


(SMF). Based on the approaches given in Refs. [23–26], we
convert the set estimation problem into a recursive algo-
rithm that requires solutions to two semidefinite programs
(SDPs) at each time-step.

! We consider each agent to be equipped with the SMF that
estimates the state of the agent. Further, we assume that the
agents are able to share the state estimate information with
the neighbors locally and that information is utilized in the
local control synthesis for synchronization. The local con-
troller for each agent is chosen based on an H2 type Riccati-
based approach [16]. We show that the global error system
is input-to-state stable (ISS) with respect to the input distur-
bances and estimation errors. Sufficient conditions for
input-to-state stability are provided in terms of the system
matrices of the agents, the Riccati design, and the interac-
tion graph.

! Further, we calculate an upper bound on the norm of the
global disagreement error and show that it decreases monot-
onically, converging to a limit as time goes to infinity.

The rest of this paper is organized as follows. Section 2
describes the preliminaries required for the SMF design. The for-
mulation of the SMF is given in Sec. 3. The control input synthe-
sis and related results for synchronization are given in Sec. 4.
Finally, Sec. 5 includes the simulation example, and Sec. 6
presents the concluding remarks.

Notations and Definitions. The symbol Z? denotes the set of
non-negative integers. For a square matrix X, the notation X > 0
(respectively, X " 0) means X is symmetric and positive definite
(respectively, positive semidefinite). Similarly, X < 0 (respec-
tively, X # 0) means X is symmetric and negative definite

(respectively, negative semidefinite). Furthermore, q Xð Þ denotes
the spectral radius of a square matrix X. For any matrix Y,
rmaxðYÞ stands for the maximum singular value of Y. C(a, b)
denotes an open circle of radius b in the complex plane, centered
at a 2 R. Notations diagð&Þ; In; On; 1n, and 0n denote block-
diagonal matrices, the n' n identity matrix, the n' n null matrix,
and the vector of ones and zeros of dimension n, respectively.
For vectors x1; x2;…; xM, we have col½x1; x2;…; xM)

¼ ½xT1 x
T
2 … xTM)

T
. The symbol j & j denotes standard Euclidean

norm for vectors and induced matrix norm for matrices. For any
function h : Z? ! R

n, we have jjhjj ¼ supfjhkj : k 2 Z?g. This is
the standard l1 norm for a bounded h. Ellipsoids are denoted by

Eðc;PÞ ¼ fx 2 R
n
: ðx+ cÞTP+1ðx+ cÞ # 1g, where c 2 R

n is
the center of the ellipsoid and P > 0 is the shape matrix that char-
acterizes the orientation and “size” of the ellipsoid in R

n. Nota-
tions traceð&Þ and rankð&Þ denote trace and rank of a matrix,
respectively, and , denotes the Kronecker product. The super-
script T means vector or matrix transpose.

DEFINITION 1 [32,33]. A function c : R"0 ! R"0 is a class K
function if it is continuous, strictly increasing and cð0Þ ¼ 0. A
function b : R"0 'R"0 ! R"0 is a class KL function if, for
each fixed t " 0, the function bð&; tÞ is a class K function and for
each fixed s " 0, the function bðs; &Þ is decreasing and bðs; tÞ ! 0
as t ! 1.

2 Preliminaries

Consider the discrete-time dynamical systems of the form

xkþ1 ¼ Axk þ Buk þ Gwk

yk ¼ Cxk þ Dvk; k 2 Z?

(1)

where xk 2 R
!n is the state, uk 2 R

!m is the control input, wk 2
R

!w is the input disturbance, yk 2 R
!p is the measured output, and

vk 2 R
!v is the output disturbance. Also, A, B, G, C, and D are sys-

tem matrices of appropriate dimensions. Following are the
assumptions for systems of the form given in Eq. (1).

ASSUMPTION 1.
(1.1) The initial state x0 is unknown. However, it satisfies
x0 2 Eðx̂0;P0Þ, where x̂0 is a given initial estimate and P0 is
known.
(1.2) wk and vk are unknown-but-bounded for all k 2 Z?. Also,
wk 2 Eð0!w ;QkÞ and vk 2 Eð0!v ;RkÞ for all k 2 Z?, where
Qk; Rk are known.

We intend to develop an SMF for systems of the form in Eq. (1),
having a correction-prediction structure similar to the Kalman fil-
ter variants (see, for example, Ref. [19]). Note that the SMF
design in this paper is motivated by the SMF developed by the
authors in Ref. [34]. The filtering objectives are as follows, where
the corrected and predicted state estimates at time-step k are
denoted by x̂kjk and x̂kþ1jk, respectively [34].

