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Justified communication equilibrium (JCE) is an equilibrium re-
finement for signaling games with cheap-talk communication. A
strategy profile must be a JCE to be a stable outcome of non-
equilibrium learning when receivers are initially trusting and
senders play many more times than receivers. In the learning
model, the counterfactual “speeches” that have been informally
used to motivate past refinements are messages that are actually
sent. Stable profiles need not be perfect Bayesian equilibria, so JCE
sometimes preserves equilibria that existing refinements eliminate.
Despite this, it resembles the earlier refinements D1 and NWBR,
and it coincides with them in co-monotonic signaling games.

Cheap-talk communication is available in many of the settings signaling games
are intended to model, and signaling games with or without cheap talk can have
a great many equilibria. This paper provides a learning foundation for justified
communication equilibrium (JCE), which is a new equilibrium refinement for sig-
naling games with costly signals and cheap-talk messages. For a given signal and
strategy profile, a sender type is justified if some conceivable (i.e. undominated)
response makes the type weakly prefer to play the signal rather than conform
to the strategy profile, and makes all other types weakly prefer to conform. A
justified response to a signal is a convex combination of best responses to beliefs
that assign probability 1 to the justified types for that signal. JCE requires that
for every signal, there is at least one message that induces the receiver to play a
justified response.
The restrictions imposed by JCE on o↵-path play have some of the flavor of

commonly used signaling game refinements, such as the Intuitive Criterion (Cho
and Kreps, 1987) and D1 (Banks and Sobel, 1987), but JCE can make very di↵er-
ent predictions in economically relevant settings. Unlike those refinements, JCE
has a foundation in the theory of learning in games. We provide this foundation
by analyzing the limits of steady states in an overlapping generations learning en-
vironment where agents are patient, have long expected lifetimes, and the senders
on average play many more repetitions of the game than the receivers do. This
fits settings where the senders are institutions and the receivers are individuals
(or families, clans, etc.), since institutions will typically be involved in many more
interactions than individuals. We say that the strategy profiles corresponding to
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these steady states are stable.
We analyze the stable profiles under the assumption that the message space is

large enough that, for each signal and subset of sender types, there is a distinct
message that claims “I am playing this signal and my type is in this set.” We
further assume that receivers are initially trusting, which roughly means that
the receivers’ prior leads them to trust such messages they have not previously
observed to be lies. We view initial trust as a mild and plausible assumption on
how receivers respond to messages. Section V.C discusses how it relates to past
work on the interpretation of communication.
JCE emerges as a necessary condition for stability in our learning model because

when senders are long-lived most of them play a best response to the aggregate
play of the receivers. A given signal can only be a best response for justified types,
so receivers are very unlikely to encounter a signal being played by a non-justified
type. Initial trust then implies that most receivers will trust a message claiming
to be a justified type, and so play a justified response.
Because we formally add cheap talk to the extensive form of the signaling game,

our analysis can and does specify how receivers respond to each possible message,
including to the “null message” of saying nothing at all, so we can give the first
learning foundation for “speeches” of the sort Cho and Kreps (1987) used to moti-
vate the Intuitive Criterion. In particular, these speeches are not counterfactual,
but are messages that are actually sent, which lets us determine how receivers
respond to them. Thus, we sidestep the “Stiglitz critique” (Cho and Kreps,
1987; Rabin and Sobel, 1996) of signaling game refinements, which is based on
iterated arguments about how players believe their opponent “should” interpret
hypothetical deviations, and address the possible complications in adding explicit
communication to the signaling game discussed in Fudenberg and Tirole (1991a).
Our results can be seen as both a validation of and a correction to previous

signaling game refinements, which are only roughly in line with the implications
of non-equilibrium learning. Specifically, none of the traditional equilibrium re-
finements is a necessary condition for stability in our learning model.1 Indeed,
as shown by Example 3, the stable outcomes of our learning model need not be
perfect Bayesian equilibria (Fudenberg and Tirole, 1991b), since the response to
an o↵-path signal can be a mixture over pure best responses corresponding to
di↵erent beliefs that need not itself be a best response to a single belief. For this
reason, JCE is not a refinement of perfect Bayesian equilibrium, but instead is
a refinement of perfect Bayesian equilibrium with heterogeneous o↵-path beliefs
(PBE-H, Fudenberg and He (2018)).
We explore the relationships of JCE with previous equilibrium refinements later

in the paper, but we preview a few results here. As the left-hand box in Figure 1
illustrates, every JCE passes the “Intuitive Criterion Test,” and every JCE is a
rationality-compatible equilibrium (RCE, Fudenberg and He (2020)), which is the
strongest previous equilibrium refinement for signaling games that has a learning

1Moreover, as far as we know they have not been shown to be necessary in -any- learning model.
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Figure 1. JCE and other restrictions of PBE-H.

foundation. JCE is not nested with D1, but every PBE-H that satisfies NWBR
is path-equivalent to a JCE.2 The right-hand box in Figure 1 depicts the fact
that JCE, NWBR, and D1 are essentially equivalent in the special but important
class of co-monotonic signaling games, which provides a learning justification for
selecting the least-cost separating equilibria in many of these games.

I. Preliminaries

A. Signaling Games with Communication

In a signaling game with communication, the sender (player 1) has a type space
⇥, a signal space S, and a message space M . The sender observes their type,
which is drawn from a full-support distribution � 2 �(⇥), and then chooses a
signal s 2 S and a message m 2 M .3 The receiver (player 2) observes the sender’s
choice of (s,m), but not the sender’s type, then selects their action a 2 A, after
which payo↵s are realized. We assume that all of these sets are finite. We denote
the set of sender behavior strategies by ⇧1 = (�(S ⇥ M))⇥, the set of receiver
behavior strategies by ⇧2 = (�(A))S⇥M , and let ⇧ = ⇧1 ⇥ ⇧2 be the set of
strategy profiles.
The utility function of the sender is u1 : ⇥⇥S⇥A ! R and the utility function

of the receiver is u2 : ⇥⇥S⇥A ! R. Each player’s utility depends on the sender’s

2When we refer to NWBR in this paper we mean “Never a weak best response” in the sense of Cho and
Kreps (1987) and Cho and Sobel (1990).

3Throughout, we use �(⌦) to denote the set of (Borel) probability distributions over a set ⌦.
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signal and type and the receiver’s action; neither utility depends on the message
of the sender. We will abuse notation slightly and write u1(✓,⇡) and u2(⇡) for
the expected payo↵s from strategy profile ⇡ = (⇡1,⇡2), as well as u1(✓, s,↵) for
the expected utility of the type ✓ sender from playing signal s when the receiver
responds according to ↵ 2 �(A), and u2(p, s,↵) for the expected utility of the
receiver from playing ↵ when the sender plays s and the probability distribution
over their type is p 2 �(⇥). Finally, BR(✓, s) = argmaxa2A u2(✓, s, a) denotes
the pure best responses for the receiver to signal s when the sender’s type is ✓,
BR(p, s) = argmaxa2A u2(p, s, a) denotes the pure best responses for the receiver
to signal s under belief p 2 �(⇥), and BR(e⇥, s) = [

p2�(e⇥)BR(p, s) denotes the

pure best responses to signal s for some p with support in e⇥.

B. Definition of Justified Communication Equilibrium

The set of actions that are a best response to some belief about ✓ is BR(⇥, s).
These are the undominated responses to s; the other responses are conditionally
dominated in the sense of Fudenberg and Tirole (1991a). Thus�(BR(⇥, s)) is the
set of receiver mixed actions that assign probability 1 to undominated responses.

DEFINITION 1 (Fudenberg and He, 2018): Strategy profile ⇡ is a perfect Bayesian
equilibrium with heterogeneous o↵-path beliefs (PBE-H) if

1) For each ✓ 2 ⇥, u1(✓,⇡) = max(s,m)2S⇥M u1(✓, s,⇡2(·|s,m)).
2) For each on-path signal-message pair (s,m), ⇡2(·|s,m) 2 �(BR(p(s,m), s)),

where p(s,m) is the posterior belief given (s,m) obtained through Bayes’ rule.
3) For each o↵-path signal-message pair (s,m), ⇡2(·|s,m) 2 �(BR(⇥, s)).

Conditions 1 and 2 of Definition 1 are the conditions for a strategy profile to be a
Nash equilibrium. Condition 3 lets the receiver’s response to an o↵-path signal-
message pair (s,m) be a mixture over several actions, each of which is a response
to a possibly di↵erent belief about the sender’s type. Conditions 1–3 together
are slightly weaker than perfect Bayesian equilibria (PBE, Fudenberg and Tirole
(1991b)). This is because PBE replaces Condition 3 with the requirement that
the receiver response to each (s,m) is in the set

MBR(⇥, s) = {↵ 2 �(A) : 9p 2 �(⇥) s.t. u2(p, s,↵) � u2(p, s, a) 8a 2 A}

of mixed best responses to s.4 �(BR(⇥, s)) can be strictly larger thanMBR(⇥, s)
because it can include mixtures over actions that are not best responses to the
same belief.
Justified communication equilibrium adds the “justified-response” condition to

PBE-H. To define this condition, for each type ✓, signal s, and strategy profile ⇡,
let

eD✓(s,⇡) = {↵ 2 �(BR(⇥, s)) : u1(✓, s,↵) > u1(✓,⇡)}.

4Recall that PBE and sequential equilibrium are equivalent in signaling games.
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This is the set of mixtures over undominated receiver responses to s that would
make type ✓ strictly prefer s to their outcome under ⇡.5 Let

eD0
✓
(s,⇡) = {↵ 2 �(BR(⇥, s)) : u1(✓, s,↵) = u1(✓,⇡)}

be the corresponding set for which type ✓ would be indi↵erent between s and
their outcome under ⇡. For every s 2 S and ⇡ 2 ⇧1 ⇥⇧2, let

⇥†(s,⇡) = {✓ 2 ⇥ : eD✓(s,⇡) [ eD0
✓
(s,⇡) 6✓ [✓0 6=✓

eD✓0(s,⇡)}

be the set of types ✓ for which there is some mixed receiver action ↵ 2 �(BR(⇥, s))
that makes ✓ weakly prefer (s,↵) to their outcome under ⇡ and no other type ✓0

strictly prefer (s,↵) to their outcome under ⇡.

DEFINITION 2: The set of justified types for signal s given profile ⇡ is

⇥(s,⇡) =

(
⇥†(s,⇡) if ⇥†(s,⇡) 6= ;

⇥ if ⇥†(s,⇡) = ;
.

A justified response to signal s given profile ⇡ is a distribution ↵ 2 �(BR(⇥(s,⇡), s))
that assigns positive probability only to actions that are best responses to beliefs
with support in ⇥(s,⇡).6

Note that in a PBE-H, each type is justified for every signal it plays with positive
probability. This is because every signal-message pair the type is willing to play
must give them their equilibrium payo↵, while no other type can get strictly more
than their equilibrium payo↵ by playing it.

DEFINITION 3: The strategy profile ⇡ is a justified communication equi-
librium (JCE) if

1) It is a PBE-H.
2) For each s 2 S, there is some m 2 M such that ⇡2(·|s,m) 2 �(BR(⇥(s,⇡), s)).

Every JCE must be a PBE-H. The second condition requires that the receiver’s
response to each signal is justified for at least one message. Since the equilibrium
response to on-path signal-message pairs is justified in any PBE-H, the substance
of JCE comes from the requirement that there be a justified response to every
o↵-path signal. As we will see, this conclusion only follows from our learning
model when the message space is su�ciently large. However, the definition of
JCE applies for any non-null message space, including the case without cheap
talk, where the message space is singleton.

5This set is very similar to the set D✓ used by Cho and Kreps (1987) to formulate NWBR; we discuss
the di↵erences in Section III.

6Appendix A1 shows that if ⇡ is a PBE-H, ⇥†(s,⇡) = ; only when s is equilibrium dominated for all
types, so how to define ⇥(s,⇡) in this case is not important.
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C. Hiring a Worker

This subsection presents two stylized examples of a firm (the sender) potentially
hiring a worker (the receiver) for a particular job. In both examples, the firm’s
signal s 2 {Hire, Pass} is its choice of whether to hire the worker. The worker’s
choice of action a 2 {eH , eM , eL} represents how hard they work; eH represents
high e↵ort, eM medium e↵ort, and eL low e↵ort. The firm has three possible
types, ⇥ = {✓H , ✓M , ✓L}: type ✓H represents high quality, ✓M medium quality,
and ✓L low quality.7 The payo↵s to both parties are normalized to 0 when the
firm does not hire. The examples di↵er only in their payo↵ functions when the
firm hires. In the first example JCE rules out an equilibrium that satisfies D1,
and in the second JCE preserves an equilibrium ruled out by D1 (and a fortiori
ruled out by NWBR). Both of these possibilities can happen in more general set-
tings; our goal here is to illustrate the logic of JCE in a simple and economically
sensible setting.

EXAMPLE 1:

✓H eH eM eL
Hire 16, 2 1, 0 �2,�1
Pass 0, 0 0, 0 0, 0

✓M eH eM eL
Hire 8, 0 6, 1 �4, 0
Pass 0, 0 0, 0 0, 0

✓L eH eM eL
Hire 4,�1 1, 0 �1, 1
Pass 0, 0 0, 0 0, 0

In this example, a hired worker wishes to adjust their costly e↵ort with the
quality of the firm because the worker gains when the firm does well, and firm
quality and worker e↵ort are complements in determining the likelihood of success.
Moreover, the return to e↵ort varies with type so much that the intermediate e↵ort
level is strictly dominated when probability of the intermediate type ✓M is small.
All firm types have the same ordinal ranking over outcomes, (Hire, eH) �

(Hire, eM ) � Pass � (Hire, eL), but they do not have the same ranking of
outcome distributions. For instance, there are mixtures over eH and eL that
make ✓H strictly prefer to Hire and ✓L strictly prefer to Pass, while there are
mixtures over eM and eL that make ✓L strictly prefer to Hire while ✓H strictly
prefers to Pass. For motivation, suppose that, relative to the low quality ✓L firm,
the high quality ✓H firm can very e�ciently capitalize on a worker exerting high
e↵ort, but does not benefit much from medium e↵ort, and is harmed by a poor
worker exerting low e↵ort. Similarly, there are mixtures over eM and eL that make
✓M strictly prefer to Hire and ✓L strictly prefer to Pass, while there are mixtures

7The conclusions in these examples do not depend on the distribution over types, so we omit �.
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over eH and eL that make ✓L strictly prefer to Hire and ✓M strictly prefer to
Pass. This is the case when, relative to the low quality firm, the medium-quality
firm gains significantly from medium e↵ort, does not gain much from high e↵ort,
and is greatly hurt by low e↵ort.
In every JCE there is a positive probability that the worker is hired. To see

why, consider a strategy profile ⇡ in which ⇡1(Hire|✓) = 0 for all ✓. Observe
that when ↵ 2 �({eH , eM , eL}) satisfies 4↵(eH) + ↵(eM ) � ↵(eL) � 0, either
16↵(eH)+↵(eM )� 2↵(eL) > 0 or 8↵(eH)+6↵(eM )� 4↵(eL) > 0, so either ✓H or
✓M strictly prefers Hire whenever ✓L weakly prefers Hire. Thus eD✓L

(Hire,⇡)[
eD0
✓L
(Hire,⇡) ✓ eD✓H

(Hire,⇡) [ eD✓M
(Hire,⇡), so ✓L 62 ⇥†(Hire,⇡). Moreover,

⇥†(Hire,⇡) is not empty, because some e↵ort distributions make ✓H prefer Hire
and the other types prefer Pass, so ✓L is not a justified type.8 Since it is optimal
for a hired worker to play eL only when they put positive probability on the firm
being ✓L, no justified response can use eL with positive probability, so all firm
types strictly prefer to Hire.
Unlike JCE, D1 and weaker equilibrium refinements such as the Intuitive Cri-

terion allow equilibria in which all types Pass.9 The Intuitive Criterion allows
this equilibrium because ✓L would obtain a higher payo↵ from Hire if the worker
responds with either eH or eM , both of which are undominated. Consequently,
the Intuitive Criterion allows the worker respond to Hire with eL, since it is the
best response to ✓L. Similarly, D1 allows the worker to respond to Hire with
eL, because there is no single type that strictly prefers to Hire whenever ✓L
weakly prefers to do so. In particular, ✓L strictly prefers to play Hire when the
worker responds with (1/7)eH + (6/7)eL, though this makes ✓M strictly prefer
to Pass. Likewise, ✓L strictly prefers to Hire when the worker responds with
(2/5)eM + (3/5)eL, though this makes ✓H strictly prefer to Pass. ⇤
Example 1 shows that there are some sensible economic environments where

JCE makes stronger predictions than D1.10 The reverse can also be true, as
shown in the following example, where JCE allows an outcome that D1 and the
stronger NWBR condition rule out. Because JCE, unlike D1 or NWBR, has a
learning foundation, this highlights the subtlety of the implications of learning
foundations for equilibrium play.

EXAMPLE 2:

As before, a hired worker wishes to exert high e↵ort when hired by a high
quality firm and low e↵ort when hired by a low quality firm. However, here a
hired worker also wishes to exert high e↵ort when hired by a medium quality firm.
Moreover, there is no belief over the sender’s type that makes both high and low

8In fact, the set of justified types for Hire given ⇡ is ⇥(Hire,⇡) = ⇥†(Hire,⇡) = {✓H , ✓M}.
9Section III reviews the formal definitions of the Intuitive Criterion and D1.
10OA.7.2 in the Online Appendix provides a qualitatively di↵erent example concerning job assignment
and corporate culture where JCE is again stronger than D1.
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✓H eH eM eL
Hire 16, 2 1, 0 �5,�3
Pass 0, 0 0, 0 0, 0

✓M eH eM eL
Hire 8, 1 6, 0 �4,�2
Pass 0, 0 0, 0 0, 0

✓L eH eM eL
Hire 4,�8 1, 0 �1, 4
Pass 0, 0 0, 0 0, 0

e↵ort levels best responses due to concavity in the worker’s payo↵.
The firm’s payo↵s are similar to Example 1, except here the payo↵ of the ✓H

firm from a worker exerting low e↵ort is reduced. This guarantees that, whenever
a type ✓H or ✓M firm weakly prefers to Hire a worker whose e↵ort concentrates
on eH and eL, type ✓L strictly prefers to Hire.
Every type playing Pass is both a PBE and a JCE outcome. It is a PBE

outcome because all types are deterred from playing Hire when the receiver
responds with eL = BR(✓L, Hire). Moreover, ✓L is a justified type for Hire
under a strategy profile ⇡ where all types pass since there are e↵ort distributions
which make ✓L prefer to play Hire and the other types prefer to Pass. Thus, eL
is a justified response to Hire, so it is a JCE outcome for every type to Pass.
However, every type playing Pass is not a D1 outcome. This is because no

mixed best response to Hire puts positive probability on both eH and eL. Con-
sequently, every mixed best response that makes ✓L weakly prefer to Hire, makes
✓M strictly prefer to do so. Likewise, for type ✓H . The only response to Hire
allowed by D1 is then eH = BR(✓M , Hire), which deters no type from hiring. ⇤
Both Examples 1 and 2 use the setting of a firm hiring a worker, but the point

that JCE and D1 are not nested holds more generally, as we explain in Section
III.

II. The Learning Model

A. Model Overview

Now we sketch the structure of the learning model we use to provide a founda-
tion for JCE, and then explain why the learning model generates the predictions
we saw in the previous examples. (Later subsections provide the remaining details
and formal results of the model, as well as some alternative models with the same
implications.) The model is an overlapping generations learning environment
where time is discrete and doubly infinite, t 2 {...,�2,�1, 0, 1, 2, ...}. For for each
✓, there is a continuum of agents of mass �(✓) in the role of a type ✓ sender, and
there is a continuum of agents of mass 1 in the receiver role. The agents have ge-
ometric lifespans: agents in sender roles have continuation probability �1 2 [0, 1),
while agents in the receiver role have continuation probability �2 2 [0, 1). Each
period newborn agents replace the departing agents so the sizes of the various
populations are constant, and then agents are anonymously matched into sender-
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receiver pairs: Each sender agent is equally likely to be paired with any of the
current receiver agents and vice-versa. In each match, the sender plays a signal
s and a message m. The receiver observes the chosen (s,m) and responds with
an action a. At the end of each period, both players in a given match observe its
outcome, which consists of the type of the sender, the signal and message chosen
by the sender, and the action chosen by the receiver.
All agents are rational Bayesians who choose policies (maps from past observa-

tions to current play) that maximize their expected discounted payo↵. At every
period t, the state of the system is the shares of agents in a given player role
with the various possible histories. The state and the optimal policies induce an
aggregate sender strategy and an aggregate receiver strategy, and thus an update
rule that maps states in period t to states in period t+1. We study this system’s
steady states, which are the fixed points of the update rule.
Because the receivers observe the type of the sender at the end of each match,

neither their continuation probability nor their discount factor impacts their play,
and their optimal dynamic programming policy is to simply choose an action that
maximizes their expected payo↵ in the current match. Senders’ observations do
depend on their play, so their optimal policies incorporate a value for “experi-
menting” with various signal-message pairs that have the potential to lead to an
increase in payo↵. The size of the senders’ experimentation incentive depends
on their continuation probability, their discount factor � 2 [0, 1), and how much
they have already learned: Inexperienced senders have more incentive to experi-
ment, and senders cease experimenting when they have enough data. Moreover,
di↵erent types of sender will choose to experiment in di↵erent ways.
We focus on the limits of steady-state play when �1 and �2 tend to 1, so senders

and receivers can acquire enough observations to outweigh their prior, and �1
tends to 1 quicker than �2, so that the typical sender plays many more times
than the typical receiver. This means that most receivers only ever match with
senders who have substantially more experience than them. We also assume that
� goes to 1, to ensure that the senders experiment enough to rule out limits that
are not Nash equilibria. We call the profiles that correspond to this limit the stable
profiles.11 This limit provides an idealized version of long-run behavior in settings
where the senders are institutions who both have an incentive to experiment and,
over time, interact with a large number of individuals in the role of the receivers;
one example is firms signaling their knowledge about their productivity, future
growth, etc. to potential workers via o↵ers of incentive pay. While workers
may interact with a large number of firms over their lifetime, or observe family
members and other relations do so, it is unlikely that any given individual will
be involved in (or have access to information concerning) as many interactions as
the typical large firm.
Preliminary lemmas show that every stable profile must be a PBE-H. The

11As Section V.A explains, our results hold under other models of the population structure that also
have relatively experienced senders.
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optimality of sender play follows from the fact that patient and long-lived senders
eventually stop experimenting and play a best response to the aggregate receiver
strategy. The beliefs of long-lived receivers are almost entirely driven by their
data as opposed to their priors, ensuring that they respond optimally to on-
path signal-message pairs, and because receivers are myopic, their o↵-path play
is always a best response to some beliefs, as PBE-H requires.
Our main result, which shows that all stable profiles are JCE, uses two addi-

tional assumptions. First, we assume that the sender message space is su�ciently
large that for each signal s 2 S and subset of sender types e⇥ ✓ ⇥, there is a
distinct message m

s,e⇥ that can be interpreted as “I am playing s and my type

is in e⇥.”12 We also assume that the receiver “trusts” the message provided that
they have not previously encountered a sender with any other type ✓ 62 e⇥ playing
s and sending m

s,e⇥. We discuss these assumptions in more detail in Section II.D.
With them we prove the following result:

THEOREM 1: If ⇡ is stable, then it is a justified communication equilibrium.

