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In this paper, a set-membership filtering-based leader—follower
synchronization protocol for discrete-time linear multi-agent sys-
tems is proposed, wherein the aim is to make the agents synchron-
ize with a leader. The agents, governed by identical high-order
discrete-time linear dynamics, are subject to unknown-but-
bounded input disturbances. In terms of its own state information,
each agent only has access to measured outputs that are cor-
rupted with unknown-but-bounded output disturbances. Also, the
initial states of the agents are unknown. To deal with all these
unknowns (or uncertainties), a set-membership filter (or state esti-
mator), having the “correction-prediction” form of a standard
Kalman filter, is formulated. We consider each agent to be
equipped with this filter that estimates the state of the agent and
consider the agents to be able to share the state estimate informa-

tion with the neighbors locally. The corrected state estimates of

the agents are utilized in the local control law design for synchro-
nization. Under appropriate conditions, the global disagreement
error between the agents and the leader is shown to be bounded.
An upper bound on the norm of the global disagreement error is
calculated and shown to be monotonically decreasing. Finally, a
simulation example is included to illustrate the effectiveness of the
proposed leader—follower synchronization protocol.
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1 Introduction

Cooperative control of multi-agent systems can be applied to
solve a number of engineering problems and has attracted much
attention in the last few decades. The applications of cooperative
control include distributed task assignment and consensus prob-
lems, formation flight of spacecrafts and aerial vehicles, distrib-
uted estimation problems, and so on (see, for example, Refs.
[1-6]). All of these applications typically require some degree of
cooperation and synchronization among the agents. In the context
of synchronization (or consensus), there are several types of prob-
lems that have been investigated in the existing literature. These
are (a) synchronization without a leader (see, for example,
Refs. [7] and [8]), (b) leader—follower synchronization (see, for
example, Refs. [9-12]), (c) average consensus (see, for example,
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Refs. [13] and [14]), (d) bipartite consensus (see, for example,
Ref. [15]), and so on. In this paper, we focus on leader—follower
synchronization in the presence of a leader that pins to a group of
agents, all having high-order discrete-time linear (time-invariant)
dynamics.

1.1 Motivation. Most of the studies in the existing literature
regarding multi-agent synchronization assume perfect modeling
of the system, i.e., the mathematical description of the system is
assumed to be perfect (see, for example, Refs. [8,10-12,16], and
[17]). However, this is incompatible with real-world engineering
problems where the dynamical system is subject to unknown input
disturbances, parametric uncertainties, unmodeled dynamics, etc.
Because of these phenomena, the state of the system cannot be
known precisely and should be considered uncertain. For an over-
view on synchronization in uncertain multi-agent systems, see
Refs. [6,7,9], and [18] and references therein. Among the above-
mentioned phenomena, we focus on unknown input disturbances
in this paper. Apart from the perfect system modeling assumption,
perfect information regarding the states of the agents (full-state
feedback) is assumed to be available for synchronization protocol
design in a large number of studies (see, for example, Refs.
[8,10,16]). Again, this assumption does not hold for practical
applications where measured outputs (some function of the states),
subject to output disturbances, are available. Although observer-
based approaches, without considering output disturbances, have
been investigated in the literature (see, for example, Refs. [4,9],
and [17]), a state estimation or filtering-based approach would be
more suitable to address the effects of both input and output dis-
turbances in the synchronization problem (see, for example,
Ref. [5]).

The Kalman filter [19], which is one of the most widely studied
stochastic filtering techniques, assumes that the input and output
disturbances are Gaussian noises with known statistical properties.
However, this assumption is difficult to validate in practice and
might not hold for real-world systems. Therefore, it seems more
realistic to assume the disturbances to be unknown-but-bounded
[20,21]. This approach leads to the concept of set-membership or
set-valued state estimation (or filtering) (see, for example, Refs.
[20-26]), which is deterministic and more suited to several practi-
cal applications [24]. Although the set-theoretic or set-valued con-
cepts for synchronization have been investigated in the existing
literature (see, for example, Refs. [27-30]), studies explicitly uti-
lizing set-membership or set-valued estimation techniques for the
multi-agent synchronization problem are relatively rare (see, for
instance, Refs. [13] and [14]), despite the practical significance of
this class of estimators/filters. Recently, a leader—follower syn-
chronization protocol using set-membership estimation techniques
was put forward in Ref. [31]. The synchronization objective in
Ref. [31] was to construct ellipsoids centered at the leader’s state
trajectory that contained states of the agents. This, however, is dif-
ferent from the concept of conventional leader—follower synchro-
nization where the objective is to make the states of the agents
converge to the leader’s state trajectory. To the best of our knowl-
edge, set-membership estimation techniques have not been
employed for the conventional leader—follower synchronization
problem in the existing literature.

