
Arch Appl Mech (2020) 90:2649–2674
https://doi.org/10.1007/s00419-020-01742-y

ORIGINAL

B. Dey · A. Idesman

A new numerical approach to the solution of PDEs with
optimal accuracy on irregular domains and Cartesian
meshes—part 2: numerical simulations and comparison
with FEM

Received: 6 May 2020 / Accepted: 27 July 2020 / Published online: 31 August 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract A new numerical approach for the time-dependent wave and heat equations as well as for the time-
independent Poisson equation developed in Part 1 is applied to the simulation of 1-D and 2-D test problems on
regular and irregular domains. Trivial conforming and non-conforming Cartesian meshes with 3-point stencils
in the 1-D case and 9-point stencils in the 2-D case are used in calculations. The numerical solutions of the 1-D
wave equation as well as the 2-D wave and heat equations for a simple rectangular plate show that the accuracy
of the new approach on non-conforming meshes is practically the same as that on conforming meshes for both
the Dirichlet and Neumann boundary conditions. Moreover, very small distances (0.1h−10−9h where h is the
grid size) between the grid points of a Cartesian mesh and the boundary do not decrease the accuracy of the
new technique. The application of the new approach to the 2-D problems on an irregular domain shows that the
order of accuracy is close to four for the wave and heat equations and is close to five for the Poisson equation.
This is in agreement with the theoretical results of Part 1 of the paper. The comparison of the numerical results
obtained by the new approach and by FEM shows that at similar 9-point stencils, the accuracy of the new
approach on irregular domains is two orders higher for the wave and heat equations and three orders higher
for the Poisson equation than that for the linear finite elements. Moreover, the new approach yields even much
more accurate results than the quadratic and cubic finite elements with much wider stencils. An example of a
problem with a complex irregular domain that requires a prohibitively large computation time with the finite
elements but can be easily solved with the new approach is presented.

Keywords Numerical simulation · Irregular domains · Cartesian meshes · Optimal accuracy · wave, heat
and Poisson equations

1 Introduction

In Part 2 of the paper, we show the application of the new numerical approach (developed in Part 1; see [12])
to the time-dependent wave and heat equations as well as to the time-independent Poisson equation on regular
and irregular domains with Cartesian meshes; see “Appendix A” for the summary of the stencil equations of the
new approach derived in Part 1 in the 1-D and 2-D cases. There is a significant number of publications related
to the numerical solution of different PDE on irregular domains with uniform embedded meshes. For example,
we can mention the following fictitious domain numerical methods that use uniform embedded meshes: the
embedded finite difference method, the cut finite element method, the finite cell method, the Cartesian grid
method, the immersed interface method, the virtual boundary method, the embedded domain method, etc;
e.g., see [1–11,16–26,28–32] and many others. Finally, all these approaches reduce to a system of stencil
equations with given coefficients. The approach developed in Part 1 is based on postulating a system of stencil
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equations with unknown coefficients that are found from the minimization of the order of the local truncation
error. Therefore, the proposed new technique provides the optimal order of accuracy that cannot be improved
without changing the widths of stencil equations.

The numerical study of the accuracy of the new technique on conforming and non-conforming meshes for
the 1-D wave equation with the Dirichlet and Neumann boundary conditions is considered in Sect. 2.1. The
detailed study of the new approach for 2-D problems with the Dirichlet and Neumann boundary conditions
on regular and irregular domains with Cartesian meshes as well as the comparison of the accuracy of the new
technique with the linear and high-order quadrilateral and triangular finite elements is considered in Sect.
2.2 for the Poisson equation, in Sect. 2.3 for the wave equation, and in Sect. 2.4 for the heat equation. The
commercial finite element software ‘COMSOL’ is used for the finite element simulations.

2 Numerical examples

In this section, the computational efficiency of the new approach developed in Part 1 of the paper will be
demonstrated and compared with the 2-D conventional linear (Q3 and Q4), quadratic (Q6 and Q9) and cubic
(Q10 and Q16) finite elements. Similar to the finite element terminology, a grid point of a Cartesian mesh
will be called a node. In order to compare the accuracy of the new technique with FEM, the following errors
are considered in the sections below. The relative errors e ju for the function and e jv for its first time derivative
at the j th node are defined as:

e ju = | unumj − uexactj |
uexactmax

and e jv = | vnumj − vexactj |
vexactmax

, j = 1, 2, . . . , N . (1)

The maximum relative errors emax
u for the function and emax

v for its first time derivative are defined as:

emax
u = max

j
e ju and emax

v = max
j

e jv , j = 1, 2, . . . , N . (2)

In Eqs. (1)–(2), the superscripts ‘num’ and ‘exact’ correspond to the numerical and exact solutions, N is the
total number of grid points used in calculations, uexactmax and vexactmax are the maximum absolute value of the exact
solution over the entire domain for the function and its first time derivative, respectively. For the time-dependent
wave and heat equations, the errors given by Eqs. (1)–(2) are evaluated at the final observation time T . The
errors e jv and emax

v are used for the wave equation only. For the time integration, the trapezoidal rule is used for
the wave equation and the backward difference method is used for the heat equation. A sufficiently small size
of time steps is used in calculations. In this case, the error in time can be neglected and the numerical error is
related to the space-discretization error only. For convenience, the function u is called ‘temperature’ for the
heat and Poisson equation and ‘displacement’ for the wave equation. The method of manufactured solutions
(see [27]) is used to construct the exact solution uexact for the test problems solved below. The Neumann or
Dirichlet boundary conditions as well as the initial conditions are applied according to the exact solutions.