2.1 Correction Step. At each time-step k 2 Z?, upon receiv-
ing the measured output yk with vk 2 Eð0!v ;RkÞ and given
xk 2 Eðx̂kjk+1;Pkjk+1Þ, the objective is to find the optimal correc-
tion ellipsoid, characterized by x̂kjk and Pkjk, such that
xk 2 Eðx̂kjk;PkjkÞ. The corrected state estimate is given by

x̂kjk ¼ x̂kjk+1 þ Lkðyk + Cx̂kjk+1Þ (2)

where Lk is the filter gain. Since xk 2 Eðx̂kjk+1;Pkjk+1Þ, there
exists a zkjk+1 2 R

!n with jzkjk+1j # 1 such that

xk ¼ x̂kjk+1 þ Ekjk+1zkjk+1 (3)

where Ekjk+1 is the Cholesky factorization of Pkjk+1, i.e., Pkjk+1 ¼
Ekjk+1E

T
kjk+1 [23,24].

2.2 Prediction Step. At each time-step k 2 Z?, given xk 2
Eðx̂kjk;PkjkÞ and wk 2 Eð0!w ;QkÞ, the objective is to find the opti-
mal prediction ellipsoid, characterized by x̂kþ1jk and Pkþ1jk, such
that xkþ1 2 Eðx̂kþ1jk;Pkþ1jkÞ where the predicted state estimate is
given by

x̂kþ1jk ¼ Ax̂kjk þ Buk (4)

Again, since xk 2 Eðx̂kjk;PkjkÞ, we have

xk ¼ x̂kjk þ Ekjkzkjk (5)

where Pkjk ¼ EkjkE
T
kjk and jzkjkj # 1. Initialization is provided by

x̂0j+1 ¼ x̂0 and P0j+1 ¼ P0 [19].
Remark 1. As mentioned in the filtering objectives, we are

interested in finding the optimal ellipsoids, i.e., the minimum-
“size” ellipsoids, at each time-step. There are two criteria for the
“size” of an ellipsoid in terms of its shape matrix: trace criterion
and log-determinant criterion [23]. In this paper, we have consid-
ered the trace criterion (see Theorems 1 and 2), which represents
the sum of squared lengths of semi-axes of an ellipsoid [23]. As a
result, the corresponding optimization problems are convex (see
the SDPs in Eqs. (6) and (8)). Alternatively, for minimum-volume
ellipsoids, one can consider the log-determinant criterion. How-
ever, this would render the optimization problems nonconvex, and
additional modifications might be required to restore convexity
(see, for example, Ref. [23]).

3 Set-Membership Filter Design

In this section, we formulate the SDPs to be solved at each
time-step for the SMF. As the SMF design is motivated by the one
in Ref. [34], we have adopted the notations and relevant state-
ments provided in Ref. [34]. First, we state the result that summa-
rizes the filtering problem at the correction step.

THEOREM 1. Consider the system in Eq. (1) under the
Assumption 1. Then, at each time-step k 2 Z?, upon receiving the
measured output yk with vk 2 Eð0!v ;RkÞ and given
xk 2 Eðx̂kjk+1;Pkjk+1Þ, the state xk is contained in the optimal
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correction ellipsoid given by Eðx̂kjk;PkjkÞ, if there exist Pkjk >
0; Lk; si " 0; i ¼ 1; 2 as solutions to the following SDP:

min
Pkjk ;Lk ;s1 ;s2

traceðPkjkÞ

subject to

Pkjk > 0

si " 0; i ¼ 1; 2

+Pkjk Pkjk+1

P
T
kjk+1 +Hðs1; s2Þ

2

6

6

4

3

7

7

5

# 0

(6)

where Pkjk+1 and Hðs1; s2Þ are given by

Pkjk+1 ¼ ½0!n ðEkjk+1 + LkCEkjk+1Þ + LkD)

Hðs1; s2Þ ¼ diag ð1+ s1 + s2; s1I!n ; s2R
+1
k Þ

(7)

Furthermore, the center of the correction ellipsoid is given by the
corrected state estimate in Eq. (2).

Proof. Follows from the proof of Theorem 1 in Ref. [34]. !

Next, we state the technical result for the prediction step.
THEOREM 2. Consider the system in Eq. (1) under the Assump-

tion 1 with the state xk in the correction ellipsoid Eðx̂kjk;PkjkÞ and
wk 2 Eð0!w ;QkÞ. Then, the successor state xkþ1 belongs to the opti-
mal prediction ellipsoid Eðx̂kþ1jk;Pkþ1jkÞ if there exist Pkþ1jk >
0; si " 0; i ¼ 3; 4 as solutions to the following SDP:

min
Pkþ1jk ;s3 ;s4

traceðPkþ1jkÞ

subject to

Pkþ1jk > 0

si " 0; i ¼ 3; 4

+Pkþ1jk Pkjk

P
T
kjk +Wðs3; s4Þ

2

6

6

4

3

7

7

5

# 0

(8)

where Pkjk and Wðs3; s4Þ are given by

Pkjk ¼ ½0!n AEkjk G)

Wðs3; s4Þ ¼ diag ð1+ s3 + s4; s3I!n ; s4Q
+1
k Þ

Furthermore, the center of the prediction ellipsoid is given by the
predicted state estimate in Eq. (4).

