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Abstract We compute the mod p homology growth of residual sequences of
finite index normal subgroups of right-angled Artin groups. We find exam-
ples where this differs from the rational homology growth, which implies the
homology of subgroups in the sequence has lots of torsion. More precisely, the
homology torsion grows exponentially in the index of the subgroup. For odd
primes p, we construct closed locally CAT(0) manifolds with nonzero mod p
homology growth outside the middle dimension. These examples show that
Singer’s conjecture on rational homology growth and Liick’s conjecture on
torsion homology growth are incompatible with each other, so at least one of
them must be wrong.

This paper is about the growth of homology in regular coverings of finite
aspherical complexes X = BI'. We will content ourselves with the situation
when the fundamental group I' = 71 X is residually finite. This means there is
a nested sequence of finite index normal subgroups 'y <1 I' with N[y = 1.
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We fix a choice of such a sequence and will be interested in the normalized
limits of Betti numbers with coefficients in a field F

b;i(BTy; F
b;z)(F; F) := lim sup #
k (I : I'k]

where F is either Q or FF,,. When F' = Q then Liick’s approximation theo-
rem [11] shows this does not depend on the choice of sequence and can be
identified with a more analytically defined ith L?-Betti number of the uni-
versal cover ET". When F' = [, we will analogously refer to bl.(z)(l"; F,) as
the IF p—Lz-Betti number, even though it does not (as far as we know) have an
analytic interpretation and it is not even known whether the lim sup depends
on the choice of sequence (we abuse notation by omitting the sequence from
bl@(F; IF,)). Note that if the lim sup is independent of the sequence, then it
becomes an honest limit.

For a finite aspherical complex BT it is easy to see that the mod p L2-Betti
number is greater or equal to the ordinary L2-Betti number

b (T Fp) = b2 (5 Q),

but it might be strictly bigger. We show that this does—in fact—happen for
some right-angled Artin groups. This seems to have not been observed pre-
viously and contradicts a conjecture of Liick [Conjecture 3.4, [13]] that these
numbers are independent of the coefficient field. When I" is a right-angled

Artin group we compute le) (I'; F) completely for any coefficient field, via a
residually finite variant of the argument Davis and Leary [9] used to compute
the ordinary L?-Betti numbers of such groups.

Theorem 1 Let A; be a right-angled Artin group with defining flag complex
L and F any field (e.g. Q or ). Then
b (AL F) = bi_1(L; F).

Here b;_(L; F) denotes the reduced Betti number of L with coefficients in
F . In particular, the lim sup is actually a limit, it does not depend on the choice
of chain but does depend on the characteristic of the coefficient field.

Corollary 2 Suppose that L is a flag triangulation of R P2.

b (AL; Q) =0,
b (AL Fa) = 1.
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Mod p and torsion homology growth in nonpositive curvature

The proof of Theorem 1 also shows that F-L2-Betti numbers of finite index
subgroups of RAAG’s are multiplicative (see Corollary 10), and we will use
this later in Theorem 4. In general, it is not known whether the F p—Lz—Betti
numbers are multiplicative.

By the universal coefficient theorem, H, (X, IF,) is determined by H, (X, Q)
and Z/ p-summands in H, (X, Z) and H,—1(X, Z). In this case, if Ay is as in
Corollary 2, then since Ay has a 3-dimensional model for BAy, H3(BI'y; Z)
is torsion-free. Therefore, this discrepancy between Q and [, homology leads
to exponentially growing torsion in homology in degree 2.

Corollary 3 The group Ay as in Corollary 2 has exponential H»-torsion
growth:

T log |H2(BT'k; Z)tors]
1m sup > 0.

k [ArL : Tl
Furthermore, the rank of the 2-torsion subgroup of Hy(BT'y; Z) grows linearly
in[Ar : Tkl

While it is conjectured that for arithmetic hyperbolic 3-manifold groups the
torsion in homology grows exponentially in residual chains of congruence
covers, this is the first example of a finitely presented group of any sort where
one can prove that homology torsion grows exponentially in a residual chain,
answering a query of Bergeron for such a group. By contrast, Abert, Gelander,
and Nikolov showed that if L is connected then H|-torsion of Az grows slower
than exponentially [1].

