of the aggregate response mapping Z°772 (1) = (L@fm (m2), Z9* (1))
are then found by composing Zf’% and .%,? with strategy mapping ¢®7: The
aggregate sender response mapping is given by %f’“ (m2) = Ufm (.,2”16’71 (m2)), and
the aggregate receiver response mapping is given by Zy*(m) = 02(%*(m2)).



Online Appendix for “Justified Communication

Equilibrium”

Daniel Clark and Drew Fudenberg

OA.1 Equivalent Definition of JCE

We show that it would be equivalent to define JCE by setting ©f(s,7) = {§ € © :
DY(s,7) € UpsoDy(s,m)}, rather than Of(s,7) = {# € © : Dy(s,m) U DY(s,7) &
Ugrz6Der(5,7)}.

For every s € S and 7 € II; x Ily, let

O (s,m) = {0 € © : DY(s,7) € Up 29Dy (s, 7)}

be the set of types 6 where there is some mixed receiver action « € A(BR(0©, s)) that
makes 6 indifferent between (s, @) and their outcome under 7 and makes no other type

¢’ strictly prefer (s, «) to their outcome under . Additionally, let

o (s,n) if OF (s, m) #0
© if Of (s,7) = () |

Proposition OA 1. If w is a PBE-H, then O(s,7) = © (s,7) for all s € S.



Proof. Fix PBE-H 7. We will argue that ©% (s, 7) = ©f(s, ), which gives @/(S,ﬂ') =
O(s, ).

First, suppose that § € OF (s, 7). Then by definition, 53(5,7r) z Ugl;ﬁgﬁg/(S,Tr).
Hence, Dy(s, w) U DY(s,7) € UgoDg (s, 7), s0 0 € OF (s, 7).

Now, suppose that 6 € ©1(s, 7). Then by definition, Dy(s, 7T)U52<S, ) & UglﬁlN)g/(s, ).
Thus, there is some a € A(BR(©, s)) such that u;(0,s,a) > uy (0, 7) and uy (0, s, ) <
uy (0, ) for all €' # 0. Since 7 is a PBE-H, there is also some o/ € A(BR(O,s)) such
that uy (0, s,/) < uy(0,7) for all @ € ©. By continuity, there is some v € [0, 1] and
o = va+ (1 —v)d such that uy(0,s,”) = uy(0,7), while uy(0',s,¢") < uy (0, )
for all 0 # 0. As o’ € A(BR(O,s)), it follows that DY(s,7) € Ugp—gDe (s, ), so
0 cof(sr). B

OA.2 Omitted Analysis of Learning Model

OA.2.1 Continuity of Aggregate Response Mapping
We begin by formally defining the auxiliary maps 27" : I, — (A(H1))® and %> -

IT; — A(H2) introduced in Appendix [D] For each 6 € ©, let

Ly ()0 =1 -,
Ly (m2)[(ha, (5,m, 0))] = 1257 (ma) [P ™ (ha, 5, m)malals, m],

for all hy € Hy, s € S, m € M, and a € A. To define £, let

L (m) 0] =1 =,
25" (m1)[(ha, (0, 5,m))] = 72257 (1) [ o] A(O) 1[5, m| 6],

for all hy € Ho, 0 € ©, s € S, and m € M.
We now establish the continuity of various mappings involving distributions over

histories, which we endow with the sup-norm topology.



Claim OA 1. The aggregate strateqy mapping o®7 : (A(H1))® x A(Ha) — I} x I,

15 continuous.

Proof. We prove that )" : (A(H;))® — I, is continuous. An analogous argument
handles o9 : A(Hs) — 1.

To show that o0 is continuous, we establish that limy, ., o2 (uh)[s, m|0] =
o2 (1) [s,m|0] forall s € S, m € M, 0 € ©, and 1y € (A(H1))®. Since D em a2 (1) [s, m|f] =
1 for all 1y € (A(H1))®, it suffices to show that lim inf ., ol () [s, m|0] > o (pr) |5, 0]
for all s, m, and 0. For any € > 0, let H; . be a finite set of sender histories such that
ZhleHl,E:xg‘“(hl)z(s,m) pglha] > 007 (s11)[s, m|#] — e. By the nature of the sup-norm
topology, lim,/_,,, Zhleﬂl,szxg’“ (ht)=(s.m) prylhi] = Zhle?{l,s:xg’“ (h1)=(s.m) polh]. Since
piglh1] > 0for all by € Hy and p € (A(H1))®, it follows that liminf,, o2 (i) [s, m|0] =
B30 3oy P] 2 0000 X5, ] 2 037 ) s, )

€. As this holds for arbitrary € > 0, the desired conclusion follows. B
Claim OA 2. Both £ : T, — (A(H1))® and 2 - 11, — A(Hy) are continuous.

Proof. We prove that £ : Ty — (A(H1))® is continuous. An analogous argument
handles .25* : TI; — A(Hs).

For all my € Iy, L7 (m3)[hy] < (1 — ~1)7t for every history hy of length ¢. Since
limy o0 (1 —71)7! = 0, to establish that £ (m5) is a continuous function of my, it thus
suffices to show that 2" (my)[hy] is continuous for every history hy € Hi. We show
this inductively over sender histories. For the null sender history hy = 0, £ (my)[0]
for all m € II, and is thus continuous. Assuming that .27 (m5)[hs] is a continuous
function of my, it follows that £ (m3)[(hy, (s,m,a))] is a continuous function of
for all s, m, and a, as can be seen from the expression for ,,2”16’71 given earlier. This

completes the inductive argument. W

Corollary OA 1. The aggregate response mapping > : 11} x I, — II; x Iy is

continuous.



Proof. By Claims |[OA 1] and [OA 2| 6% and > are continuous. Thus 2> (m5) =

5 5 . . . . . . .
oy " (L (ma)) is a continuous function of 7. Likewise, since oy and %% are contin-

uous, #°(m1) = 02(%,)*(m1)) is a continuous function of 7;. M

OA.2.2 Characterization of Steady State Profiles

Proposition OA 2. Strategy profile  is a fized point of Z°"72 if and only if there

is some steady state pi such that o (p) = 7.

Proof. Suppose that p is a steady state satisfying 0% (u) = 7. Since p is a steady
state, the aggregate receiver play in every period is fixed at mo = oo(p). By definition,
L7 (my) is the t — oo limit of the distribution over histories in the sender population
when the aggregate receiver play is fixed at my. Since p is a steady state, it follows that
L7 (my) = py. From this, we obtain 257" (1) = 027 (L7 (m3)) = o0 (1) = 1.
An almost identical argument shows that %,?(m;) = 7. We conclude that 27172 () =
.

Conversely,suppose that 7 is a fixed point of #2712, Let u be the state given
by p1 = LY (my) and py = Z2(m). Observe that 027 (u1) = o3 (L7 (m2)) =
BT (13) = m and 09 (p2) = 09( L (1)) = #3(m1) = T, s0 T = 07 () is the aggre-
gate strategy profile for state . All that remains is to establish that u is a steady state,
which amounts to showing that £ (L0 (m5))[h1] = L (m9)[h] for all hy € Hy and
0 € © and £ (L2 (m))[he] = £ (m1)[hs] for all hy € Hy. We argue inductively
over sender histories that £)7" (L7 (12))[h1] = L (m3) 1] for all hy € Hy. (A simi-
lar inductive argument shows that £ (2% (1)) [he] = &5 (1) [he] for all hy € Hy.)
For the null sender history hy = (), the equality holds since £ (£ (1)) [0] = 1—7; =
LY () [0]. Assuming that £57 (L0 (m0))[h] = L (m2) ] holds, it necessarily
follows that £ (27 (1)) [(ha, (s, m, a))] = L2 (w3)[(ha, (s,m, a))] for all s, m, and

a since o9(pz) = me. This completes the inductive argument. W



OA.3 Comparison with RCE

In this section, we restrict attention to signaling games without communication, i.e.
M is singleton. We write I13 = X csA(BR(O, s)) for the set of receiver strategies that

assign probability 0 to conditionally dominated responses.

Definition OA 1 (Fudenberg and He, 2020). Signal s € S is more rationally-

compatible with ¢ than 0", written as 0’ 7, 6",

uy (0", s, m3(+]8)) > nllixul(e”, s' o (-|s")) implies that

up (60, s, ma(+]s)) > max ur (0', 8", mo(+|s)).

In words, this says that type ' is more rationally-compatible with signal s than is §”
if any undominated receiver strategy that makes 6" willing to play s makes 6’ strictly
prefer to play it. Let Pyoor = {p € A(O) : X(0")p(¢') > MO )p(0”)} be the set of
probability distributions over sender type where the odds ratio of 6’ to 6" exceed their
odds ratio under the prior distribution. For s € S and 7 € II; x IIy, let P(s,7) € A(©)

be the set of beliefs over the sender type given by

A(E(s,m)) N (ﬂ(ef,ef') st e'zseﬂpa/»e”) if E(s,m)# 0
P(s,m) =

A(O) if B(s,m)=10 7

and let BR(P(s,7),s) = U,cps-BR(p;s) be the set of receiver best responses to

signal s for some p € P(s, 7).