Proof. Follows from the proof of Theorem 2 in Ref. [34]. !

Interior point methods can be implemented to efficiently solve
the SDPs in Eqs. (6) and (8) [35]. The recursive SMF algorithm is
summarized in Algorithm 1.

4 Leader–Follower Synchronization of Multi-Agent
Systems

This section describes local control input synthesis for the
leader–follower synchronization. Results presented in this section

are based on the results given in Ref. [16], and, to be consistent,
we have adopted some of the terminologies and notations used in
Ref. [16].

4.1 Graph-Related Preliminaries. Consider a multi-agent
system consisting of N agents [1]. The communication topology
of the multi-agent system can be represented by a graph
G ¼ ðV;EÞ, where V ¼ f1; 2;…;Ng is a nonempty node set and
E . V'V is an edge set of ordered pairs of nodes, called edges.
Node i in the graph represents agent i. We consider simple,
directed graphs in this paper. The edge (i, j) in the edge set of a
directed graph denotes that node j can obtain information from
node i, but not necessarily vice versa. If an edge ði; jÞ 2 E, then
node i is a neighbor of node j. The set of neighbors of node i is
denoted as Ni.

The adjacency matrix A ¼ ½aij) 2 R
N'N of a directed graph

ðV;EÞ is defined such that aij is a positive weight if ðj; iÞ 2 E,
and aij¼ 0 otherwise. The graph Laplacian matrix L is defined as
L ¼ D+ A, where D ¼ ½dij) 2 R

N'N is the in-degree matrix
with dij ¼ 0; i 6¼ j and dii ¼

PN
j¼1 aij; i ¼ 1; 2;…;N. A directed

path is a sequence of edges in a directed graph of the form (i1, i2),
(i2, i3), …. The graph G contains a (directed) spanning tree if there
exists a node, called the root node, such that every other node in
V can be connected by a directed path starting from that node.

4.2 Synchronization: Formulation and Results. We con-
sider N agents connected via a directed graph and a leader. Agent
i (i ¼ 1; 2;…;N) is a dynamical system of the form

x
ðiÞ
kþ1 ¼ Ax

ðiÞ
k þ Bu

ðiÞ
k þ Gw

ðiÞ
k

y
ðiÞ
k ¼ Cx

ðiÞ
k þ Dv

ðiÞ
k ; k 2 Z?

(9)

where x
ðiÞ
k 2 R

n; u
ðiÞ
k 2 R

m; y
ðiÞ
k 2 R

p; w
ðiÞ
k 2 R

w; and v
ðiÞ
k 2 R

v

are the state, control input, measured output, input, and output dis-
turbances for agent i, respectively. Clearly, the system described
by Eq. (9) is in the form of the system described by Eq. (1). Next,
we modify Assumption 1 and impose the following assumptions
on the dynamics of agent i (i ¼ 1; 2;…;N).

ASSUMPTION 2.

(2.1) The initial state x
ðiÞ
0 is unknown. However, it satisfies

x
ðiÞ
0 2 Eðx̂ðiÞ0 ;P

ðiÞ
0 Þ, where x̂

ðiÞ
0 is a given initial estimate and P

ðiÞ
0

is known. Also, jPðiÞ
0 j # p0 holds with some p0 > 0.

(2.2) w
ðiÞ
k and v

ðiÞ
k are unknown-but-bounded for all k 2 Z?.

Also, w
ðiÞ
k 2 Eð0w;QðiÞ

k Þ and v
ðiÞ
k 2 Eð0v;RðiÞ

k Þ for all k 2 Z?, where

Q
ðiÞ
k andR

ðiÞ
k are known with jQðiÞ

k j # !q and jRðiÞ
k j # !r for all k 2

Z? with some !q; !r > 0.
Under this assumption, agent i (i ¼ 1; 2;…;N) employs the SMF
in Algorithm 1 to estimate its own state. Now, we introduce the
following assumption on the system matrices of the agents.

ASSUMPTION 3. B is full column rank with the pair ðA;BÞ
stabilizable.