For other groups I' the computation of L2-Betti numbers and homology
torsion growth is a difficult problem. A basic vanishing principle which can
make computations of L2-Betti numbers simpler is the following conjecture
often attributed to Singer.

Singer Conjecture Let M" be a closed aspherical manifold. Then
n
b r(M"):; Q) =0 fori # 2.

So in the residually finite setting, the free part of homology should grow
sublinearly outside the middle dimension. A more recent vanishing principle
regarding torsion growth, motivated by considerations in number theory, is
the following conjecture made by Bergeron and Venkatesh in the context of
arithmetic locally symmetric spaces [4] (see also [3]).

Bergeron—Venkatesh Conjecture Let G be a semisimple Lie group, I' a
cocompact arithmetic lattice in G, and I'y a sequence of congruence subgroups
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with Nz 'y = 1. Then

0

i IOg |Hi (Brk; Z)tors|
im sup =
k [ 2 Tyl

. dim(G/K)—1

unless i = ——4——.

Remark The conjecture is actually more precise and predicts that the limit is
positive in some cases, e.g. when G is SL(3,R), SL(4,R) or SO (m, n) for
mn odd.

Partially motivated by this conjecture, in [12] Liick suggested such a van-
ishing principle could hold quite generally for arbitrary closed aspherical
manifolds.

Liick Conjecture (1.12(2), [12]) Let M" be a closed aspherical n-manifold
with residually finite fundamental group. Let I'y <1 71 (M"™) be any normal
chain with (), Ty = 1. If i # (n — 1)/2 then

I log |H;i(BI'k; Z)1ors|
im sup =
k [71(M") : T'k]

It is interesting to note that the Singer and Liick Conjectures together imply
an [F ,-version of the Singer conjecture.

[F,—Singer Conjecture Let M" be a closed aspherical n-manifold with resid-
ually finite fundamental group. Then

b (T (M) Fy) =0 fori # 2.

To see this, suppose we have an n-manifold M" with bl@ (m(M"); F,) #0
for i # n/2. By Poincaré duality, we can assume i > n/2. The Kiinneth
formula implies that M" x M"™ x M™ has nontrivial IE‘p—LZ—Betti numbers in

dimension 3i. Since the Singer Conjecture predicts that bg) (m1(M™)3); Q) =
0, the universal coefficient theorem implies exponential homological torsion
growth in dimension 3i or 3i — 1, which lies above the middle dimension,
contradicting Liick’s Conjecture.

The [F),-Singer Conjecture is open even for n = 3 (but see [4,6]). But in
high enough dimensions, we show this conjecture is not true for any odd prime

p-

Theorem 4 For any odd prime p, the I ,-Singer Conjecture fails in all odd
dimensions > T and all even dimensions > 14.
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Our examples are manifolds constructed via right-angled Coxeter groups; in
particular they are locally CAT(0), so it follows that the rational homology and
torsion homology growth conjectures are incompatible in the CAT(0) setting.
On the other hand, our examples are not locally symmetric so even though
the Singer conjecture is known for locally symmetric spaces the Bergeron—
Venkatesh conjecture remains open.

Here is a brief outline of our construction. In [14], it was shown that if a finite
type group I acts properly on a contractible n-manifold and bl.(z) (I'; Q) # Ofor
i > %, then there is a counterexample to the Singer Conjecture (in some dimen-
sion possibly different from n.) We employ a similar strategy here. Our group
is a finite index subgroup of a right-angled Artin group with bé(lz) (Ar;Fp) #0,
and the 7-manifold is going to be the Davis complex corresponding to a right-
angled Coxeter group associated to a flag triangulation of a S°.

This uses Theorem 1 and the main result of [2]. More precisely, suppose
L=S%U P D3 is a flag triangulation of a complex obtained by gluing a 3-disk

to a 2-sphere along a degree p map. Theorem 1 shows that bf) (Ap; Fp) =1.
Since H3(L;F,) = 0, [2, Theorem 5.1] shows that a related flag complex
OL (the link of a vertex in the Salvetti complex of Ay) embeds into a flag
triangulation 7' of S°. This is where we need p # 2; interestingly this goes
back to the fact that van Kampen’s obstruction to embedding d-dimensional
simplicial complexes into R?“ is an order two invariant.