Definition OA 2 (Fudenberg and He, 2020). Strategy profile m is a rationality-
compatible equilibrium (RCE) if it is a PBE-H where, for every s € S, my(+|s) €

A(BR(P(s,m),s)).
This definition requires that the receiver’s posterior likelihood ratio for types 6’ and

5



0" dominates the prior likelihood ratio whenever 6’ =, 0”. It also requires that the

posterior assigns probability 0 to equilibrium-dominated types.

Proposition OA 3. If 7 is a justified communication equilibrium, then 7 is an RCE.

Intuitively, any response that makes a less compatible type weakly prefer to play
s makes more compatible types strictly prefer to play it, so less compatible types are
not justified.

Proof. Fix s € S. We will argue that A(©(s, 7)) C P(s,n). Thus any o € A(BR(O(s, ), s))
also belongs to A(BR(P(s,),s)). Consequently, the justified response criterion of
JCE along with the fact that every JCE is a PBE-H implies that 7 is an RCE.

Since A(O(s, 7)) € A(O) = P(s, ) when E(s,n) = ), we need only handle the case
where E(s,7) # 0. In this case by Lemma A1} O(s,7) = ©f(s,7) and A(O(s, 7)) C
A(E(s,m)). Suppose that ¢ and 6" are two types such that 6’ 2= 0”. Then Defi-
nition implies that Dgr(s,7) U 58,,(5,70 C Dy(s,m), so 0 & Of(s,7). As a
result, A(O(s, 7)) = A(OF(s,7)) C N o7) s 0.07 Porwor. We conclude A(O(s, m)) C

A(E(S, 7T>> N (ﬂ(g/ﬁu) s.t. 9’i59”P0’>9”) = P((g, 7'()_ B

OA.4 Proof of Proposition

Proposition [C1l If 7 is a uniformly justified JCE in a strictly monotonic signaling
game, it induces the same distribution over © x S x A as a stable profile for all non-

doctrinaire priors gi, go, including those that do not satisfy initial trust.

Proof. Because 7 is a uniformly justified JCE in a strictly monotonic signaling game,
mo(+|s,m) = ma(:|s,m’) for all s € S and m,m’ € M such that (s,m),(s,m') € X°".
Thus, for every s € S°", there is some as; € A such that m(as|s,m) = 1 for all
(s,m) € X°". For all s € S°f fix some a, € BR(O(s, ), s).

Our construction modifies the aggregate receiver response so that the response to

any s is ag with high probability unless the aggregate sender play is such that each

6



type 0 € © uses sy with sufficiently high probability. We show that the fixed points
of this modified aggregate response mapping correspond to fixed points of the true
aggregate response mapping in the iterated limit where 77 — 1 then 6 — 1 then
v9 — 1. Moreover, we show that the limit of these steady state profiles induce the
same distribution over © x S x A as 7.

Because 7 is a uniformly justified JCE in a strictly monotonic signaling game, there
is an ¢ > 0 such that the following two properties hold. First, when my(ag|s,m) > 1—¢
for all s, playing sy paired with message m is strictly better for type 6 than playing
any other s’ # sy paired with any m/’. Second, if m(sg, m|f) > 1 —¢ for every 0 € O, it
is strictly optimal for the receiver to respond to (s, m) with a, for every s € S°". Fix
such an e.

Let x : R — [0,1] be a continuous function such that x(z) = 0 for all z < 0 and

k(z) =1 for all z > 1. Also, let ¢ : II; x Il — II; be the mapping

otmma)Clsom) = (1w (Zpimaslt) = 1+.9)) ) 1 (vt (Zginmlsolt) - 142) ) mallsm)

for all s € S and m € M. Note that ¢ is continuous. Additionally, ¢(my,m2)(as|s, m) =
1 when m(sg|f) < 1 — ¢ for some 6 € ©, and ¢(my, m2) = my when m(s9l0) > 1 —¢/2
for all 6 € ©.

Consider the correspondence RO IT; x II; — II; x II5 given by e@/‘sm’”(w) =
(R (703), d(m1, Y2 (m1))). Since Z°712 is continuous, Brouwer’s fixed point theorem
guarantees the existence of a fixed point (72772 73772) We will establish that, in
the iterated limit where 7, — 1 then § — 1 then v, — 1, a0 = (g7 707172)
induces the same distribution over © x S x A as w. Towards this end, consider a
sequence {7z ;}jen, sequences {d;};ren, and sequences {7y k}jkien such that (1)
mj oo v2; =1, (2) imy oo 0, = 1 for all j, (3) limy_yeo 71540 = 1 for all 5, k, and (4)

Gk Maki2i = 1! for some 7' = (7}, 75) € Iy x Il,.

im0 limy o0 limy o0 7
We first establish that 7] (sg|6) > 1 — ¢ for all § € ©. If instead there were some

6 € O such that 7'(sg|f) < 1 — &, then by construction, mh(as|s,m) > 1 — ¢ for all



s € S and m € M. Lemma [BI thus requires that 7}(se|f) = 1 for all # € ©, which is
a contradiction.

Next we show that 7)(as|s,m) = 1 for all s € S°™ and m € M such that 7} (s, m|6) >
0 for some # € O. Fix s € S°". Consider m,m’ € M such that 7(s,m|f) > 0
and 7 (s,m'|#") > 0 for some 6,0 € ©. The construction of Z%"2 along with an
argument almost identical to the proof of Lemma [2, implies that there exists some
¢ € 10,1] and o,/ € MBR(O,s) such that w4(-|s,m) = (1 — &)1,.(-) + o and
mh(+|s,m') = (1 — &1, (-) + &d/. In fact, @ and o/ must be optimal responses to s
under the posterior distributions obtained by updating A using {7 (s, m|0)}sco and
{7 (s,m'|0)}sco, respectively. Because the game is strictly monotonic, Lemma [B1
implies that « = o/. Thus, for a given s, w5(:|s,m) is the same for all m € M for
which there is a § € © such that 7{(s,m|f’) > 0. Combining this with the fact that
71 (s9l0) > 1 — ¢ for all 0, it follows that 75 (as|s,m) = 1 for all m € M such that
7 (s,m|f) > 0 for some 0 € ©.

Since m)(as|s,m) =1 for all s € S and m € M such that 7} (s, m|f) > 0 for some
0 € O, it follows from Lemma [BI that 7 (s|¢) = 0 whenever s € S and s # sg.
We now show that for all § € ©, mj(s|f) = 0 for all s € S°T. Note that, because
m(slf) > 0 for all § € © and m(as,|ss,m) = 1 for all § € © and m € M where
m1(se,m|f) > 0, Lemma [B1 implies that ui(6,7') = ui(0, sg,as,) = ui(6,7) for all
0 € 6. Additionally, Lemma [BI requires that u;(6, s, m5(:|s,m)) < w1 (0, 7') = w1 (6, 7)
for all # € ©, s € S, and m € M. Now, suppose that there is some s € S°f and
m € M such that 7(s,m|f) > 0 for some § € ©. There are two possible cases: (1)
There is some 6 & O(s, ) such that 7} (s,m|f) > 0, and (2) All § with 7} (s, m|0) > 0
belong to O(s,n). In Case (1), because mh(-|s,m) € A(BR(O, s)), there must be some
0" € O(s, ) such that uy (0, s, h(-|s,m)) > uy (¢, 7), which is a contradiction. In Case
(2), the construction of %°7172, combined with an almost identical argument to the one
behind Lemma [2, implies that 75 (-|s,m) € A(BR(O(s, ), s)). Since 7 is a uniformly
justified JCE, it follows that u(0, s, 75(:|s,m)) < u1(0, ) for all # € ©, but this, along
with Lemma [BI, implies that 7} (s, m|f) = 0 for all § € O, a contradiction.
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It follows that m(sg|#) = 1 for all § and 7h(as|s,m) = 1 for all s € S and
m € M such that 7 (s,m|0) > 0 for some § € ©. Thus, 772 induces the same
distribution over © x S'x A as 7 in the iterated limit where first 43 — 1 then 6 — 1 then
vy — 1. Moreover, since 7 (s9|0) = 1 for all § € ©, 7577 = (xd772 > (r277?)) =
R (m0772) in the iterated limit. Thus, 70717 is a fixed point of Z2%772 in the iterated

limit, which means that 7’ is a stable profile. B

OA.5 Proof of Lemma A3

Lemma If ™ is a PBE-H that satisfies NWBR, then, for every s € S, either
1. ©4s,m) £0, or
2. ui(0,s,a) <uy(0,m) for all® € © and a € BR(O,s).

Proof. Let 7 be a PBE-H that satisfies NWBR. Fix s € S and suppose that ©*(s, 7) =
0. Let A- = {a € MBR(O,s) : u1(0,s,a) < us(f,7) V0 € O} be the set of receiver
mixed best responses that make playing s strictly worse for every type than their
outcome under 7. Similarly, let A, = {o € MBR(O,s) : 30 € O s.t. u(0,s,a) >
u1(0,m)} be the set of receiver mixed best responses that make some type strictly
better off by playing s than receiving their outcome under 7. A_ and A, are disjoint
open subsets of MBR(©,s), and A_- U A, = MBR(O,s) since ©(s,7) = ). As
MBR(©,s) is connected, either A = MBR(O,s) or A, = MBR(O,s). A, =
MBR(O, s) is not possible when 7 is a PBE-H that satisfies NWBR since then, for

every o € MBR(O(s, ), s), there is some 6 such that u, (0, s, ) > uy(0, 7). Therefore,
A_ = MBR(O,s), which gives u;(0,s,a) < ui(,7) for all a € BR(©,s). B



OA.6 Omitted Analysis of Examples

OA.6.1 Analysis of Example [2

Proposition OA 4. The game in Example |9 has stable profiles where all types play
Pass with probability 1.