We consider the leader to be a system of the form

x
ð0Þ
kþ1 ¼ Ax

ð0Þ
k ; y

ð0Þ
k ¼ x

ð0Þ
k ; k 2 Z? (10)

where x
ð0Þ
k 2 R

n are the leader’s state and y
ð0Þ
k is the output. Note

that the leader is a virtual system that generates the reference tra-
jectory for the agents i ¼ 1; 2;…;N to track. We define the local
neighborhood tracking errors, using the corrected state estimates
of the agents, as

!
ðiÞ
k ¼

X

j2Ni

aijðx̂
ðjÞ
kjk + x̂

ðiÞ
kjkÞ þ giðx

ð0Þ
k + x̂

ðiÞ
kjkÞ

where gi " 0 are the pinning gains, x̂
ðiÞ
kjk and x̂

ðjÞ
kjk are the corrected

state estimates of agent i and j, respectively. If agent i is pinned to
the leader, we take gi > 0. Now, we choose the control input of
agent i as [16]

Algorithm 1 The SMFAlgorithm

1: (Initialization) Select a time-horizon Tf. Given the initial values
ðx̂0;P0Þ, set k¼ 0, x̂kjk+1 ¼ x̂0; Ekjk+1 ¼ E0 where P0 ¼ E0E

T
0 .

2: Find Pkjk and Lk by solving the SDP in Eq. (6).

3: Calculate x̂kjk using Eq. (2). Also, calculate Ekjk using Pkjk ¼ EkjkE
T
kjk .

4: Solve the SDP in Eq. (8) to obtain Pkþ1jk .

5: Calculate x̂kþ1jk using Eq. (4). Compute Ekþ1jk using
Pkþ1jk ¼ Ekþ1jkE

T
kþ1jk .

6: If k¼Tf exit. Otherwise, set k ¼ k þ 1 and go to Step 2.
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u
ðiÞ
k ¼ cð1þ dii þ giÞ

+1
K!

ðiÞ
k

where c> 0 is a coupling gain and K is a control gain matrix to be
discussed subsequently. Hence, the global dynamics of the N
agents can be expressed as

x
ðgÞ
kþ1 ¼ ðIN , AÞx

ðgÞ
k þ u

ðgÞ
k þ ðIN , GÞw

ðgÞ
k ; k 2 Z? (11)

with x
ðgÞ
k ¼ col½x

ð1Þ
k ;…; x

ðNÞ
k ); w

ðgÞ
k ¼ col½w

ð1Þ
k ;…;w

ðNÞ
k ), and

u
ðgÞ
k ¼+cðIN þ Dþ GÞ+1ðLþ GÞ , BKx̂

ðgÞ
kjk

þcðIN þ Dþ GÞ+1ðLþ GÞ , BK!x
ð0Þ
k

(12)

where G ¼ diagðg1; g2;…:; gNÞ is the matrix of pinning gains,

x̂
ðgÞ
kjk ¼ col½x̂

ð1Þ
kjk ;…; x̂

ðNÞ
kjk ), and !x

ð0Þ
k ¼ ð1N , x

ð0Þ
k Þ. Note that the

superscript (g) is utilized to denote the global variables. Now,
using Eq. (5) for each agent’s corrected state estimates, we can

express x
ðgÞ
k as

x
ðgÞ
k ¼ x̂

ðgÞ
kjk þ E

ðgÞ
kjkz

ðgÞ
kjk (13)

where E
ðgÞ
kjk ¼ diagðE

ð1Þ
kjk ;…;E

ðNÞ
kjk Þ; z

ðgÞ
kjk ¼ col½z

ð1Þ
kjk ;…; z

ðNÞ
kjk ). Note

that E
ðiÞ
kjkðE

ðiÞ
kjkÞ

T ¼ P
ðiÞ
kjk, where P

ðiÞ
kjk is the correction ellipsoid shape

matrix for agent i and jzðiÞ
kjkj # 1 for i ¼ 1;…;N. Our next assump-

tion is regarding the interaction graph.
ASSUMPTION 4 [16]. The interaction graph contains a spanning

tree with at least one nonzero pinning gain that connects the
leader and the root node.

The global disagreement error [16] is defined as

d
ðgÞ
k ¼ x

ðgÞ
k + !x

ð0Þ
k . Utilizing Eqs. (11)–(13), we express the global

error system as

d
ðgÞ
kþ1 ¼ Acd

ðgÞ
k þ BcE

ðgÞ
kjk z

ðgÞ
kjk þ ðIN , GÞw

ðgÞ
k ; k 2 Z? (14)

where

Ac ¼ ½ðIN , AÞ + cC, BK); Bc ¼ cC, BK (15)

with C ¼ ðIN þ Dþ GÞ+1ðLþ GÞ. Now, we recall the follow-
ing technical result from Ref. [16].

Lemma 1 [16]. qðAcÞ < 1 iff qðA+ cKiBKÞ < 1 for all the
eigenvalues Ki; i ¼ 1; 2;…;N of C.