Now, Ay is commensurable to the right-angled Coxeter group Wor by [8],
and Wy is a subgroup of Wr. This acts properly on the associated Davis
complex, a contractible 7-manifold, so we obtain the desired proper action for
a finite index subgroup of Ay.

We then show that the IF,-Singer Conjecture fails for either the right-angled
Coxeter group associated to 7" or to a link of an odd-dimensional simplex in
T . In other words, there must be a right-angled Coxeter group counterexample
in one of the dimensions 3, 5, or 7.

Taking cartesian products of counterexamples and surface groups, we get
counterexamples in all the dimensions stated in the theorem. In this way, we
also get a single closed aspherical manifold contradicting IF ,-Singer for a finite
collection of primes. This suggests the following.

Question 5 Given a closed aspherical manifold M", is there a number N so
that for all primes p > N, the ¥ ,-Singer Conjecture holds for M" ?

Of course, this is at least as difficult as the ordinary Singer conjecture, but it
seems interesting (and open) in many cases where the ordinary Singer con-
jecture is known. Along the same lines, one can modify the Liick conjecture
by ignoring the contributions to torsion coming from a finite collection of
exceptional primes which should be determined by the geometry of the man-
ifold M" (akin to how the exceptional primes for right-angled Artin groups
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are determined by the complex L.) This seems particularly interesting for
locally symmetric spaces and might be easier than the Bergeron—Venkatesh
conjecture.

1 Right-angled Artin and Coxeter groups

We collect some facts about right-angled Artin groups (RAAG’s), right-angled
Coxeter groups (RACG’s) and relations between one and the other which we
will need later. The philosophy to keep in mind is that RAAGs are the things we
can compute, RACGs are the things related to closed aspherical manifolds, and
translating from the former to the later involves a bit of (classical) embedding
theory.

Let L be a flag complex with vertex set V. The one-skeleton of L determines
two group presentations. A presentation for the RAAG Ay has generators
{gv}vev; there are relations [gy, g,/] = 1 (i.e., g, and g,; commute) whenever
{v,v'} € L. The RACG W is the quotient of A; formed by adding the
relations (gv)2 =1,forallveV.

We now describe a standard classifying space for a RAAG A . More pre-
cisely, let 7V denote the product (S!)V . Each copy of S! is given a cell structure
with one vertex eg and one edge. For each simplex ¢ € L, T (o) denotes the
subset of 7V consisting of points (x,)yey such that x, = ey whenever v is
not a vertex of o. So, T (o) is a (dim o + 1)-dimensional standard subtorus
of TV . The Salvetti complex for Ay is the subcomplex BA; of TV defined as
the union of the subtori 7 (o) over all simplices o in L:

BAL:= ] T(0).

oCL

The link of the unique vertex is a flag complex of the same dimension as L,
and is usually denoted O L (and called the octahedralization of L.)

We now give a similar construction of a classifying space for the commutator
subgroup Cy of Wy (which is torsion-free and finite index in Wr.) Let 1 4
denote the product ([—1, 1)V. Each copy of [—1, 1] is given a cell structure
with two vertices and one edge. For each simplex o C L, I(o) denotes the
subset of 1V consisting of those points (x;),ey such that x, € {1} whenever
v is not a vertex of o. So, /(o) is a disjoint union of parallel faces of / Voof
dimension dim o + 1. The standard classifying space for Cp is the subcomplex
BCy of IV defined as the union of the I (¢') over all simplices o in L:

BC; = U 1(0).

o€l
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The link of each vertex of BCy is a copy of L. The universal cover of BCp,
is denoted ¥ and called the Davis complex of Wy. (Z/2)V acts on IV and
preserves the subcomplex BCy. The lifts of this induced action to X are
precisely Wy, and we have the exact sequence

1> CL— W, - (22)" - 1.