Proof. We specify that the worker prior g, is a Dirichlet distribution. For m &
{MHire6> Miire. 401,00} }» it has initial weight 1 on (05, Hire,m), 1/2 on (0, Hire, m),
and 1/4 on (01, Hire,m). For m = myye,,, it has initial weight 3/5 on (8, Hire,m),
1 on (0y, Hire,m), and 1/4 on (0, Hire,m). For all other messages m, it has initial
weight 1/4 on (0y, Hire,m), 1/4 on (0y, Hire,m), and 1 on (0, Hire,m). Note that
initial trust is satisfied: For instance, when a worker first encounters a firm who plays
(Hire,mp, g, ), the probability they place on the firm having type 0y is 4/7, 05 is 2/7,
and 0, is 1/7, so ey = BR(0y, Hire) is optimal.

We observe that ey, is the worker’s unique best response to Hire under any distri-
bution that puts probability strictly higher than 3/7 on 6. Additionally, if a worker
has encountered past play of (Hire, m) and all such plays have been by firms with type
01, then the worker will respond to the next instance of (Hire, m) with e;. To see that
this holds for the case m = Mmpirep,, note that the worker’s conditional distribution
over the firm’s type after (Hire, mmgirep, ) must put probability at least 5/11 on 6.
Analogous arguments handle the other cases.

We focus on steady state profiles in which, for every m € M, the aggregate prob-
ability that a worker responds to (Hire,m) with ep; is less than 1/4. Under such
responses, whenever it is weakly optimal for 8y or 6, to play Hire, it must be strictly

optimal for 67 to do so. To see this, note that

uy (0, Hire,a) = 21aley] + 6alen] — 5,
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so aleg] > 5/21 — 6/21alen] whenever uy (0y, Hire, ) > 0, and

uy (O, Hire, ) = 12aley] + 10afen] — 4,

so aleg] > 1/3 — 5/6aen] whenever uy (05, Hire, o) > 0. Additionally,

uy (0, Hire, o)) = baley| + 2alen] — 1,

which is strictly positive whenever afey] > min{5/21 — 6/21aley],1/3 — 5/6alen]}
and aley] < 1/4. We argue that such steady state profiles exist in the iterated limit
where 77 — 1, then 6 — 1, and then 7, — 1, and that the corresponding aggregate
probability that any type plays Hire converges to 0.

Let x : A(A) =2 A(A) be the correspondence given by

{a} if aley] <
x(ar) = :
{a/ € A(A): d[en] = 1} if aey] >

1

=

=

and let p : Il = IIy be the correspondence given by
p(me) = {my € Uy : wy(:|Hire,m) € x(m2(-|Hire,m)) Ym € M}.

Note that p is upper hemicontinuous, convex-valued, and coincides with the identity
correspondence whenever my(ep|In,m) < 1/4 for all m. Let v : II; = II; be the

correspondence given by

v(m) = {Wg eIl : (1) m[Hire,m|f] = min {Wl[Hire,mW], %} Yme M, 6 € {0y,00},
(2) 7\ [Pass, m|0] = m[Hire, m|0] Vm # Mpass.oy, 0 € {0, 00},

(3) mi[s,m|0L) = m1[s,m|0L) Vs € {Hire, Pass}, m € M, }

Note that v is upper hemicontinuous, convex-valued, and coincides with the identity

11



correspondence whenever my(Hire,m|0) < X(05)/(2A(6)) for all m € M and 6 €
{0m,00}

Consider the correspondence RO [Ty x 11y = IT; x 115 given by RO (71, M) =
(7, 7)) € T} x I : 7, = v(Z>(m,)) and 7, € p(%)2(m))}. Since #5172 is
upper hemicontinuous and convex-valued, Kakutani’s fixed point theorem guarantees
the existence of a fixed point (73772 757172),

We establish that lim.,_; lims_,; lim., ;7" [Hire|f] = 0 for 6 € {8y,60}. Sup-
pose towards a contradiction that there is a sequence of worker continuation prob-
abilities {72 ;};en, a collection of sequences of firm discount factors {0, }jren, and
a collection of sequences of firm continuation probabilities {v1 jx};jkien such that
(a) limj o0 v2; = 1, (b) limyyoo 65 = 1 for all j, (c) limy,ooy1;%; = 1 for all j, &,
(d) limyyeo limy oo limy o0 ij’km‘j‘k’lm’j [Hire,m|f] exists for all 6 € © and m € M,
and (&) lm;_soo limy o0 limy o0 ij’km’j’k’“w’j [Hire|ld] > 0 for either § = 6y or § =
Or. Then since 75" (ey|Hire,m) < 1/4 for all m € M, Lemma E implies
that lim;_, e limg e limy o0 ij’km’j’k’l’w’j [Hirelfr] = 1. Therefore, there exists some

m € M such that lim; o limyg_so limy oo 7 "*""*7 [Hire,m|0z] > 0 and

>~

, v , 0 v . ,
lim lm lim gyt 7m0 [Hirel0r] > (62) Hm lim L ok 7ham i [Hirel|d)
Jj—00 k—o0 l—00 2)\(9) j—00 k—o0 l—00

for both § € {0y, 0, }. By Lemma |2 and the fact that the unique worker best response
to Hire is e;, when the probability the type is €, is at least 1/2, this implies that

. . . S YL kL Y2.
lim; o0 limy oo limy oo Ry (PRI (

er|Hire,m) = 1. Since x(m(-|Hire,m)) =
{ma(-|Hire,m)} if  ma(en|Hire,m) < 1/4, it follows  that
1m0 limy,y o0 limy o0 ng”“m’j”“’l’w’j (m1)(er|Hire,m) = 1. However, by Lemma E,

05 ks V1,5,k, 0572, [

this requires that lim;_, limj_,oc limy o m; Hire,m| = 0 must hold, a con-

tradiction.
A similar argument establishes that lim., ,; lims_,; lim., Wf’“’w [Hirelf) =0, so
lim,, 1 limgs_yy lim., Wf’“ "?[Hire] = 0. Since a worker will only play e, in response

to some (Hire,m) if they have previously encountered a firm playing (Hire,m), we
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have that 225> (m]"*""**)(ep|Hire,m) < 1/4 for all m € M in the iterated limit.
Since p(my) = {my} if my(en|Hire,m) < 1/4 for all m, w57 = p(ZP (x0717?)) =
R (m0772) for fixed, sufficiently high 75 € [0,1) when 6 is sufficiently close to 1 and,
given 4, v, is sufficiently close to 1. For similar reasons, w,"""" = v(Z" (x3772)) =
RY (17772 also holds in the iterated limit. Thus, (7377 757%) is a fixed point of
F°12 for fixed, sufficiently high v, € [0,1), when 6 is sufficiently close to 1 and, given
d, 1 is sufficiently close to 1. We conclude that there are stable profiles in which every

type plays Pass. B

OA.6.2 Analysis of Example [3

Proposition OA 5. The game in Exzample[3 has stable profiles where both types play
Out with probability 1.

Proof. We specify that the receiver prior go is a Dirichlet distribution with initial
weight 1 on (61, In,me,) and 1/2 on (02, In,mr,e,), and, for all other messages
m # Mg, initial weight 1/2 on (01, In,m) and 1 on (0, In,m). This means that
initial trust is satisfied: When a receiver first encounters a sender who plays (In, mr,.),
the probability they place on the receiver having type 0 is 2/3 so BR(0, In) is optimal.

We claim first that if a receiver has encountered past plays of (In, m) and all such
plays have been by senders with the same type 6, then the receiver will respond to the
next instance of (Im,m) with BR(0, In). We demonstrate this for the case m = my,;
analogous arguments handle the other case. If this message has only ever been sent
by 61, the receiver’s belief about the sender’s type after (In,my, ) must put probability
at least (1 +1)/(1+ 1+ .5) = 4/5 on #;, which makes a; the unique receiver best
response. When 6 = 05, the receiver’s conditional distribution over the sender’s type
after (In,mp,) must put probability at least (1 +.5)/(1 + 14 .5) = 3/5 on 6y, which
makes as the unique receiver best response.

We focus on steady state profiles in which, for every m € M, the aggregate proba-

bility that a receiver responds to (In, m) with ag is less than 1/4. Under such responses,
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it can never be weakly optimal for both types to play In with the same message. To

see this, note that
uy(6h, In, ) + uy (02, In, a) = —ala1] — alas] + 2afas] = —1 + 3afas),

which is strictly negative whenever ajaz] < 1/4. We argue that such steady state

profiles exist in the iterated limit where v — 1 then § — 1 then 75 — 1 and that the

corresponding aggregate probability that either sender type plays In converges to 0.
Let x : A(A) =2 A(A) be the correspondence given by

{a} if Ck[&g] <
X(a) = ,
{o/ € A(A) : o/[az] = 1} if afag] >

=

=

and let p : Il = IIy be the correspondence given by
p(me) = {my € Uy : my(:|In,m) € x(ma(-|In,m)) ¥Ym € M}.