1.2 Technical Approach and Contributions. The technical
approach and contributions of the paper are summarized in the
following list:

e We develop a set-membership estimation-based (conven-
tional) leader—follower synchronization protocol for high-
order discrete-time linear multi-agent systems with the
agents subject to unknown-but-bounded input and output
disturbances. To the best of our knowledge, this is a novel
contribution.

e Specifically, we focus on the ellipsoidal state estimation
problem and adopt the terminology set-membership filter
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(SMF). Based on the approaches given in Refs. [23-26], we
convert the set estimation problem into a recursive algo-
rithm that requires solutions to two semidefinite programs
(SDPs) at each time-step.

e We consider each agent to be equipped with the SMF that
estimates the state of the agent. Further, we assume that the
agents are able to share the state estimate information with
the neighbors locally and that information is utilized in the
local control synthesis for synchronization. The local con-
troller for each agent is chosen based on an H, type Riccati-
based approach [16]. We show that the global error system
is input-to-state stable (ISS) with respect to the input distur-
bances and estimation errors. Sufficient conditions for
input-to-state stability are provided in terms of the system
matrices of the agents, the Riccati design, and the interac-
tion graph.

e Further, we calculate an upper bound on the norm of the
global disagreement error and show that it decreases monot-
onically, converging to a limit as time goes to infinity.

The rest of this paper is organized as follows. Section 2
describes the preliminaries required for the SMF design. The for-
mulation of the SMF is given in Sec. 3. The control input synthe-
sis and related results for synchronization are given in Sec. 4.
Finally, Sec. 5 includes the simulation example, and Sec. 6
presents the concluding remarks.

Notations and Definitions. The symbol 7, denotes the set of
non-negative integers. For a square matrix X, the notation X > 0
(respectively, X > 0) means X is symmetric and positive definite
(respectively, positive semidefinite). Similarly, X <0 (respec-
tively, X <0) means X is symmetric and negative definite
(respectively, negative semidefinite). Furthermore, p(X) denotes
the spectral radius of a square matrix X. For any matrix Y,
Omax(Y) stands for the maximum singular value of Y. C(a, b)
denotes an open circle of radius b in the complex plane, centered
at a € R. Notations diag(-), I,,, O,, 1,, and 0, denote block-
diagonal matrices, the n x n identity matrix, the n x n null matrix,
and the vector of ones and zeros of dimension n, respectively.
For vectors xy,xa,...,xy, Wwe have collxy,xa,...,xy]
= [xTx]...xJ,]". The symbol |-| denotes standard Euclidean
norm for vectors and induced matrix norm for matrices. For any
function 0: Z, — R", we have ||0]| = sup{|0|: k € Z,}. This is
the standard /., norm for a bounded 6. Ellipsoids are denoted by
Ee,P)={xeR": (x—¢)"P'(x —¢) < 1}, where ¢ € R" is
the center of the ellipsoid and P > 0 is the shape matrix that char-
acterizes the orientation and “size” of the ellipsoid in R". Nota-
tions trace(-) andrank(-) denote trace and rank of a matrix,
respectively, and ® denotes the Kronecker product. The super-
script T means vector or matrix transpose.

DermviTioN 1 [32,33]. A function y: Rsg — Rxg is a class K
function if it is continuous, strictly increasing and y(0) = 0. A
Sunction B: Rso x Ry — Rsg is a class KL function if, for
each fixed t > 0, the function B(-,t) is a class K function and for
each fixed s > 0, the function (s, -) is decreasing and f(s,t) — 0
ast— oo.

2 Preliminaries

Consider the discrete-time dynamical systems of the form

Xir1 = Axy + Buy + Gwy

1
Yy =Cx +Dvy, k€7, M

where x; € R”™ is the state, uy € Rfﬂ is the control input, w; €
R" is the input disturbance, y, € R” is the measured output, and
vi € R" is the output disturbance. Also, A, B, G, C, and D are sys-
tem matrices of appropriate dimensions. Following are the
assumptions for systems of the form given in Eq. (1).
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ASSUMPTION 1.

(1.1) The initial state xo is unknown. However, it satisfies

X € E(x0,Py), where x¢ is a given initial estimate and Py is

known.