Lemma 6 Let L be a flag complex.

(1) A is commensurable to Woy, [8].
(2) Wg is linear, and hence residually finite. Therefore, so is AL.
(3) If L is a triangulation of S"~", then 1 is a contractible n-manifold [7].

With Davis in [2], we studied the minimal dimension of aspherical manifolds
with right-angled Artin fundamental groups. Constructing such manifolds
involves embedding right-angled Artin groups Ay into manifold Coxeter
groups Wg.—1. This boils down to finding PL-embeddings of O L into spheres.
The complexes OL have “join-like” properties which make them difficult
to embed directly but one can compute when the van Kampen embedding
obstruction vanishes for these complexes. It is a complete obstruction to PL-
embedding d-complexes in $>¢, except when d = 2, and gives the following
embedding criterion.

Theorem 7 (2.2,5.1 and 5.4, [2]) Suppose L is a d-dimensional flag complex,
d # 2. Then O L embeds as a full subcomplex into a flag P L-triangulation of
S%4 if and only if Hy(L; F») = 0.

The prime 2 plays a special role in this theorem because van Kampen’s obstruc-
tion looks at what happens to pairs of distinct points under a generic map
OL — S, which leads to an order two (co)-homological invariant. There-
fore, if Hy(L; F2) = 0 we get an embedding OL < §2¢ irrespective of the
IF,-homology of L for odd primes p. This observation is key to the proof of
Theorem 4.

2 Proof of Theorem 1

Let L be a flag complex, I' = Ap the right-angled Artin group defined by
this complex, BI its Salvetti complex, and F any field. By Lemma 6, we can
choose a chain I'y <t T" of normal, finite index subgroups with (), 'y = 1.
Consider the cover of the Salvetti complex BI" by the standard maximal
tori 7. Its nerve is a simplex A since all the tori intersect at the base-point.
For a simplex o in A, we denote the intersection of the corresponding tori
by 7o = (\yeo To- We look at the finite cover BT or equivalently, look at
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the coefficient module V = F[I"/ I'r]. The Mayer—Vietoris spectral sequence
(see VIL.4 [5]) corresponding to the cover {T,} has E! term

E};:=Ci(A; Hj(Ty; V) = Hi1j(BT; V) = Hy j(BTy; F).

The following lemma is crucial.

Lemma 8
lim dimp H;j(T,; F[I'/ T'k]) 1 ifTy = pt, and j =0,
1 =
k— 00 [T T%] 0 otherwise.

Proof Since covers of tori are tori, the only way the homology of covers of 7,
can grow linearly is if the number of components of the preimage of 7, in BI'y
grows linearly in the index. Since 'y is a residual sequence of normal covers,
the number of components grows linearly if and only if 7, is a point. In more
detail, since the cover is normal, the number of components is the ratio of
indices %, and since the sequence I' is residual, the denominator
grows with & as long as w175 is infinite. m|

Therefore, up to an error whose dimension is sublinear in the index [I" : T't],
the spectral sequence is concentrated on the El.l0 line. This implies

. dimp E7y bi(BTy; F)
lim sup ————— = lim sup ———. (D)
v (DTl k (I Tl

Next, we approximate the chain complex £ il o by something that we will be
able to compute exactly. For this, set

FII'/Ty] ifT, = pt,
Vo = )
0 otherwise.

Then the projection El.170 — C;(A; Vy) is a chain map and its kernel has
dimension that is sublinear in the index [I" : T'x]. Therefore

. dimp E7y dimp H;(A; Vi)
lim sup ————— = lim sup . (2)
ko 0T k [I": Ikl

The quantity in the limit on the right can be computed exactly, just in terms of
the topology of L.
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Lemma 9

dimp H;(A; V)

=b;_1(L; F).
T 1( )

Proof The complex A has a subcomplex £ C A whose simplices are those
intersections of tori that consist of more than one point. In other words,

L:={oc CA|V,=0l.