B. Hiring a Worker, Revisited

We now discuss our learning model in the context of the two “hiring a worker”
examples. In particular, we explain why the model rules out the “All Pass” out-
come in Example 1, where it is consistent with D1 but not JCE, while the model
does allow “All Pass” in Example 2, where it is consistent with JCE but not D1.

EXAMPLE 1 CONTINUED:
To see why there is no stable profile where all firms Pass, recall that with

enough experience, firms learn the aggregate e↵ort distribution and exhaust the
option value of continued experimentation. Experienced firms then either hire
and optimally communicate with workers or Pass. If the stable outcome is for
all types of firm to Pass, it must be that the aggregate e↵ort distribution puts
positive probability on e↵ort eL regardless of how a hiring firm communicates.
However, low e↵ort is only optimal for a worker if they assign positive probability
to the hiring firm being type ✓L. Initially-trusting workers will exert high or low
e↵ort when a hiring firm claims to not be type ✓L, unless they have previously
experienced deception by type ✓L firms. Since the typical firm has many more
interactions over its lifetime than the typical worker, most workers only ever
match with experienced firms. Thus, in order for a significant share of workers to
experience deception by ✓L firms, ✓L firms must learn that it is optimal to Hire
and play mIn,{✓H ,✓M}. However, either ✓H or ✓M type firms strictly prefer to Hire
whenever a ✓L weakly prefers to Hire, so one of these types will not Pass because
it will learn it is strictly optimal to Hire. ⇤

12The literal content of m
s,e⇥ need not be “I am playing s and my type is in e⇥.” Instead, m

s,e⇥ might

be a statement like “I am playing signal s so you should believe my type is in e⇥ because...”
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EXAMPLE 2 CONTINUED:
Online Appendix Section OA.6.1 shows that the outcome where every type

plays Pass is stable by demonstrating that there are steady-state profiles in which
most su�ciently experienced firms play Pass, but type ✓L firms experiment with
Hire much longer than the other types do. This means that the vast majority of
workers who have previously been employed were only hired by low quality firms,
which leads them to exert e↵ort eL the next time they are hired. In contrast,
initially-trusting workers who have not previously experienced employment will
exert high e↵ort when first hired by a firm claiming to be of high or medium
quality, so the aggregate worker e↵ort distributions will concentrate on eH and
eL. As observed earlier, under such e↵ort distributions, whenever type ✓H or ✓M
weakly prefers to Hire, type ✓L strictly prefers to do so. This is what drives
type ✓L firms to experiment with Hire much more than the other types, which
supports the desired steady states.
D1 eliminates the “All Pass” outcome while our learning model allows it be-

cause D1 only considers receiver mixed best responses. However, in a learning
model, there is no reason that the prevailing aggregate receiver strategy must
be a mixed best response, and the steady states described above have aggregate
worker responses that put positive probability on both both eH and eL: Inexpe-
rienced workers exert e↵ort eH , while most of the experienced workers learn that
it is optimal to exert e↵ort eL. ⇤

C. Details of the Learning Model

We now fill in the remaining details about the learning environment we study,
provide formal statements of our assumptions, and prove our main result. We
also discuss alternative interpretations of the stable profiles, and related versions
of stability that correspond to di↵erent ways of passing to the limit. Readers who
are more interested in the implications of JCE than its learning foundation can
skip ahead to Section III.
At the beginning of their lives, senders have a non-doctrinaire prior g1 2

�(⇧2) over the aggregate receiver behavior strategy ⇡2, and receivers have a
non-doctrinaire prior g2 2 �(�(⇥⇥S⇥M)) over q 2 �(⇥⇥S⇥M), the prevail-
ing distribution of sender types, signals, and messages.13 (To simplify notation,
we assume there is a single prior for all agents in a given player role, but all
of our results extend to any finite number of priors per role.) Upon observing
the outcome of a match, agents update their beliefs in accordance with Bayes’
rule, which is always applicable because the priors assign positive probability

13Here “non-doctrinaire” means “has a continuous density function that is strictly positive on the interior
of the probability simplex.” Since q(✓, s,m) = �(✓)⇡1(s,m|✓) is the distribution over (✓, s,m) induced
by the sender type distribution � and the aggregate sender behavior strategy ⇡1, it would be equivalent
to define the receivers’ beliefs as elements of �(�(⇥)⇥⇧1).
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to any finite sequence of observations. Define H1,t = (S ⇥ M ⇥ A)t to be the
histories that a sender of age t could have observed, with the convention that
(S ⇥M ⇥ A)0 = ;, and let H1 = [t2NH1,t be the collection of all such histories.
Likewise, the relevant pieces of information for the receiver are the type, signal
choice, and message choice of the sender. Let H2,t = (⇥⇥S⇥M)t denote the set
of sequences of such triples that a receiver agent with age t could have observed,
and let H2 = [t2NH2,t be the collection of all such sequences.
All agents maximize their expected discounted payo↵. The receivers use a policy

y : H2 ! AS⇥M which maps their histories to pure strategies to maximize

Eg2

2

4
1X

t=0

X

✓,s,m,a

�t2q(✓, s,m)u2(✓, s,y(s,m|h2,t))

3

5 .

Type ✓ senders use an optimal policy x�,�1
✓

: H1 ! S⇥M that maps their histories
to signal-message pairs to maximize

Eg1

" 1X

t=0

X

s,m,a

(��1)
t⇡2(a|x

�,�1
✓

(h1,t))u1(✓,x
�,�1
✓

(h1,t), a)

#
.14

We will focus on the case where both � and �1 are near 1, so the senders have
maximal incentives to experiment.15

At every period t, the state of the system, denoted µt = (µ1,t, µ2,t) 2 (�(H1))⇥⇥
�(H2), gives the shares of agents in a given player role with the various possible

histories. Given µt, the profile x�,�1 = {x�,�1
✓

}✓2⇥ of sender policies induces a

sender behavior strategy ��,�11 (µ1,t) 2 ⇧1 that we call the aggregate sender play.
Similarly, the receiver policy y induces a receiver behavior strategy �2(µ2,t) 2 ⇧2

that we call the aggregate receiver play. We call ��,�1(µt) = (��,�11 (µ1,t),�2(µ2,t)) 2
⇧1⇥⇧2 the aggregate strategy profile. (Appendix D gives formal definitions of the

mappings ��,�11 : (�(H1))⇥ ! ⇧1 and �2 : �(H2) ! ⇧2, as well as other objects
introduced in this subsection.)
A policy profile generates an update rule f �,�1,�2 : (�(H1))⇥⇥�(H2) ! (�(H1))⇥⇥

�(H2), taking the state in period t to the state in period t + 1, a mapping

R�,�1
1 : ⇧2 ! ⇧1 that describes the limit of the aggregate play of the senders

as t ! 1 when the aggregate receiver play is fixed at ⇡2, and a mapping
R�2

2 : ⇧1 ! ⇧2 that describes the limit of the aggregate receiver play as t !

1 when the aggregate sender play is fixed at ⇡1. We refer to the mapping
R�,�1,�2(⇡) ⌘ (R�,�1

1 (⇡2),R
�2
2 (⇡1)) as the aggregate response mapping. OA.2.1

verifies that this mapping is continuous.

14Here we slightly abuse notation by having both components of x�,�1
✓

enter the utility function, though
it does not depend on the sender’s message.

15Recall from Fudenberg and Kreps (1988) and Fudenberg and Levine (1993) that with impatient players
learning need not lead to Nash equilibrium, let alone to refinements of it.
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We study this system’s steady states, those µ satisfying f �,�1,�2(µ) = µ. We call
the corresponding aggregate strategy profiles the steady-state profiles, and denote
them by ⇧⇤(g, �, �1, �2) ✓ ⇧1⇥⇧2. As OA.2.2 shows, these are the fixed points of
the aggregate response mapping. Continuity of the aggregate response mapping,
along with Brouwer’s fixed point theorem, then implies that steady-state profiles
always exist.

PROPOSITION 1: ⇧⇤(g, �, �1, �2) consists of the strategy profiles that are fixed
points of the aggregate response mapping, and it is non-empty for all g = (g1, g2),
�, and �1, �2.

We consider the iterated limit lim�2!1 lim�!1 lim�1!1⇧⇤(g, �, �1, �2). That is,
we focus on strategy profiles that are limits of steady states corresponding to
some sequence of parameters �, �1, and �2 satisfying this iterated limit. We will
call these the stable profiles.16 A corollary of Proposition 1 is that there are stable
strategy profiles.

COROLLARY 1: Stable strategy profiles exist.

D. Key Assumptions

Our results about stable profiles use two additional assumptions. First, we
assume that the sender message space is su�ciently rich.

ASSUMPTION 1: (Richness) |M | � 2|⇥|
|S|.

Assumption 1 requires that the message space is large enough to have a distinct
element, m

s,e⇥ 2 M , for each signal s 2 S and subset of sender types e⇥ ✓ ⇥. This

allows m
s,e⇥ to be interpreted as “I am playing s and my type is in e⇥.” Our

next assumption is that when the sender plays s and sends the message m
s,e⇥, the

receiver “trusts” the message provided that they have not previously encountered
a sender with any other type ✓ 62 e⇥ playing s and sending m

s,e⇥.

ASSUMPTION 2: (Initial Trust) For every s 2 S and e⇥ ✓ ⇥, there is some
m

s,e⇥ 2 M such that y(s,m
s,e⇥|h2) 2 BR(e⇥, s) for every h2 2 H2 in which

(✓0, s,m
s,e⇥) has not been observed for any ✓0 62 e⇥.

Initial trust says that receivers give the sender the “benefit of the doubt” and
act in accordance with certain claims they have not previously seen proved false.17

It does not require that the receivers are certain that these claims are true, only

16Formally, strategy profile ⇡ is stable if there is a sequence {�2,j}j2N ! 1, sequences {�j,k}j,k2N with
limk!1 �j,k = 1 for all j, and sequences {�1,j,k,l}j,k,l2N with liml!1 �1,j,k,l = 1 for all j, k, such
that ⇡ = limj!1 limk!1 liml!1 ⇡j,k,l for some sequence ⇡j,k,l 2 ⇧⇤(g, �1,j,k, �1,j,k,l, �2,j).

17Initial trust is similar in spirit to the “believe-unless-refuted” condition of Lipman and Seppi (1995),
and is also related to notions of credibility in Rabin (1990), Farrell (1993), and Clark (2020). We
discuss these connections in more detail in Section V.C.



14 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

that they give them a su�ciently high probability of being true. Of course, the
receiver may quickly learn to distrust claims that prove to be false, which is why
Assumption 2 is only applied to claims for which no direct contradictory evidence
exists.18

We maintain Assumptions 1 and 2 throughout the main text. Section V.D
discusses alternatives to initial trust that give refinements of PBE-H that are
similar to JCE.
Without communication, or with communication but no assumptions on the

receivers’ prior beliefs about the meaning of previously unobserved messages,
stability o↵ers little predictive power and the theorem is false. In particular,
it then allows implausible outcomes, as shown by example in OA.7.1. In the
example, there are two sender types, ✓1 and ✓2, and two signals, In and Out.
Out is strictly dominant for ✓2, and ✓1 prefers to play In if the receiver responds
to In with the best response to ✓1, so the reasonable outcome seems to be one
where ✓1 plays In and ✓2 plays Out. Indeed, this is the unique JCE as well
as the unique equilibrium outcome that satisfies weaker refinements such as the
Intuitive Criterion. However, if the receivers are “initially skeptical” so that when
they first witness (In,m) they believe it probably came from ✓2 regardless of m,
there are stable profiles in which both types play Out. This is because, if very few
senders play In, the aggregate receiver response to In concentrates on the best
response to ✓2, which ensures that almost all senders in the population learn that
it is optimal to play Out.19 Intuitively, cheap talk has no e↵ect in “babbling”
equilibria where messages are meaningless, and e↵ective communication requires
some restrictions on how people interpret messages they have never seen before.

E. Proof of Theorem 1

THEOREM 1: If ⇡ is stable, then it is a justified communication equilibrium.

To prove this theorem we first show that a stable profile is a PBE-H. Condition
3 of the definition of PBE-H follows from the fact that the receivers in our model
myopically optimize because their observations do not depend on their play. We
establish the two other conditions of Definition 1, as well as the additional re-
quirement of JCE given in Definition 3, using three supporting lemmas, whose
proofs are in Appendix B.
The following lemma shows that stable profiles satisfy Condition 1 of Definition

1.

LEMMA 1: Suppose that ⇡ is stable. Then for each ✓ 2 ⇥, ⇡1(·|✓) puts support
only on those sender signal-message pairs that are optimal for type ✓ under the
receiver behavior strategy ⇡2.

18Initial trust implicitly places restrictions on the receivers’ prior g2. For simplicity, we state it directly
on receiver behavior.

19The same argument shows that this outcome is also stable when cheap talk is not feasible.
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The proof of Lemma 1 shows that for fixed �2 2 [0, 1), aggregate sender play is
optimal given the aggregate receiver play when first �1 ! 1 and then � ! 1. As in
Fudenberg and Levine (1993), this holds because each sender type will experiment
enough to drive the option value of experimentation to 0, so that aggregate sender
play is optimal in the limit. The conclusion of Lemma 1 follows from combining
this with the fact that the sender best response correspondence (in the underlying
two-player game) has a closed graph.
The next lemma shows that stable profiles satisfy Condition 2 of Definition 1.

LEMMA 2: Suppose that ⇡ is stable. Then for any sender signal-message pair
(s,m) that occurs with positive probability under ⇡, ⇡2(·|s,m) puts support only
on receiver actions that are best-responses to s and the posterior belief induced by
� and {⇡1(s,m|✓)}✓2⇥.

The proof of Lemma 2 shows that receivers will get enough observations of on-
path play for their data to swamp their priors. By the law of large numbers their
sample converges to the population distribution with high probability, and since
receivers myopically optimize, the lemma follows.
Neither Lemma 1 nor Lemma 2 requires Assumptions 1 or 2. The next lemma

does require both assumptions. The lemma shows that, for fixed s 2 S and
e⇥ ✓ ⇥, if every type ✓ 62 e⇥ strictly prefers their payo↵ under ⇡ to their payo↵
from playing (s,m

s,e⇥) (and having the receiver respond with ⇡2(·|s,ms,e⇥)), then

the aggregate receiver response to (s,m
s,e⇥) must be supported on BR(e⇥, s).

The proof of the lemma, and thus of Theorem 1, fails without Assumption 2,
and a fortiori in settings where cheap-talk messages are not available. Moreover,
the example in OA.7.1 shows that without initial trust, there can be stable profiles
that are not JCE.

LEMMA 3: Suppose that ⇡ is stable. Fix s 2 S and e⇥ ✓ ⇥. If u1(✓, s,⇡2(·|s,ms,e⇥)) <

u1(✓,⇡) for all ✓ 62 e⇥, then ⇡2(BR(e⇥, s)|s,m
s,e⇥) = 1.

Here we give some intuition for this result. When u1(✓, s,⇡2(·|s,ms,e⇥)) <

u1(✓,⇡) for all ✓ 62 e⇥, the proof of Lemma 1 shows that, for fixed �2, the ag-
gregate probability that a type outside of e⇥ plays (s,m

s,e⇥) is small when first
�1 ! 1 and then � ! 1. For any fixed receiver continuation probability, the share
of receivers in the population who have witnessed a sender with type outside of e⇥
play the signal-message pair (s,m

s,e⇥) becomes arbitrarily small as the aggregate

probability of such play by types outside of e⇥ approaches 0. Recall that receivers
who have never observed a type outside of e⇥ play (s,m

s,e⇥) would respond to

(s,m
s,e⇥) with some action in BR(e⇥, s). Combining these facts, it follows that

the share of receivers who play some action in BR(e⇥, s) in response to (s,m
s,e⇥)

becomes arbitrarily close to 1 in the iterated limit.
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PROOF OF THEOREM 1:
Let ⇡ be a stable profile. We have already established that ⇡ must be a PBE-

H. We now show that the justified response condition in Definition 3 holds. Fix
s 2 S. Since ⇡ is a PBE-H, u1(✓, s,⇡2(·|s,ms,⇥(s,⇡)))  u1(✓,⇡) holds for all

✓ 2 ⇥(s,⇡). By definition, whenever a receiver response weakly deters all justified
types from playing a given signal, it must strictly deter every non-justified type.
Thus, u1(✓, s,⇡2(·|s,ms,⇥(s,⇡))) < u1(✓,⇡) for all ✓ 62 ⇥(s,⇡). Applying Lemma 3

to e⇥ = ⇥(s,⇡) then implies that ⇡2(·|s,ms,⇥(s,⇡)) 2 �(BR(⇥(s,⇡), s)). ⌅

Theorem 1 shows that only JCE can be stable. Not all JCE are stable, because
non-doctrinaire priors prevent receiver agents from ever using weakly dominated
strategies, and there can be JCE using weakly dominated receiver strategies. It
is di�cult to give an exact characterization of stable profiles for general games,
because all non-doctrinaire initially-trusting priors must be considered to show
that a given profile is not stable. Instead, we use direct proofs to show that certain
equilibria or classes of equilibria are stable. Proposition C1 in Appendix C gives
a partial converse to Theorem 1: It shows that all uniformly justified JCE in
strictly monotonic games are stable for all non-doctrinaire priors, including those
that do not satisfy initial trust. We also give direct proofs of stability in Example
2 and most of our other examples. The general approach in these proofs is to
modify the aggregate response mapping so that its fixed points coincide with the
target strategy profile in the limit, and then show that these fixed points are also
fixed points of the true aggregate response mapping.

III. Relation to Other Equilibrium Refinements

We have seen by example that JCE and D1 are not nested. We now study
their relationship in more detail, as well as the relationship between JCE and
other refinements. As a preliminary step, we show that stable profiles need not
be PBE, and a fortiori need not satisfy any refinements of PBE.20 This is the
reason that JCE is defined as a refinement of PBE-H.

EXAMPLE 3:
The type space is ⇥ = {✓1, ✓2}, the signal space is S = {In,Out}, and the

action space is A = {a1, a2, a3}. The payo↵s are given by these tables:

✓1 a1 a2 a3
In �2, 1 1, .1 1,�1
Out 0, 0 0, 0 0, 0

✓2 a1 a2 a3
In 1,�1 1, .1 �2, 1
Out 0, 0 0, 0 0, 0

20The equilibrium refinements in Fudenberg and He (2018) and Fudenberg and He (2020) also relax PBE
to PBE-H, but those papers do not show that this relaxation is needed.
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This game does not have a PBE in which both types play Out, because ✓1 prefers
to play Out only if there is positive probability that the receiver responds to In
with a1, while ✓2 prefers to play Out only if the receiver’s response to In uses
a3 with positive probability, yet there is no mixed best response to In where the
receiver assigns positive probability to both a1 and a3. Nevertheless, the profile
⇡ in which both sender types play Out and the receiver always responds to In
with (1/2)a1 + (1/2)a3 is a JCE, because both sender types are justified and so
a1 = BR(✓1, In) and a3 = BR(✓2, In) are each justified responses.
Moreover, Online Appendix Section OA.6.2 shows that both types playing Out

can be a stable outcome, because there are steady-state profiles in which the
aggregate receiver strategy plays a2 with probability less than 1/4 in response to
In combined with any message. Under such receiver play, for every message m,
it can be optimal for at most one sender type to play (In,m). Thus, if in the
limit the aggregate strategy of type ✓1 plays (In,m) with positive probability,
then the aggregate strategy of type ✓2 must play (In,m) with 0 probability, and
the receivers must learn to respond to (In,m) with a1 = BR(✓1, In). But this
response strictly deters type ✓1 from playing (In,m), and an analogous argument
applies for the type ✓2 senders. ⇤
Unlike JCE, the Intuitive Criterion (Cho and Kreps, 1987), D1 (Banks and

Sobel, 1987), and NWBR (Kohlberg and Mertens, 1986; Cho and Kreps, 1987)
were all formulated as refinements of PBE. However, the procedures they use
to restrict out-of-equilibrium beliefs and equilibrium outcomes can be adapted to
develop tests for any PBE-H, which lets us more naturally compare the predictions
of the modified versions of these refinements with JCE. As we will see, JCE is
stronger than the modified version of the Intuitive Criterion. JCE and D1 are not
nested, although JCE is nested inside the set of equilibria that satisfy a modified
version of D1 we call co-D1. JCE and NWBR are particularly similar, and in
some sense JCE is an adaptation of NWBR with a learning foundation.
We begin by showing that JCE is stronger than a modified version of the In-

tuitive Criterion we call the Intuitive Criterion Test. Let E(s,⇡) = {✓ 2 ⇥ :
maxa2BR(⇥,s) u1(✓, s, a) � u1(✓,⇡)}. These are the types for whom s is not equi-
librium dominated by profile ⇡ in the sense of Cho and Kreps (1987).

DEFINITION 4 (Cho and Kreps, 1987): Strategy profile ⇡ passes the Intu-
itive Criterion Test if, for every s 2 S and ✓ 2 E(s,⇡), mina2BR(E(s,⇡),s) u1(✓, s, a) 
u1(✓,⇡).

PROPOSITION 2: If ⇡ is a justified communication equilibrium, then ⇡ is a
PBE-H that passes the Intuitive Criterion Test.