If the matrix A is unstable or marginally stable, then Lemma 1
requires Assumption 4 with the pair ðA;BÞ stabilizable [16].
Using Theorem 2 in Ref. [16], c and K are chosen such that
qðAcÞ < 1. To this end, we state the following result.

Lemma 2 [16]. Let Assumption 4 holds, and let P be a positive
definite solution to the discrete-time Riccati-like equation

AT PA+ P þ Q+ AT PBðBT PBÞ+1
BT PA ¼ On (16)

for someQ > 0. Define

r ¼ ½rmaxðQ
+0:5AT PBðBT PBÞ+1

BT PAQ
+0:5Þ)+0:5

Furthermore, let there exists a Cðc0; r0Þ containing all the eigen-
values Ki; i ¼ 1; 2;…;N of C such that ðr0=c0Þ < r. Then,
qðAcÞ < 1 for K ¼ ðBT PBÞ+1

BT PA and c ¼ ð1=c0Þ.
If B is a full column rank, Eq. (16) has a positive definite solu-

tion P only if the pair ðA;BÞ is stabilizable [16]. In this regard,
Assumption 3 is pertinent. Next, we introduce the notion of input-
to-state stability in the following definition.

DEFINITION 2. A discrete-time system of the form xkþ1 ¼ /ðxk;
u1k ; u2k Þ; k 2 Z? with u1 : Z? ! R

m1 ; u2 : Z? ! R
m2 ; /ð0n;

0m1
; 0m2

Þ ¼ 0n is (globally) ISS if there exist a class KL function

b and two class K functions c1; c2 such that, for each pair of
inputs u1 2 lm1

1 ; u2 2 lm2
1 and each x0 2 R

n, it holds that

jxkj # bðjx0j; kÞ þ c1ðjju1jjÞ þ c2ðjju2jjÞ (17)

for each k 2 Z?.
Remark 2. Definition 2 is adopted from Definition 3.1 in Ref.

[32] and has been suitably modified for systems with two inputs
using Definition IV.3 in Ref. [33].

We state the main result of this section in Theorem 3.
THEOREM 3. Suppose the following conditions are satisfied: (i)

Under Assumption 2, agent i (i ¼ 1; 2;…;N) employs the SMF in
Algorithm 1 to estimate its own state; (ii) Assumptions 3 and 4
hold; (iii) c and K are chosen using Lemma 2. Then, the global
error system in Eq. (14) is ISS.

Proof. The proof is inspired by Example 3.4 in Ref. [32]. Let us

denote e
ðgÞ
k ¼ col½e

ð1Þ
k ;…; e

ðNÞ
k ), where e

ðiÞ
k ¼ x

ðiÞ
k + x̂

ðiÞ
kjk is the state

estimation errors of agent i at the correction steps. Now, using Eq.

(13), we have e
ðgÞ
k ¼ x

ðgÞ
k + x̂

ðgÞ
kjk ¼ E

ðgÞ
kjkz

ðgÞ
kjk . Similarly, let us denote

e
ðgÞ
0 ¼ col½e

ð1Þ
0 ;…; e

ðNÞ
0 ), where e

ðiÞ
0 ¼ x

ðiÞ
0 + x̂

ðiÞ
0 is the initial esti-

mation error of agent i. Due to Assumption 2, we have

e
ðgÞ
0 ¼ E

ðgÞ
0 z

ðgÞ
0 (18)

with E
ðgÞ
0 ¼ diagðE

ð1Þ
0 ;…;E

ðNÞ
0 Þ; z

ðgÞ
0 ¼ col½z

ð1Þ
0 ;…; z

ðNÞ
0 ), where

E
ðiÞ
0 ðE

ðiÞ
0 ÞT ¼ P

ðiÞ
0 and jzðiÞ0 j # 1 for i ¼ 1;…;N. Then, Eq. (14)

becomes

d
ðgÞ
kþ1 ¼ Akþ1

c d
ðgÞ
0 þ

X

k

j¼0

Aj
cBce

ðgÞ
k+j þ

X

k

j¼0

Aj
cðIN , GÞw

ðgÞ
k+j

where eðgÞ : Z? ! R
nN andwðgÞ

: Z? ! R
wN are the inputs. It is

understood that eðgÞ 2 lnN1 and wðgÞ 2 lwN1 . Due to the choices of c
and K along with Assumptions 3 and 4, we have qðAcÞ < 1.
Hence, there exist constants a > 0 and l 2 ½0; 1Þ, such that jAk

cj #
alk; k 2 Z? [32]. Then, the ISS property in Eq. (17) holds for the
system in Eq. (14) with

b s; kð Þ ¼ alks; c1 s1ð Þ ¼
X

1

j¼0

aljjBcjs1 ¼
ajBcjs1
1+ l

c2 s2ð Þ ¼
X

1

j¼0

aljjGjs2 ¼
ajGjs2
1+ l

(19)

where jðIN , GÞj ¼ jIN j jGj ¼ jGj is utilized. Thus, along the tra-
jectories of the system in Eq. (14), for each k 2 Z?, it holds that

jdðgÞk j # bðjdðgÞ0 j; kÞ þ c1ðjjeðgÞjjÞ þ c2ðjjwðgÞjjÞ (20)

where the functions b; c1; and c2 are as in Eq. (19) with
s ¼ jdðgÞ0 j; s1 ¼ jjeðgÞjj; and s2 ¼ jjwðgÞjj. !