Note that p is upper hemicontinuous, convex-valued, and coincides with the identity
correspondence whenever my(as|In, m) < 1/4 for all m.

Consider the correspondence RO IT; x I, = II; xII; given by RO (1, m9) =
{(x}, 7)) € Iy x I : @, = B () and 7} € p(#3*(m1))}. Since Z is upper hemicon-
tinuous and convex-valued, Kakutani’s fixed point theorem guarantees the existence of
a fixed point (70772 7d772) - As w0772 (ag]s, m) < 1/4 for all (s,m) by construction,
Lemmali implies that, for all v, € [0,1) and (s,m), either lim, ; 7}7""[In, m|6,] =
0 or lim., _,; 70772 [In,m|f,] = 0. This means that, as 7, — 1 then § — 1, the prob-
ability that a receiver encounters senders with both types that pair In with the same
message m approaches 0. Since a receiver would only ever play a3 in response to (In,m)
if they have previously encountered senders of both types play (In,m), this means
that lims_ lim., 1 Z5(70"7)(ag|In,m) = 0 for all m € M. Since p(my) = {m}

if mo(as|In,m) < 1/4 for all m, a3 = p(ZF)(x37?) = P (70772) for fixed
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72 € [0,1) when ¢ is sufficiently close to 1 and, given 4, 7 is sufficiently close to
1. Thus, for fixed v, € [0,1), (xP7*7? 7377) is a fixed point of %% when § is
sufficiently close to 1 and, given 9, v, sufficiently close to 1.

To show that lim.,_; lims_, lim,, 1 70""7[In] = 0, suppose towards a contradic-
tion that there is a sequence of receiver continuation probabilities {7 ;};en, a collec-
tion of sequences of sender discount factors {0,:};ken, and a collection of sequences
of sender continuation probabilities {71 ;x};k1en such that (a) lim; o v2; = 1, (b)
limy o0 = 1 for all j, (¢) limyewmjuy = 1 for all jk and
(d) lmyeo limpg oo limy o0 wfj’km’j’k’l’w’j [In,ml|f] > 0 for some § € © and m € M.
Without loss of generality, take 6 = 6;. By what we have shown, it must be that
im0 limy_y o0 2 F 7950929 [T m|6,] = 0 for all sufficiently large j. Combining this
with lm;_ e limy o0 limy o0 ij’km’j’k’l’w’j[]n,m|91] > 0 and lim; o 72; = 1 gives

5j,k7’71,j,k,la’¥2,j(

im0 limy o0 limy o0 o ai|s,m) = 1, because with probability 1 every re-

ceiver encounters a type 6 sender playing (In, m) but never encounters a type 5 sender

. . . . . 83 e VLo 1V

playing (In, m). However, since u; (6, In, a;) < 0, lim_, o limy_, o limy o 7y * 750729 (
. . . . . . 8 YLk V2

1 combined with Lemma [B1 requires lim; ., limy, o limy_o 7" 50729 [ In m|0,] =

0, a contradiction. H

OA.6.3 Analysis of Example 4

Proposition OA 6. The least-cost separating equilibrium of the game in Ezample [§)
has 0 = 1 play (si(1),s5(1)) = (1/2,0), to which the receiver responds a*(1) = 10,
0 = 2 play (s7(2),s5(2)) = (1/2,5), to which the receiver responds a*(2) = 20, and
0 = 3 play (s7(3),s5(3)) = (1/2,15), to which the receiver responds a*(3) = 30.

Proof. We first establish that this play is consistent with a separating PBE. Given an
arbitrary (s1, $2) and a belief X about the sender’s type, the receiver’s best responses
are the closest actions to 20s;E;[6], as can be readily verified using the receiver’s utility
function. For s; = 1/2 and the belief that the type is 6, the receiver’s best response is

106, so the prescribed receiver play following the on-path sender play is indeed optimal.

15
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Fix the receiver’s response to any off-path signal-message pair (s, s, m) to be 20s1, i.e.
the best response under a belief putting probability 1 on § = 1. All that remains is to
check that the incentives of the sender types are satisfied. We verify this for the § = 3
sender type. (Similar arguments handle the other two types.) Under the prescribed
play, the payoff of the # = 3 sender type is u;(3,1/2,15,30) = 30. If the § = 3 sender
were instead to mimic § = 1 or # = 3, their payoff would be 15 or 25, respectively.
Moreover, if the 6 = 3 sender were to deviate to some off-path signal-message pair
(s1, 82, m), their payoff would be 60(1 — s1)s; — sy, which is strictly lower than 30 for
all s; € [0,1] and s, > 0.

We now show that every other separating equilibrium results in (weakly) lower
payoffs to each of the sender types. The payoff of the § = 1 sender from (si, s5) when
the receiver responds with 20s; is 20(1 — s1)s; — S2, which attains its maximum value
of 5 at (s7(1),s5(1)). The maximum possible payoff of the § = 2 sender from playing
some (1, o) when the receiver responds with 40s;, subject to the constraint that 6 = 1

would obtain a lower payoff than 5 by imitating 8 = 2 is

max 80(1 — s1)s1 — s9 s.t. 40(1 — s1)s1 — 59 < 5.
(s1,82)€S

The solution to this problem is (s7(2), s3(2)), and the resulting payoff to § = 2 is 15.
Finally, the maximum possible payoff of the § = 3 sender from playing some (s, $2)
when the receiver responds with 60s1, subject to the constraint that § = 2 would obtain

a lower payoff than 15 by imitating § = 3 is

max 120(1 — s1)s; — so s.t. 80(1 — s1)s1 — 59 < 15.
(s1,82)€S

The solution to this problem is (s7(3),s5(3)). W

Proposition OA 7. If © is a JCE in the game in Ezample [4], then each 6 plays
(s7(0),s5(0)) with strictly positive probability, and the receiver responds to all on-path

(s7(0),s5(0), m) with a*(0) as in the least-cost separating equilibrium.
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Proof. We first establish that in a JCE 7, for each signal-message pair (s, s, m) played
by 6 = 3, the product of (1 —s1) and the receiver’s response has expected value at least
44/3. Suppose otherwise that there is some signal-message pair (s, so,m) that § = 3
plays which induces a receiver response with expected value a such that (1 — s;)a <
44/3. Tt must be that sy < 44, as otherwise § = 3 would obtain a strictly negative
payoff. Thus, s, = [sy+ 30 —2(1 — s1)a] € S. Note that uy(3,7) = 3(1 — s1)a — sq,
while uy (6, 7) < 0(1 — s1)a — s for 6 € {1,2}. Since u;y(3,1/2, 55, a) = 3a/2 — s, we
have that ui(3,1/2,s5,a) > uy(3,7) if and only if a > 2(1 — s1)a + 2(s}, — s2)/3, with
the inequality strict for all @ > 2(1 — s1)a + 2(s, — s2)/3. Moreover, ui(0,1/2,s5,a) >
ui(0,m) for & = 1 or 0 = 2 only if uy(0,1/2,s,,a) = 0a/2 — s, > O(1 — s1)a — s,
which requires a > 2(1 — s1)a + sy — so. Since sh > s9, 2(1 — sy)a + sh — s2 >
2(1 — 51)a + 2(sh — s3)/3 which means that ©(1/2, s, 7) = {3} and the only justified
response to (1/2,s5) is 30. As this is strictly greater than 2(1 — s1)a + 2s5/3 — 2s5/3
when (1 — s1)a < 44/3, the claim follows.

An immediate implication is that there must be some signal-message pair that 6 = 2
sends with positive probability that § = 3 does not send, because (1 — s;)a < 25/2 for
any signal (s, s2) and receiver best response a to a belief where the relative weight on
0 = 2 versus 6 = 3 is at least that of the prior.

We now show that, for each signal-message pair (si, so,m) played by # = 2 but not
by 6 = 3, the product of 1 — s; and the receiver’s response must have an expected
value between 19/2 and 10. Whenever the probability of § = 3 is 0, the product of
(1 — s1) and any undominated receiver response is no more than 10, so we need only
show that the expected value of the product must exceed 19/2. Suppose otherwise
that there is some signal-message pair (si, s2,m) that § = 2 plays but § = 3 does not
play for which the expected value of the receiver response a satisfies (1 — s1)a < 19/2.
It must be that so < 19, so s, = [ss + 10— (1 — s1)a] € S. Note that uy(2,7) =
2(1 — s1)a — s9, while uy(1,7) < (1 — s1)a — s. Since u1(2,1/2,85,a) = a — s, we
have that uy(2,1/2,s,,a) > ui(2,7) if and only if a > 2(1 — s1)a + s — s9, with the

inequality strict for all @ > 2(1 — s1)a + s}, — so. Moreover, u;(1,1/2, s5,a) > uy (1, 7)
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only if a/2—s}, > (1 —s;)a—s, which requires a > 2(1—s;)a+2(s, —s3). Since s}, > sy,
2(1—s1)a+2(sh —s9) > 2(1— )@+ sh — 59, which means that ©(s+10,7) C {2,3} so
justified responses to (1/2, s,) must weakly exceed 20. As this is strictly greater than
2(1 — s1)a + s, — sg when (1 — s1)a < 19/2, the claim follows.