The key step of the proof is to show that in a PBE-H, unless s is equilibrium
dominated for every type, s is not equilibrium dominated for any justified type,
i.e. ⇥(s,⇡) ✓ E(s,⇡) when E(s,⇡) 6= ;. This implies that if there is a justified
response that deters all types from playing s, then the profile passes the Intuitive
Criterion Test. The proof of Proposition 2 is given in Appendix A1.
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To compare JCE with D1 and NWBR, we first develop some notation. For
every ✓ 2 ⇥, s 2 S, and ⇡ 2 ⇧1 ⇥ ⇧2, let D✓(s,⇡) = {↵ 2 MBR(⇥, s) :
u1(✓, s,↵) > u1(✓,⇡)} be the set of receiver mixed best responses to s that give
type ✓ strictly more than their equilibrium payo↵, and let D0

✓
(s,⇡) = {↵ 2

MBR(⇥, s) : u1(✓, s,↵) = u1(✓,⇡)} be the mixed best responses that give type ✓
their equilibrium payo↵. These are the analogs of the sets eD✓(s,⇡) and eD0

✓
(s,⇡)

when �(BR(⇥, s)) is replaced by MBR(⇥, s).
To define D1, let ⇥‡,D1(s,⇡) = {✓ 2 ⇥ : 8✓0 6= ✓, D✓(s,⇡) [ D0

✓
(s,⇡) 6✓

D✓0(s,⇡)}, and let b⇥D1(s,⇡) ✓ ⇥ be the set of types given by

b⇥D1(s,⇡) =

(
⇥‡,D1(s,⇡) if ⇥‡,D1(s,⇡) 6= ;

⇥ if ⇥‡,D1(s,⇡) = ;
.

Also, let MBR(e⇥, s) = {↵ 2 �(A) : 9p 2 �(e⇥) s.t. u2(p, s,↵) � u2(p, s, a) 8a 2

A} denote the set of mixed best responses to s for beliefs supported on a given
e⇥ ✓ ⇥.

DEFINITION 5 (Banks and Sobel, 1987): Strategy profile ⇡ satisfies D1 if for
every s 2 S, there is an ↵ 2 MBR(b⇥D1(s,⇡), s) such that u1(✓, s,↵)  u1(✓,⇡)
for all ✓ 2 ⇥.

D1 can be stronger than JCE (and rule out some stable profiles) because it
only considers receiver mixed-best responses, both in finding possible responses
to o↵-path signal-message pairs and in the construction of the sets of sender types
to which the receiver must be best-responding. As we have seen, however, the
larger convex hull of receiver best responses emerges in our learning model rather
than the receiver mixed best responses.21

To see the di↵erence this makes, for every s 2 S and ⇡ 2 ⇧1 ⇥ ⇧2, let
⇥†,D1(s,⇡) = {✓ 2 ⇥ : 8✓0 6= ✓, eD✓(s,⇡)[ eD0

✓
(s,⇡) 6✓ eD✓0(s,⇡)} be the set of types

✓ where, for every ✓0 6= ✓, there is some mixed receiver action ↵ 2 �(BR(⇥, s))
that makes ✓ weakly prefer (s,↵) to their equilibrium outcome and ✓0 weakly

prefer their equilibrium outcome to (s,↵). Let ⇥
D1

(s,⇡) ✓ ⇥ be the set

⇥
D1

(s,⇡) =

(
⇥†,D1(s,⇡) if ⇥†,D1(s,⇡) 6= ;

⇥ if ⇥†,D1(s,⇡) = ;
.

DEFINITION 6: A PBE-H ⇡ is co-D1 if for every s 2 S, there is an ↵ 2

�(BR(⇥
D1

(s,⇡), s)) such that u1(✓, s,↵)  u1(✓,⇡) for all ✓ 2 ⇥.

PROPOSITION 3: If ⇡ is a justified communication equilibrium, then ⇡ is a
PBE-H that is co-D1.

21Fudenberg and Kreps (1988) and Sobel, Stole and Zapater (1990) recognized that the convex hull of
best responses is more natural in a learning setting, but neither paper showed that restricting attention
to the receiver mixed best responses rules out a profile that is stable in a learning model.
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Co-D1 is more permissive than JCE because it strikes fewer types. Appendix A2

gives the proof of Proposition 3, which shows that ⇥(s,⇡) ✓ ⇥
D1

(s,⇡) for all s;
Example 1 shows that the inclusion is sometimes strict.
To define NWBR, let ⇥‡(s,⇡) = {✓ 2 ⇥ : D0

✓
(s,⇡) 6✓ [✓0 6=✓D✓0(s,⇡)}, which

are the ✓ for which there is a mixed receiver best response ↵ 2 MBR(⇥, s) that
makes ✓ indi↵erent between (s,↵) and their equilibrium outcome and every other
type weakly prefer their equilibrium outcome to (s,↵). Let b⇥(s,⇡) ✓ ⇥ be the
set

b⇥(s,⇡) =

(
⇥‡(s,⇡) if ⇥‡(s,⇡) 6= ;

⇥ if ⇥‡(s,⇡) = ;
.

DEFINITION 7 (Kohlberg and Mertens, 1986; Cho and Kreps, 1987): Strategy pro-
file ⇡ satisfies never a weak best response (NWBR) if, for every s 2 S, there
is some ↵ 2 MBR(b⇥(s,⇡), s) such that u1(✓,↵)  u1(✓,⇡) for all ✓ 2 ⇥.

Up to path-equivalence, JCE selects the same profiles as NWBR would if the
mixed best responses MBR(e⇥, s) were replaced with the convex hulls of best
responses �(BR(e⇥, s)). Indeed, as shown in OA.1, it would be equivalent to
define JCE by setting ⇥†(s,⇡) = {✓ 2 ⇥ : eD0

✓
(s,⇡) 6✓ [✓0 6=✓

eD✓0(s,⇡)}, rather

than ⇥†(s,⇡) = {✓ 2 ⇥ : eD✓(s,⇡) [ eD0
✓
(s,⇡) 6✓ [✓0 6=✓

eD✓0(s,⇡)}. Thus JCE
modifies NWBR in much the same way that co-D1 modifies D1, so NWBR is a
stronger refinement than JCE.

PROPOSITION 4: Any PBE-H that satisfies NWBR is path-equivalent to a
PBE that is a JCE.22

A PBE-H ⇡ that satisfies NWBR is not necessarily a PBE, since the receiver’s
response to o↵-path play need not be a best reply to any single belief over the
sender’s type. However, every such profile is path-equivalent to a PBE, since
the receiver’s response to a given o↵-path (s,m) can always be replaced by some
↵ 2 MBR(b⇥(s,⇡), s) that deters the sender types from playing it. Appendix A3
completes the proof of Proposition 4 by showing that an “NWBR type” is always
a justified type. That is, for a given signal and PBE-H, b⇥(s,⇡) ✓ ⇥(s,⇡) for all
s and all PBE-H ⇡.
The converse of Proposition 4 is in general false, as shown earlier by Example

2. However, there are important settings in which NWBR and JCE are path-
equivalent. One is when there are at most two undominated receiver responses to
each signal, because then mixed best responses and convex hulls of best responses
are the same. We now explore a di↵erent class of games where this equivalence
holds.

22Path equivalence is needed in this statement because, unlike JCE, NWBR does not impose requirements
about the receiver’s actual responses to o↵-path play.
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IV. Co-Monotonic Signaling Games

This section highlights an important class of commonly studied games in which
JCE, D1, and NWBR are path-equivalent, so the learning foundation for JCE
applies to D1 and NWBR as well. In these co-monotonic signaling games, all
sender types share the same preference over mixtures over BR(⇥, s).

DEFINITION 8: A signaling game is co-monotonic if, for all ✓, ✓0 2 ⇥, s 2 S,
and ↵,↵0

2 �(BR(⇥, s)), u1(✓, s,↵) � u1(✓, s,↵0) if and only if u1(✓0, s,↵) �

u1(✓0, s,↵0).

This is a subset of the monotonic signaling games studied in Cho and Sobel
(1990), where the sender types are required to share the same preference only
over the receiver mixed best responses MBR(⇥, s) rather than the convex hull of
those responses.
A su�cient condition for a signaling game to be co-monotonic is that there be

functions v : S ⇥ A ! R, ! : ⇥ ⇥ S ! R++, and  : ⇥ ⇥ S ! R such that
u1(✓, s, a) = !(✓, s)v(s, a) + (✓, s) for all ✓ 2 ⇥, s 2 S, and a 2 A. Many games,
including the following simple economic example, satisfy this condition.

EXAMPLE 4:
Like Examples 1 and 2, this example concerns a firm hiring a worker, except

here the firm o↵ers incentive pay to their prospective employee. The firm is
better informed about the productivity of the worker’s e↵ort; their information
is represented by their type ✓ 2 ⇥ = {1, 2, 3}, with each type equally likely. The
firm’s signal s = (s1, s2) 2 {0, 1/4, 1/2, 3/4, 1} ⇥ {0, 1, 2, ..., 100} consists of a
share of profits s1 and a base wage s2 which the worker is o↵ered, and the action
a 2 {0, 5, 10, ..., 60} represents the worker’s choice of e↵ort level. The expected
profit given the firm’s type ✓ and the worker’s e↵ort a is ✓a. Thus, the payo↵s to
the sender and receiver are u1(✓, s, a) = ✓(1 � s1)a � s2 and u2(✓, s, a) = ✓s1a +
s2�a2/40, which satisfy the su�cient condition for co-monotonic signaling games
given above. OA.6.3 in the Online Appendix shows that JCE selects equilibria
that approximate the least-cost separating equilibrium of this game. ⇤
We now explore JCE’s relationship with other refinements in co-monotonic

games. Co-monotonicity implies that, for all s, any mixture over receiver best
responses ↵ 2 �(BR(⇥, s)) has a corresponding receiver mixed best response
↵0

2 MBR(⇥, s) such that u1(✓, s,↵) = u1(✓, s,↵0) for all ✓. This ensures that
⇥(s,⇡) = b⇥(s,⇡) for every PBE-H ⇡.

LEMMA 4: In a co-monotonic signaling game, ⇥(s,⇡) = b⇥(s,⇡) for all s 2 S
and PBE-H ⇡ 2 ⇧.

The proof of Lemma 4 is in Appendix A3.
In co-monotonic games, all types agree about which receiver best responses

are least desirable. Combining this with Lemma 4 shows that JCE and NWBR
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(Definition 7) select the same profiles up to path-equivalence. JCE thus provides
a learning foundation for the predictions of NWBR in the class of co-monotonic
games.

PROPOSITION 5: In a co-monotonic signaling game, every justified commu-
nication equilibrium is a PBE-H that satisfies NWBR, and every PBE-H that
satisfies NWBR is path-equivalent to a justified communication equilibrium.

PROOF:
Suppose that ⇡ is a PBE-H that satisfies NWBR. Then, by Proposition 4, ⇡ is

path-equivalent to a JCE.
If ⇡ is a JCE, it is a PBE-H. Moreover, for every s 2 S, there is some

↵s 2 �(BR(⇥(s,⇡), s)) such that u1(✓, s,↵s)  u1(✓,⇡) for all ✓ 2 ⇥. Be-
cause the game is co-monotonic, there exists as 2 BR(⇥(s,⇡), s) such that as 2
argmin

a2BR(⇥(s,⇡),s) u1(✓, s, a) for all ✓ 2 ⇥, so u1(✓, s, as)  u1(✓,⇡) for all ✓ 2 ⇥.

Since the game is co-monotonic, Lemma 4 implies that as 2 BR(b⇥(s,⇡), s), so ⇡
is a PBE-H that satisfies NWBR. ⌅

Combining Proposition 5 with the observation that every PBE-H that satisfies
NWBR is path-equivalent to a PBE shows that in co-monotonic signaling games,
every JCE is path-equivalent to a PBE that satisfies NWBR. Moreover, as shown
by Cho and Sobel (1990), NWBR and D1 coincide in monotonic games, so JCE
is also path-equivalent to D1 in co-monotonic games.

COROLLARY 2: In a co-monotonic signaling game, every justified communi-
cation equilibrium is path-equivalent to a PBE that satisfies NWBR and D1, and
every PBE-H that satisfies NWBR or D1 is path-equivalent to a justified commu-
nication equilibrium.

Thus, JCE provides a learning foundation for restricting attention to D1 equilibria
in co-monotonic games, as in e.g. Nachman and Noe (1994), DeMarzo and Du�e
(1999), and DeMarzo, Kremer and Skrzypacz (2005).23

In various co-monotonic games, such as that of DeMarzo and Du�e (1999),
JCE selects the least-cost separating equilibrium outcome, often called the “Riley
outcome” (Riley, 1979). Moreover, Cho and Sobel (1990) showed that NWBR
selects the Riley outcome in a class of monotonic games with a continuum of
actions. The definition of JCE can be applied as is to signaling games with infinite
actions, and the equivalence of JCE and NWBR in Proposition 5 continues to hold
in all co-monotonic signaling games. Thus, JCE selects the Riley outcome in all
co-monotonic games that satisfy the additional assumptions of Cho and Sobel
(1990) and, by a closed graph argument, also only selects equilibria that are close

23Technically, the game analyzed in DeMarzo, Kremer and Skrzypacz (2005) is not a traditional signaling
game because of the presence of multiple senders, but this distinction is not important.
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to the Riley outcome when the action space is a su�ciently fine finite grid, as in
Example 4.24

V. Discussion

A. Alternate Models

The key to our analysis is that we consider a limit where most senders and
receivers have substantial experience, but typical senders have significantly more
experience, so that most receivers never encounter inexperienced senders. Because
it is inexperienced senders who are the most likely to “experiment” with signal-
message pairs that depart from the limit strategy profile, most receivers have little
experience with o↵-path play by the senders, which facilitates the analysis of the
stable profiles.
We can obtain this situation with many di↵erent specifications of the popula-

tions of agents and how they interact. For example, suppose that senders and re-
ceivers have geometric lifetimes with common continuation probability � 2 [0, 1),
so that they all have expected lifetime T = 1/(1� �). Every period, each sender
is matched with a receiver, but each receiver only gets matched with some i.i.d.
probability p 2 (0, 1).25 A given receiver is expected to have N2 = pT matches
over their lifetime, while a sender is expected to have N1 = T matches. For every
steady state in this alternate model, there is a corresponding steady state in our
main model with the same aggregate strategy profile when the receiver’s continu-
ation probability is �̃2 = (1�1/T )N2/(1+(1�1/T )N2), which we demonstrate in
Online Appendix Section OA.10. Since �̃2 ! N2/(1 +N2) 2 [0, 1) as T ! 1 for
any fixed N2 2 R+ and N2/(1+N2) ! 1 as N2 ! 1, the iterated limit where first
T ! 1 (so that both sender and receiver agents become long-lived) then � ! 1
(so that sender agents become patient) then N2 ! 1 (so that receiver agents
become experienced) generates precisely the same predictions as our notion of
stability.
Moreover, we can also obtain the same set of stable profiles in models where

agents do not have geometric lifetimes: To illustrate, suppose that agents have
deterministic lifetimes, and that sender agents are matched every period, while
receiver agents are matched everyK periods during their life. Suppose that sender
agents are involved in N1 matches over the course of their lifetime, while receiver
agents are involved in N2. Focusing on the profiles that emerge in the limit where
first N1 ! 1 then � ! 1 then N2 ! 1 generates exactly the same predictions
as stability in the geometric lifetime models. Thus, the unequal lifetimes of our
baseline model are simply a modeling convenience, and not an essential feature.
However, we do need some sort of asymmetry in the interaction structure to

24As noted by e.g. Fudenberg and Tirole (1991a), it may seem odd that adding a type with a small
probability " can make a large change in the Riley outcome. Stability tracks this change in the Riley
outcome because we hold the prior fixed as we take the iterated limit.

25Correspondingly set the population mass of senders to be p times that of the receivers.
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derive our results. When both populations have the same expected number of
interactions, we have not been able to derive interesting restrictions on the stable
profiles. When the receivers have many more interactions (as would be the case
in our baseline model in the limit where first �2 ! 1 then �1 ! 1), all stable
profiles must be PBE and not only PBE-H, but we do not know whether stability
has additional implications.

B. Orders of Limits

We require senders to become long-lived (�1 ! 1) before they become patient
(� ! 1) so that near the limit very few senders will choose to experiment. (This is
why we need the model to have a discount factor parameter.) As in Fudenberg and
Levine (1993, 2006) and Fudenberg and He (2018, 2020, 2021), it seems di�cult
to establish in general what happens when a player’s patience level � goes to 1
before their lifetime become long, as in this case we do not know how to show
that most players stop experimenting. The order with which �2 and � go to 1 is
not crucial; we specify that � converges to 1 before �2 because it a↵ords slightly
cleaner results and simpler proofs. All profiles that we prove are stable in our
examples would also be stable under a more general version of the iterated limit
where first �1 ! 1 and then (�, �2) ! (1, 1). Moreover, OA.9 shows that Theorem
1’s conclusion applies under this general limit to all stable profiles satisfying an
additional condition, such as on-path strict incentives for the receiver.

C. Related Work

Fudenberg and Kreps (1988) introduced the analysis of non-equilibrium learn-
ing in extensive-form games, and announced a program of deriving equilibrium
refinements from learning foundations, but did not provide details. Our steady-
state formulation is in the spirit of Fudenberg and Levine (1993). Fudenberg
and Levine (1993) and Fudenberg and Kreps (1994) provided conditions for ra-
tional players to do enough experimentation to rule out non-Nash outcomes.26

Fudenberg and Levine (2006) used a steady-state learning model to study equi-
librium refinements in a class of games of perfect information, and showed that
all “subgame-confirmed” equilibria are stable.
In signaling games without cheap talk, Fudenberg and He (2018) analyzed the

steady states of a model where senders and receivers have identically-distributed
geometric lifetimes. It assumed that the senders’ prior beliefs over the aggregate
receiver responses are independent across signals, so that the senders’ optimal

26Kalai and Lehrer (1993), Lehrer and Solan (2007), Esponda (2013), Battigalli et al. (2019) studied
rational learning without assuming that agents are patient. Battigalli (1987), Rubinstein and Wolinsky
(1994), Dekel, Fudenberg and Levine (1999), Esponda (2013), Battigalli et al. (2015), and Fudenberg
and Kamada (2015, 2018), among other papers, studied equilibrium concepts motivated by rational
learning without analyzing an explicit learning model, and e.g. Binmore and Samuelson (1999), Nöldeke
and Samuelson (1993), Hart (2002), Jehiel and Samet (2005) studied evolutionary or boundedly rational
learning dynamics in extensive form games.
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policy is given by the Gittins index (Gittins, 1979), and used this to derive re-
strictions on equilibria. Fudenberg and He (2020) extended Fudenberg and He
(2018) by supposing that the senders assign probability 0 to receivers playing
conditionally dominated actions, and gave a learning foundation for rationality-
compatible equilibrium (RCE). If we treat the signal-message pair (s,m) as a
signal when evaluating the conditions of RCE, then RCE collapses to the Intu-
itive Criterion when the message space is not singleton because messages have no
e↵ect on payo↵s. If we instead compare RCE to JCE in a game with a singleton
message space, RCE is again weaker. For example, the “All Pass” outcome of
Example 1 is consistent with RCE but not JCE.27 Moreover, OA.3 shows that
every JCE is an RCE, because types that are “less compatible” with a given
signal in the sense of RCE can never be justified. This paper obtains a stronger
refinement than RCE without assuming independent priors by explicitly modeling
cheap-talk messages and combining this with the assumptions of initially-trusting
receivers and relatively long-lived senders.
We view initial trust as a plausible and appealingly simple assumption. It

has a similar form to the “believe-unless-refuted” condition of Lipman and Seppi
(1995), which is an equilibrium refinement for signaling games with multiple re-
ceivers and partial provability. There, each receiver can learn from refutations
provided by other receivers. Initial trust is also related to the restrictions imposed
by Rabin (1990), Farrell (1993), and Clark (2020) on how receivers respond to
“credible” messages in signaling games.28 In these papers, common knowledge
of the equilibrium to be played figures heavily in determining the credibility of
messages; such restrictions do not fit with our model of non-equilibrium learning.
Moreover, deriving restrictions on equilibria from a learning model yields more
insight than imposing the restrictions directly.

D. Extensions

We can obtain similar solution concepts by replacing initial trust with alter-
native assumptions. For example, if receivers know the payo↵ functions of the
senders, as in Fudenberg and He (2020), then receivers who are long-lived may feel
that they have acquired a good sense of each sender type’s equilibrium payo↵. In
OA.8.1, we discuss a weakened version of initial trust which only requires receivers
to trust previously unencountered claims if they are consistent with the receiver’s
evaluation of the senders’ incentives. Any stable profile under this assumption
must satisfy a refinement that is similar to, but weaker, than JCE. OA.8.2 shows
that we can capture an iterated procedure similar to that of divinity and universal
divinity (Banks and Sobel, 1987) by strengthening initial trust: If the only types

27RCE also permits equilibria ruled out by JCE and D1 in co-monotonic games like Example 4.
28Rabin (1990) and Farrell (1993) only analyzed cheap-talk games, but their refinements can be extended
to games where the sender also has costly signals. Matthews, Okuno-Fujiwara and Postlewaite (1991),
Blume and Sobel (1995), Zapater (1997), Olszewski (2006), Chen, Kartik and Sobel (2008), and Gordon
et al. (2021) also studied refinements in cheap-talk games.
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who have lied about being in e⇥ are elements of e⇥0, then the receiver responds to
a claim of e⇥ as if the sender’s type belongs to e⇥ [ e⇥0.
An extensive experimental literature shows that a non-trivial share of experi-

mental subjects tell the truth even when this earns less compensation, and thus
behave as if they face a cost of lying. (See the papers surveyed in Abeler, Nosenzo
and Raymond (2019).) Kartik, Ottaviani and Squintani (2006) and Kartik (2009)
incorporated messages with such lying costs into models of strategic communica-
tion. OA.8.3 discusses how our analysis can be extended to signaling games with
costly lying. Intuitively, lying costs make it less appealing for a non-justified type
to falsely represent themself as justified.
Finally, JCE has no cutting power in games where the sender’s only actions are

cheap-talk messages. Developing learning foundations for refinements in these
games is a promising area for future research, and could lead to learning-based
refinements for settings with cheap talk and multiple audiences, as in Goltsman
and Pavlov (2011).