This complex L is precisely the nerve of the cover of L by maximal simplices,
so it is homotopy equivalent to L. From the definition of £ and V,, we get the
exact sequence of chain complexes

0> CuL;F)QV — Co(A; F)®V — Cyu(A; Vy) — 0.
Since A is a simplex, this implies
Hi(A; Vo) ZHi- (L F)® V.
This finishes the proof since V is a [I" : ['x]-dimensional F-vector space. O

The theorem follows from this lemma, together with (1) and (2). Note that
we only used normality of the I'y in Lemma 8. The proof goes through for
chains I'; where the number of lifts in BI'j of standard n-toriin BI forn > 0
grows sublinearly. For example, this occurs for normal chains in a finite index
subgroup of I'.

Corollary 10 For a finite index subgroup H of a RAAG T" we have
@ py. — T - @) .
b, (H; F)=I[I": H]b;”(I'; F).
Proof Let I';, << H be a normal chain. "1:he cover BH of BI" has < [I" : H]
lifts of each torus. For each lifted torus 7, in B H, the number of lifts in BI'j

is given by

[H Tkl
|m Ty - 1Ty N Fk|’

which is sublinear. Hence, bl.(z)(F; F) = lim %, which implies the

multiplicativity formula. O
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3 Mayer—Vietoris sequences for F-L>-Betti numbers of Coxeter groups

Let L be a flag complex and Wy, the corresponding RACG. Look at a decom-
position L = AUc B where A, B and hence C are full subcomplexes of L. The
Coxeter group Wy splits as an amalgamated product W, = Wy xw,. Wpg, and
our goal in this section is to describe relations between F-L2?-Betti numbers
that arise from such splittings. Everywhere in this section coefficients are in
an arbitrary field F and will be omitted to improve readability.

Let I'y be a chain of finite index torsion-free normal subgroups with
(i Tx = 1 (note that any residual normal chain in W, is eventually torsion-
free.) Let X be the associated Davis complex for Wy, and let Yf =X/ T%.

Given any full subcomplex A of L, the RACG Wy is a subgroup of Wy, and
the corresponding Davis complex ¥4 is naturally a subcomplex of Xy . The
stabilizer of X4 in W is precisely W4. The Wy -orbit of X4 in X is a disjoint
union of copies of X 4. The intersections of I'y with Wy give a corresponding
chain of finite index subgroups W4 N 'y <1 Wy.

We let Y’g denote the image of this orbit in Y¥, so that ¥ ’g is a disjoint

union of % copies of X4/ W4 N I'g. It follows that we can compute

2 . : : k.
b;” (W4) (with respect to the chain W4 N I'x) using Y :

bi(Y%)

2 : i\tA

b;”(Wy) = limsup —————.
' k PIw. ra

Suppose that L = A Uc B where A, B and hence C are full subcomplexes
of L. We then have a decomposition of spaces:

k _ vk k
and hence a Mayer—Vietoris sequence
H (Y vk vk vk
<o —> Hi(Ye) — Hi(Yy) @ Hi(Yg) — Hi(Y) — ...

By the above discussion taking lim sup of dimensions of the homology
groups in this sequence divided by [Wy : T';] gives F-L>-Betti numbers of
the corresponding Coxeter groups. Since lim sup is subadditive, it follows that
having bl@ = 0 for one of the terms gives the usual inequalities between the
nearby terms.

The decomposition we will use is when A = St(v) is the star of a vertex v,
B = L —visits complement and C = Lk(v) is the link of v. In this case, the
Mayer—Vietoris sequence leads to the following inequalities.

Lemma 11 (1) 52 (W) <bPWi_y)  if b2, (Wikw) =0,
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2 2 . 2
@ bP W) =bP W) if b (Wikw) =0.
Proof Removing the vertex v from L gives a Mayer—Vietoris sequence

i1 Din«

RN Hi(Yfk(v)) AN Hi(Ygt(v))) S H Y ) - H(YH) — H,-_l(Yfk(v)) =

The map i; : Y{‘k(v) — Yé‘t(v) is an inclusion of the form Y x {+1} —

Y x [—1, 1], so i1, maps H,-(Yllfk(v)) onto H,-(Yé‘t(v)). The stated inequalities
follow from this. a

Iteratively removing vertices leads to the following lemma. It lets us reduce
dimension by passing from complexes to their links.