(1.2) wi and vy are unknown-but-bounded for all k € 7.,. Also,

wi € E(05,Q;) and vy € E(05,Ry) for all k € 7., where

Oy, Ry are known.
We intend to develop an SMF for systems of the form in Eq. (1),
having a correction-prediction structure similar to the Kalman fil-
ter variants (see, for example, Ref. [19]). Note that the SMF
design in this paper is motivated by the SMF developed by the
authors in Ref. [34]. The filtering objectives are as follows, where
the corrected and predicted state estimates at time-step k are
denoted by x;x and X1, respectively [34].

2.1 Correction Step. At each time-step k € Z,, upon receiv-
ing the measured output y, with v, € £(0;,R;) and given
X € €(fck|k_] , Pri—1), the objective is to find the optimal correc-
tion ellipsoid, characterized by X;; and Py, such that
x,€E (.fc'“k,Pk‘k). The corrected state estimate is given by

X = Xpp—1 + L (v — CXpppe—1) 2)

where Ly is the filter gain. Since x; € &(Xgx—1, Prj—1), there
exists a zgx—; € R" with |zg;—| < 1 such that

X = X1 + Egp—12hi-1 3)

where Ey;— is the Cholesky factorization of Pyy_1, i.e., Py =
E 1By, [23,24].

2.2 Prediction Step. At each time-step k € Z,, given x; €
E(Xipp, Py) and wy € £(0y, Qy), the objective is to find the opti-
mal prediction ellipsoid, characterized by X and Py, such
that x; 11 € E(Xq1pt, Prr1je) where the predicted state estimate is
given by

Xppip = AXy + By 4)

Again, since x; € (X, Pyy), we have

X = Xy + Expzuk (%)

where P = Ek‘kEZ‘ ¢ and |zg| < 1. Initialization is provided by
XA'O‘,l = .72'0 and PO\—] = P() [19]

Remark 1. As mentioned in the filtering objectives, we are
interested in finding the optimal ellipsoids, i.e., the minimum-
“size” ellipsoids, at each time-step. There are two criteria for the
“size” of an ellipsoid in terms of its shape matrix: trace criterion
and log-determinant criterion [23]. In this paper, we have consid-
ered the trace criterion (see Theorems 1 and 2), which represents
the sum of squared lengths of semi-axes of an ellipsoid [23]. As a
result, the corresponding optimization problems are convex (see
the SDPs in Egs. (6) and (8)). Alternatively, for minimum-volume
ellipsoids, one can consider the log-determinant criterion. How-
ever, this would render the optimization problems nonconvex, and
additional modifications might be required to restore convexity
(see, for example, Ref. [23]).

3 Set-Membership Filter Design

In this section, we formulate the SDPs to be solved at each
time-step for the SMF. As the SMF design is motivated by the one
in Ref. [34], we have adopted the notations and relevant state-
ments provided in Ref. [34]. First, we state the result that summa-
rizes the filtering problem at the correction step.

THeEOREM 1. Consider the system in Eq. (1) under the
Assumption 1. Then, at each time-step k € 7., upon receiving the
measured — output 'y, with v, € E(0;,Ry) and  given
X € E(J}Hk,l,Pk‘k,]), the state x; is contained in the optimal
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correction ellipsoid given by E(Xyi,Py), if there exist Py >
0, L, t; > 0, i = 1,2 as solutions to the following SDP:

min  trace(Py)

Py Liti,r2

subject to

Pk‘k > 0

7,>0,i=1,2 (6)
=Py -

<0

H{Wl —0(11,12)
where gy and O(t1, 1) are given by

1 = (07 (Exp—1 — LiCEy—)
O(11,72) = diag (1 — 71 — rz,rlln,‘czR,:])

—LD
D] o

Furthermore, the center of the correction ellipsoid is given by the
corrected state estimate in Eq. (2).
Proof. Follows from the proof of Theorem 1 in Ref. [34]. |
Next, we state the technical result for the prediction step.
THEOREM 2. Consider the system in Eq. (1) under the Assump-
tion 1 with the state x; in the correction ellipsoid & (X, Py) and
wi € E(0s, Q). Then, the successor state xy.. belongs to the opti-
mal prediction ellipsoid E(Xyiijx, Priiy) if there exist Py >
0, t; > 0, i = 3,4 as solutions to the following SDP:
min trace(PkH‘k)
Ppit3,4
subject to
P >0
720,i=3,4 ®)
=Py i
<0

H;flk 7‘}'(‘[3, T4)

where Ty and W(t3,74) are given by
My =[0; AEy G
Y(t3,14) = diag (1 — 13 — 14,131,;,14Q;1)
Furthermore, the center of the prediction ellipsoid is given by the
predicted state estimate in Eq. (4).
Proof. Follows from the proof of Theorem 2 in Ref. [34]. |
Interior point methods can be implemented to efficiently solve

the SDPs in Egs. (6) and (8) [35]. The recursive SMF algorithm is
summarized in Algorithm 1.