VI. Conclusion

Adding cheap-talk communication to signaling games let us provide a learning-
theoretic foundation for the concept of justified communication equilibrium. We
recovered some of the intuitions that underlie traditional equilibrium refinements
for signaling games, whose predictions were by and large sensible in the games
where they were used. We also confirmed that some of the worries in the literature
about the details of these refinements were well founded, and pointed out how
those refinements need to be modified to accord with the implications of non-
equilibrium learning.29

Of course, there are multiple ways to formulate models of non-equilibrium learn-
ing, just as there are many definitions of forward induction, and several variants of
the Kohlberg and Mertens (1986) axioms. In our opinion, it is easier to judge the
plausibility of assumptions on learning models than of axiomatic conditions on
equilibrium concepts, especially axioms that are imposed without any reference
to how equilibrium play might arise. For this reason, our work makes a valu-
able contribution even in settings such as co-monotonic signaling games, where
the predictions of JCE coincide with those of past work. Outside of those cases,
not only does JCE have the benefit of a learning foundation, it is also easier to
compute, which may make it more appealing to use.
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Appendix A: Other Refinements

A1. Intuitive Criterion

LEMMA A1: If ⇡ is a JCE, then, for every s 2 S, either
1) ⇥†(s,⇡) 6= ;, or
2) u1(✓, s, a) < u1(✓,⇡) for all ✓ 2 ⇥ and a 2 BR(⇥, s).

PROOF:
Let ⇡ be a JCE. Fix s 2 S and suppose that ⇥†(s,⇡) = ;. Let A� =

{↵ 2 �(BR(⇥, s)) : u1(✓, s,↵) < u1(✓,⇡) 8✓ 2 ⇥} be the set of mixtures
over receiver best responses that make playing s strictly worse for every type
than their outcome under ⇡. Similarly, let A+ = {↵ 2 �(BR(⇥, s)) : 9✓ 2

⇥ s.t. u1(✓, s,↵) > u1(✓,⇡)} be the set of mixtures over receiver best responses
that make some type strictly better o↵ by playing s than under ⇡. A� and
A+ are disjoint open subsets of �(BR(⇥, s)), and A� [ A+ = �(BR(⇥, s))
since ⇥†(s,⇡) = ;. As �(BR(⇥, s)) is connected, either �(BR(⇥, s)) = A� or
�(BR(⇥, s)) = A+. �(BR(⇥, s)) = A+ is not possible when ⇡ is a JCE since
then, for every ↵ 2 �(BR(⇥(s,⇡), s)), there is a ✓ such that u1(✓, s,↵) > u1(✓,⇡).
Thus �(BR(⇥, s)) = A�, so u1(✓, s, a) < u1(✓,⇡) for all a 2 BR(⇥, s). ⌅

PROOF OF PROPOSITION 2:
If E(s,⇡) 6= ;, there is some ✓ and ↵ 2 BR(⇥, s) such that u1(✓, s, a) � u1(✓,⇡).

By Lemma A1, ⇥†(s,⇡) 6= ;, so ⇥(s,⇡) = ⇥†(s,⇡). Moreover, ⇥(s,⇡) ✓ E(s,⇡),
because maxa2BR(⇥,s) u1(✓, s, a) < u1(✓,⇡) implies eD✓(s,⇡) [ eD0

✓
(s,⇡) = ; ✓ eD✓0

for any ✓0 2 ⇥. Thus, BR(⇥(s,⇡), s) ✓ BR(E(s,⇡), s). Hence, for all ✓ 2 ⇥,
mina2BR(E(s,⇡),s) u1(✓, s, a)  min

a2BR(⇥(s,⇡),s) u1(✓, s, a)  u1(✓,⇡). ⌅

A2. Co-D1

PROOF OF PROPOSITION 3:
Fix s 2 S. We will argue that ⇥(s,⇡) ✓ ⇥

D1
(s,⇡). This, along with the

justified response criterion of JCE and the fact that every JCE is a PBE-H,
implies that ⇡ is co-D1.
If ⇥†(s,⇡) 6= ;, then ⇥(s,⇡) = ⇥†(s,⇡). Let ✓ be a type such that ✓ 62

⇥
D1

(s,⇡). Then there is some type ✓0 6= ✓ such that D✓(s,⇡) [ D0
✓
(s,⇡) ✓

D✓0(s,⇡). This implies that ✓0 62 ⇥(s,⇡), so ⇥(s,⇡) ✓ ⇥
D1

(s,⇡) follows. If
⇥†(s,⇡) = ;, by Lemma A1, u1(✓, s, a) < u1(✓,⇡) for all a 2 BR(⇥, s). Thus
⇥†,D1(s,⇡) = ; asD✓(s,⇡)[D0

✓
(s,⇡) ✓ D✓0(s,⇡) for all ✓, ✓0 2 ⇥. Thus, ⇥(s,⇡) =

⇥ = ⇥
D1

(s,⇡). ⌅

A3. NWBR

LEMMA A2: ⇥‡(s,⇡) ✓ ⇥†(s,⇡) for all s 2 S and ⇡ 2 ⇧.
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PROOF:
If ✓ 62 ⇥†(s,⇡), then by definition eD0

✓
(s,⇡) ✓ [✓0 6=✓

eD✓0(s,⇡). For ↵ 2 D0
✓
(s,⇡),

↵ 2 MBR(⇥, s) ✓ �(BR(⇥, s)) and u1(✓, s,↵) = u1(✓,⇡), so ↵ 2 eD0
✓
(s,⇡). Since

eD0
✓
(s,⇡) ✓ [✓0 6=✓

eD✓0(s,⇡), there is some ✓0 6= ✓ such that u1(✓0, s,↵) > u1(✓0,⇡), or
equivalently ↵ 2 D✓0(s,⇡). As ↵ is an arbitrary element of D0

✓
(s,⇡), we conclude

that D0
✓
(s,⇡) ✓ [✓0 6=✓D✓0(s,⇡), so ✓ 62 ⇥‡(s,⇡). ⌅

LEMMA A3: If ⇡ is a PBE-H that satisfies NWBR, then, for every s 2 S, either
1) ⇥‡(s,⇡) 6= ;, or
2) u1(✓, s, a) < u1(✓,⇡) for all ✓ 2 ⇥ and a 2 BR(⇥, s).

The proof of Lemma A3 is analogous to that of Lemma A1, and is given in Online
Appendix Section OA.5.

PROOF OF PROPOSITION 4:
Let ⇡ be a PBE-H that satisfies NWBR, and for every o↵-path s, let ↵s 2

MBR(b⇥(s,⇡), s) be such that u1(✓, s,↵)  u1(✓,⇡) for all ✓ 2 ⇥. We will show
that b⇥(s,⇡) ✓ ⇥(s,⇡) for all s, so the profile e⇡ = (⇡1, e⇡2) in which e⇡2 coincides
with ⇡2 for all on-path s and dictates ↵s for all o↵-path s is a JCE that is path-
equivalent to ⇡.
If ⇥‡(s,⇡) 6= ;, then by Lemma A2, ⇥‡(s,⇡) ✓ ⇥†(s,⇡), so b⇥(s,⇡) ✓ ⇥(s,⇡).

If ⇥‡(s,⇡) = ;, then by Lemma A3, u1(✓, s, a) < u1(✓,⇡) for all ✓ 2 ⇥ and
a 2 BR(⇥, s), so ⇥†(s,⇡) = ; and b⇥(s,⇡) = ⇥(s,⇡) = ⇥. ⌅

PROOF OF LEMMA 4:
Fix PBE-H ⇡. We show that, for all s 2 S and ✓ 2 ⇥, eD✓(s,⇡) [ eD0

✓
(s,⇡) 6✓

[✓0 6=✓
eD✓0(s,⇡) if and only ifD0

✓
(s,⇡) 6✓ [✓0 6=✓D✓0(s,⇡). This means that⇥†(s,⇡) =

⇥‡(s,⇡), which implies that ⇥(s,⇡) = b⇥(s,⇡).
Suppose that D0

✓
(s,⇡) 6✓ [✓0 6=✓D✓0(s,⇡). Then there is some ↵ 2 MBR(⇥, s)

such that u1(✓, s,↵) = u1(✓,⇡) and u1(✓0, s,↵)  u1(✓0,⇡) for all ✓0 6= ✓. Since ↵ 2

�(BR(⇥, s)), this immediately implies that eD✓(s,⇡)[ eD0
✓
(s,⇡) 6✓ [✓0 6=✓

eD✓0(s,⇡).

Suppose that eD✓(s,⇡) [ eD0
✓
(s,⇡) 6✓ [✓0 6=✓

eD✓0(s,⇡). Then there is some ↵ 2

�(BR(⇥, s)) such that u1(✓, s,↵) � u1(✓,⇡) and u1(✓0, s,↵)  u1(✓0,⇡) for all
✓0 6= ✓. Moreover, since ⇡ is a PBE-H, there is some ↵0

2 �(BR(⇥, s)) such
that u1(✓, s,↵0)  u1(✓,⇡). By continuity, there exists some ↵00

2 MBR(⇥, s)
such that u1(✓, s,↵00) = u1(✓,⇡)  u1(✓, s,↵). Because the game is co-monotonic,
u1(✓0, s,↵00)  u1(✓0, s,↵)  u1(✓0,⇡) holds for all ✓0 6= ✓. Thus, D0

✓
(s,⇡) 6✓

[✓0 6=✓D✓0(s,⇡). ⌅

Appendix B: Supporting Results for Theorem 1

We use the following lemma in several proofs and examples. We omit its proof,
which closely follows that of Proposition 5 in Fudenberg and He (2018).
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LEMMA B1: Given �2 2 [0, 1), suppose that ⇡�2 = (⇡1,�2 ,⇡2,�2) = limk!1 liml!1 ⇡�2,k,l
for some sequence of steady-state profiles ⇡�2,k,l 2 ⇧⇤(g, �k, �1,k,l, �2), where limk!1 �k =
1 and liml!1 �1,k,l = 1 for all k. Then, for each ✓ 2 ⇥, ⇡1,�2(·|✓) puts support
only on the (s,m) that are optimal for type ✓ against ⇡2,�2.

PROOF OF LEMMA 1:
Let {⇡j,k,l 2 ⇧⇤(g, �j,k, �1,j,k,l, �2,j)}j,k,l2N be a sequence of steady-state profiles

such that limj!1 limk!1 liml!1 ⇡j,k,l = ⇡, where limj!1 �2,j = 1, limk!1 �j,k =
1 for all j, and liml!1 �1,j,k,l = 1 for all j, k. By Lemma B1, for every ✓ 2 ⇥,
⇡1,�2,j (·|✓) = limk!1 liml!1 ⇡1,j,k,l(·|✓) puts support only on signal-message pairs
that are best replies to ⇡2,�2,j = limk!1 liml!1 ⇡2,j,k,l. Combining this with the
upper hemicontinuity of optimal play implies that ⇡1(·|✓) = limj!1 ⇡1,�2,j (·|✓)
puts support only on signal-message pairs that are best replies to ⇡2 = limj!1 ⇡2,�2,j .
⌅

PROOF OF LEMMA 2:
Let q(✓, s,m) = �(✓)⇡1(s,m|✓) be the distribution over (✓, s,m) induced by

� and ⇡1, let Xon be the set of sender signal-message pairs that occur with
positive probability under ⇡, and let p(s,m)(✓) denote the conditional probabil-
ity of ✓ given (s,m) 2 Xon. For " > 0, let Q" = {q0 2 �(⇥ ⇥ S ⇥ M) :
max(✓,s,m) |q

0(✓, s,m) � q(✓, s,m)|  "}. Because best response correspondences
are upper hemicontinuous, there is an " > 0 such that every receiver whose belief
eg2 2 �(�(⇥⇥S⇥M)) puts probability at least 1�" on Q" will respond to every
(s,m) 2 Xon with some a 2 BR(p(s,m), s).
Given the non-doctrinaire prior g2, Theorem 4.2 of Diaconis and Freedman

(1990) implies that there is some T > 0 such that a receiver who has lived
more than T periods assigns posterior probability of at least 1� " to probability
distributions q0 within "/2 distance of whatever empirical distribution they have
observed. Moreover, by the law of large numbers, for any ⌘ > 0 we can take this
T to be such that, with probability at least 1�⌘/2, a receiver who has lived more
than T periods assigns probability of at least 1� " to Q"/2.
Fix sequences {�n}n2N, {�1,n}n2N, and {�2,n}n2N, and let ⇡n = (⇡1,n,⇡2,n) 2

⇧⇤(g, �n, �1,n, �2,n) be a sequence of steady-state profiles such that limn!1 �2,n =
1 and limn!1 ⇡1,n = ⇡1. The share of receivers in the population who have
lived more than T periods is �T2,n, which converges to 1 as n ! 1. Moreover,
qn(✓, s,m) = �(✓)⇡1,n(s,m|✓) ! q as n ! 1. Thus, for every (s,m) 2 Xon and
⌘ > 0, there exists some N 2 N such that ⇡2,n(BR(p(s,m), s)|s,m) � 1� ⌘ for all
n > N . ⌅

PROOF OF LEMMA 3:
Let {⇡j,k,l 2 ⇧⇤(g, �j,k, �1,j,k,l, �2,j)}j,k,l2N be a sequence of steady-state profiles

such that limj!1 limk!1 liml!1 ⇡j,k,l = ⇡, where limj!1 �2,j = 1, limk!1 �j,k =
1 for all j, and liml!1 �1,j,k,l = 1 for all j, k. Since u1(✓, s,⇡2(·|s,ms,e⇥)) <
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u1(✓,⇡) for all ✓ 62 e⇥, Lemma B1 implies that there is some J 2 N such that,
for all ✓0 62 e⇥ and j > J , limk!1 liml!1 ⇡j,k,l(s,ms,e⇥|✓

0) = 0. Receivers who

have never observed the signal-message pair (s, e⇥) played by a type outside
of e⇥ would respond to this pair with an action belonging to BR(e⇥, s). Thus
limk!1 liml!1 ⇡2,j,k,l(BR(e⇥, s)|s,m

s,e⇥) = 1 if limk!1 liml!1 ⇡j,k,l(s,ms,e⇥|✓
0) =

0 for all ✓0 62 e⇥. Since this holds for all j > J , ⇡2(BR(e⇥, s)|s,m
s,e⇥) = 1. ⌅

Appendix C: A Sufficient Condition for Stability

DEFINITION C1: A signaling game is strictly monotonic if, for all ✓, ✓0 2 ⇥,
s 2 S, and ↵,↵0

2 MBR(⇥, s),
1) u1(✓, s,↵) � u1(✓, s,↵0) if and only if u1(✓0, s,↵) � u1(✓0, s,↵0), and
2) u1(✓, s,↵) = u1(✓, s,↵0) implies ↵ = ↵0.

Here the first condition is exactly the monotonicity of Cho and Sobel (1990).
The second condition requires that the sender preference is a strict order on
MBR(⇥, s).
For a given strategy profile ⇡, let Xon be the set of on-path signal-message

pairs, let p(s,m)(✓) denote the conditional probability of ✓ given (s,m) 2 Xon, let

Son be the set of on-path signals, and let So↵ be the set of o↵-path signals.

DEFINITION C2: The JCE ⇡ is uniformly justified if
1) For all ✓ 2 ⇥, there is some s✓ 2 S such that maxm2M u1(✓, s✓,⇡2(·|s✓,m)) >

maxs 6=s✓,m2M u1(✓, s,⇡2(·|s,m)),
2) For every x = (s,m) 2 Xon, there is some ax 2 A such that u2(p(s,m), s, ax) >

maxa 6=ax
u2(p(s,m), s, a),

3) For all s 2 So↵, u1(✓, s, a) < u1(✓,⇡) for all ✓ 2 ⇥ and a 2 BR(⇥(s,⇡), s).

Condition 1 says that every sender type plays exactly one signal and that they
have strict incentives to do so. Condition 2 says that the receiver has a strictly
optimal action in response to every on-path signal-message pair. Condition 3
says that all types are strictly deterred from playing any o↵-path signal for any
justified response.

PROPOSITION C1: If ⇡ is a uniformly justified JCE in a strictly monotonic
signaling game, it induces the same distribution over ⇥⇥S⇥A as a stable profile
for all non-doctrinaire priors g1, g2, including those that do not satisfy initial
trust.

OA.4 in the Online Appendix contains the proof of Proposition C1. Because ⇡
is uniformly justified, there is a receiver behavior strategy that makes each type
strictly prefer to play their corresponding signal in ⇡, and, when each type does
so, leads to the same distribution over ⇥ ⇥ S ⇥ A as ⇡. The proof modifies the
aggregate response correspondences so that the receiver response matches this
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behavior strategy with high probability whenever the aggregate sender play is
such that some type gives their corresponding signal in ⇡ too little probability.
Lemma B1 implies the aggregate sender play given by the fixed points of the
modified aggregate response correspondence is optimal in the iterated limit. The
modification to the receiver aggregate response thus ensures that the limit ag-
gregate sender strategy uses the signals prescribed by ⇡ with high probability.30

Additionally, by strict monotonicity and the optimality of the aggregate sender
play, the receiver response to any on-path signal-message pair must only depend
on the signal, and because receivers strictly prefer to conform to ⇡, the receiver
response to any on-path signal-message pair matches the response in ⇡. We show
that this, along with the fact that ⇡ is uniformly justified, implies that, in the
limit, each sender type uses the same distribution over signals as in ⇡1. Con-
sequently, the modified aggregate receiver response matches the true aggregate
receiver response, and the fixed points of the modified response mapping are valid
steady-state profiles that in the limit induce the same distribution over ⇥⇥S⇥A
as ⇡.

Appendix D: Details Omitted from Section II

Strategy Mapping: The map ��,�1 : (�(H1))⇥ ⇥ �(H2) ! ⇧1 ⇥ ⇧2 taking
the state in period t to the aggregate strategy profile has component mappings
��,�11 : (�(H1))⇥ ! ⇧1 and �2 : �(H2) ! ⇧2 given by ��,�11 (µ1)[s,m|✓] =P

h1:x
�,�1
✓

(h1)=(s,m)
µ✓[h1] and �2(µ2)[a|s,m] =

P
h2:y(s,m|h2)=a

µ2[h2].

Update Rule: The rule that maps the state in period t to the state in period
t+1, f �,�1,�2 : (�(H1))⇥⇥�(H2) ! (�(H1))⇥⇥�(H2), has the following compo-

nents: The mapping f �,�1
✓

: (�(H1))⇥ ⇥�(H2) ! �(H1) is given by f �,�1
✓

(µ)[;] =

1 � �1, and f �,�1
✓

(µ)[(h1, (s,m, a))] = �1µ✓[h1]i
�,�1
✓

(h1, s,m)�2(µ)[a|s,m], where
(h1, (s,m, a)) 2 H1 is the concatenation of the history h1 2 H1 with a period

where the sender plays (s,m) and the receiver responds with a, and i�,�1
✓

(h1, s,m)
equals 1 if a type ✓ sender with history h1 plays (s,m) under policy x✓ and

equals 0 otherwise. Likewise, f �,�1,�22 : (�(H1))⇥ ⇥�(H2) ! �(H1) is given by

f �,�1,�22 (µ)[;] = 1��2, and f �,�1,�22 (µ)[(h2, (✓, s,m))] = �2µ2[h2]�(✓)�
�,�1
1 (µ)[s,m|✓],

where (h2, (✓, s,m)) 2 H2 is the concatenation of the history h2 2 H2 with a pe-
riod where the receiver is matched with a type ✓ sender who plays (s,m).

Aggregate Response Mapping: To define the aggregate response mapping,
we first define mappings L �,�1

1 : ⇧2 ! (�(H1))⇥ and L �2
2 : ⇧1 ! �(H2), which

output the resulting t ! 1 limit of the distribution of histories in the sender
and receiver populations when the aggregate play of the opposing population is

30Fudenberg and Levine (2006) and Fudenberg and He (2020) proved that some strategy profiles are stable
by considering priors that assign high probability to a neighborhood of the target profile. Modifying
the aggregate response mapping lets us prove stability for a broad class of priors.
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held fixed at a given behavior strategy. For each ✓ 2 ⇥, L �,�1
✓

(⇡2)[;] = 1 � �1
is the share of type ✓ senders with the null history. The share of type ✓ senders
with histories h1,t of length t > 0 is defined by induction: For each h1,t�1, we
pair the signal-message pair a type ✓ sender with that history would use with the
aggregate receiver strategy ⇡2 to compute the distribution of period-t outcomes
(st,mt, at) these senders observe, and assign the corresponding probabilities to
the concatenation of these period-t outcomes and h1,t�1. (We do this formally
in OA.2.1 in the Online Appendix.) Likewise, L �2

2 (⇡1)[;] = 1 � �2 is the share
of receiver agents with the null history. A similar induction procedure gives the
share of receiver agents with various histories of length t > 0: For each history
of length t � 1, we take the strategy these agents would use, pair this with the
distribution of sender types � and the aggregate sender strategy ⇡1 to compute
the distribution of period-t outcomes (✓, st,mt) these agents observe, and assign
the corresponding probability to the concatenation of the period-t outcomes and
the previous history.
The components of the aggregate response mapping R�,�1,�2(⇡) = (R�,�1

1 (⇡2),R
�2
2 (⇡1))

are then found by composing L �,�1
1 and L �2

2 with strategy mapping ��,�1 : The

aggregate sender response mapping is given by R�,�1
1 (⇡2) = ��,�11 (L �,�1

1 (⇡2)), and
the aggregate receiver response mapping is given by R�2

2 (⇡1) = �2(L
�2
2 (⇡2)).



Online Appendix for “Justified Communication

Equilibrium”

Daniel Clark and Drew Fudenberg

OA.1 Equivalent Definition of JCE

We show that it would be equivalent to define JCE by setting ⇥†(s, ⇡) = {✓ 2 ⇥ :

eD0
✓
(s, ⇡) 6✓ [✓0 6=✓

eD✓0(s, ⇡)}, rather than ⇥†(s, ⇡) = {✓ 2 ⇥ : eD✓(s, ⇡) [ eD0
✓
(s, ⇡) 6✓

[✓0 6=✓
eD✓0(s, ⇡)}.