Theorem 3 implies that the global disagreement error remains
bounded under the proposed synchronization protocol.

Remark 3. Objective of the SMF-based synchronization in Ref.
[31] was to contain the states of the agents in a confidence ellip-
soid that might not be small in general. Thus, the approach out-
lined in Ref. [31] may lead to conservative results where the states
of the agents might not converge to a neighborhood of the leader’s
state trajectory. On the other hand, we have shown that, under
appropriate conditions, the global error system is ISS with respect
to the input disturbances and estimation errors. Since an ISS sys-
tem admits the “converging-input converging-state” property (see,
Refs. [32] and [36] for details), jdðgÞk j would eventually converge
to a neighborhood of zero as the estimation errors of the agents
decrease. Thus, the agents would converge to a neighborhood of
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the leader’s state trajectory. To this end, it is understood that
jjwðgÞjj is relatively small (compared to jdðgÞ0 j and jjeðgÞjj) as the
input disturbances satisfy Assumption 2.2.

Next, we state the following result based on Theorem 3, where
p0 and !q are as in Assumption 2.

COROLLARY 1. Under the conditions of Theorem 3, the normal-
ized global disagreement error !d

ðgÞ
k satisfies

lim
k!1

j!dðgÞk j # ðjBcj
ffiffiffiffiffi

p0
p

þ jGj
ffiffiffi

!q
p

Þ (21)

with !d
ðgÞ
k ¼ ðd

ðgÞ
k =!lÞ, where !l ¼ ða

ffiffiffiffi

N
p

=ð1+ lÞÞ and a > 0; l 2
½0; 1Þ are such that jAk

cj # alk for all k 2 Z?.
Proof. Under the conditions of Theorem 3, the result in Eq. (20)

holds. Then, let us rewrite Eq. (20) as

jdðgÞk j # alkjdðgÞ0 jþ ða=ð1+ lÞÞðjBcj jjeðgÞjjþ jGj jjwðgÞjjÞ

Now, under the assumption that the SMFs of the agents are per-
forming adequately, we can utilize Eq. (18) and take

jjeðgÞjj # jeðgÞ0 j # jEðgÞ
0 j jzðgÞ0 j. Using Assumption 2, we have

jEðgÞ
0 j ¼ maxðjEð1Þ

0 j;…; jEðNÞ
0 jÞ ) jEðgÞ

0 j # ffiffiffiffiffi

p0
p

. Also, we have

jzðgÞ0 j #
ffiffiffiffi

N
p

. Therefore, we derive jjeðgÞjj #
ffiffiffiffiffiffiffiffi

p0N
p

. Similarly,

Assumption 2 leads to jjwðgÞjj #
ffiffiffiffiffiffiffi

!qN
p

. Combining these, we cal-

culate the following bound on d
ðgÞ
k

jdðgÞk j # alkjdðgÞ0 jþ !lðjBcj
ffiffiffiffiffi

p0
p

þ jGj
ffiffiffi

!q
p

Þ (22)

for each k 2 Z? with !l ¼ ða
ffiffiffiffi

N
p

=ð1+ lÞÞ. Hence, the proof is
completed by taking the limit in Eq. (21) and carrying out the nor-
malization !d

ðgÞ
k ¼ ðd

ðgÞ
k =!lÞ. !

Remark 4. The upper bound shown in Eq. (22) is monotonically
decreasing. The estimate given in Eq. (21) is a conservative one

as we have utilized jjeðgÞjj #
ffiffiffiffiffiffiffiffi

p0N
p

and jjwðgÞjj #
ffiffiffiffiffiffiffi

!qN
p

. Also, the

bound jRðiÞ
k j # !r does not appear in Eqs. (21) and (22) as a result

of utilizing jjeðgÞjj # jeðgÞ0 j # jEðgÞ
0 j jzðgÞ0 j. However, the true value

of e
ðiÞ
k would depend on v

ðiÞ
k and, thus, on R

ðiÞ
k for all k 2 Z? and

all i ¼ 1; 2;…;N.
Remark 5. For a given multi-agent system (with the number of

agents N, the matrices A; B; C; D; andG, and the interaction
graph specified), we have jBcj and jGj fixed once c and K are
properly chosen using Lemma 2. Thus, the conservatism of the
bound in Eq. (21) can be reduced if the available upper bounds
(i.e., p0 and !q) are sufficiently small.