Algorithm 1 The SMF Algorithm

1: (Initialization) Select a time-horizon 7. Given the initial values
(.f?(),Po), set k=0, "EW"*I = .fo, EW‘*I = E where Py = E()Eg‘
2: Find Py, and Ly by solving the SDP in Eq. (6).
3: Calculate fc,(‘,{ using Eq. (2). Also, calculate Ey; using Py = Ek\kEZw
4: Solve the SDP in Eq. (8) to obtain Py .
5: Calculate Xy, 1 using Eq. (4). Compute Ejy; using
Priip = Ek+l\kE’/{+1‘k-
6: If k = Tyexit. Otherwise, set k = k + 1 and go to Step 2.

4 Leader-Follower Synchronization of Multi-Agent
Systems

This section describes local control input synthesis for the
leader—follower synchronization. Results presented in this section

Journal of Dynamic Systems, Measurement, and Control

are based on the results given in Ref. [16], and, to be consistent,
we have adopted some of the terminologies and notations used in
Ref. [16].

4.1 Graph-Related Preliminaries. Consider a multi-agent
system consisting of N agents [1]. The communication topology
of the multi-agent system can be represented by a graph
4G = (7",6), where 7" = {1,2,...,N} is a nonempty node set and
& C 77 x 7" is an edge set of ordered pairs of nodes, called edges.
Node i in the graph represents agent i. We consider simple,
directed graphs in this paper. The edge (i, j) in the edge set of a
directed graph denotes that node j can obtain information from
node i, but not necessarily vice versa. If an edge (i,j) € &, then
node i is a neighbor of node j. The set of neighbors of node i is
denoted as N;.

The adjacency matrix .o/ = [a;] € RN of a directed graph
(77,&) is defined such that a; is a positive weight if (j,i) € &,
and a;; = 0 otherwise. The graph Laplacian matrix £ is defined as
L =9 — of, where I = [dy] € RV™N is the in-degree matrix
with djj =0,i#j and d; = Zjvzla,-j.,i =1,2,...,N. A directed
path is a sequence of edges in a directed graph of the form (i, i»),
(i3, i3), ... The graph % contains a (directed) spanning tree if there
exists a node, called the root node, such that every other node in
¥ can be connected by a directed path starting from that node.

4.2 Synchronization: Formulation and Results. We con-
sider N agents connected via a directed graph and a leader. Agent
i(i=1,2,...,N)is adynamical system of the form

x,(c'l 1= Axki) + Bui,i) + Gw,({")

. . . (&)

wW=cd)+p), ke,
where x,({i) e R", u}ci) e R™, y,({i) e R, wi,i) € R, and v,(ci) e R"
are the state, control input, measured output, input, and output dis-
turbances for agent i, respectively. Clearly, the system described
by Eq. (9) is in the form of the system described by Eq. (1). Next,
we modify Assumption 1 and impose the following assumptions
on the dynamics of agent i (i = 1,2, ...,N).

ASSUMPTION 2.

(2.1) The initial state xé') is unknown. However, it satisfies

xg) € 8(32(()’),P((;)), where fc(()’) is a given initial estimate and P(()')

is known. Also, \Pg)')| < po holds with some py > 0.

2.2) wE,[) and v,ﬂ.’) are unknown-but-bounded for all k € 7.,.
Also, w,({') € £(0,, Q,((')) and v,({') S E(OL,,RE’))for all k € 7., where
Q,EI) andR,(:) are known with |Q(k')| < g and |R(k')| <7F forall k €
oy with some q, 7 > 0.

Under this assumption, agent i (i = 1,2, ..., N) employs the SMF
in Algorithm 1 to estimate its own state. Now, we introduce the
following assumption on the system matrices of the agents.

AssumpTioN 3. B is full column rank with the pair (A,B)
stabilizable.