For every s 2 S and ⇡ 2 ⇧1 ⇥ ⇧2, let

⇥†
0
(s, ⇡) = {✓ 2 ⇥ : eD0

✓
(s, ⇡) 6✓ [✓0 6=✓

eD✓0(s, ⇡)}

be the set of types ✓ where there is some mixed receiver action ↵ 2 �(BR(⇥, s)) that

makes ✓ indi↵erent between (s,↵) and their outcome under ⇡ and makes no other type

✓0 strictly prefer (s,↵) to their outcome under ⇡. Additionally, let

⇥
0

(s, ⇡) =

8
><

>:

⇥†
0
(s, ⇡) if ⇥†

0
(s, ⇡) 6= ;

⇥ if ⇥†
0
(s, ⇡) = ;

.

Proposition OA 1. If ⇡ is a PBE-H, then ⇥(s, ⇡) = ⇥
0

(s, ⇡) for all s 2 S.

1



Proof. Fix PBE-H ⇡. We will argue that ⇥†
0
(s, ⇡) = ⇥†(s, ⇡), which gives ⇥

0

(s, ⇡) =

⇥(s, ⇡).

First, suppose that ✓ 2 ⇥†
0
(s, ⇡). Then by definition, eD0

✓
(s, ⇡) 6✓ [✓0 6=✓

eD✓0(s, ⇡).

Hence, eD✓(s, ⇡) [ eD0
✓
(s, ⇡) 6✓ [✓0 6=✓

eD✓0(s, ⇡), so ✓ 2 ⇥†(s, ⇡).

Now, suppose that ✓ 2 ⇥†(s, ⇡). Then by definition, eD✓(s, ⇡)[ eD0
✓
(s, ⇡) 6✓ [✓0 6=✓

eD✓0(s, ⇡).

Thus, there is some ↵ 2 �(BR(⇥, s)) such that u1(✓, s,↵) � u1(✓, ⇡) and u1(✓, s,↵) 

u1(✓0, ⇡) for all ✓0 6= ✓. Since ⇡ is a PBE-H, there is also some ↵0
2 �(BR(⇥, s)) such

that u1(✓0, s,↵0)  u1(✓, ⇡) for all ✓0 2 ⇥. By continuity, there is some ⌫ 2 [0, 1] and

↵00 = ⌫↵ + (1 � ⌫)↵0 such that u1(✓, s,↵00) = u1(✓, ⇡), while u1(✓0, s,↵00)  u1(✓0, ⇡)

for all ✓0 6= ✓. As ↵00
2 �(BR(⇥, s)), it follows that eD0

✓
(s, ⇡) 6✓ [✓0 6=✓

eD✓0(s, ⇡), so

✓ 2 ⇥†
0
(s, ⇡). ⌅

OA.2 Omitted Analysis of Learning Model

OA.2.1 Continuity of Aggregate Response Mapping

We begin by formally defining the auxiliary maps L �,�1
1 : ⇧2 ! (�(H1))⇥ and L �2

2 :

⇧1 ! �(H2) introduced in Appendix D. For each ✓ 2 ⇥, let

L �,�1
✓

(⇡2)[;] = 1� �1,

L �,�1
✓

(⇡2)[(h1, (s,m, a))] = �1L
�,�1
✓

(⇡2)[h1]i
�,�1
✓

(h1, s,m)⇡2[a|s,m],

for all h1 2 H1, s 2 S, m 2 M , and a 2 A. To define L �2
2 , let

L �2
2 (⇡1)[;] = 1� �2,

L �2
2 (⇡1)[(h2, (✓, s,m))] = �2L

�2
2 (⇡1)[h2]�(✓)⇡1[s,m|✓],

for all h2 2 H2, ✓ 2 ⇥, s 2 S, and m 2 M .

We now establish the continuity of various mappings involving distributions over

histories, which we endow with the sup-norm topology.
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Claim OA 1. The aggregate strategy mapping ��,�1 : (�(H1))⇥ ⇥�(H2) ! ⇧1 ⇥ ⇧2

is continuous.

Proof. We prove that ��,�1
1 : (�(H1))⇥ ! ⇧1 is continuous. An analogous argument

handles �2 : �(H2) ! ⇧2.

To show that ��,�1
1 is continuous, we establish that limµ

0
1!µ1 �

�,�1
1 (µ0

1)[s,m|✓] =

��,�1
1 (µ1)[s,m|✓] for all s 2 S,m 2 M , ✓ 2 ⇥, and µ1 2 (�(H1))⇥. Since

P
s,m

��,�1
1 (µ0

1)[s,m|✓] =

1 for all µ1 2 (�(H1))⇥, it su�ces to show that lim infµ0
1!µ1 �

�,�1
1 (µ0

1)[s,m|✓] � ��,�1
1 (µ1)[s,m|✓]

for all s, m, and ✓. For any " > 0, let H1," be a finite set of sender histories such that
P

h12H1,":x
�,�1
✓

(h1)=(s,m)
µ✓[h1] � ��,�1

1 (µ1)[s,m|✓] � ". By the nature of the sup-norm

topology, limµ
0
1!µ1

P
h12H1,":x

�,�1
✓

(h1)=(s,m)
µ0

✓
[h1] =

P
h12H1,":x

�,�1
✓

(h1)=(s,m)
µ✓[h1]. Since

µ0

✓
[h1] � 0 for all h1 2 H1 and µ0

1 2 (�(H1))⇥, it follows that lim infµ0
1!µ1 �

�,�1
1 (µ0

1)[s,m|✓] =

lim infµ0
1!µ1

P
h1:x

�,�1
✓

(h1)=(s,m)
µ0

✓
[h1] � limµ

0
1!µ1

P
h12H1,":x

�,�1
✓

(h1)=(s,m)
µ0

✓
[h1] � ��,�1

1 (µ1)[s,m|✓]�

". As this holds for arbitrary " > 0, the desired conclusion follows. ⌅

Claim OA 2. Both L �,�1
1 : ⇧2 ! (�(H1))⇥ and L �2

2 : ⇧1 ! �(H2) are continuous.

Proof. We prove that L �,�1
1 : ⇧2 ! (�(H1))⇥ is continuous. An analogous argument

handles L �2
2 : ⇧1 ! �(H2).

For all ⇡2 2 ⇧2, L �,�1
1 (⇡2)[h1]  (1 � �1)�t1 for every history h1 of length t. Since

limt!1(1��1)�t1 = 0, to establish that L �,�1
1 (⇡2) is a continuous function of ⇡2, it thus

su�ces to show that L �,�1
1 (⇡2)[h1] is continuous for every history h1 2 H1. We show

this inductively over sender histories. For the null sender history h1 = ;, L �,�1
1 (⇡2)[;]

for all ⇡2 2 ⇧2 and is thus continuous. Assuming that L �,�1
1 (⇡2)[h1] is a continuous

function of ⇡2, it follows that L �,�1
1 (⇡2)[(h1, (s,m, a))] is a continuous function of ⇡2

for all s, m, and a, as can be seen from the expression for L �,�1
1 given earlier. This

completes the inductive argument. ⌅

Corollary OA 1. The aggregate response mapping R�,�1,�2 : ⇧1 ⇥ ⇧2 ! ⇧1 ⇥ ⇧2 is

continuous.
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Proof. By Claims OA 1 and OA 2, ��,�1
1 and L �,�1

1 are continuous. Thus R�,�1
1 (⇡2) =

��,�1
1 (L �,�1

1 (⇡2)) is a continuous function of ⇡2. Likewise, since �2 and L �2
2 are contin-

uous, R�2
2 (⇡1) = �2(L

�2
2 (⇡1)) is a continuous function of ⇡1. ⌅

OA.2.2 Characterization of Steady State Profiles

Proposition OA 2. Strategy profile ⇡ is a fixed point of R�,�1,�2 if and only if there

is some steady state µ such that ��,�1(µ) = ⇡.

Proof. Suppose that µ is a steady state satisfying ��,�1(µ) = ⇡. Since µ is a steady

state, the aggregate receiver play in every period is fixed at ⇡2 = �2(µ). By definition,

L �,�1
1 (⇡2) is the t ! 1 limit of the distribution over histories in the sender population

when the aggregate receiver play is fixed at ⇡2. Since µ is a steady state, it follows that

L �,�1
1 (⇡2) = µ1. From this, we obtain R�,�1

1 (⇡2) = ��,�1
1 (L �,�1

1 (⇡2)) = ��,�1
1 (µ1) = ⇡1.

An almost identical argument shows that R�2
2 (⇡1) = ⇡2. We conclude that R�,�1,�2(⇡) =

⇡.

Conversely,suppose that ⇡ is a fixed point of R�,�1,�2 . Let µ be the state given

by µ1 = L �,�1
1 (⇡2) and µ2 = L �2

2 (⇡1). Observe that ��,�1
1 (µ1) = ��,�1

1 (L �,�1
1 (⇡2)) =

R�,�1
1 (⇡2) = ⇡1 and �2(µ2) = �2(L

�2
2 (⇡1)) = R�2

2 (⇡1) = ⇡2, so ⇡ = ��,�1(µ) is the aggre-

gate strategy profile for state µ. All that remains is to establish that µ is a steady state,

which amounts to showing that f �,�1
✓

(L �,�1
1 (⇡2))[h1] = L �,�1

1 (⇡2)[h1] for all h1 2 H1 and

✓ 2 ⇥ and f �,�1,�22 (L �2
2 (⇡1))[h2] = L �2

2 (⇡1)[h2] for all h2 2 H2. We argue inductively

over sender histories that f �,�1
✓

(L �,�1
1 (⇡2))[h1] = L �,�1

1 (⇡2)[h1] for all h1 2 H1. (A simi-

lar inductive argument shows that f �,�1,�22 (L �2
2 (⇡1))[h2] = L �2

2 (⇡1)[h2] for all h2 2 H2.)

For the null sender history h1 = ;, the equality holds since f �,�1
✓

(L �,�1
1 (⇡2))[;] = 1��1 =

L �,�1
1 (⇡2)[;]. Assuming that f �,�1

✓
(L �,�1

1 (⇡2))[h1] = L �,�1
1 (⇡2)[h1] holds, it necessarily

follows that f �,�1
✓

(L �,�1
1 (⇡2))[(h1, (s,m, a))] = L �,�1

1 (⇡2)[(h1, (s,m, a))] for all s, m, and

a since �2(µ2) = ⇡2. This completes the inductive argument. ⌅
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OA.3 Comparison with RCE

In this section, we restrict attention to signaling games without communication, i.e.

M is singleton. We write ⇧•

2 = ⇥s2S�(BR(⇥, s)) for the set of receiver strategies that

assign probability 0 to conditionally dominated responses.

Definition OA 1 (Fudenberg and He, 2020). Signal s 2 S is more rationally-

compatible with ✓0 than ✓00, written as ✓0 %s ✓00,

u1(✓
00, s, ⇡2(·|s)) � max

s0 6=s

u1(✓
00, s0, ⇡2(·|s

0)) implies that

u1(✓
0, s, ⇡2(·|s)) > max

s0 6=s

u1(✓
0, s0, ⇡2(·|s

0)).

In words, this says that type ✓0 is more rationally-compatible with signal s than is ✓00

if any undominated receiver strategy that makes ✓00 willing to play s makes ✓0 strictly

prefer to play it. Let P✓0.✓00 = {p 2 �(⇥) : �(✓00)p(✓0) � �(✓0)p(✓00)} be the set of

probability distributions over sender type where the odds ratio of ✓0 to ✓00 exceed their

odds ratio under the prior distribution. For s 2 S and ⇡ 2 ⇧1⇥⇧2, let P (s, ⇡) ✓ �(⇥)

be the set of beliefs over the sender type given by

P (s, ⇡) =

8
><

>:

�(E(s, ⇡)) \
�
\(✓0,✓00) s.t. ✓0%s✓

00P✓0.✓00
�

if E(s, ⇡) 6= ;

�(⇥) if E(s, ⇡) = ;

,

and let BR(P (s, ⇡), s) = [
p2P (s,⇡)BR(p, s) be the set of receiver best responses to

signal s for some p 2 P (s, ⇡).

Definition OA 2 (Fudenberg and He, 2020). Strategy profile ⇡ is a rationality-

compatible equilibrium (RCE) if it is a PBE-H where, for every s 2 S, ⇡2(·|s) 2

�(BR(P (s, ⇡), s)).

This definition requires that the receiver’s posterior likelihood ratio for types ✓0 and

5



✓00 dominates the prior likelihood ratio whenever ✓0 %s ✓00. It also requires that the

posterior assigns probability 0 to equilibrium-dominated types.

Proposition OA 3. If ⇡ is a justified communication equilibrium, then ⇡ is an RCE.

Intuitively, any response that makes a less compatible type weakly prefer to play

s makes more compatible types strictly prefer to play it, so less compatible types are

not justified.

Proof. Fix s 2 S. We will argue that�(⇥(s, ⇡)) ✓ P (s, ⇡). Thus any ↵ 2 �(BR(⇥(s, ⇡), s))

also belongs to �(BR(P (s, ⇡), s)). Consequently, the justified response criterion of

JCE along with the fact that every JCE is a PBE-H implies that ⇡ is an RCE.

Since �(⇥(s, ⇡)) ✓ �(⇥) = P (s, ⇡) when E(s, ⇡) = ;, we need only handle the case

where E(s, ⇡) 6= ;. In this case by Lemma A1, ⇥(s, ⇡) = ⇥†(s, ⇡) and �(⇥(s, ⇡)) ✓

�(E(s, ⇡)). Suppose that ✓0 and ✓00 are two types such that ✓0 %s ✓00. Then Defi-

nition OA 2 implies that eD✓00(s, ⇡) [ eD0
✓00(s, ⇡) ✓ eD✓0(s, ⇡), so ✓00 62 ⇥†(s, ⇡). As a

result, �(⇥(s, ⇡)) = �(⇥†(s, ⇡)) ✓ \(✓0,✓00) s.t. ✓0%s✓
00P✓0.✓00 . We conclude �(⇥(s, ⇡)) ✓

�(E(s, ⇡)) \ (\(✓0,✓00) s.t. ✓0%s✓
00P✓0.✓00) = P (s, ⇡). ⌅

OA.4 Proof of Proposition C1

Proposition C1. If ⇡ is a uniformly justified JCE in a strictly monotonic signaling

game, it induces the same distribution over ⇥ ⇥ S ⇥ A as a stable profile for all non-

doctrinaire priors g1, g2, including those that do not satisfy initial trust.

Proof. Because ⇡ is a uniformly justified JCE in a strictly monotonic signaling game,

⇡2(·|s,m) = ⇡2(·|s,m0) for all s 2 S and m,m0
2 M such that (s,m), (s,m0) 2 Xon.

Thus, for every s 2 Son, there is some as 2 A such that ⇡2(as|s,m) = 1 for all

(s,m) 2 Xon. For all s 2 So↵, fix some as 2 BR(⇥(s, ⇡), s).

Our construction modifies the aggregate receiver response so that the response to

any s is as with high probability unless the aggregate sender play is such that each

6



type ✓ 2 ⇥ uses s✓ with su�ciently high probability. We show that the fixed points

of this modified aggregate response mapping correspond to fixed points of the true

aggregate response mapping in the iterated limit where �1 ! 1 then � ! 1 then

�2 ! 1. Moreover, we show that the limit of these steady state profiles induce the

same distribution over ⇥⇥ S ⇥ A as ⇡.

Because ⇡ is a uniformly justified JCE in a strictly monotonic signaling game, there

is an " > 0 such that the following two properties hold. First, when ⇡2(as|s,m) � 1�"

for all s, playing s✓ paired with message m is strictly better for type ✓ than playing

any other s0 6= s✓ paired with any m0. Second, if ⇡1(s✓,m|✓) � 1� " for every ✓ 2 ⇥, it

is strictly optimal for the receiver to respond to (s,m) with as for every s 2 Son. Fix

such an ".

Let  : R ! [0, 1] be a continuous function such that (z) = 0 for all z  0 and

(z) = 1 for all z � 1. Also, let � : ⇧1 ⇥ ⇧2 ! ⇧2 be the mapping

�(⇡1, ⇡2)(·|s,m) =

✓
1� 

✓
2

"
(min
✓2⇥

⇡1(s✓|✓)� 1 + ")

◆◆
as
(·)+

✓
2

"
(min
✓2⇥

⇡1(s✓|✓)� 1 + ")

◆
⇡2(·|s,m)

for all s 2 S and m 2 M . Note that � is continuous. Additionally, �(⇡1, ⇡2)(as|s,m) =

1 when ⇡1(s✓|✓)  1 � " for some ✓ 2 ⇥, and �(⇡1, ⇡2) = ⇡2 when ⇡1(s✓|✓) � 1 � "/2

for all ✓ 2 ⇥.

Consider the correspondence eR�,�1,�2 : ⇧1 ⇥ ⇧2 ! ⇧1 ⇥ ⇧2 given by eR�,�1,�2(⇡) =

(R�,�1
1 (⇡2),�(⇡1,R

�2
2 (⇡1))). Since eR�,�1,�2 is continuous, Brouwer’s fixed point theorem

guarantees the existence of a fixed point (⇡�,�1,�2
1 , ⇡�,�1,�2

2 ). We will establish that, in

the iterated limit where �1 ! 1 then � ! 1 then �2 ! 1, ⇡�,�1,�2 = (⇡�,�1,�2
1 , ⇡�,�1,�2

2 )

induces the same distribution over ⇥ ⇥ S ⇥ A as ⇡. Towards this end, consider a

sequence {�2,j}j2N, sequences {�j,k}j,k2N, and sequences {�1,j,k,l}j,k,l2N such that (1)

limj!1 �2,j = 1, (2) limk!1 �j,k = 1 for all j, (3) liml!1 �1,j,k,l = 1 for all j, k, and (4)

limj!1 limk!1 liml!1 ⇡�j,k,�1,j,k,l,�2,j = ⇡0 for some ⇡0 = (⇡0

1, ⇡
0

2) 2 ⇧1 ⇥ ⇧2.

We first establish that ⇡0

1(s✓|✓) � 1 � " for all ✓ 2 ⇥. If instead there were some

✓ 2 ⇥ such that ⇡0(s✓|✓) < 1 � ", then by construction, ⇡0

2(as|s,m) � 1 � " for all

7



s 2 S and m 2 M . Lemma B1 thus requires that ⇡0

1(s✓|✓) = 1 for all ✓ 2 ⇥, which is

a contradiction.

Next we show that ⇡0

2(as|s,m) = 1 for all s 2 Son andm 2 M such that ⇡0

1(s,m|✓) >

0 for some ✓ 2 ⇥. Fix s 2 Son. Consider m,m0
2 M such that ⇡0

1(s,m|✓) > 0

and ⇡0

1(s,m
0
|✓0) > 0 for some ✓, ✓0 2 ⇥. The construction of eR�,�1,�2 , along with an

argument almost identical to the proof of Lemma 2, implies that there exists some

⇠ 2 [0, 1] and ↵,↵0
2 MBR(⇥, s) such that ⇡0

2(·|s,m) = (1 � ⇠) as
(·) + ⇠↵ and

⇡0

2(·|s,m
0) = (1 � ⇠) as

(·) + ⇠↵0. In fact, ↵ and ↵0 must be optimal responses to s

under the posterior distributions obtained by updating � using {⇡0

1(s,m|✓)}✓2⇥ and

{⇡0

1(s,m
0
|✓)}✓2⇥, respectively. Because the game is strictly monotonic, Lemma B1

implies that ↵ = ↵0. Thus, for a given s, ⇡0

2(·|s,m) is the same for all m 2 M for

which there is a ✓0 2 ⇥ such that ⇡0

1(s,m|✓0) > 0. Combining this with the fact that

⇡0

1(s✓|✓) � 1 � " for all ✓, it follows that ⇡0

2(as|s,m) = 1 for all m 2 M such that

⇡0

1(s,m|✓) > 0 for some ✓ 2 ⇥.

Since ⇡0

2(as|s,m) = 1 for all s 2 Son and m 2 M such that ⇡0

1(s,m|✓) > 0 for some

✓ 2 ⇥, it follows from Lemma B1 that ⇡0

1(s|✓) = 0 whenever s 2 Son and s 6= s✓.

We now show that for all ✓ 2 ⇥, ⇡0

1(s|✓) = 0 for all s 2 So↵. Note that, because

⇡1(s✓|✓) > 0 for all ✓ 2 ⇥ and ⇡2(as✓ |s✓,m) = 1 for all ✓ 2 ⇥ and m 2 M where

⇡1(s✓,m|✓) > 0, Lemma B1 implies that u1(✓, ⇡0) = u1(✓, s✓, as✓) = u1(✓, ⇡) for all

✓ 2 ✓. Additionally, Lemma B1 requires that u1(✓, s, ⇡0

2(·|s,m))  u1(✓, ⇡0) = u1(✓, ⇡)

for all ✓ 2 ⇥, s 2 S, and m 2 M . Now, suppose that there is some s 2 So↵ and

m 2 M such that ⇡0

1(s,m|✓) > 0 for some ✓ 2 ⇥. There are two possible cases: (1)

There is some ✓ 62 ⇥(s, ⇡) such that ⇡0

1(s,m|✓) > 0, and (2) All ✓ with ⇡0

1(s,m|✓) > 0

belong to ⇥(s, ⇡). In Case (1), because ⇡0

2(·|s,m) 2 �(BR(⇥, s)), there must be some

✓0 2 ⇥(s, ⇡) such that u1(✓0, s, ⇡0

2(·|s,m)) > u1(✓0, ⇡), which is a contradiction. In Case

(2), the construction of R�,�1,�2 , combined with an almost identical argument to the one

behind Lemma 2, implies that ⇡0

2(·|s,m) 2 �(BR(⇥(s, ⇡), s)). Since ⇡ is a uniformly

justified JCE, it follows that u1(✓, s, ⇡0

2(·|s,m)) < u1(✓, ⇡) for all ✓ 2 ⇥, but this, along

with Lemma B1, implies that ⇡0

1(s,m|✓) = 0 for all ✓ 2 ⇥, a contradiction.
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It follows that ⇡0

1(s✓|✓) = 1 for all ✓ and ⇡0

2(as|s,m) = 1 for all s 2 Son and

m 2 M such that ⇡0

1(s,m|✓) > 0 for some ✓ 2 ⇥. Thus, ⇡�,�1,�2 induces the same

distribution over ⇥⇥S⇥A as ⇡ in the iterated limit where first �1 ! 1 then � ! 1 then

�2 ! 1. Moreover, since ⇡0

1(s✓|✓) = 1 for all ✓ 2 ⇥, ⇡�,�1,�2
2 = �(⇡�,�1,�2

1 ,R�2
2 (⇡�,�1,�2

1 )) =

R�2
2 (⇡�,�1,�2

1 ) in the iterated limit. Thus, ⇡�,�1,�2 is a fixed point of R�,�1,�2 in the iterated

limit, which means that ⇡0 is a stable profile. ⌅

OA.5 Proof of Lemma A3

Lemma A3. If ⇡ is a PBE-H that satisfies NWBR, then, for every s 2 S, either

1. ⇥‡(s, ⇡) 6= ;, or

2. u1(✓, s, a) < u1(✓, ⇡) for all ✓ 2 ⇥ and a 2 BR(⇥, s).