There must be some signal-message pair that only § = 1 plays. To see this, first
observe that there can be no signal-message pair played by both ¢ =1 and § = 3. If
there were some signal-message pair (s1, $2,m) played by both § = 1 and § = 3, the
product of 1 — s; and the expected value of the receiver response @ must be less than
25/2, because increasing differences in 6 and (1 — s;)a in the sender utility function
implies that every signal-message pair played by ¢ = 2 must induce the same expected
value (1 — sy)a. This contradicts the fact that, for every signal-message pair played by
6 = 3, the product of 1 — s; and the expected value of the receiver response must be
weakly greater than 44/3. Additionally, # = 1 cannot only play signal-message pairs
that are also played by 6 = 2. Otherwise, there would be some signal-message pair
(s1, 82, m) played by 6 = 2, for which the product of 1 — s; and the receiver response
would have expected value weakly less than 15/2 since (1—s1)a < 15/2 for any receiver
best response a to a belief where the weight on § = 3 is 0 and the weight on § =1 is
at least that of the prior.

For every signal-message pair that only 6§ = 1 plays, s; = 1/2, s = 0, and the
receiver responds with @ = 10. The reason is the payoff § = 1 obtains from a signal-
message pair (s1, s2, m) that only 6 = 1 plays is 20(1 — s1)s; — S2, which is strictly less
than 5 if s; # 1/2 or s9 > 0. However, § = 1 can secure a payoff of 5 by simply playing
(s1,52) = (1/2,0), since every a < 10 is a strictly dominated response for the receiver.

We now argue that, for every signal-message pair played by # = 2 but not by 6 = 3,
s1 = 1/2, s5 = 5, and the receiver responds with a = 20. We have previously established
that the product of 1 — s; and the expected value of the receiver’s response a must be
between 19/2 and 10. For (1 — s;)a < 10 to hold, it must be that § = 1 also plays this
signal-message pair. This requires u1(1,s,a) = (1 —s1)a— s2 = uy(1, 7). As previously

established, u; (1, 7) = 5, so it must be that s, = (1—s;)a—>5. However, thereisno a €
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[19/2,10) such that a—5 € S. Therefore, (1 —s;)a = 10. Since (1 —s71)a < 40(1—s1)s;
and 40(1 — s1)s; < 10 for all s; # 1/2, it follows that s; = 1/2 and thus @ = 20. From
u1(1,1/2,89,20) = 10 — s9 < 5 = uy(1,7), we obtain s, > 5. All that remains is to rule
out so > 5. If 59> 5, uy(1,1/2,89 — 1,a) =a/2—s3+1>5=wuy(1,7) only if a > 20.
On the other hand, u1(2,1/2,80 — 1,a) = a —ss + 1 > 20 — s = uy(2,7) if and only
if @ > 19, with the inequality strict for all @ > 19. Thus, ©(1/2,s, — 1,7) C {2,3}, so
justified responses to (1/2, sy — 1) must weakly exceed 20. It follows that sy = 5.

Finally, we show that, for every signal-message pair played by 6 = 3, s; = 1/2,
s9 = 15, and the receiver responds with a = 40. We have previously established that
the product of 1 — s; and the expected value of the receiver’s response @ must be
between 44/3 and 15. For (1 — s;)a < 15 to hold, it must be that § = 2 also plays
this signal-message pair. This requires u;(2, s1, s9,a) = 2(1 — s1)@ — s = u1(2, 7). As
previously established, u;(2,7) = 15, so it must be that s, = 2(1—s;)a— 15. However,
there isno (1—s;)a € [44/3,15) such that 2(1—s;)a—15 € S. Therefore, (1—s;)a = 15.
Since (1 — sy)a < 60(1 — s1)s1 and 60(1 — s1)s; < 15 for all s; # 1/2, it follows that
s = 1/2 and thus a = 30. From wu;(2,1/2, s9,30) = 30 — s < 15 = u;(2, 7), we obtain
sy > 15. All that remains is to rule out s > 15. If s > 15, u1(0,1/2,85 — 1,a) =
0a/2 — s+ 1> uy(0,m) for either § = 1 or § = 2 requires that a > 40. On the other
hand, u1(3,1/2,50 — 1,a) = 3a/2 — so + 1 > 45 — 59 = uy(3, 7) if and only if a > 29/3,
with the inequality strict for all a > 29/3. Thus, ©(1/2,s, — 1,7) = {3}, so the only
justified response to (1/2,s9 — 1) is 30. It follows that s, = 15. W

OA.7 Other Examples

OA.7.1 Stability without Initially Trusting Receivers

Ezample OA 1. The sender’s type space is © = {6y, 05}, signal space is S = {In, Out},
and the receiver’s action space is A = {ay,as}. The payoffs to the sender and receiver

are given below.
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91 ai as 02 ay a2
In | 1.1]-1,-1 In | —1,-1]-1.1
Out | 0,0 0,0 Out 0,0 0,0

Out strictly dominates In for type 65, so s plays Out in every equilibrium of this
game. However, there are equilibria in which 6, plays In and equilibria in which 6,
plays Out. The equilibria where 6; plays Out do not survive the Intuitive Criterion
since a; is the receiver’s unique best response to In when the sender’s type is 61, and
6, obtains a strictly higher payoff from (In;,a;) than from playing Out.

We show that, when g5 is such that a receiver plays as when they first encounter a
sender playing (In,m) for every message m € M, there are stable profiles in which 6,
plays Out.

We focus on steady state profiles in which the aggregate probability that a receiver
responds to (In,m) with a; is less than 1/3 for every message m € M, which makes it
strictly optimal for type 6; senders to play Out. We show that, for fixed v, € [0, 1), such
steady state profiles exist, and, moreover, that the corresponding aggregate probability
that a type 0, sender plays In approaches 0 as 74 — 1 and then § — 1.

Let v : 11y — Il be the mapping given by

Y(ma)(ar|In, m) = min {Wg(a1|]n,m), %} VYm e M.

Note that v is continuous and coincides with the identity mapping whenever my(aq|In, m) <
1/3 for all m.

Consider the mapping Foe T x Ty — T x I, given by RO (71, M) =
(R (1), (22 (m1))). Since %5772 is continuous, Brouwer’s fixed point theorem
guarantees the existence of a fixed point (75772, 75772) As 7072 (ay|In,m) < 1/3
for all m by construction, Lemma@ implies that lims_,; lim,, ﬁf’”l M2[In] = 0 for all

72 € [0,1). Furthermore, because g, is such that every receiver would play as at a first
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encounter with a sender playing (In,m), lims_q lim.,_,; 25 (707" (ay|In, m) = 0
for all m, v € [0,1), so the mo(ai|In,m) < 1/3 constraint does not bind when §
is sufficiently close to 1 and, given 9, 7, is sufficiently close to 1. Formally, since
T oL g (n972) only if 29 (7077 (ay|In, m) > 1/3 for some m, we have that,
for fixed v € [0,1), )7 = ZP(x277?) for § sufficiently close to 1 and, given 4,
v, sufficiently close to 1. Combining this with the fact that 757" = 207 (xd77?)
for all v1,7, € [0,1), it follows that, for fixed v, € [0,1), (a7, 7577?) is a fixed
point of %> for § sufficiently close to 1 and, given 6, ~; sufficiently close to 1.
Since lim,,_,; limgs_,; lim,, 4 Wf’“’” [In] = 0, we conclude that there are stable profiles

in which both types plays Out. [J

In this example, In is strictly dominated for type 6,. If the priors of the receiver
agents put 0 probability on sender types for whom a given signal is strictly dominated
after an observation of that signal, the receivers would respond to In with a;, which
would preclude the “All Out” equilibria. Depending on the context, such belief re-
strictions might be plausible, though they do rely on the receivers knowing the sender
payoff function. However, even with such restrictions, stability can still allow implau-
sible outcomes when initial trust is not satisfied. For example, we could modify the
payoffs above so that In is no longer strictly dominated for 65, but rather conditionally
dominated when the receiver response to Out uses a particular action, say as, with
high probability. When the receiver priors are non-degenerate, we could choose the

receiver payoffs so that both types playing Out is stable.!

OA.7.2 Alternate Example Where D1 Does Not Imply JCE

Ezxample OA 2. Here we analyze a simple example that is related to the idea of cor-
porate culture as a way of telling workers what to do in unforeseen contingencies (see

e.g. Camerer and Vepsalainen| (1988) and Kreps| (1990)). The sender is a firm, and the

"'We could further restrict the receiver priors to assign probability 0 to sender types for whom a given
signal is equilibrium dominated, but such restrictions are not consistent with a learning foundation for
equilibrium, since they require that the receivers know the equilibrium being played in the population.
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receiver is a recently hired worker. The firm’s signal s € {Creative, Standard} is its
choice of job assignment for the worker: The firm can either assign the worker to one
of its “standard” jobs or to a “creative” job. Standard jobs carry out the firm’s oper-
ation as currently designed, and let the firm effectively control the actions of workers
through a combination of monitoring and provision of incentives. Creative jobs are
intended to lead to innovations which the firm can then incorporate into its main oper-
ations, and the firm has relatively little direct control over the work these workers carry
out. The worker’s choice of action a € {a,as, az} represents the focus and intensity
of their costly effort when assigned a creative job: a; and as both represent intense
effort directed at productive innovation but with focuses in different sectors, while as
represents a lack of productive effort.