We consider the leader to be a system of the form

X0 =ax? 30 =X kez, (10)
where x,EO) € R" are the leader’s state and y,ﬂo) is the output. Note
that the leader is a virtual system that generates the reference tra-
jectory for the agents i = 1,2, ..., N to track. We define the local

neighborhood tracking errors, using the corrected state estimates
of the agents, as

: T 0 A
6 =Y ay(x — ) +aix” — )
JEN;
where g; > 0 are the pinning gains, i’,((?,‘ and ig& are the corrected
state estimates of agent i and j, respectively. If agent i is pinned to
the leader, we take g; > 0. Now, we choose the control input of

agent i as [16]
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u,(;) = C(l + d[,' —+ g,')ilKGI(:)

where ¢ > 0 is a coupling gain and K is a control gain matrix to be
discussed subsequently. Hence, the global dynamics of the N
agents can be expressed as

A= ye A +uf + Ivo 6w, keZ. (D

© _ ool .

N
Xi s “»xl(c )} Y

with x;°” = col ,w = col[w,(:), ey w,(cm}, and

(12)
+c(Iy+ D+ 6) (L + G) ® BKx\”

,gN) is the matrix of pinning gains,
= (1ly ®xA )). Note that the
superscript (g) is utilized to denote the global variables. Now,

using Eq. (5) for each agent’s corrected state estimates, we can

express x,((g>

where G = diag(g1, g2, -

N (1 SNV
xl(jk) = col[x](cvz7 ..A,x]((‘k)] and x

) = 8§ + By a3

N N
where E,(jlz = dlag(E](\‘k)7 Eﬁ‘k)) z,({‘,? = col[z”k 7z,(“k)] Note
that Eyj, (E{)" = P}, where P, i
matrix for agent i and |zk‘k\ <lfori=1,...,

is the correction ellipsoid shape

N. Our next assump-

tion is regarding the interaction graph.

AssuMPTION 4 [16]. The interaction graph contains a spanning
tree with at least one nonzero pinning gain that connects the
leader and the root node.

The global disagreement error [16] is
52&’) — x}({%’) (

defined as

) . Utilizing Eqgs. (11)—(13), we express the global
error system as

3, =AY + BESZ + (Iyo Gw?, kel, (14)
where

A, = [(Iy ®A) — I ® BK], B, = cI' © BK (15)

with T = (Iy + D+ G) '(L + G). Now, we recall the follow-

ing technical result from Ref. [16].

Lemma 1 [16]. p(A.) <1 iff p(A — cA;BK) < 1 for all the
eigenvalues A;,i =1,2,...,N of T.

If the matrix A is unstable or marginally stable, then Lemma 1
requires Assumption 4 with the pair (A,B) stabilizable [16].
Using Theorem 2 in Ref. [16], ¢ and K are chosen such that
p(A.) < 1. To this end, we state the following result.

Lemma 2 [16]. Let Assumption 4 holds, and let P be a positive
definite solution to the discrete-time Riccati-like equation

A"PA- P+ Q-A"PB(B"PB) 'B'PA=0, (I6)
for some Q > 0. Define
r= [Gmax(gio‘sAT ’PB(BT ’PB)*IBT PA Q—O.S)}—O,S

Furthermore, let there exists a C(co, o) containing all the eigen-
values A;,;i=1,2,....N of T such that (ro/co) <r. Then,
p(A.) < 1forK = (B"PB)"'BTPA and ¢ = (1/cy).

If B is a full column rank, Eq. (16) has a positive definite solu-
tion P only if the pair (A,B) is stabilizable [16]. In this regard,
Assumption 3 is pertinent. Next, we introduce the notion of input-
to-state stability in the following definition.

DEFINITION 2. A discrete-time system of the form xi.1 = ¢(xx,
w, ), k€Z, with wu:7Z,— R" wy: 7, — R™ $(0,,
Oy s Oy ) = 0, is (globally) ISS if there exist a class KL function

064502-4 / Vol. 143, JUNE 2021

p and two class K functions y,,7y, such that, for each pair of
inputs uy € I7, up € I’? and each xo € R", it holds that

| < B(lxol, k) + i ([ []) + 72 (lfwa]) a7

foreachk € 7Z,.

Remark 2. Definition 2 is adopted from Definition 3.1 in Ref.
[32] and has been suitably modified for systems with two inputs
using Definition IV.3 in Ref. [33].

We state the main result of this section in Theorem 3.

THEOREM 3. Suppose the following conditions are satisfied: (i)
Under Assumption 2, agent i (i = 1,2,...,N) employs the SMF in
Algorithm 1 to estimate its own state; (ii) Assumptions 3 and 4
hold; (iii) ¢ and K are chosen using Lemma 2. Then, the global
error system in Eq. (14) is ISS.

Proof. The proof is inspired by Example 3.4 in Ref. [32]. Let us

(&) — col[e,(:), e e,EN)], where e() = x,({) A<k|;< is the state

estimation errors of agent i at the correction steps. Now, using Eq.