Lemma 12 (1) If A is a flag complex with bl.(z)(WA) = 0, then there exists a
vertex v € A and a full subcomplex B of Lk 4 (v) with bi(z_)1 (Wp) #0.

(2) If L is a flag complex with bl@ (Wr) = 0and if A is a full subcomplex of L
with bl@ (Wa) # O, then there exists a vertex v € L and a full subcomplex
B of Lk (v) with b> (Wg) # 0.

@
bi

Proof Assume that all the link terms have b;”, = 0. Then removing vertices
from A one at a time until we are left with a single vertex leads, by the first
part of Lemma 11, to

BPWa) <bPWa_y) <+ < bPWp) =0

which contradicts the assumption that bl@ (W4) > 0. This proves the first part.

Now, assume that all the link terms have bl@ = 0. Then removing vertices
from L one at a time until we are left with A leads, by the second part of
Lemma 11, to

bP W) = bP (Wp_y) = -+ > bP (Wa)

which contradicts the assumption bi(z) (W) =0< bi(z) (W4). This proves the
second part. |

4 Proof of Theorem 4

We are now ready for the proof of Theorem 4. Fix an odd prime p. Let L =
S2 U » D3 be a flag triangulation of a complex obtained by gluing a 3-disk
to a 2-sphere via a degree p map. Since H3(L; F2) = 0, by Theorem 7 the
octahedralization O L embeds as a full subcomplex of a flag P L-triangulation
T of S°.

@ Springer



G. Avramidi et al.

Using commensurability we choose a common finite index subgroup N of
A and Wy, which is normal in Wy . We fix a torsion-free normal residual
chain in W7 which intersects Wy inside N. These are abundant as there is
an obvious retraction r : Wy — Wy so we can intersect any residual chain
with 7 ~1(N).

Since X7 is a 7-manifold, the F,-Singer Conjecture predicts vanishing
of bf)(WT; IF,), and similarly, vanishing for the links of odd-dimensional
simplices.

Proposition 13 The I ,-Singer Conjecture fails either for T, or for one of the
links of 1 or 3-dimensional simplices.

Proof Suppose the F,-Singer Conjecture holds for T, and in particular
bf) (Wr;Fp) = 0. Since the chain in Wg, is contained in N and N has
finite index in Ay, Corollary 10 implies bf) (Wor; Fp) # 0. By the second
partof Lemma 12 applied to O L and T, there is a full subcomplex B of Lk (v)
with bf) (Wg; F),) # 0. Now we apply the first part of Lemma 12 to B, to get
a full subcomplex C of Lk () with b3 (We; F,) # 0. Note that Lk  (w),
and therefore C, is a full subcomplex of LKy, (»)(u) = Lk (uv) ~ S4.

If the IF ,-Singer Conjecture still holds for Lk 7 (#v), we can repeat this argu-
ment to get get a full subcomplex D of Lkr (03) ~ S? with béz) (Wp:Fp,) #0.
Now, the [F,-Singer Conjecture must fail for Lk (0%), because repeating this

argument once more produces a subcomplex of ¢ with b§2) # 0, which is
clearly impossible. |

Itfollows that the IF ,-Singer Conjecture must fail in at least one of the dimen-

sions 3, 5, or 7. Since a closed surface S, with g > 2 has bgz) (m1(Sg); Fp) #0,
taking cartesian products between surface groups and our counterexamples
gives, via the Kiinneth formula, counterexamples in all odd dimensions > 7
and all even dimensions > 14.

Remark The reason why we used a 3-dimensional complex S>U » D3 instead of
a 2-dimensional complex S! U » D? above is twofold. First, for 2-dimensional
complexes there are other obstructions to embedding in S* besides the classical
van Kampen obstruction [10]. Second, in codimension 2 there is a problem
of extending a given triangulation on the complex to a triangulation of S*
(the embedding might be locally knotted.) If for a flag triangulation L of
sty » D? one can exhibit its octahedralization OL as a subcomplex of %,
then our method would yield a 5-dimensional counterexample to the IF ,-Singer
Conjecture.
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