5 Simulation Example

A simulation example is provided in this section to illustrate
the effectiveness of the proposed SMF-based leader–follower syn-
chronization protocol. All the simulations are carried out on a
desktop computer with a 16.00 GB RAM and a 3.40GHz Intel(R)

Xeon(R) E-2124 G processor running MATLAB R2019a. The SDPs
in Eqs. (6) and (8) are solved utilizing “YALMIP” [37] with the
“SDPT3” solver in the MATLAB framework. Since the disturbances
are only assumed to be unknown-but-bounded, different kinds of
disturbance realizations are possible, which satisfy the ellipsoidal
assumptions (Assumptions 1.2 and 2.2), for example, periodic dis-
turbances with time-varying or constant frequencies and ampli-
tudes, random disturbances with each element being uniformly
distributed in an interval, and so on.

We consider four agents, i.e., N¼ 4. Matrices related to the
dynamics of the leader and the agents are

A ¼
0 +1

1 0

" #

; B ¼ I2; C ¼ ½1 0); D ¼ 1; G ¼ I2 (23)

where A is marginally stable. Also, Assumption 3 is satisfied with
the above choices of A and B. Ellipsoidal parameters related to

the SMFs of the agents are P
ðiÞ
0 ¼ 2I2;Q

ðiÞ
k ¼ 0:1I2; andR

ðiÞ
k ¼ 0:1

for i ¼ 1; 2; 3; and 4. The initial state estimates of the agents are

as follows: x̂
ð1Þ
0 ¼ ½50 + 50)T; x̂

ð2Þ
0 ¼ x̂

ð1Þ
0 ; x̂

ð3Þ
0 ¼ ½+50 50)T;

and x̂
ð4Þ
0 ¼ x̂

ð3Þ
0 . The true initial state for the agents 1 and 2

(x
ð1Þ
0 ; x

ð2Þ
0 ) are chosen randomly (uniform distribution) between

½50 + 50)T and ½51 + 49)T. Similarly, the true initial state for

the agents 3 and 4 (x
ð3Þ
0 ; x

ð4Þ
0 ) is chosen randomly (uniform distri-

bution) between ½+50 50)T and ½+49 51)T. The input

Fig. 1 (a) The interaction graph and (b) eigenvalues of C

(Ki ; i 5 1; 2;3; and4) in the complex plane with C(c0; r0)

Fig. 2 Simulation results for the example: (a) true states of the
leader and the agents, (b) normalized global disagreement error

norm, and (c) jAk

c
j and the upper bound
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disturbances (w
ðiÞ
k ; i ¼ 1; 2; 3; 4) are chosen randomly (uniform

distribution) between +0:0512 and 0:0512, and the output distur-

bances (v
ðiÞ
k ; i ¼ 1; 2; 3; 4) are chosen randomly (uniform distribu-

tion) between +0.05 and 0.05. Thus, Assumption 2 has been
satisfied with the above parameters, initial conditions, and disturb-
ance terms. The initial state of the leader is chosen as

x
ð0Þ
0 ¼ ½5+ 5)T.
The interaction graph is shown in Fig. 1(a), and Assumption 4

holds for this interaction graph. Thus, we have

L ¼

1 0 0 +1

+1 1 0 0

0 +1 1 0

0 0 +1 1

2

6

6

4

3

7

7

5

(24)

G ¼ diagð1; 0; 0; 0Þ; D ¼ diagð1; 1; 1; 1Þ. With regards to Lemma
2, we choose Q ¼ 0:1I2; c0 ¼ ð2=3Þ; r0 ¼ 0:6. Clearly, Cðc0; r0Þ
contains all the eigenvalues of C, as shown in Fig. 1(b). Also, we
have r¼ 1 and ðr0=c0Þ ¼ 0:9 < r. Hence, the conditions for
Lemma 2 are satisfied, and we take c ¼ ð1=c0Þ ¼ 1:5;
K ¼ ðBT PBÞ+1

BT PA.
The synchronization results are shown in Figs. 2(a) and 2(b).

Figure 2(a) shows that the trajectories of the agents converge
close to that of the leader. As a result, the normalized global dis-
agreement error norm converges to a neighborhood of zero
(Fig. 2(b)). The dotted line in Fig. 2(b) denotes the conservative
bound in Eq. (21) for which we have utilized p0 ¼ 2 and !q ¼ 0:1.
Also, for !l, we have taken a ¼ 1:1 and l ¼ 0:9. For this choice of
a and l, jAk

cj # alk is satisfied, as shown in Fig. 2(c). With the
above values, the conservative upper bound is equal to 2.462,
which is shown using the dotted line in Fig. 2(b).