(13), we have eg,g) = x,(f) — JACET,E = E,({f,?z,(cfk) Similarly, let us denote

eég) = col[e(()l)7 e(()N)], where e(()i) = x(()i) - fcff) is the initial esti-

mation error of agent i. Due to Assumption 2, we have

denote e;

with E{ = diag(E(", ...,E(()N)), z(()g) = collz)",....2}""], where

EV(E)T =P and 2’| < 1 for i =1,...,N. Then, Eq. (14)
becomes

k
5, =AY + 3" AlBe) + ZA/ IyoGw?,
Jj=0 j=0

where €®: Z, — R™ andw®: Z, — R" are the inputs. It is
understood that e®) € lg’ov and w<g> lg‘ON Due to the choices of ¢
and K along with Assumptions 3 and 4, we have p(A.) < 1.
Hence, there exist constants & > 0 and x € [0, 1), such that |[A¥] <
o, k € 7, [32]. Then, the ISS property in Eq. (17) holds for the
system in Eq. (14) with

o|B.|s
Z“"I‘B Isy 7@
I—pu

: o|G 52
1a(s2) = 3ot Glsy = 210K
=0 TR

B(s, k) = ogds, 7y (s1)
(19)

where |(Iy ® G)| = |Iy||G| = |G| is utilized. Thus, along the tra-
jectories of the system in Eq. (14), for each k € 7Z,, it holds that

165 < BUSE LK) + 01 (@) + (W@ @0)

where the functlons B, 7, and }'2 are as in Eq. (19) with
s =105"1, 51 = ||e®|], and sy = [|w¥)]|.

Theorem 3 implies that the global disagreement error remains
bounded under the proposed synchronization protocol.

Remark 3. Objective of the SMF-based synchronization in Ref.
[31] was to contain the states of the agents in a confidence ellip-
soid that might not be small in general. Thus, the approach out-
lined in Ref. [31] may lead to conservative results where the states
of the agents might not converge to a neighborhood of the leader’s
state trajectory. On the other hand, we have shown that, under
appropriate conditions, the global error system is ISS with respect
to the input disturbances and estimation errors. Since an ISS sys-
tem admits the “converging-input convergmg state” property (see,
Refs. [32] and [36] for details), |0, (8) | would eventually converge
to a neighborhood of zero as the estimation errors of the agents
decrease. Thus, the agents would converge to a neighborhood of
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the leader’s state trajectory. To this end, it is understood that
[[w®)|| is relatively small (compared to |3 | and |[e{®)|]) as the
input disturbances satisfy Assumption 2.2.

Next, we state the following result based on Theorem 3, where
Po and g are as in Assumption 2.

CoRrOLLARY 1. Under the condztgons of Theorem 3, the normal-

ized global disagreement error 8,° « satisfies
Jim (5] < (1B.|v/po + GIV) e

with 5(g (5("7 /It), where /J = (a/N/(1 = p)) and &> 0, pu €
[0,1) are such that |A¥| < oy for all k € Z,.

Proof. Under the conditions of Theorem 3, the result in Eq. (20)
holds. Then, let us rewrite Eq. (20) as

1011 < |86+ (a/ (1 — ) (IBe] [1e®)]] + |G [|w® )

Now, under the assumption that the SMFs of the agents are per-
forming adequately, we can utilize Eq. (18) and take
[le®)]] < |e(({")| < |E((f)| \z(()g)\. Using Assumption 2, we have
EX| = max(|EJ), ..., |[ES|) = |EY)| < \/po. Also, we have
|z((f) | <V/N. Therefore, we derive [|e(®)|| < /poN. Similarly,
Assumption 2 leads to ||w(®)|| < \/gN. Combining these, we cal-
culate the following bound on 5£g )

6] < 85| + (1Bc] /o + |GIV) (22)

for each k € 7, with t = (a/N/(1 — p)). Hence, the proof is
completed b takmg the limit in Eq. (21) and carrying out the nor-
malization 8,* = (8, (&) /1) |

Remark 4. The upper bound shown in Eq. (22) is monotonically
decreasing. The estimate given in Eq. (21) is a conservative one
as we have utilized ||e(®)|| < v/poN and ||w®)|| < \/gN. Also, the
bound |Rk | <7 does not appear in Egs. (21) and (22) as a result
of utilizing ||e(®)]| < |e )| < |E<g [ |z )| However, the true value

of e,((') would depend on v,E) and, thus, on R() for all k € Z, and
alli=1,2,...,N.