The firm has three possible types, © = {01,605,05}. Type 6; and 6, firms obtain
higher payoffs than the relatively unproductive type 63 firms. Moreover, type 6, firms
are particularly well suited to exploit innovations that workers with creative jobs choos-
ing action a; may create, and type 6y firms have an advantage with innovations from
as. Due to their high payoffs from standard jobs, type 6; gains relatively less from a
worker with a creative job working on as than type 03 does. (Likewise for type 65 and
a;.) A worker with a creative job is incentivized by rewards that come from successful
innovation, so such a worker would like to take action a; if the firm has type 64, ay if
the firm has type as, and a3 if the firm has type 65.

The payoffs are given below.?

2The table indicates the worker can take any action in {a1,az,a3} when assigned a standard job.
However, we think of the firm as controlling the actual effort of a worker with a standard job, which
is why the payoffs are independent of the formal action of a worker assigned a standard job.
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th a1 a2 a3 0 a1 a2 as

Creative | 4,1 ]12,01]0,—1 Creative | 2,0 | 4,1 |0,—1
Standard | 2,0 | 2,0 | 2,0 Standard | 2,0 | 2,0 | 2,0
03 ai % as

Creative | 1,0 | 1,0 | —1,1
Standard | 0,0 | 0,0 | 0,0

In every JCE, there is a positive probability of the worker being assigned a creative
job. The reason is that the worker must, with positive probability, respond to Creative
with a3 in order to deter the firm from playing Creative, but there is no justified
response to Creative that uses ag, because a3 is an optimal response to C'reative only
when the worker assigns a positive probability to the firm being type 63. However,
either 6, or 0y strictly prefers to play Creative whenever 03 weakly prefers Creative,
so f3 is not a justified type for Creative.

Every stable profile has a positive probability of the worker being assigned a creative
job because, for every firm type to learn that Standard is weakly optimal, the aggregate
worker response must use asz with positive probability whenever Creative is played.
Since responding to Creative with az is optimal only for beliefs with positive probability
on f3, Initial Trust implies that some @3 firms must be learning to play C'reative while
claiming to be either type 6, or #5. But if 03 firms learn that it is weakly optimal to
play Creative, then either the 6, or 6 firms learn that it is strictly optimal to do so.

Unlike JCE, many existing refinements allow equilibria in which all types play
Standard. We discuss why this is the case for D1, which is typically thought of as a
strong refinement. D1 allows the worker to respond to Creative with as, because there
is no type which strictly prefers to play Creative whenever 03 weakly prefers to do
so. In particular, #5 strictly prefers to play Creative whenever the worker plays either

ay or as with probability 1. For the other two types, there are some mixtures over a;
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and ay at which C'reative is strictly preferred to Standard and others where Standard
is strictly preferred to Creative. In contrast, 03 is not a justified type for Creative
because whenever A3 weakly prefers to play Creative, there is some type that strictly

prefers to do so, but this type need not be the same across worker responses. [

OA.8 Stability Under Alternative Assumptions

OA.8.1 Weakening Initial Trust

Here we discuss a refinement satisfied by all stable profiles under an alternative as-
sumption to initial trust. Suppose that receivers know the payoff functions of the
senders, as in [Fudenberg and He (2020). Then receivers who are long-lived may feel
that they have acquired a good sense of each sender type’s equilibrium payoff. Suppose
that such a receiver encounters a sender playing a pair (s, msé) that the receiver has
not previously seen types outside of 5) play. If the receiver believes that only types in
O could improve their outcome by deviating to s when the receiver’s response is con-
tained in BR(s, (:5), we assume the receiver finds such a message credible and respond
accordingly.?

As before, any stable profile must be a PBE-H. Moreover, stability also imposes
additional conditions for profiles 7 that are on-path strict for the receiver or are such
that the sender types’ payoffs would not be changed if the receiver deviated.* For such
a profile to be stable, it must be that, for every signal s where u (6, s,a) < uy(0, ) for
all a € BR(O(s,7),s) and 0 & O(s,7), there is some m € M such that my(-|s,m) €
A(BR(O(s,7),s)). Aside from the qualifying condition (6, s,a) < u;(0,7) for all
a € BR(O(s,m),s) and § ¢ O(s, ), this requirement is the same as Condition 2 of
Definition |3l Combined, these conditions are weaker than JCE, so they are satisfied

3The receiver responding to “credible” statements in this way is similar to the motivation underlying
“credible robust neologisms” in |Clark (2020)).

4These restrictions on 7 guarantee that a typical receiver agent will learn the equilibrium payoffs of
the sender types with high probability.
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by the equilibria we focus on in Examples |3| and [2l The conditions coincide with JCE
in Example 4| provided that the game is altered to have sufficiently fine action spaces.
Unlike JCE, the conditions are satisfied by the D1 equilibrium in Example |1} but there

are other games in which the conditions rule out D1 equilibria.

OA.8.2 Strengthening Initial Trust

Suppose that we strengthen initial trust to require that for any s € .S and @), o' C O, if
the receiver has never seen a type outside of QU play (s, ms,é)> then their response
to a first instance of (s,m, g) will belong to BR(OUO', s). This means that a receiver
who has only observed types in o' deceitfully play (s, ms’é) puts high probability on
the sender type being in either O or © after observing this signal-message pair. This
seems plausible; however, we focus on initial trust because of JCE is simpler and easier
to apply than its iterated version.

The stable profiles then satisfy an iterated version of JCE, which itself is stronger
than the [terated Intuitive Criterion (Cho and Kreps, |1987) and co-divinity (Sobel,
Stole and Zapater, 1990). Moreover, it is not nested with NWBR, but it is weaker
than the refinement obtained by iteratively applying NWBR.

Fix s € S and 7 € II; x II;. Consider the following iterated version of the JCE
procedure for computing the set of justified types. Initialize @0(3,7) = O(s, 7). For
ne{1,2,3, ..}, let

ﬁg(s,ﬂ) ={ac€ A(BR(@n_l(s,ﬂ),s)) cur(6, s, ) > up(0,m)},
0" (s,m

( ) )73)) : ul(ev Saa) = ul(eaﬂ-)}’
Ot (s,m) = {0 € © : Dj(s, ) UDY"(s,m) € UpzoDp(s,7)},

1

D" (s,m) = {a € A(BR(

otn(s,m) if O (s,7) # 0

—n—1

0 (s,m) if O (s,m)=10
Set © (s,7) = Nuen® (s,m). Note that @n+1(s,7r) C ©"(s,m) for all n and that
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6% (s,m) C 8°(s,7) = O(s, 7).

Under this strengthening of initial trust, every stable profile 7 must satisfy the
following requirement: For every signal s, there is some m € M such that m(+|s,m) €
A(BR(©7(s,m),s)). We refer to PBE-H that satisfy this requirement as strongly
Justified communication equilibria.

The proof proceeds by using similar arguments to the proof of Theorem [1|to induc-

tively establish that ma(-|s, m g~ ) € A(BR(©"(s,7),s)) for all n € N.

OA.8.3 Costs of Lying

Suppose that we allow the sender’s utility function u; : © x S x M x A — R to depend
on the sender’s message m in the following way: For all # € © and ©',0” C O such
that 0 € ©'NO", and ©” C © such that 0 & O, uy (0, s,mse,a) = u1(0, s, mser,a) >
u1(0, s, ms e, a) for all s € S and a € A. Here lying is weakly costly for the sender in
that, for a given s and a, the sender gets a lower payoff from a message that represents
a set of types to which they do not belong. For simplicity, we assume that all messages
that represent a set containing the true type give the sender the same payoft.

For each signal s, message m, and profile 7, we will define a set of types O(s, m, 7)
that is analogous to the set of justified types in our main setting where m does not

impact payoffs. To do this, first set

lN)g(s,m,ﬂ) ={a € A(BR(©,5)) : u1(0,s,m,a) > uy(0,m7)},

DY(s,m,7) = {a € A(BR(©,5)) : uy(0,s5,m,a) =u(0,7)},

and

Ot (s,m,m) = {0 € © : Dy(s,m, ) U 5g(s,m,7r) Z Uglﬁﬁy(s,m,ﬂ)}
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Then let
Of(s,m,m) if Of(s,m,7) #0

O(s,m,m) = :
© if Of(s,m,7) =10

Under initial trust, a similar proof to that of Theorem|[I]shows that any stable profile
7 must satisfy the following requirement: ma(:|s,m,50..) € A(BR(O(s,0,7),s))
for all s € S. When the sender’s message is payoff irrelevant, ©(s, m,7) = O(s, 7), s0
this requirement implies Condition 2 of Definition While lying costs make it less
appealing for a non-justified type to falsely represent themself as justified, they can

change the set of equilibria, so it is hard to give a precise summary of their effect in

general games.

OA.9 Stability Under a More General Limit

In this section, we study steady state aggregate play in the more general limit where first
~1 tends to 1, and then 6 and 75 tend to 1, without any restrictions on the relative speed
with which ¢ and ~y, converge. Formally, we consider lim s ,)—(1,1) lim,, -1 I1*(g, 0, 71, 72).