Proof. Let ⇡ be a PBE-H that satisfies NWBR. Fix s 2 S and suppose that ⇥‡(s, ⇡) =

;. Let A� = {↵ 2 MBR(⇥, s) : u1(✓, s,↵) < u1(✓, ⇡) 8✓ 2 ⇥} be the set of receiver

mixed best responses that make playing s strictly worse for every type than their

outcome under ⇡. Similarly, let A+ = {↵ 2 MBR(⇥, s) : 9✓ 2 ⇥ s.t. u1(✓, s,↵) >

u1(✓, ⇡)} be the set of receiver mixed best responses that make some type strictly

better o↵ by playing s than receiving their outcome under ⇡. A� and A+ are disjoint

open subsets of MBR(⇥, s), and A� [ A+ = MBR(⇥, s) since ⇥‡(s, ⇡) = ;. As

MBR(⇥, s) is connected, either A� = MBR(⇥, s) or A+ = MBR(⇥, s). A+ =

MBR(⇥, s) is not possible when ⇡ is a PBE-H that satisfies NWBR since then, for

every ↵ 2 MBR(b⇥(s, ⇡), s), there is some ✓ such that u1(✓, s,↵) > u1(✓, ⇡). Therefore,

A� = MBR(⇥, s), which gives u1(✓, s, a) < u1(✓, ⇡) for all a 2 BR(⇥, s). ⌅
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OA.6 Omitted Analysis of Examples

OA.6.1 Analysis of Example 2

Proposition OA 4. The game in Example 2 has stable profiles where all types play

Pass with probability 1.

Proof. We specify that the worker prior g2 is a Dirichlet distribution. For m 2

{mHire,✓H
,mHire,{✓H ,✓M}}, it has initial weight 1 on (✓H , Hire,m), 1/2 on (✓M , Hire,m),

and 1/4 on (✓L, Hire,m). For m = mHire,✓M
, it has initial weight 3/5 on (✓H , Hire,m),

1 on (✓M , Hire,m), and 1/4 on (✓L, Hire,m). For all other messages m, it has initial

weight 1/4 on (✓H , Hire,m), 1/4 on (✓M , Hire,m), and 1 on (✓L, Hire,m). Note that

initial trust is satisfied: For instance, when a worker first encounters a firm who plays

(Hire,mIn,✓H
), the probability they place on the firm having type ✓H is 4/7, ✓M is 2/7,

and ✓L is 1/7, so eH = BR(✓H , Hire) is optimal.

We observe that eL is the worker’s unique best response to Hire under any distri-

bution that puts probability strictly higher than 3/7 on ✓L. Additionally, if a worker

has encountered past play of (Hire,m) and all such plays have been by firms with type

✓L, then the worker will respond to the next instance of (Hire,m) with eL. To see that

this holds for the case m = mHire,✓H
, note that the worker’s conditional distribution

over the firm’s type after (Hire,mHire,✓H
) must put probability at least 5/11 on ✓L.

Analogous arguments handle the other cases.

We focus on steady state profiles in which, for every m 2 M , the aggregate prob-

ability that a worker responds to (Hire,m) with eM is less than 1/4. Under such

responses, whenever it is weakly optimal for ✓H or ✓M to play Hire, it must be strictly

optimal for ✓L to do so. To see this, note that

u1(✓H , Hire,↵) = 21↵[eH ] + 6↵[eM ]� 5,
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so ↵[eH ] � 5/21� 6/21↵[eM ] whenever u1(✓H , Hire,↵) � 0, and

u1(✓M , Hire,↵) = 12↵[eH ] + 10↵[eM ]� 4,

so ↵[eH ] � 1/3� 5/6↵[eM ] whenever u1(✓M , Hire,↵) � 0. Additionally,

u1(✓L, Hire,↵) = 5↵[eH ] + 2↵[eM ]� 1,

which is strictly positive whenever ↵[eH ] � min{5/21 � 6/21↵[eM ], 1/3 � 5/6↵[eM ]}

and ↵[eM ]  1/4. We argue that such steady state profiles exist in the iterated limit

where �1 ! 1, then � ! 1, and then �2 ! 1, and that the corresponding aggregate

probability that any type plays Hire converges to 0.

Let � : �(A) ◆ �(A) be the correspondence given by

�(↵) =

8
><

>:

{↵} if ↵[eM ] < 1
4

{↵0
2 �(A) : ↵0[eM ] = 1

4} if ↵[eM ] � 1
4

,

and let ⇢ : ⇧2 ◆ ⇧2 be the correspondence given by

⇢(⇡2) = {⇡0

2 2 ⇧2 : ⇡
0

2(·|Hire,m) 2 �(⇡2(·|Hire,m)) 8m 2 M}.

Note that ⇢ is upper hemicontinuous, convex-valued, and coincides with the identity

correspondence whenever ⇡2(eM |In,m) < 1/4 for all m. Let � : ⇧1 ◆ ⇧1 be the

correspondence given by

�(⇡1) =

⇢
⇡0

1 2 ⇧1 : (1) ⇡
0

1[Hire,m|✓] = min

⇢
⇡1[Hire,m|✓],

�(✓L)

2�(✓)

�
8m 2 M, ✓ 2 {✓H , ✓M},

(2) ⇡0

1[Pass,m|✓] = ⇡1[Hire,m|✓] 8m 6= mPass,✓H
, ✓ 2 {✓H , ✓M},

(3) ⇡0

1[s,m|✓L] = ⇡1[s,m|✓L] 8s 2 {Hire, Pass}, m 2 M,

�
.

Note that � is upper hemicontinuous, convex-valued, and coincides with the identity

11



correspondence whenever ⇡1(Hire,m|✓) < �(✓L)/(2�(✓)) for all m 2 M and ✓ 2

{✓H , ✓M}.

Consider the correspondence eR�,�1,�2 : ⇧1⇥⇧2 ◆ ⇧1⇥⇧2 given by eR�,�1,�2(⇡1, ⇡2) =

{(⇡0

1, ⇡
0

2) 2 ⇧1 ⇥ ⇧2 : ⇡0

1 = �(R�,�1
1 (⇡2)) and ⇡0

2 2 ⇢(R�2
2 (⇡1))}. Since eR�,�1,�2 is

upper hemicontinuous and convex-valued, Kakutani’s fixed point theorem guarantees

the existence of a fixed point (⇡�,�1,�2
1 , ⇡�,�1,�2

2 ).

We establish that lim�2!1 lim�!1 lim�1!1 ⇡
�,�1,�2
1 [Hire|✓] = 0 for ✓ 2 {✓H , ✓M}. Sup-

pose towards a contradiction that there is a sequence of worker continuation prob-

abilities {�2,j}j2N, a collection of sequences of firm discount factors {�j,k}j,k2N, and

a collection of sequences of firm continuation probabilities {�1,j,k,l}j,k,l2N such that

(a) limj!1 �2,j = 1, (b) limk!1 �j,k = 1 for all j, (c) liml!1 �1,j,k,l = 1 for all j, k,

(d) limj!1 limk!1 liml!1 ⇡
�j,k,�1,j,k,l,�2,j

1 [Hire,m|✓] exists for all ✓ 2 ⇥ and m 2 M ,

and (e) limj!1 limk!1 liml!1 ⇡
�j,k,�1,j,k,l,�2,j

1 [Hire|✓] > 0 for either ✓ = ✓H or ✓ =

✓M . Then since ⇡�,�1,�2
2 (eM |Hire,m)  1/4 for all m 2 M , Lemma B1 implies

that limj!1 limk!1 liml!1 ⇡
�j,k,�1,j,k,l,�2,j

1 [Hire|✓L] = 1. Therefore, there exists some

m 2 M such that limj!1 limk!1 liml!1 ⇡
�1,j,k,l,�2,j

1 [Hire,m|✓L] > 0 and

lim
j!1

lim
k!1

lim
l!1

⇡
�j,k,�1,j,k,l,�2,j

1 [Hire|✓L] �
�(✓L)

2�(✓)
lim
j!1

lim
k!1

lim
l!1

⇡
�j,k,�1,j,k,l,�2,j

1 [Hire|✓]

for both ✓ 2 {✓H , ✓M}. By Lemma 2 and the fact that the unique worker best response

to Hire is eL when the probability the type is ✓L is at least 1/2, this implies that

limj!1 limk!1 liml!1 R�2,j

2 (⇡
�j,k,�1,j,k,l,�2,j

1 )(eL|Hire,m) = 1. Since �(⇡2(·|Hire,m)) =

{⇡2(·|Hire,m)} if ⇡2(eM |Hire,m) < 1/4, it follows that

limj!1 limk!1 liml!1 ⇡
�j,k,�1,j,k,l,�2,j

2 (⇡1)(eL|Hire,m) = 1. However, by Lemma B1,

this requires that limj!1 limk!1 liml!1 ⇡
�j,k,�1,j,k,l,�2,j

1 [Hire,m] = 0 must hold, a con-

tradiction.

A similar argument establishes that lim�2!1 lim�!1 lim�1!1 ⇡
�,�1,�2
1 [Hire|✓L] = 0, so

lim�2!1 lim�!1 lim�1!1 ⇡
�,�1,�2
1 [Hire] = 0. Since a worker will only play eM in response

to some (Hire,m) if they have previously encountered a firm playing (Hire,m), we

12



have that R�2,j

2 (⇡
�1,k,l,�2,k

1 )(eM |Hire,m) < 1/4 for all m 2 M in the iterated limit.

Since ⇢(⇡2) = {⇡2} if ⇡2(eM |Hire,m) < 1/4 for all m, ⇡�,�1,�2
2 = ⇢(R�2

2 (⇡�,�1,�2
1 )) =

R�2
2 (⇡�,�1,�2

1 ) for fixed, su�ciently high �2 2 [0, 1) when � is su�ciently close to 1 and,

given �, �1 is su�ciently close to 1. For similar reasons, ⇡�,�1,�2
1 = �(R�,�1

1 (⇡�,�1,�2
2 )) =

R�2
2 (⇡�,�1,�2

1 ) also holds in the iterated limit. Thus, (⇡�,�1,�2
1 , ⇡�,�1,�2

2 ) is a fixed point of

R�,�1,�2 for fixed, su�ciently high �2 2 [0, 1), when � is su�ciently close to 1 and, given

�, �1 is su�ciently close to 1. We conclude that there are stable profiles in which every

type plays Pass. ⌅

OA.6.2 Analysis of Example 3

Proposition OA 5. The game in Example 3 has stable profiles where both types play

Out with probability 1.

Proof. We specify that the receiver prior g2 is a Dirichlet distribution with initial

weight 1 on (✓1, In,mIn,✓1) and 1/2 on (✓2, In,mIn,✓1), and, for all other messages

m 6= mIn,✓1 , initial weight 1/2 on (✓1, In,m) and 1 on (✓2, In,m). This means that

initial trust is satisfied: When a receiver first encounters a sender who plays (In,mIn,✓),

the probability they place on the receiver having type ✓ is 2/3 so BR(✓, In) is optimal.

We claim first that if a receiver has encountered past plays of (In,m) and all such

plays have been by senders with the same type ✓, then the receiver will respond to the

next instance of (In,m) with BR(✓, In). We demonstrate this for the case m = m✓1 ;

analogous arguments handle the other case. If this message has only ever been sent

by ✓1, the receiver’s belief about the sender’s type after (In,m✓1) must put probability

at least (1 + 1)/(1 + 1 + .5) = 4/5 on ✓1, which makes a1 the unique receiver best

response. When ✓ = ✓2, the receiver’s conditional distribution over the sender’s type

after (In,m✓1) must put probability at least (1 + .5)/(1 + 1 + .5) = 3/5 on ✓2, which

makes a2 the unique receiver best response.

We focus on steady state profiles in which, for every m 2 M , the aggregate proba-

bility that a receiver responds to (In,m) with a3 is less than 1/4. Under such responses,

13



it can never be weakly optimal for both types to play In with the same message. To

see this, note that

u1(✓1, In,↵) + u2(✓2, In,↵) = �↵[a1]� ↵[a2] + 2↵[a3] = �1 + 3↵[a3],

which is strictly negative whenever ↵[a3]  1/4. We argue that such steady state

profiles exist in the iterated limit where �1 ! 1 then � ! 1 then �2 ! 1 and that the

corresponding aggregate probability that either sender type plays In converges to 0.

Let � : �(A) ◆ �(A) be the correspondence given by

�(↵) =

8
><

>:

{↵} if ↵[a3] <
1
4

{↵0
2 �(A) : ↵0[a3] =

1
4} if ↵[a3] �

1
4

,

and let ⇢ : ⇧2 ◆ ⇧2 be the correspondence given by

⇢(⇡2) = {⇡0

2 2 ⇧2 : ⇡
0

2(·|In,m) 2 �(⇡2(·|In,m)) 8m 2 M}.

Note that ⇢ is upper hemicontinuous, convex-valued, and coincides with the identity

correspondence whenever ⇡2(a3|In,m) < 1/4 for all m.

Consider the correspondence eR�,�1,�2 : ⇧1⇥⇧2 ◆ ⇧1⇥⇧2 given by eR�,�1,�2(⇡1, ⇡2) =

{(⇡0

1, ⇡
0

2) 2 ⇧1⇥⇧2 : ⇡0

1 = R�,�1
1 (⇡2) and ⇡0

2 2 ⇢(R�2
2 (⇡1))}. Since R is upper hemicon-

tinuous and convex-valued, Kakutani’s fixed point theorem guarantees the existence of

a fixed point (⇡�,�1,�2
1 , ⇡�,�1,�2

2 ). As ⇡�,�1,�2
2 (a3|s,m)  1/4 for all (s,m) by construction,

Lemma B1 implies that, for all �2 2 [0, 1) and (s,m), either lim�1!1 ⇡
�,�1,�2
1 [In,m|✓1] =

0 or lim�1!1 ⇡
�,�1,�2
1 [In,m|✓2] = 0. This means that, as �1 ! 1 then � ! 1, the prob-

ability that a receiver encounters senders with both types that pair In with the same

messagem approaches 0. Since a receiver would only ever play a3 in response to (In,m)

if they have previously encountered senders of both types play (In,m), this means

that lim�!1 lim�1!1 R�2
2 (⇡�,�1,�2

1 )(a3|In,m) = 0 for all m 2 M . Since ⇢(⇡2) = {⇡2}

if ⇡2(a3|In,m) < 1/4 for all m, ⇡�,�1,�2
2 = ⇢(R�2

2 )(⇡�,�1,�2
1 ) = R�2

2 (⇡�,�1,�2
1 ) for fixed
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�2 2 [0, 1) when � is su�ciently close to 1 and, given �, �1 is su�ciently close to

1. Thus, for fixed �2 2 [0, 1), (⇡�,�1,�2
1 , ⇡�,�1,�2

2 ) is a fixed point of R�,�1,�2 when � is

su�ciently close to 1 and, given �, �1 su�ciently close to 1.

To show that lim�2!1 lim�!1 lim�1!1 ⇡
�,�1,�2
1 [In] = 0, suppose towards a contradic-

tion that there is a sequence of receiver continuation probabilities {�2,j}j2N, a collec-

tion of sequences of sender discount factors {�j,k}j,k2N, and a collection of sequences

of sender continuation probabilities {�1,j,k,l}j,k,l2N such that (a) limj!1 �2,j = 1, (b)

limk!1 �j,k = 1 for all j, (c) liml!1 �1,j,k,l = 1 for all j, k, and

(d) limj!1 limk!1 liml!1 ⇡
�j,k,�1,j,k,l,�2,j

1 [In,m|✓] > 0 for some ✓ 2 ⇥ and m 2 M .

Without loss of generality, take ✓ = ✓1. By what we have shown, it must be that

limk!1 liml!1 ⇡
�j,k,�1,j,k,l,�2,j

1 [In,m|✓2] = 0 for all su�ciently large j. Combining this

with limj!1 limk!1 liml!1 ⇡
�j,k,�1,j,k,l,�2,j

1 [In,m|✓1] > 0 and limj!1 �2,j = 1 gives

limj!1 limk!1 liml!1 ⇡
�j,k,�1,j,k,l,�2,j

2 (a1|s,m) = 1, because with probability 1 every re-

ceiver encounters a type ✓1 sender playing (In,m) but never encounters a type ✓2 sender

playing (In,m). However, since u1(✓1, In, a1) < 0, limj!1 limk!1 liml!1 ⇡
�j,k,�1,j,k,l,�2,j

2 (a1|s,m) =

1 combined with Lemma B1 requires limj!1 limk!1 liml!1 ⇡
�j,k,�1,j,k,l,�2,j

1 [In,m|✓1] =

0, a contradiction. ⌅

OA.6.3 Analysis of Example 4

Proposition OA 6. The least-cost separating equilibrium of the game in Example 4

has ✓ = 1 play (s⇤1(1), s
⇤

2(1)) = (1/2, 0), to which the receiver responds a⇤(1) = 10,

✓ = 2 play (s⇤1(2), s
⇤

2(2)) = (1/2, 5), to which the receiver responds a⇤(2) = 20, and

✓ = 3 play (s⇤1(3), s
⇤

2(3)) = (1/2, 15), to which the receiver responds a⇤(3) = 30.

Proof. We first establish that this play is consistent with a separating PBE. Given an

arbitrary (s1, s2) and a belief �̃ about the sender’s type, the receiver’s best responses

are the closest actions to 20s1E�̃
[✓], as can be readily verified using the receiver’s utility

function. For s1 = 1/2 and the belief that the type is ✓, the receiver’s best response is

10✓, so the prescribed receiver play following the on-path sender play is indeed optimal.
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Fix the receiver’s response to any o↵-path signal-message pair (s1, s2,m) to be 20s1, i.e.

the best response under a belief putting probability 1 on ✓ = 1. All that remains is to

check that the incentives of the sender types are satisfied. We verify this for the ✓ = 3

sender type. (Similar arguments handle the other two types.) Under the prescribed

play, the payo↵ of the ✓ = 3 sender type is u1(3, 1/2, 15, 30) = 30. If the ✓ = 3 sender

were instead to mimic ✓ = 1 or ✓ = 3, their payo↵ would be 15 or 25, respectively.

Moreover, if the ✓ = 3 sender were to deviate to some o↵-path signal-message pair

(s1, s2,m), their payo↵ would be 60(1� s1)s1 � s2, which is strictly lower than 30 for

all s1 2 [0, 1] and s2 � 0.

We now show that every other separating equilibrium results in (weakly) lower

payo↵s to each of the sender types. The payo↵ of the ✓ = 1 sender from (s1, s2) when

the receiver responds with 20s1 is 20(1� s1)s1 � s2, which attains its maximum value

of 5 at (s⇤1(1), s
⇤

2(1)). The maximum possible payo↵ of the ✓ = 2 sender from playing

some (s1, s2) when the receiver responds with 40s1, subject to the constraint that ✓ = 1

would obtain a lower payo↵ than 5 by imitating ✓ = 2 is

max
(s1,s2)2S

80(1� s1)s1 � s2 s.t. 40(1� s1)s1 � s2  5.

The solution to this problem is (s⇤1(2), s
⇤

2(2)), and the resulting payo↵ to ✓ = 2 is 15.

Finally, the maximum possible payo↵ of the ✓ = 3 sender from playing some (s1, s2)

when the receiver responds with 60s1, subject to the constraint that ✓ = 2 would obtain

a lower payo↵ than 15 by imitating ✓ = 3 is

max
(s1,s2)2S

120(1� s1)s1 � s2 s.t. 80(1� s1)s1 � s2  15.

The solution to this problem is (s⇤1(3), s
⇤

2(3)). ⌅

Proposition OA 7. If ⇡ is a JCE in the game in Example 4, then each ✓ plays

(s⇤1(✓), s
⇤

2(✓)) with strictly positive probability, and the receiver responds to all on-path

(s⇤1(✓), s
⇤

2(✓),m) with a⇤(✓) as in the least-cost separating equilibrium.
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Proof. We first establish that in a JCE ⇡, for each signal-message pair (s1, s2,m) played

by ✓ = 3, the product of (1�s1) and the receiver’s response has expected value at least

44/3. Suppose otherwise that there is some signal-message pair (s1, s2,m) that ✓ = 3

plays which induces a receiver response with expected value ã such that (1 � s1)ã <

44/3. It must be that s2 < 44, as otherwise ✓ = 3 would obtain a strictly negative

payo↵. Thus, s02 = ds2 + 30� 2(1� s1)ãe 2 S. Note that u1(3, ⇡) = 3(1 � s1)ã � s2,

while u1(✓, ⇡)  ✓(1 � s1)ã � s2 for ✓ 2 {1, 2}. Since u1(3, 1/2, s02, a) = 3a/2 � s02, we

have that u1(3, 1/2, s02, a) � u1(3, ⇡) if and only if a � 2(1� s1)ã + 2(s02 � s2)/3, with

the inequality strict for all a > 2(1� s1)ã+ 2(s02 � s2)/3. Moreover, u1(✓, 1/2, s02, a) �

u1(✓, ⇡) for ✓ = 1 or ✓ = 2 only if u1(✓, 1/2, s02, a) = ✓a/2 � s02 � ✓(1 � s1)ã � s2,

which requires a � 2(1 � s1)ã + s02 � s2. Since s02 > s2, 2(1 � s1)ã + s02 � s2 >

2(1� s1)ã + 2(s02 � s2)/3 which means that ⇥(1/2, s02, ⇡) = {3} and the only justified

response to (1/2, s02) is 30. As this is strictly greater than 2(1 � s1)ã + 2s02/3 � 2s2/3

when (1� s1)ã < 44/3, the claim follows.

An immediate implication is that there must be some signal-message pair that ✓ = 2

sends with positive probability that ✓ = 3 does not send, because (1� s1)a  25/2 for

any signal (s1, s2) and receiver best response a to a belief where the relative weight on

✓ = 2 versus ✓ = 3 is at least that of the prior.