Remark 5. For a given multi-agent system (with the number of
agents N, the matrices A, B, C, D, andG, and the interaction
graph specified), we have
properly chosen using Lemma 2. Thus, the conservatism of the
bound in Eq. (21) can be reduced if the available upper bounds
(i.e., po and g) are sufficiently small.

5 Simulation Example

A simulation example is provided in this section to illustrate
the effectiveness of the proposed SMF-based leader—follower syn-
chronization protocol. All the simulations are carried out on a
deskto computer with a 16.00 GB RAM and a 3.40 GHz Intel™®
Xeon™ E-2124 G processor running MatLAB R2019a. The SDPs
in Egs. (6) and (8) are solved utilizing “YALMIP” [37] with the
“SDPT3” solver in the MATLAB framework. Since the disturbances
are only assumed to be unknown-but-bounded, different kinds of
disturbance realizations are possible, which satisfy the ellipsoidal
assumptions (Assumptions 1.2 and 2.2), for example, periodic dis-
turbances with time-varying or constant frequencies and ampli-
tudes, random disturbances with each element being uniformly
distributed in an interval, and so on.

We consider four agents, i.e., N=4. Matrices related to the
dynamics of the leader and the agents are

A:[O

1 Bl},lez,C:[l 0,D=1,6=1 (23)

where A is marginally stable. Also, Assumption 3 is satisfied with
the above choices of A and B. Ellipsoidal parameters related to
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Fig. 1 (a) The interaction graph and (b) eigenvalues of T’
(Aj, i=1,2,3, and 4) in the complex plane with C(cy, rp)

the SMFs of the agents are P\ = 2I,, 0\ = 0.11,, and R\’ = 0.1
for i = 1,2,3, and4. The initial state estimates of the agents are
e =[50 50",

as follows: i(()l) =[50 —50", x(()) x(()l)v Xy
W — 3 The true initial state for the agents 1 and 2

andx,’ =X,
(xél)7 x((,z)) are chosen randomly (uniform distribution) between
[50 —50]" and [51 —49]". Similarly, the true initial state for
the agents 3 and 4 (x(()3), x(()4)) is chosen randomly (uniform distri-

bution) between [—50 50]" and [-49 51]T. The input

50 1

. 25 H 4

g 0 EFANANANNANNANNANANNANY

-25 ! ]

-50 ‘ ‘ j ‘ ‘ ]

0 10 20 30 40 50 60

|— - =Agent-1 - Agent-2 - - = Agent-3 e Agent-4 —-—-— Leader‘
50 k; f ' ‘ f

25k

-50 F i i i i ]
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Time-step (k)
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k

Il)l
O 4N WA OO N

16y
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Time-step (k)

40 60 80 100
Time-step (k)

(c)
Fig. 2 Simulation results for the example: (a) true states of the

leader and the agents, (b) normalized global disagreement error
norm, and (c¢) |A’c‘| and the upper bound
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disturbances (wg,”7 i=1,2,3,4) are chosen randomly (uniform
distribution) between —0.051, and 0.051,, and the output distur-
bances (v,({'), i =1,2,3,4) are chosen randomly (uniform distribu-
tion) between —0.05 and 0.05. Thus, Assumption 2 has been
satisfied with the above parameters, initial conditions, and disturb-
ance terms. The initial state of the leader is chosen as
(0) _ T
x, =[5-5].
The interaction graph is shown in Fig. 1(a), and Assumption 4
holds for this interaction graph. Thus, we have

10 0 -1
11 0 0

£ =10 -1 1 o @4
0 0 -1 1

G = diag(1,0,0,0), D = diag(1, 1, 1, 1). With regards to Lemma
2, we choose @ = 0.11,, ¢o = (2/3), ro = 0.6. Clearly, C(co, 7o)
contains all the eigenvalues of I', as shown in Fig. 1(b). Also, we
have r=1 and (r9/cp) =0.9 <r. Hence, the conditions for
Lemma 2 are satisfied, and we take c¢=(1/cy) =15,
K = (B" PB)"'B" PA.

The synchronization results are shown in Figs. 2(a) and 2(b).
Figure 2(a) shows that the trajectories of the agents converge
close to that of the leader. As a result, the normalized global dis-
agreement error norm converges to a neighborhood of zero
(Fig. 2(b)). The dotted line in Fig. 2(b) denotes the conservative
bound in Eq. (21) for which we have utilized po = 2 and g = 0.1.
Also, for i, we have taken oo = 1.1 and p = 0.9. For this choice of
o and g, Af\ < o is satisfied, as shown in Fig. 2(c). With the
above values, the conservative upper bound is equal to 2.462,
which is shown using the dotted line in Fig. 2(b).