We will call these the stable* profiles.

Definition OA 3. Strategy profile m is stable™ if there is a sequence {J;};en — 1,
sequence {Va,;}jen — 1, and sequences {V1 jx}jren with imy oo y1 5k = 1 for all 7,

such that m = lim;_,o. limy_, 7, for some sequence w1, € 11*(g, 01,7, 71,5,k V2,5)-
Since every stable profile is also stable*, it follows that stable® profiles exist.
Corollary OA 2. Stable* strategy profiles exist.

As with stability, there is a strong relationship between the stable* profiles and the
set of JCE.

Definition OA 4. Strategy profile ™ has strong incentives if, for every off-path s and

0 & O(s, ), there is some on-path (s',m') such that ui (0, s',a) > (0, s, m(|s, M B(s.m)))
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for all a € BR(p(s mry,s"), where piy mry is the posterior belief given (s',m’) obtained

from w1 and Bayes’ rule.

A strategy profile has strong incentives if for every off-path s, every type would obtain
a strictly lower payoff from playing (s,m, g, ) than they would from playing some
on-path signal-message pair when the receiver responds with any best response to the

corresponding posterior.

Theorem OA 1. Suppose that the density of the prior of the sender agents is every-

where positive. If w is stable* and has strong incentives, then it is a JOE.

Theorem says that a profile with strong incentives can be stable® only if it
is a JCE. The assumption of strong incentives is vacuous if all signals are played with
positive probability in 7. Also, note that wuy(6,7) > wuy(6, s, msg(s’ﬂ)) for an arbitrary
signal s and profile 7 whenever 6 & ©(s, ). Thus, every profile that is on-path strict
for the receiver has strong incentives.?

The remainder of this section is devoted to the proof of Theorem [OA 1. The
argument that every stable® profile is a PBE-H proceeds very similarly to that for the
stable profiles. The following lemma affirms the optimality of the aggregate sender

play given the aggregate receiver play.

Lemma OA 1. Suppose that 7 is stable*. Then for each 6 € ©, m(-|0) puts support
only on those sender signal-message pairs that are optimal for type 6 under the receiver

behavior strategy .

The next lemma shows that aggregate receiver play is a best response to (on-path)

aggregate play by the senders in a stable™ profile.

Lemma OA 2. Suppose that 7 is stable*. Then for any sender signal-message pair
(s,m) € S x M that occurs with positive probability under , ms(-|s,m) puts support

only on receiver actions that are best-responses to s and the posterior belief induced by

A and {m(s, m|f)}oee.

5 Another sufficient condition is that no sender type would be hurt if the receiver were to change their
response to some on-path signal-message pair, as is the case when all types choose an “exit” option.
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We omit the proofs of Lemma and Lemma [OA 2, which are quite similar to the
proofs of Lemma [I] and Lemma [2] respectively.
Lemma [OA 3 below shows that when 7 is a stable profile that has strong in-

centives, the aggregate receiver response to any (s,ms’@(sm)) must be supported on

BR(O(s,m), s).

Lemma OA 3. Suppose that 7 is stable* and has strong incentives. Then ma(-|s, My g5 x)) €

A(BR(O(s,m),s)) foralls € S.

We prove Lemma in the following subsection, but first we use Lemmas [OA]
1], [OA 2| and [OA 3 to prove Theorem [OA 1.

Proof of Theorem OA 1. Lemma implies Condition 1 of the definition of PBE-
H, and Lemma implies Condition 2. As before, Condition 3 of Definition
follows from the fact that the receivers in our model myopically optimize. Finally, the
additional condition in Definition [3|follows from Lemma[OA 3jand the assumption that

7 has strong incentives. W

OA.9.1 Proof of Lemma [OA 3

The following lemma relates the receiver’s continuation parameter to the probabil-
ity the aggregate receiver response to any on-path signal-message pair places on the

corresponding receiver best responses.

Lemma OA 4. Fix a strategy profile w. Let X°" be the set of sender signal-message
pairs that are on-path under w1, and let p(sm)y be the posterior belief given (s,m) € X"
that is obtained from m and Bayes’ rule. There are v,n > 0 such that, for every ) € 11y

satisfying max(o s mycoxsxar [T (s,m|6) = m1(s,ml0)] < v and all 5,71, € [0,1),

A" (M) (BR(p(s.m); 5)|(s,m)) = 1= (1 =)
for all (s,m) € X"
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Proof. Let q(0,s,m) = \(0)m1(s,m|0) be the distribution over sender types, signals,
and messages induced by A and m. For ¢ > 0, let Q. = {¢’ € A(® x S x M) :
maxg,s mycoxsxm |¢ (8, s,m)—q(0,s,m)| < e}. Because best responses are upper hemi-
continous, there exists € > 0 such that every receiver whose belief g, € A(A(Ox.SxM))
puts probability at least 1 — ¢ on ). will respond to every (s,m) € X°" with some
action belonging to BR(p(sm), 5)-

Given the non-doctrinaire prior go, Theorem 4.2 of |Diaconis and Freedman (1990)
implies that there is some T" > 0 such that a receiver who has lived more than 7" periods
assigns posterior probability of at least 1 — e to probability distributions ¢’ within /3
distance (in the sup-norm metric) of the empirical distribution they have observed.

We provide a lower bound on the share of receivers who have lived more than T
periods and who have observed an empirical distribution within €/3 distance of the
true distribution ¢’ € A(© x S x M). By Hoeffding’s inequality, the probability that
the fraction of (6, s,m) observations is outside of [¢'(0, s,m) —¢/3,¢ (0, s,m) +¢/3] for
a receiver with ¢ observations is less than 26_%2 so the probability that the empirical
distribution of a receiver with ¢ observations is greater than £/3 distance from ¢’ is no
more than 2|S||M \e_%t. Thus, the share of receivers who have lived longer than T
periods and who have observed an empirical distribution within /3 distance of ¢’ is

at least

2
- 22 28||M|(1 —y)rde 5T

2 _ 2e2 9
t=T 1 — e
2
1—7F  2|9||MTe 5T
— 72 1 — Vo€~ 9
2|S||M
YA
1—e9
62
where the inequality follows from the facts that (1—72)/(1—~,) < T and ~Z e /(1—
Yoe™ 5 ) < 1/(1— e %) for all 7, € [0,1).

262

Let n =T+ 2|S||M|/(1 —e 79 ), and let v > 0 be such that, for every 7} € II; sat-
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isfying maxg s.mycoxsxa |1 (s, m|f) — w1 (s,m|0)| < v, the corresponding distribution
over sender types, signals, and messages belongs to ()c/3. It follows from the arguments
above that, for all 7} within v distance (in the sup-norm metric) of 7y, the steady-state
share of receivers who respond to each (s,m) € X°" with some element of BR(p(s ), 5)

is at least 1 —n(1 — ;). W

The next lemma builds on Lemma to show that, in a sequence of steady
states converging to a stable™ profile with strong incentives, the ratio of the aggregate
probability of a non-justified type playing (s, mS’@(sﬂr)) to the expected lifetime of a

receiver agent approaches 0.

Lemma OA 5. Fiz a stable™ strategy profile @ with strong incentives. Let {m;; €
I1*(g, 0;, Y1,k V2,5) }iken be a sequence of steady state profiles such that lim;_,oo limy_,o 7 1 =
7, wherelim; o 6; = 1, lim; oo Y2; = 1, and limy_,o 0,1 = 1 for all j. For everye > 0,

there exists some J € N and function K : N — N such that

T15k(8, M 5(sm10) < (1 —72,5)

forall s, 0 ¢ O(s,7), 5> J, and k > K(5).

Proof. By Lemma and the fact that lim;_, limy_,o ;5 = 7, there exists some
n >0, J" €N, and function K’ : N — N such that

T2 jk(BR(Psm), 8)[(5,m)) > 1 —n(1 — 725) (1)

for all (s, m) on-path under 7y, j > J', and k > K'(j).

Fix a signal s and type 6 such that # & O(s, 7). Since 7 has strong incentives, there
is some (s',m’) that is on-path under 7y such that w1 (60, s, a) > u1(0, s, 2(+|s, M 55 x)))
for all a € BR(p(ym),s"). For any a € A(A) and z > 0, let A, = {o/ € A(A) :

max,ec4 |o/[a] — afa]| < z} be the set of mixtures over A that are no greater than z
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away from « in the sup-norm metric. Let v > 0 be such that

(1—v)u(0,5',a) + vminuy (0, s',a") > uy(0,s,a) + v (2)

a’€A

for all a € BR(p(sm),s') and o € .A(WQ(.|57mS,§(M))7V).

Suppose that a sender has played (s',m’) at least N > 0 times. Combining Equation
With Lemma A.1 of|[Fudenberg and Levine| (2006) implies that the probability that the
fraction of times the sender observed a receiver play something outside of BR(p(s /), 5')
in response to (s',m’) exceeds v/2 is no more than 2''n(1 — ~,;)/(3v*N). For a fixed
e >0, let Ny ) be such that 219/ (30 Ny ) < €/4. For such an Ny, it follows
that 2''9(1 — y2,7) /(30 Ny mny) < €(1 — 72,5) /4.