We now show that, for each signal-message pair (s1, s2,m) played by ✓ = 2 but not

by ✓ = 3, the product of 1 � s1 and the receiver’s response must have an expected

value between 19/2 and 10. Whenever the probability of ✓ = 3 is 0, the product of

(1 � s1) and any undominated receiver response is no more than 10, so we need only

show that the expected value of the product must exceed 19/2. Suppose otherwise

that there is some signal-message pair (s1, s2,m) that ✓ = 2 plays but ✓ = 3 does not

play for which the expected value of the receiver response ã satisfies (1� s1)ã < 19/2.

It must be that s2 < 19, so s02 = ds2 + 10� (1� s1)ae 2 S. Note that u1(2, ⇡) =

2(1 � s1)ã � s2, while u1(1, ⇡)  (1 � s1)ã � s. Since u1(2, 1/2, s02, a) = a � s02, we

have that u1(2, 1/2, s02, a) � u1(2, ⇡) if and only if a � 2(1 � s1)ã + s02 � s2, with the

inequality strict for all a > 2(1� s1)ã + s02 � s2. Moreover, u1(1, 1/2, s02, a) � u1(1, ⇡)
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only if a/2�s02 � (1�s1)ã�s, which requires a � 2(1�s1)ã+2(s02�s2). Since s02 > s2,

2(1�s1)ã+2(s02�s2) > 2(1�s1)ã+s02�s2, which means that ⇥(s+10, ⇡) ✓ {2, 3} so

justified responses to (1/2, s02) must weakly exceed 20. As this is strictly greater than

2(1� s1)ã+ s02 � s2 when (1� s1)ã < 19/2, the claim follows.

There must be some signal-message pair that only ✓ = 1 plays. To see this, first

observe that there can be no signal-message pair played by both ✓ = 1 and ✓ = 3. If

there were some signal-message pair (s1, s2,m) played by both ✓ = 1 and ✓ = 3, the

product of 1� s1 and the expected value of the receiver response ã must be less than

25/2, because increasing di↵erences in ✓ and (1 � s1)a in the sender utility function

implies that every signal-message pair played by ✓ = 2 must induce the same expected

value (1� s1)ã. This contradicts the fact that, for every signal-message pair played by

✓ = 3, the product of 1 � s1 and the expected value of the receiver response must be

weakly greater than 44/3. Additionally, ✓ = 1 cannot only play signal-message pairs

that are also played by ✓ = 2. Otherwise, there would be some signal-message pair

(s1, s2,m) played by ✓ = 2, for which the product of 1 � s1 and the receiver response

would have expected value weakly less than 15/2 since (1�s1)a  15/2 for any receiver

best response a to a belief where the weight on ✓ = 3 is 0 and the weight on ✓ = 1 is

at least that of the prior.

For every signal-message pair that only ✓ = 1 plays, s1 = 1/2, s2 = 0, and the

receiver responds with a = 10. The reason is the payo↵ ✓ = 1 obtains from a signal-

message pair (s1, s2,m) that only ✓ = 1 plays is 20(1� s1)s1 � s2, which is strictly less

than 5 if s1 6= 1/2 or s2 > 0. However, ✓ = 1 can secure a payo↵ of 5 by simply playing

(s1, s2) = (1/2, 0), since every a < 10 is a strictly dominated response for the receiver.

We now argue that, for every signal-message pair played by ✓ = 2 but not by ✓ = 3,

s1 = 1/2, s2 = 5, and the receiver responds with a = 20. We have previously established

that the product of 1� s1 and the expected value of the receiver’s response ã must be

between 19/2 and 10. For (1� s1)ã < 10 to hold, it must be that ✓ = 1 also plays this

signal-message pair. This requires u1(1, s, ã) = (1� s1)ã� s2 = u1(1, ⇡). As previously

established, u1(1, ⇡) = 5, so it must be that s2 = (1�s1)ã�5. However, there is no ã 2
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[19/2, 10) such that ã�5 2 S. Therefore, (1�s1)ã = 10. Since (1�s1)ã  40(1�s1)s1

and 40(1� s1)s1 < 10 for all s1 6= 1/2, it follows that s1 = 1/2 and thus ã = 20. From

u1(1, 1/2, s2, 20) = 10� s2  5 = u1(1, ⇡), we obtain s2 � 5. All that remains is to rule

out s2 > 5. If s2 > 5, u1(1, 1/2, s2 � 1, a) = a/2� s2 + 1 � 5 = u1(1, ⇡) only if a � 20.

On the other hand, u1(2, 1/2, s2 � 1, a) = a � s2 + 1 � 20 � s2 = u1(2, ⇡) if and only

if a � 19, with the inequality strict for all a > 19. Thus, ⇥(1/2, s2 � 1, ⇡) ✓ {2, 3}, so

justified responses to (1/2, s2 � 1) must weakly exceed 20. It follows that s2 = 5.

Finally, we show that, for every signal-message pair played by ✓ = 3, s1 = 1/2,

s2 = 15, and the receiver responds with a = 40. We have previously established that

the product of 1 � s1 and the expected value of the receiver’s response ã must be

between 44/3 and 15. For (1 � s1)ã < 15 to hold, it must be that ✓ = 2 also plays

this signal-message pair. This requires u1(2, s1, s2, ã) = 2(1� s1)ã� s2 = u1(2, ⇡). As

previously established, u1(2, ⇡) = 15, so it must be that s2 = 2(1�s1)ã�15. However,

there is no (1�s1)ã 2 [44/3, 15) such that 2(1�s1)ã�15 2 S. Therefore, (1�s1)ã = 15.

Since (1 � s1)ã  60(1 � s1)s1 and 60(1 � s1)s1 < 15 for all s1 6= 1/2, it follows that

s1 = 1/2 and thus ã = 30. From u1(2, 1/2, s2, 30) = 30� s2  15 = u1(2, ⇡), we obtain

s2 � 15. All that remains is to rule out s > 15. If s > 15, u1(✓, 1/2, s2 � 1, a) =

✓a/2 � s + 1 � u1(✓, ⇡) for either ✓ = 1 or ✓ = 2 requires that a � 40. On the other

hand, u1(3, 1/2, s2 � 1, a) = 3a/2� s2 + 1 � 45� s2 = u1(3, ⇡) if and only if a � 29/3,

with the inequality strict for all a > 29/3. Thus, ⇥(1/2, s2 � 1, ⇡) = {3}, so the only

justified response to (1/2, s2 � 1) is 30. It follows that s2 = 15. ⌅

OA.7 Other Examples

OA.7.1 Stability without Initially Trusting Receivers

Example OA 1. The sender’s type space is ⇥ = {✓1, ✓2}, signal space is S = {In,Out},

and the receiver’s action space is A = {a1, a2}. The payo↵s to the sender and receiver

are given below.
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✓1 a1 a2

In 1, 1 �1,�1

Out 0, 0 0, 0

✓2 a1 a2

In �1,�1 �1, 1

Out 0, 0 0, 0

Out strictly dominates In for type ✓2, so ✓2 plays Out in every equilibrium of this

game. However, there are equilibria in which ✓1 plays In and equilibria in which ✓1

plays Out. The equilibria where ✓1 plays Out do not survive the Intuitive Criterion

since a1 is the receiver’s unique best response to In when the sender’s type is ✓1, and

✓1 obtains a strictly higher payo↵ from (In1, a1) than from playing Out.

We show that, when g2 is such that a receiver plays a2 when they first encounter a

sender playing (In,m) for every message m 2 M , there are stable profiles in which ✓1

plays Out.

We focus on steady state profiles in which the aggregate probability that a receiver

responds to (In,m) with a1 is less than 1/3 for every message m 2 M , which makes it

strictly optimal for type ✓1 senders to play Out. We show that, for fixed �2 2 [0, 1), such

steady state profiles exist, and, moreover, that the corresponding aggregate probability

that a type ✓1 sender plays In approaches 0 as �1 ! 1 and then � ! 1.

Let  : ⇧2 ! ⇧2 be the mapping given by

 (⇡2)(a1|In,m) = min

⇢
⇡2(a1|In,m),

1

3

�
8m 2 M.

Note that  is continuous and coincides with the identity mapping whenever ⇡2(a1|In,m) 

1/3 for all m.

Consider the mapping eR�,�1,�2 : ⇧1 ⇥ ⇧2 ! ⇧1 ⇥ ⇧2 given by eR�,�1,�2(⇡1, ⇡2) =

(R�,�1
1 (⇡2), (R

�2
2 (⇡1))). Since eR�,�1,�2 is continuous, Brouwer’s fixed point theorem

guarantees the existence of a fixed point (⇡�,�1,�2
1 , ⇡�,�1,�2

2 ). As ⇡�,�1,�2
2 (a1|In,m)  1/3

for all m by construction, Lemma B1 implies that lim�!1 lim�1!1 ⇡
�,�1,�2
1 [In] = 0 for all

�2 2 [0, 1). Furthermore, because g2 is such that every receiver would play a2 at a first
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encounter with a sender playing (In,m), lim�!1 lim�1!1 R�2
2 (⇡�,�1,�2

1 )(a1|In,m) = 0

for all m, �2 2 [0, 1), so the ⇡2(a1|In,m)  1/3 constraint does not bind when �

is su�ciently close to 1 and, given �, �1 is su�ciently close to 1. Formally, since

⇡�,�1,�2
2 6= R�2

2 (⇡�,�1,�2
1 ) only if R�2

2 (⇡�,�1,�2
1 )(a1|In,m) > 1/3 for some m, we have that,

for fixed �2 2 [0, 1), ⇡�,�1,�2
2 = R�2

2 (⇡�,�1,�2
1 ) for � su�ciently close to 1 and, given �,

�1 su�ciently close to 1. Combining this with the fact that ⇡�,�1,�2
1 = R�,�1

1 (⇡�,�1,�2
2 )

for all �1, �2 2 [0, 1), it follows that, for fixed �2 2 [0, 1), (⇡�,�1,�2
1 , ⇡�,�1,�2

2 ) is a fixed

point of R�,�1,�2 for � su�ciently close to 1 and, given �, �1 su�ciently close to 1.

Since lim�2!1 lim�!1 lim�1!1 ⇡
�,�1,�2
1 [In] = 0, we conclude that there are stable profiles

in which both types plays Out. ⇤

In this example, In is strictly dominated for type ✓2. If the priors of the receiver

agents put 0 probability on sender types for whom a given signal is strictly dominated

after an observation of that signal, the receivers would respond to In with a1, which

would preclude the “All Out” equilibria. Depending on the context, such belief re-

strictions might be plausible, though they do rely on the receivers knowing the sender

payo↵ function. However, even with such restrictions, stability can still allow implau-

sible outcomes when initial trust is not satisfied. For example, we could modify the

payo↵s above so that In is no longer strictly dominated for ✓2, but rather conditionally

dominated when the receiver response to Out uses a particular action, say a2, with

high probability. When the receiver priors are non-degenerate, we could choose the

receiver payo↵s so that both types playing Out is stable.1

OA.7.2 Alternate Example Where D1 Does Not Imply JCE

Example OA 2. Here we analyze a simple example that is related to the idea of cor-

porate culture as a way of telling workers what to do in unforeseen contingencies (see

e.g. Camerer and Vepsalainen (1988) and Kreps (1990)). The sender is a firm, and the

1
We could further restrict the receiver priors to assign probability 0 to sender types for whom a given

signal is equilibrium dominated, but such restrictions are not consistent with a learning foundation for

equilibrium, since they require that the receivers know the equilibrium being played in the population.

21



receiver is a recently hired worker. The firm’s signal s 2 {Creative, Standard} is its

choice of job assignment for the worker: The firm can either assign the worker to one

of its “standard” jobs or to a “creative” job. Standard jobs carry out the firm’s oper-

ation as currently designed, and let the firm e↵ectively control the actions of workers

through a combination of monitoring and provision of incentives. Creative jobs are

intended to lead to innovations which the firm can then incorporate into its main oper-

ations, and the firm has relatively little direct control over the work these workers carry

out. The worker’s choice of action a 2 {a1, a2, a3} represents the focus and intensity

of their costly e↵ort when assigned a creative job: a1 and a2 both represent intense

e↵ort directed at productive innovation but with focuses in di↵erent sectors, while a3

represents a lack of productive e↵ort.

The firm has three possible types, ⇥ = {✓1, ✓2, ✓3}. Type ✓1 and ✓2 firms obtain

higher payo↵s than the relatively unproductive type ✓3 firms. Moreover, type ✓1 firms

are particularly well suited to exploit innovations that workers with creative jobs choos-

ing action a1 may create, and type ✓2 firms have an advantage with innovations from

a2. Due to their high payo↵s from standard jobs, type ✓1 gains relatively less from a

worker with a creative job working on a2 than type ✓3 does. (Likewise for type ✓2 and

a1.) A worker with a creative job is incentivized by rewards that come from successful

innovation, so such a worker would like to take action a1 if the firm has type ✓1, a2 if

the firm has type a2, and a3 if the firm has type ✓3.

The payo↵s are given below.2

2
The table indicates the worker can take any action in {a1, a2, a3} when assigned a standard job.

However, we think of the firm as controlling the actual e↵ort of a worker with a standard job, which

is why the payo↵s are independent of the formal action of a worker assigned a standard job.
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✓1 a1 a2 a3

Creative 4, 1 2, 0 0,�1

Standard 2, 0 2, 0 2, 0

✓2 a1 a2 a3

Creative 2, 0 4, 1 0,�1

Standard 2, 0 2, 0 2, 0

✓3 a1 a2 a3

Creative 1, 0 1, 0 �1, 1

Standard 0, 0 0, 0 0, 0

In every JCE, there is a positive probability of the worker being assigned a creative

job. The reason is that the worker must, with positive probability, respond to Creative

with a3 in order to deter the firm from playing Creative, but there is no justified

response to Creative that uses a3, because a3 is an optimal response to Creative only

when the worker assigns a positive probability to the firm being type ✓3. However,

either ✓1 or ✓2 strictly prefers to play Creative whenever ✓3 weakly prefers Creative,

so ✓3 is not a justified type for Creative.

Every stable profile has a positive probability of the worker being assigned a creative

job because, for every firm type to learn that Standard is weakly optimal, the aggregate

worker response must use a3 with positive probability whenever Creative is played.

Since responding to Creative with a3 is optimal only for beliefs with positive probability

on ✓3, Initial Trust implies that some ✓3 firms must be learning to play Creative while

claiming to be either type ✓1 or ✓2. But if ✓3 firms learn that it is weakly optimal to

play Creative, then either the ✓1 or ✓2 firms learn that it is strictly optimal to do so.

Unlike JCE, many existing refinements allow equilibria in which all types play

Standard. We discuss why this is the case for D1, which is typically thought of as a

strong refinement. D1 allows the worker to respond to Creative with a3, because there

is no type which strictly prefers to play Creative whenever ✓3 weakly prefers to do

so. In particular, ✓3 strictly prefers to play Creative whenever the worker plays either

a1 or a2 with probability 1. For the other two types, there are some mixtures over a1
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and a2 at which Creative is strictly preferred to Standard and others where Standard

is strictly preferred to Creative. In contrast, ✓3 is not a justified type for Creative

because whenever ✓3 weakly prefers to play Creative, there is some type that strictly

prefers to do so, but this type need not be the same across worker responses. ⇤

OA.8 Stability Under Alternative Assumptions

OA.8.1 Weakening Initial Trust

Here we discuss a refinement satisfied by all stable profiles under an alternative as-

sumption to initial trust. Suppose that receivers know the payo↵ functions of the

senders, as in Fudenberg and He (2020). Then receivers who are long-lived may feel

that they have acquired a good sense of each sender type’s equilibrium payo↵. Suppose

that such a receiver encounters a sender playing a pair (s,m
s,e⇥) that the receiver has

not previously seen types outside of e⇥ play. If the receiver believes that only types in

e⇥ could improve their outcome by deviating to s when the receiver’s response is con-

tained in BR(s, e⇥), we assume the receiver finds such a message credible and respond

accordingly.3

As before, any stable profile must be a PBE-H. Moreover, stability also imposes

additional conditions for profiles ⇡ that are on-path strict for the receiver or are such

that the sender types’ payo↵s would not be changed if the receiver deviated.4 For such

a profile to be stable, it must be that, for every signal s where u1(✓, s, a) < u1(✓, ⇡) for

all a 2 BR(⇥(s, ⇡), s) and ✓ 62 ⇥(s, ⇡), there is some m 2 M such that ⇡2(·|s,m) 2

�(BR(⇥(s, ⇡), s)). Aside from the qualifying condition u1(✓, s, a) < u1(✓, ⇡) for all

a 2 BR(⇥(s, ⇡), s) and ✓ 62 ⇥(s, ⇡), this requirement is the same as Condition 2 of

Definition 3. Combined, these conditions are weaker than JCE, so they are satisfied

3
The receiver responding to “credible” statements in this way is similar to the motivation underlying

“credible robust neologisms” in Clark (2020).
4
These restrictions on ⇡ guarantee that a typical receiver agent will learn the equilibrium payo↵s of

the sender types with high probability.
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by the equilibria we focus on in Examples 3 and 2. The conditions coincide with JCE

in Example 4 provided that the game is altered to have su�ciently fine action spaces.

Unlike JCE, the conditions are satisfied by the D1 equilibrium in Example 1, but there

are other games in which the conditions rule out D1 equilibria.

OA.8.2 Strengthening Initial Trust

Suppose that we strengthen initial trust to require that for any s 2 S and e⇥, e⇥0
✓ ⇥, if

the receiver has never seen a type outside of e⇥[ e⇥0 play (s,m
s,e⇥), then their response

to a first instance of (s,m
s,e⇥) will belong to BR(e⇥[ e⇥0, s). This means that a receiver

who has only observed types in e⇥0 deceitfully play (s,m
s,e⇥) puts high probability on

the sender type being in either e⇥ or e⇥0 after observing this signal-message pair. This

seems plausible; however, we focus on initial trust because of JCE is simpler and easier

to apply than its iterated version.

The stable profiles then satisfy an iterated version of JCE, which itself is stronger

than the Iterated Intuitive Criterion (Cho and Kreps, 1987) and co-divinity (Sobel,

Stole and Zapater, 1990). Moreover, it is not nested with NWBR, but it is weaker

than the refinement obtained by iteratively applying NWBR.

Fix s 2 S and ⇡ 2 ⇧1 ⇥ ⇧2. Consider the following iterated version of the JCE

procedure for computing the set of justified types. Initialize ⇥
0
(s, ⇡) = ⇥(s, ⇡). For

n 2 {1, 2, 3, ...}, let

eDn

✓
(s, ⇡) = {↵ 2 �(BR(⇥

n�1
(s, ⇡), s)) : u1(✓, s,↵) > u1(✓, ⇡)},

eD0,n
✓

(s, ⇡) = {↵ 2 �(BR(⇥
n�1

(s, ⇡), s)) : u1(✓, s,↵) = u1(✓, ⇡)},

⇥†,n(s, ⇡) = {✓ 2 ⇥ : eDn

✓
(s, ⇡) [ eD0,n

✓
(s, ⇡) 6✓ [✓0 6=✓

eD✓0(s, ⇡)},

⇥
n

(s, ⇡) =

8
><

>:

⇥†,n(s, ⇡) if ⇥†,n(s, ⇡) 6= ;

⇥
n�1

(s, ⇡) if ⇥†,n(s, ⇡) = ;

.

Set ⇥
1

(s, ⇡) = \n2N⇥
n

(s, ⇡). Note that ⇥
n+1

(s, ⇡) ✓ ⇥
n

(s, ⇡) for all n and that
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⇥
1

(s, ⇡) ✓ ⇥
0
(s, ⇡) = ⇥(s, ⇡).

Under this strengthening of initial trust, every stable profile ⇡ must satisfy the

following requirement: For every signal s, there is some m 2 M such that ⇡2(·|s,m) 2

�(BR(⇥
1

(s, ⇡), s)). We refer to PBE-H that satisfy this requirement as strongly

justified communication equilibria.

The proof proceeds by using similar arguments to the proof of Theorem 1 to induc-

tively establish that ⇡2(·|s,ms,⇥
1
(s,⇡)) 2 �(BR(⇥

n

(s, ⇡), s)) for all n 2 N.

OA.8.3 Costs of Lying

Suppose that we allow the sender’s utility function u1 : ⇥⇥S⇥M ⇥A ! R to depend

on the sender’s message m in the following way: For all ✓ 2 ⇥ and ⇥0,⇥00
✓ ⇥ such

that ✓ 2 ⇥0
\⇥00, and ⇥000

✓ ⇥ such that ✓ 62 ⇥000, u1(✓, s,ms,⇥0 , a) = u1(✓, s,ms,⇥00 , a) �

u1(✓, s,ms,⇥000 , a) for all s 2 S and a 2 A. Here lying is weakly costly for the sender in

that, for a given s and a, the sender gets a lower payo↵ from a message that represents

a set of types to which they do not belong. For simplicity, we assume that all messages

that represent a set containing the true type give the sender the same payo↵.

For each signal s, message m, and profile ⇡, we will define a set of types ⇥(s,m, ⇡)

that is analogous to the set of justified types in our main setting where m does not

impact payo↵s. To do this, first set

eD✓(s,m, ⇡) = {↵ 2 �(BR(⇥, s)) : u1(✓, s,m,↵) > u1(✓, ⇡)},

eD0
✓
(s,m, ⇡) = {↵ 2 �(BR(⇥, s)) : u1(✓, s,m,↵) = u1(✓, ⇡)},

and

⇥†(s,m, ⇡) = {✓ 2 ⇥ : eD✓(s,m, ⇡) [ eD0
✓
(s,m, ⇡) 6✓ [✓0 6=✓

eD✓0(s,m, ⇡)}
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Then let

⇥(s,m, ⇡) =

8
><

>:

⇥†(s,m, ⇡) if ⇥†(s,m, ⇡) 6= ;

⇥ if ⇥†(s,m, ⇡) = ;

.

Under initial trust, a similar proof to that of Theorem 1 shows that any stable profile

⇡ must satisfy the following requirement: ⇡2(·|s,ms,⇥(s,⇥,⇡)) 2 �(BR(⇥(s,⇥, ⇡), s))

for all s 2 S. When the sender’s message is payo↵ irrelevant, ⇥(s,m, ⇡) = ⇥(s, ⇡), so

this requirement implies Condition 2 of Definition 3. While lying costs make it less

appealing for a non-justified type to falsely represent themself as justified, they can

change the set of equilibria, so it is hard to give a precise summary of their e↵ect in

general games.