The estimation results corresponding to the SMFs of the agents
are shown in Figs. 3–6. The estimation errors (at the correction

steps) for agent i’s SMF are denoted by e
ðiÞ
k ¼ ½e

ðiÞ
1k

e
ðiÞ
2k
)T, and the

initial errors are denoted by e
ðiÞ
0 ¼ x

ðiÞ
0 + x̂

ðiÞ
0 (i ¼ 1; 2; 3; 4).

Figures 3 and 4 show that the SMFs for the agents perform
adequately as the estimation errors remain in a neighborhood of
zero and the error bounds decrease from the respective initial val-
ues. Also, the estimation errors are contained within the error
bounds, which mean the SMFs of the agents are able to contain
the respective true states inside the respective correction ellip-
soids. The estimation error norms, shown in Fig. 5, further illus-
trate the effectiveness of the SMFs and demonstrate that the SMFs
are able to reduce the estimation errors from the respective initial
values, starting from the correction step at k¼ 0. The results in

Fig. 5 essentially verify our earlier use of jjeðgÞjj # jeðgÞ0 j in deriv-

ing the conservative bound in Eq. (21). The trace of correction
ellipsoid shape matrices for the SMFs of the agents is shown in

Fig. 6, where P
ðiÞ
kjk (i ¼ 1; 2; 3; 4) denote the shape matrices of

agent i’s correction ellipsoids. Clearly, SMFs of the agents are
able to reduce the trace from the initial values and construct opti-
mal (minimum trace) correction ellipsoids at each time-step (start-
ing from k¼ 0). Quantitatively, the trace of these shape matrices
converges approximately to 1.5 (see Fig. 6), which is approxi-
mately a 2.667-fold decrease with respect to the initial trace of 4.
The trends shown in Fig. 6 for all the agents are roughly the same,
as the same set of ellipsoidal parameters is utilized for the SMFs
of all the agents and the agents have identical dynamics.

Fig. 3 Estimation results for SMFs of agents 1 and 2

Fig. 4 Estimation results for SMFs of agents 3 and 4

Fig. 5 Estimation error norms for SMFs of the agents

Fig. 6 Trace of correction ellipsoid shape matrices for SMFs of
the agents
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Finally, consider this example with different values of

w
ðiÞ
k ; v

ðiÞ
k ; Q

ðiÞ
k ; andR

ðiÞ
k (i ¼ 1; 2; 3; and 4) while keeping all other

conditions and parameters unchanged. Now, let us allow for

higher magnitudes of disturbances (with Q
ðiÞ
k ; R

ðiÞ
k properly chosen

such that Assumption 2 is satisfied) and compare j!dkj results with
the one given in Fig. 2(b). Results of this study are given in
Table 1 where the following two comparison metrics are used: (i)

1
T

PTf
k¼0 j!dkj: mean value of j!dkj; (ii)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T

PTf
k¼0 j!dkj

2
q

: root-mean-

square value of j!dkj. Also, wðiÞ
k is chosen randomly (uniform distri-

bution) between +aw12 and aw12, and v
ðiÞ
k is chosen randomly

(uniform distribution) between +av and av. Thus, the first row in
Table 1 corresponds to the result in Fig. 2(b). We observe that
both the metrics in Table 1 are comparable among the three cases
studied, despite the higher magnitudes of disturbances considered
for the two cases in second and third rows of Table 1. Therefore,

the j!dkj trends for these two cases with higher disturbance magni-
tudes would be qualitatively similar to the one shown in Fig. 2(b).

6 Conclusion

A set-membership filtering-based leader–follower synchroniza-
tion protocol for high-order discrete-time linear multi-agent sys-
tems has been put forward for which the global error system is
shown to be input-to-state stable with respect to the input distur-
bances and estimation errors. A monotonically decreasing upper
bound on the norm of the global disagreement error vector is cal-
culated. Our future work would involve extending the proposed
formulation for discrete-time nonlinear dynamical systems and
switching network topologies. Also, we would extend the results
in this paper by considering a control input for the leader or the
leader to be any bounded reference trajectory.
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Table 1 j!dk j comparisons over T5 61 time-steps (Tf560)

Disturbance parameters
1
T

PTf
k¼0 j!dkj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T

PTf
k¼0 j!dkj

2
q

aw ¼ av ¼ 0:05; Q
ðiÞ
k ¼ 0:1I2; R

ðiÞ
k ¼ 0:1 0.3706 1.1985

aw ¼ av ¼ 0:5; Q
ðiÞ
k ¼ I2; R

ðiÞ
k ¼ 1 0.4219 1.2052

aw ¼ av ¼ 1; Q
ðiÞ
k ¼ 2I2; R

ðiÞ
k ¼ 1 0.4730 1.2124
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