By the assumption that the sender’s prior has a density g;(m) that is everywhere
positive and continuous in 7y € Iy, we can find a lower bound on the probability that
certain senders put on the receiver aggregate response to (s’,m’) playing an element
of BR(p(sm), ') with probability at least 1 — v. In particular, we will show there is a
lower bound ¢ > 0 on the probability that the aggregate receiver response to (s',m’)
puts probability at least 1 —v on BR(p(s m),s") as determined by two classes of sender
agents: (1) a sender agent who has played (s',m') fewer than Ny, times, and (2) a
sender agent who has played (s’,m’) more than Ny, times and observed a response
in BR(p(sm),s’) greater than a fraction 1 — /2 of the times. From the preceding
paragraph, the share of sender agents who fall into either of these two classes exceeds
1—e(l—,)/4

Consider a sender who, for each a € A, has n, observations of a receiver responding

to (s’,m’) with a. Then such a sender puts probability at least

minwzel_b 9 (7T2) f{CMEA(A):a[BR(p@/Ym/),s’)]Zl—y} HaEAa[a]na

MaXr,err, 91(72) fA(A) e ac[a]me

on the set of aggregate receiver responses to (s',m’) that have probability weakly

greater than 1 —v on BR(p(s m), s’). This expression is uniformly bounded away from

32



0 when there are fewer than Ny .y observations. Moreover, Theorem 4.2 of Diaconis
and Freedman (1990) implies that this expression is uniformly bounded away from 0
when there are more than Ny ) observations and the fraction of these observations
where the receiver responding with some element of BR(p(s s, s) exceeds 1 —v/2.

By similar arguments, there is some N! € N such that, for a sender who has played
(8,M5(s,m) at least Ny times, the sender’s expectation of the aggregate receiver re-
sponse to (s, (s ) is within v/3 (in the sup-norm metric) of the empirical response
the sender has observed. Moreover, by the law of large numbers, for any 7 € N, we
can choose some N{; > N{ to be such that there is a probability no greater than
(1 — 72,5)/4 that the empirical response to (s,m, g, ) observed by a sender who
has played (s,m, g ) at least N, times is more than v/3 away from the aggre-
gate receiver response ma ;i (+[s, My (s ). Let J” € Nand K” : N — N be such that
maxeea |25k (als, M g5 ) — m2(als, Mg )| <v/3forall j > J" and k > K"(j). It
follows that, for all such j and k, the probabﬂlty that A(m(.|5,ms,§<m))7y) contains the
expectation of the aggregate receiver response to (s, m, Bs, )), as evaluated by a sender
who has played (s, m 5, ) at least N ; times, exceeds 1 —e(1 — yo,5)/4.

Consider a sender belief g; € A(Ily) that satisfies

gl(WQ(BR(p(slym/)’ s')|s',m/) Z 1-— l/) Z C, ( )
3
1

91(m2 (-8, 1M 5o m) € Atmatlsim, gon))) =1 — §C~

The first inequality says that the belief puts probability at least ( on aggregate receiver

/

responses to (s’,m’) that play an element of BR(p(y m),s’) with probability weakly
greater than 1 — v. The second inequality says that the belief puts probability at least
1—(/2 on the aggregate receiver response to (s, m g ) belonging t0 Az, (.|sm, Slom) V)"
By Equation I, 2 all beliefs satisfying the conditions in (3)) must put probability at least
(/2 on aggregate receiver behavior strategies where playing (s',m’) gives a type 0
sender an expected payoff at least v greater than that from playing (s, mS@(M)).

For a type 0 sender with any belief that satisfies (3), the expected total lifetime
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payoff from the optimal policy exceeds the expected total lifetime payoff from only
playing (s, m&@(sﬂr)) by an amount bounded away from 0 when ¢ and ~; are sufficiently
high. In particular, for ¢ and ~; sufficiently close to 1, the difference in the expected
payoff from the optimal policy and that from repeatedly playing (s, ms@(m)) exceeds
c=Cv/4>0. Let J” € Nand K” : N — N be such that, whenever 7 > J"” and
k> K"(j),6; and vy ; are sufficiently close to 1 so that this gap in the expected payoffs
holds. Then, the version of Corollary 5.5 of Fudenberg and Levine (1993) presented in
Fudenberg and He (2018) implies that, for every j > J", there is some N{; such that
the share of type € sender agents who have a belief satisfying the conditions in ({3)),
have played (s, m g ) more than NJ; times, and are set to play (s,m g, ) in the
current period is less than (1 — 7, ;)/4 for all & > K" (j).

Let J = max{J',J",J"}, K(j) = max{K'(j), K"(j), K"(j)} for all j > J, and

Ny j = max{N_;, N/} for all j > J. Combining the preceding results shows that, when

VAl
j > J and k > K(j), the share of type # sender agents who have played (s, m, g5 )
more than Nj; times and are set to play (s,m; g, ) in the current period is no more
than 3e(1 — v2;)/4. Additionally, using the version of Lemma 5.7 of Fudenberg and
Levine ((1993) presented in [Fudenberg and He (2018), it follows that, for all j > J, K(j)
can also be chosen so that my ;x(s, m, g (s )|0) exceeds the share of type 0 sender agents
who have played (s, m, g ) more than N/, times and are set to play (s, m, g r)) in

the current period by no more than e(1 — 7, ;)/4 when k > K(j). Thus, we conclude
that 71 x(s, M, g |0) < (1 —2) forall j > J and k > K(j). B

The proof of Lemma [OA 3 uses Lemma [OA 5 to show that, in a sequence of
steady states converging to a stable* profile with strong incentives, the probability
that a receiver encounters a non-justified sender type playing some (s, mS@(M)) over
the course of their lifetime converges to 0. Initial trust then ensures that the aggregate

receiver response to each (s, m, B(s ) 18 justified.

Proof of Lemma OA 3. Let {m) € II*(g,0;, Y1,k V2.j) }iken be a sequence of steady

state profiles such that lim;_,. limy_,oo 7,1 = 7, where lim; o 0; = 1, limj 0 72,; = 1,
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and limy_,», 0,5 = 1 for all j. By Lemma , for any € > 0, there exists some J € N
and some function K : N — N such that m1 ;5 (s, m, g n|0) < e(1 —12)/A(0) for all
0 ¢ O(s,m), j > J, and k > K(j). Thus, when j > J and k > K(j), the probability
that a receiver agent in a given period encounters a sender type outside of O(s, )
playing (s,m, g ) is no greater than £(1 — 72;). It follows that, when j > J and
k > K(j), the probability that a receiver agent never encounters a sender type outside

of O(s, ) playing (s, M 5(s.m)) Over the course of their lifetime is at least

- 1
(1—e(l—9y,))=——.

; 72,3 72] g( '72,3)) 1+ e
Receivers who have never observed the signal-message pair (s, M (s, ) played by
a type outside of ©(s, ) would respond to this pair with an action belonging to

BR(O(s,),s). Thus,

7o(BR(O(s,7),8)|s,m 58(s,m) = lim lim ngk(BR(@(S,W>7S)|S,m&@(sﬂr)) >1/(1+¢).

J—00 k—o00

Since this holds for all € > 0, we have that m(BR(0(s, ), s)|s, m s8m) =1 W

OA.10 Details of Alternate Model

Consider a steady-state population of receivers who have geometric lifetimes with con-
tinuation probability v, and are matched with a sender each period with i.i.d. proba-
bility p. We show that, when the receivers have expected lifespan T = 1/(1 — ~) and
are expected to have Ny = pT matches over the course of their lifetime, the distribu-
tion of match experience in the receiver population is geometric with hit probability
F2 = (1 = 1/T)No/(1 + (1 — 1/T)Ny). Because the aggregate play of receivers only
depends on their experience, it follows that for every steady state in our main learning
model given parameters 7y, d, and 79, there is a steady state in this alternate model

given parameters v = v, 0, and 7, with the same aggregate strategy profile.
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Lemma OA 6. If receivers have geometric lifetimes with expected lifespan T and are
expected to have No matches over the course of their lifetime, then the steady-state

share of receivers who have previously been matched n € N times is (1 — )7y, where

. (=5
PTIE-ON

el

Proof. Denote the steady-state share of receivers who have previously had n matches
by fia[n]. We first derive fi3[0]. Since 1 — v is the share of newborn receivers and
(1 — p)fi2[0] is the share of non-newborn receivers who have never been matched, it

follows that fi2[0] = (1 — ) + v(1 — p)/i2]0]. Solving this gives

_ 1—7
0] = ———. OA 1
ol = = (0A 1)

Now we derive a recursive expression relating fia[n] to fiz[n — 1] for n > 0. Since
vpfiz[n—1] is the share of receivers who in the previous period were matched for the nth
time and (1 —p)i2[0] is the share of receivers who have been matched n times but were
unmatched in the previous period, it follows that fis[n] = ypfiz[n — 1] + (1 — p)fiz[n].
Solving this gives

ﬂﬁﬂ—;;%;@mm—u. (OA 2)

Combining Equations |[OA 1] and |[OA 2| gives

Mn]:(l_ P )( P )
L=y+yp/ \1=7+9p
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Substituting v =1 — 1/T and p = N/T renders

as desired. R
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