OA.9 Stability Under a More General Limit

In this section, we study steady state aggregate play in the more general limit where first

�1 tends to 1, and then � and �2 tend to 1, without any restrictions on the relative speed

with which � and �2 converge. Formally, we consider lim(�,�2)!(1,1) lim�1!1 ⇧⇤(g, �, �1, �2).

We will call these the stable* profiles.

Definition OA 3. Strategy profile ⇡ is stable* if there is a sequence {�j}j2N ! 1,

sequence {�2,j}j2N ! 1, and sequences {�1,j,k}j,k2N with limk!1 �1,j,k = 1 for all j,

such that ⇡ = limj!1 limk!1 ⇡j,k for some sequence ⇡j,k 2 ⇧⇤(g, �1,j, �1,j,k, �2,j).

Since every stable profile is also stable*, it follows that stable* profiles exist.

Corollary OA 2. Stable* strategy profiles exist.

As with stability, there is a strong relationship between the stable* profiles and the

set of JCE.

Definition OA 4. Strategy profile ⇡ has strong incentives if, for every o↵-path s and

✓ 62 ⇥(s, ⇡), there is some on-path (s0,m0) such that u1(✓, s0, a) > u1(✓, s, ⇡2(·|s,ms,⇥(s,⇡)))
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for all a 2 BR(p(s0,m0), s0), where p(s0,m0) is the posterior belief given (s0,m0) obtained

from ⇡1 and Bayes’ rule.

A strategy profile has strong incentives if for every o↵-path s, every type would obtain

a strictly lower payo↵ from playing (s,m
s,⇥(s,⇡)) than they would from playing some

on-path signal-message pair when the receiver responds with any best response to the

corresponding posterior.

Theorem OA 1. Suppose that the density of the prior of the sender agents is every-

where positive. If ⇡ is stable* and has strong incentives, then it is a JCE.

Theorem OA 1 says that a profile with strong incentives can be stable* only if it

is a JCE. The assumption of strong incentives is vacuous if all signals are played with

positive probability in ⇡. Also, note that u1(✓, ⇡) > u1(✓, s,ms,✓(s,⇡)) for an arbitrary

signal s and profile ⇡ whenever ✓ 62 ⇥(s, ⇡). Thus, every profile that is on-path strict

for the receiver has strong incentives.5

The remainder of this section is devoted to the proof of Theorem OA 1. The

argument that every stable* profile is a PBE-H proceeds very similarly to that for the

stable profiles. The following lemma a�rms the optimality of the aggregate sender

play given the aggregate receiver play.

Lemma OA 1. Suppose that ⇡ is stable*. Then for each ✓ 2 ⇥, ⇡1(·|✓) puts support

only on those sender signal-message pairs that are optimal for type ✓ under the receiver

behavior strategy ⇡2.

The next lemma shows that aggregate receiver play is a best response to (on-path)

aggregate play by the senders in a stable* profile.

Lemma OA 2. Suppose that ⇡ is stable*. Then for any sender signal-message pair

(s,m) 2 S ⇥ M that occurs with positive probability under ⇡, ⇡2(·|s,m) puts support

only on receiver actions that are best-responses to s and the posterior belief induced by

� and {⇡1(s,m|✓)}✓2⇥.

5
Another su�cient condition is that no sender type would be hurt if the receiver were to change their

response to some on-path signal-message pair, as is the case when all types choose an “exit” option.
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We omit the proofs of Lemma OA 1 and Lemma OA 2, which are quite similar to the

proofs of Lemma 1 and Lemma 2, respectively.

Lemma OA 3 below shows that when ⇡ is a stable profile that has strong in-

centives, the aggregate receiver response to any (s,m
s,⇥(s,⇡)) must be supported on

BR(⇥(s, ⇡), s).

Lemma OA 3. Suppose that ⇡ is stable* and has strong incentives. Then ⇡2(·|s,ms,⇥(s,⇡)) 2

�(BR(⇥(s, ⇡), s)) for all s 2 S.

We prove Lemma OA 3 in the following subsection, but first we use Lemmas OA

1, OA 2, and OA 3 to prove Theorem OA 1.

Proof of Theorem OA 1. Lemma OA 1 implies Condition 1 of the definition of PBE-

H, and Lemma OA 2 implies Condition 2. As before, Condition 3 of Definition 1

follows from the fact that the receivers in our model myopically optimize. Finally, the

additional condition in Definition 3 follows from Lemma OA 3 and the assumption that

⇡ has strong incentives. ⌅

OA.9.1 Proof of Lemma OA 3

The following lemma relates the receiver’s continuation parameter to the probabil-

ity the aggregate receiver response to any on-path signal-message pair places on the

corresponding receiver best responses.

Lemma OA 4. Fix a strategy profile ⇡. Let Xon be the set of sender signal-message

pairs that are on-path under ⇡1, and let p(s,m) be the posterior belief given (s,m) 2 Xon

that is obtained from ⇡1 and Bayes’ rule. There are ⌫, ⌘ > 0 such that, for every ⇡0

1 2 ⇧1

satisfying max(✓,s,m)2⇥⇥S⇥M |⇡0

1(s,m|✓)� ⇡1(s,m|✓)| < ⌫ and all �, �1, �2 2 [0, 1),

R�2
2 (⇡0

1)(BR(p(s,m), s)|(s,m)) � 1� ⌘(1� �2)

for all (s,m) 2 Xon.
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Proof. Let q(✓, s,m) = �(✓)⇡1(s,m|✓) be the distribution over sender types, signals,

and messages induced by � and ⇡1. For " > 0, let Q" = {q0 2 �(⇥ ⇥ S ⇥ M) :

max(✓,s,m)2⇥⇥S⇥M |q0(✓, s,m)�q(✓, s,m)|  "}. Because best responses are upper hemi-

continous, there exists " > 0 such that every receiver whose belief eg2 2 �(�(⇥⇥S⇥M))

puts probability at least 1 � " on Q" will respond to every (s,m) 2 Xon with some

action belonging to BR(p(s,m), s).

Given the non-doctrinaire prior g2, Theorem 4.2 of Diaconis and Freedman (1990)

implies that there is some T > 0 such that a receiver who has lived more than T periods

assigns posterior probability of at least 1� " to probability distributions q0 within "/3

distance (in the sup-norm metric) of the empirical distribution they have observed.

We provide a lower bound on the share of receivers who have lived more than T

periods and who have observed an empirical distribution within "/3 distance of the

true distribution q0 2 �(⇥ ⇥ S ⇥M). By Hoe↵ding’s inequality, the probability that

the fraction of (✓, s,m) observations is outside of [q0(✓, s,m)� "/3, q0(✓, s,m)+ "/3] for

a receiver with t observations is less than 2e�
2"2

9 t, so the probability that the empirical

distribution of a receiver with t observations is greater than "/3 distance from q0 is no

more than 2|S||M |e�
2"2

9 t. Thus, the share of receivers who have lived longer than T

periods and who have observed an empirical distribution within "/3 distance of q0 is

at least

1X

t=T

(1� �2)�
t

2

⇣
1� 2|S||M |e�

2"2

9 t

⌘
= �T2 �

2|S||M |(1� �2)�T2 e
�

2"2

9 T

1� �2e�
2"2

9

,

= 1�

 
1� �T2
1� �2

+
2|S||M |�T2 e

�
2"2

9 T

1� �2e�
2"2

9

!
(1� �2),

� 1�

✓
T +

2|S||M |

1� e�
2"2

9

◆
(1� �2),

where the inequality follows from the facts that (1��T2 )/(1��2) < T and �T2 e
�

2"2T
9 /(1�

�2e�
2"2

9 ) < 1/(1� e�
2"2

9 ) for all �2 2 [0, 1).

Let ⌘ = T +2|S||M |/(1� e�
2"2

9 ), and let ⌫ > 0 be such that, for every ⇡0

1 2 ⇧1 sat-
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isfying max(✓,s,m)2⇥⇥S⇥M |⇡0

1(s,m|✓) � ⇡1(s,m|✓)| < ⌫, the corresponding distribution

over sender types, signals, and messages belongs to Q"/3. It follows from the arguments

above that, for all ⇡0

1 within ⌫ distance (in the sup-norm metric) of ⇡1, the steady-state

share of receivers who respond to each (s,m) 2 Xon with some element of BR(p(s,m), s)

is at least 1� ⌘(1� �2). ⌅

The next lemma builds on Lemma OA 4 to show that, in a sequence of steady

states converging to a stable* profile with strong incentives, the ratio of the aggregate

probability of a non-justified type playing (s,m
s,⇥(s,⇡)) to the expected lifetime of a

receiver agent approaches 0.

Lemma OA 5. Fix a stable* strategy profile ⇡ with strong incentives. Let {⇡j,k 2

⇧⇤(g, �j, �1,j,k, �2,j)}j,k2N be a sequence of steady state profiles such that limj!1 limk!1 ⇡j,k =

⇡, where limj!1 �j = 1, limj!1 �2,j = 1, and limk!1 �j,k = 1 for all j. For every " > 0,

there exists some J 2 N and function K : N ! N such that

⇡1,j,k(s,ms,⇥(s,⇡)|✓)  "(1� �2,j)

for all s, ✓ 62 ⇥(s, ⇡), j > J , and k > K(j).

Proof. By Lemma OA 4 and the fact that limj!1 limk!1 ⇡j,k = ⇡, there exists some

⌘ > 0, J 0
2 N, and function K 0 : N ! N such that

⇡2,j,k(BR(p(s,m), s)|(s,m)) � 1� ⌘(1� �2,j) (1)

for all (s,m) on-path under ⇡1, j > J 0, and k > K 0(j).

Fix a signal s and type ✓ such that ✓ 62 ⇥(s, ⇡). Since ⇡ has strong incentives, there

is some (s0,m0) that is on-path under ⇡1 such that u1(✓, s0, a) > u1(✓, s, ⇡2(·|s,ms,⇥(s,⇡)))

for all a 2 BR(p(s0,m0), s0). For any ↵ 2 �(A) and z > 0, let A(↵,z) = {↵0
2 �(A) :

maxa2A |↵0[a] � ↵[a]|  z} be the set of mixtures over A that are no greater than z
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away from ↵ in the sup-norm metric. Let ⌫ > 0 be such that

(1� ⌫)u1(✓, s
0, a) + ⌫min

a02A
u1(✓, s

0, a0) > u1(✓, s,↵) + ⌫ (2)

for all a 2 BR(p(s0,m0), s0) and ↵ 2 A(⇡2(·|s,ms,⇥(s,⇡)),⌫)
.

Suppose that a sender has played (s0,m0) at leastN > 0 times. Combining Equation

1 with Lemma A.1 of Fudenberg and Levine (2006) implies that the probability that the

fraction of times the sender observed a receiver play something outside ofBR(p(s0,m0), s0)

in response to (s0,m0) exceeds ⌫/2 is no more than 211⌘(1� �2,j)/(3⌫4N). For a fixed

" > 0, let N(s0,m0) be such that 211⌘/(3⌫4N(s0,m0)) < "/4. For such an N(s0,m0), it follows

that 211⌘(1� �2,j)/(3⌫4N(s0,m0)) < "(1� �2,j)/4.

By the assumption that the sender’s prior has a density g1(⇡2) that is everywhere

positive and continuous in ⇡2 2 ⇧2, we can find a lower bound on the probability that

certain senders put on the receiver aggregate response to (s0,m0) playing an element

of BR(p(s0,m0), s0) with probability at least 1� ⌫. In particular, we will show there is a

lower bound ⇣ > 0 on the probability that the aggregate receiver response to (s0,m0)

puts probability at least 1�⌫ on BR(p(s0,m0), s0) as determined by two classes of sender

agents: (1) a sender agent who has played (s0,m0) fewer than N(s0,m0) times, and (2) a

sender agent who has played (s0,m0) more than N(s0,m0) times and observed a response

in BR(p(s0,m0), s0) greater than a fraction 1 � ⌫/2 of the times. From the preceding

paragraph, the share of sender agents who fall into either of these two classes exceeds

1� "(1� �2,j)/4.

Consider a sender who, for each a 2 A, has na observations of a receiver responding

to (s0,m0) with a. Then such a sender puts probability at least

min⇡22⇧2 g1(⇡2)
R
{↵2�(A):↵[BR(p(s0,m0),s

0)]�1�⌫}
⇧a2A↵[a]na

max⇡22⇧2 g1(⇡2)
R
�(A) ⇧a2A↵[a]na

on the set of aggregate receiver responses to (s0,m0) that have probability weakly

greater than 1� ⌫ on BR(p(s0,m0), s0). This expression is uniformly bounded away from
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0 when there are fewer than N(s0,m0) observations. Moreover, Theorem 4.2 of Diaconis

and Freedman (1990) implies that this expression is uniformly bounded away from 0

when there are more than N(s0,m0) observations and the fraction of these observations

where the receiver responding with some element of BR(p(s0,m0), s0) exceeds 1� ⌫/2.

By similar arguments, there is some N 0

s
2 N such that, for a sender who has played

(s,m
s,⇥(s,⇡)) at least N 0

s
times, the sender’s expectation of the aggregate receiver re-

sponse to (s,m
s,⇥(s,⇡)) is within ⌫/3 (in the sup-norm metric) of the empirical response

the sender has observed. Moreover, by the law of large numbers, for any j 2 N, we

can choose some N 0

s,j
> N 0

s
to be such that there is a probability no greater than

"(1 � �2,j)/4 that the empirical response to (s,m
s,⇥(s,⇡)) observed by a sender who

has played (s,m
s,⇥(s,⇡)) at least N 0

s,j
times is more than ⌫/3 away from the aggre-

gate receiver response ⇡2,j,k(·|s,ms,⇥(s,⇡)). Let J 00
2 N and K 00 : N ! N be such that

maxa2A |⇡2,j,k(a|s,ms,⇥(s,⇡))� ⇡2(a|s,ms,⇥(s,⇡))| < ⌫/3 for all j > J 00 and k > K 00(j). It

follows that, for all such j and k, the probability that A(⇡2(·|s,ms,⇥(s,⇡)),⌫)
contains the

expectation of the aggregate receiver response to (s,m
s,⇥(s,⇡)), as evaluated by a sender

who has played (s,m
s,⇥(s,⇡)) at least N

0

s,j
times, exceeds 1� "(1� �2,j)/4.

Consider a sender belief eg1 2 �(⇧2) that satisfies

eg1(⇡2(BR(p(s0,m0), s
0)|s0,m0) � 1� ⌫) � ⇣,

eg1(⇡2(·|s,ms,✓(s,⇡)) 2 A(⇡2(·|s,ms,⇥(s,⇡)),⌫)
) � 1�

1

2
⇣.

(3)

The first inequality says that the belief puts probability at least ⇣ on aggregate receiver

responses to (s0,m0) that play an element of BR(p(s0,m0), s0) with probability weakly

greater than 1� ⌫. The second inequality says that the belief puts probability at least

1�⇣/2 on the aggregate receiver response to (s,m
s,⇥(s,⇡)) belonging toA(⇡2(·|s,ms,⇥(s,⇡)),⌫)

.

By Equation 2, all beliefs satisfying the conditions in (3) must put probability at least

⇣/2 on aggregate receiver behavior strategies where playing (s0,m0) gives a type ✓

sender an expected payo↵ at least ⌫ greater than that from playing (s,m
s,⇥(s,⇡)).

For a type ✓ sender with any belief that satisfies (3), the expected total lifetime
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payo↵ from the optimal policy exceeds the expected total lifetime payo↵ from only

playing (s,m
s,⇥(s,⇡)) by an amount bounded away from 0 when � and �1 are su�ciently

high. In particular, for � and �1 su�ciently close to 1, the di↵erence in the expected

payo↵ from the optimal policy and that from repeatedly playing (s,m
s,⇥(s,⇡)) exceeds

c = ⇣⌫/4 > 0. Let J 000
2 N and K 000 : N ! N be such that, whenever j > J 000 and

k > K 000(j), �j and �1,j,k are su�ciently close to 1 so that this gap in the expected payo↵s

holds. Then, the version of Corollary 5.5 of Fudenberg and Levine (1993) presented in

Fudenberg and He (2018) implies that, for every j > J 000, there is some N 00

s,j
such that

the share of type ✓ sender agents who have a belief satisfying the conditions in (3),

have played (s,m
s,⇥(s,⇡)) more than N 00

s,j
times, and are set to play (s,m

s,⇥(s,⇡)) in the

current period is less than "(1� �2,j)/4 for all k > K 000(j).

Let J = max{J 0, J 00, J 000
}, K(j) = max{K 0(j), K 00(j), K 000(j)} for all j > J , and

Ns,j = max{N 0

s,j
, N 00

s,j
} for all j > J . Combining the preceding results shows that, when

j > J and k > K(j), the share of type ✓ sender agents who have played (s,m
s,⇥(s,⇡))

more than Ns,j times and are set to play (s,m
s,⇥(s,⇡)) in the current period is no more

than 3"(1 � �2,j)/4. Additionally, using the version of Lemma 5.7 of Fudenberg and

Levine (1993) presented in Fudenberg and He (2018), it follows that, for all j > J , K(j)

can also be chosen so that ⇡1,j,k(s,ms,⇥(s,⇡)|✓) exceeds the share of type ✓ sender agents

who have played (s,m
s,⇥(s,⇡)) more than N 00

s,j
times and are set to play (s,m

s,⇥(s,⇡)) in

the current period by no more than "(1 � �2,j)/4 when k > K(j). Thus, we conclude

that ⇡1,j,k(s,ms,⇥(s,⇡)|✓)  "(1� �2) for all j > J and k > K(j). ⌅

The proof of Lemma OA 3 uses Lemma OA 5 to show that, in a sequence of

steady states converging to a stable* profile with strong incentives, the probability

that a receiver encounters a non-justified sender type playing some (s,m
s,⇥(s,⇡)) over

the course of their lifetime converges to 0. Initial trust then ensures that the aggregate

receiver response to each (s,m
s,⇥(s,⇡)) is justified.

Proof of Lemma OA 3. Let {⇡j,k 2 ⇧⇤(g, �j, �1,j,k, �2,j)}j,k2N be a sequence of steady

state profiles such that limj!1 limk!1 ⇡j,k = ⇡, where limj!1 �j = 1, limj!1 �2,j = 1,
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and limk!1 �j,k = 1 for all j. By Lemma OA 5, for any " > 0, there exists some J 2 N

and some function K : N ! N such that ⇡1,j,k(s,ms,⇥(s,⇡)|✓)  "(1 � �2)/�(✓) for all

✓ 62 ⇥(s, ⇡), j > J , and k > K(j). Thus, when j > J and k > K(j), the probability

that a receiver agent in a given period encounters a sender type outside of ⇥(s, ⇡)

playing (s,m
s,⇥(s,⇡)) is no greater than "(1 � �2,j). It follows that, when j > J and

k > K(j), the probability that a receiver agent never encounters a sender type outside

of ⇥(s, ⇡) playing (s,m
s,⇥(s,⇡)) over the course of their lifetime is at least

1X

t=0

(1� �2,j)�
t

2,j(1� "(1� �2,j))
t =

1

1 + �2,j"
.

Receivers who have never observed the signal-message pair (s,m
s,⇥(s,⇡)) played by

a type outside of ⇥(s, ⇡) would respond to this pair with an action belonging to

BR(⇥(s, ⇡), s). Thus,

⇡2(BR(⇥(s, ⇡), s)|s,m
s,⇥(s,⇡)) = lim

j!1

lim
k!1

⇡2,j,k(BR(⇥(s, ⇡), s)|s,m
s,⇥(s,⇡)) � 1/(1+").

Since this holds for all " > 0, we have that ⇡2(BR(⇥(s, ⇡), s)|s,m
s,⇥(s,⇡)) = 1. ⌅

OA.10 Details of Alternate Model

Consider a steady-state population of receivers who have geometric lifetimes with con-

tinuation probability �, and are matched with a sender each period with i.i.d. proba-

bility p. We show that, when the receivers have expected lifespan T = 1/(1 � �) and

are expected to have N2 = pT matches over the course of their lifetime, the distribu-

tion of match experience in the receiver population is geometric with hit probability

�̃2 = (1 � 1/T )N2/(1 + (1 � 1/T )N2). Because the aggregate play of receivers only

depends on their experience, it follows that for every steady state in our main learning

model given parameters �1, �, and �2, there is a steady state in this alternate model

given parameters � = �1, �, and �̃2 with the same aggregate strategy profile.
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Lemma OA 6. If receivers have geometric lifetimes with expected lifespan T and are

expected to have N2 matches over the course of their lifetime, then the steady-state

share of receivers who have previously been matched n 2 N times is (1� �̃2)�̃n2 , where

�̃2 =

�
1� 1

T

�
N2

1 +
�
1� 1

T

�
N2

.

Proof. Denote the steady-state share of receivers who have previously had n matches

by µ̃2[n]. We first derive µ̃2[0]. Since 1 � � is the share of newborn receivers and

�(1 � p)µ̃2[0] is the share of non-newborn receivers who have never been matched, it

follows that µ̃2[0] = (1� �) + �(1� p)µ̃2[0]. Solving this gives

µ̃2[0] =
1� �

1� � + �p
. (OA 1)

Now we derive a recursive expression relating µ̃2[n] to µ̃2[n � 1] for n > 0. Since

�pµ̃2[n�1] is the share of receivers who in the previous period were matched for the nth

time and �(1�p)µ̃2[0] is the share of receivers who have been matched n times but were

unmatched in the previous period, it follows that µ̃2[n] = �pµ̃2[n� 1] + �(1� p)µ̃2[n].

Solving this gives

µ̃2[n] =
�p

1� � + �p
µ̃2[n� 1]. (OA 2)

Combining Equations OA 1 and OA 2 gives

µ̃2[n] =

✓
1�

�p

1� � + �p

◆✓
�p

1� � + �p

◆n

.

36



Substituting � = 1� 1/T and p = N/T renders

µ̃2[n] =

 
1�

�
1� 1

T

�
N2

1 +
�
1� 1

T

�
N2

! �
1� 1

T

�
N2

1 +
�
1� 1

T

�
N2

!n

as desired. ⌅
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