The estimation results corresponding to the SMFs of the agents
are shown in Figs. 3—-6. The estimation errors (at the correction

steps) for agent i’s SMF are denoted by e,(f) = [eﬂ? e(z'z]T, and the

initial errors are denoted by e(()') :xf)') —fcf;) (i=1,2,3,4).
Figures 3 and 4 show that the SMFs for the agents perform
adequately as the estimation errors remain in a neighborhood of
zero and the error bounds decrease from the respective initial val-
ues. Also, the estimation errors are contained within the error
bounds, which mean the SMFs of the agents are able to contain
the respective true states inside the respective correction ellip-
soids. The estimation error norms, shown in Fig. 5, further illus-
trate the effectiveness of the SMFs and demonstrate that the SMFs
are able to reduce the estimation errors from the respective initial
values, starting from the correction step at k=0. The results in

Fig. 5 essentially verify our earlier use of ||e(*)|| < \e(()g)\ in deriv-
ing the conservative bound in Eq. (21). The trace of correction
ellipsoid shape matrices for the SMFs of the agents is shown in

Fig. 6, where Pi’& (i=1,2,3,4) denote the shape matrices of

2 2
I 7)) ST W — S Y Y SR WSS W
e

2 .

2
0 20 40 60 0 20 40 60

l— - - - Estimation Errors Error Bounds o Initial Bounds‘

2 2
I ) PSR T Qfrecrvmenn- PR S,
-2 -2

0 20 40 60 0 20 40 60
Time-step (k) Time-step (k)

Fig. 3 Estimation results for SMFs of agents 1 and 2

064502-6 / Vol. 143, JUNE 2021

agent i’s correction ellipsoids. Clearly, SMFs of the agents are
able to reduce the trace from the initial values and construct opti-
mal (minimum trace) correction ellipsoids at each time-step (start-
ing from k£ =0). Quantitatively, the trace of these shape matrices
converges approximately to 1.5 (see Fig. 6), which is approxi-
mately a 2.667-fold decrease with respect to the initial trace of 4.
The trends shown in Fig. 6 for all the agents are roughly the same,
as the same set of ellipsoidal parameters is utilized for the SMFs
of all the agents and the agents have identical dynamics.
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O e s
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Fig.4 Estimation results for SMFs of agents 3 and 4
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Fig.5 Estimation error norms for SMFs of the agents
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Fig. 6 Trace of correction ellipsoid shape matrices for SMFs of
the agents
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Table 1 |6x| comparisons over T= 61 time-steps (T;= 60)

T; < T -
Filoloxl 1T 1P

Disturbance parameters

o = o, = 0.05, 0 =0.11, R =0.1 03706 1.1985
a= =050 =L, R =1 0.4219 1.2052
w =0, =1,00 =21, RV = 1 0.4730 1.2124

Finally, consider this example with different values of
w0 andR\ (i =1,2,3, and4) while keeping all other
conditions and parameters unchanged. Now, let us allow for
higher magnitudes of disturbances (with QE,I)., R,i') properly chosen
such that Assumption 2 is satisfied) and compare |d;| results with
the one given in Fig. 2(b). Results of this study are given in
Table 1 where the following two comparison metrics are used: (i)

1~

%ZZ’ZO |6¢]: mean value of |8, (i) \/+> ", 6> root-mean-

square value of |8;|. Also, w,E') is chosen randomly (uniform distri-
bution) between —o,, 1, and o, 1,, and vi') is chosen randomly
(uniform distribution) between —o, and «,. Thus, the first row in
Table 1 corresponds to the result in Fig. 2(b). We observe that
both the metrics in Table 1 are comparable among the three cases
studied, despite the higher magnitudes of disturbances considered
for the two cases in second and third rows of Table 1. Therefore,
the |8,| trends for these two cases with higher disturbance magni-
tudes would be qualitatively similar to the one shown in Fig. 2(b).

6 Conclusion

A set-membership filtering-based leader—follower synchroniza-
tion protocol for high-order discrete-time linear multi-agent sys-
tems has been put forward for which the global error system is
shown to be input-to-state stable with respect to the input distur-
bances and estimation errors. A monotonically decreasing upper
bound on the norm of the global disagreement error vector is cal-
culated. Our future work would involve extending the proposed
formulation for discrete-time nonlinear dynamical systems and
switching network topologies. Also, we would extend the results
in this paper by considering a control input for the leader or the
leader to be any bounded reference trajectory.
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