2.1 1-D wave equation

Let us consider an elastic bar of length L = 1 discretized with conforming and non-conforming uniform
meshes of size h; see Fig. 1. The wave velocity is selected to be c = 1. Two test problems are considered. As
the first test problem, a standing wave in the 1-D bar is selected with the following smooth exact solution:

u(x, t) = sin(βx) cos(βt) (3)

with the observation time T = 0.25, zero loading function f = 0 and β = 5π . The initial displacements and
velocities at time t = 0 as well as the Dirichlet or Neumann boundary conditions at both ends of the bar are
applied according to the exact solution (Eq. (3)).

As the second test problem, velocity v(x = 0, t) = 1 is instantaneously applied at the left end of the bar
(impact loading). The initial displacements and velocities at time t = 0 are zero, the right end is free of forces,
and the observation time is selected to be T = 0.5. This problem has the following continuous solution for the
displacement and the discontinuous solution for the velocities:

u(x, t) = t − x, t ≥ x, and u(x, t) = 0, t ≤ x, (4)

v(x, t) = 1, t ≥ x, and v(x, t) = 0, t ≤ x . (5)
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Fig. 1 The spatial locations of the degrees of freedom ui (i = 1, 2, 3, 4, . . .) for a non-conforming uniform mesh in the vicinity
of the left end of the 1-D domain

2.1.1 Dirichlet boundary conditions

Let us consider the first test problem with the smooth exact solution (Eq. (3)). In order to study the effect of
conforming and non-conforming uniformmeshes on the accuracy of the numerical results obtained by the new
approach, we create a non-conforming mesh of size h by shifting a conforming mesh of size h to the left with
respect to the physical domain by a distance ξh where 0 ≤ ξ ≤ 1. According to the new approach with the
Dirichlet boundary conditions, the node outside the physical domain that is the closest node to the boundary
is moved to the boundary; i.e., the distance between the first two nodes is ξh. The distances between other
internal nodes of the mesh are the same and equal h; see Fig. 1.

The effect of the varying coefficient ξ of the non-conforming mesh on the maximum relative error in
displacement emax

u and in velocity emax
v of the numerical results obtained by the new approach is shown in

Fig. 2a–d. It can be seen that the errors emax
v and emax

u remain almost constant in the range 0 ≤ ξ ≤ 1 for
the selected mesh sizes h; see curves 1, 2 and 3 in Fig. 2a and b. This means that the new approach yields
practically the same results for the conforming (ξ = 1) and non-conforming (ξ �= 1) meshes at the same h.
Moreover, this is valid even for a very small coefficient ξ with 10−9 ≤ ξ ≤ 10−1; see Fig. 2c and d.

Let us also consider the case of non-conforming meshes with ξ > 1; i.e., the distance between the left
boundary and the first internal grid point is greater than the mesh size h. This can be implemented by removing
the first internal grid point from a non-conforming mesh. As can be seen from Fig. 2e and f, there is only a
slight increase in the errors emax

v and emax
u at 1 ≤ ξ ≤ 1.5; i.e., the new approach retains the accuracy of the

numerical results even for the coefficient ξ as large as 1.5.
Next, let us analyze the rate of convergence (the order of accuracy) of the numerical results obtained by the

new approach at mesh refinement on non-conforming meshes with constant ξ . In order to keep ξ constant for
non-conforming meshes at mesh refinement, a conforming mesh of size h is moved to the left by a distance ξh
with respect to the physical domain. The results at mesh refinement with ξ = 0.1, ξ = 0.5, ξ = 1 and ξ = 1.2
are presented in Fig. 3 where the errors emax

u and emax
v are plotted as a function of the number N of degrees

of freedom in the logarithmic scale. The slopes of the curves at large N in Fig. 3 correspond to the order of
accuracy of the new approach; i.e., for the considered ξ , the order of convergence of the new approach for the
displacement and for the velocity is close to four. The errors emax

u and emax
v for ξ = 0.1, ξ = 0.5 and ξ = 1

are close to each other and are slightly bigger for ξ = 1.2 at the same h. This is in agreement with the results
in Fig. 2 showing a very weak dependence of the numerical results on ξ for 0 ≤ ξ ≤ 1.

The second test problem with the discontinuous solution for the velocity [see Eq. (5)] is solved by the new
approach and by the linear finite elements with the same meshes. It is known that the accurate time integration
of the semidiscrete systems for impact problems may lead to large spurious oscillations in numerical results.
Therefore, the two-stage time integration procedure with the basic computations and the filtering stage (that
has been developed in our papers [13,14]) is used to obtain accurate and non-oscillatory numerical results. The
basic calculations in this procedure correspond to the accurate time integration of the semidiscrete system and
are equivalent to the time integration procedure of the first test problem. The velocity distribution along the
bar at time T = 0.5 after the stage of basic computations and after the filtering stage is shown in Fig. 4 for the
new approach with conforming (ξ = 1) and non-conforming (ξ = 0.5, ξ = 0.1 and ξ = 10−5) meshes and for
the linear finite elements on the same meshes. As can be seen, two considered approaches yield large spurious
oscillation after basic computations. However, it is very easy to compare the numerical results after the filtering
stage. As can be seen from Fig. 4b, d, f, h after the filtering stage the new approach yields more accurate results
compared with the linear finite elements and these results are practically independent of parameter ξ that is
related to conforming and non-conforming meshes. We should also mention that a comprehensive study of the
numerical solutions of this problem obtained by the high-order elements on conforming meshes is considered
in our paper [15].
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Fig. 2 The logarithm of the maximum relative errors in displacement emax
u (a, c, e) and in velocity emax

v (b, d, f) at the final time
T = 0.25 as a function of ξ (a, b, e, f) and Log10ξ for small ξ (c, d) for the 1-D wave equation with the Dirichlet boundary
conditions at both ends. The new approach with uniform Cartesian meshes of size h = 1/20 (curve 1), h = 1/40 (curve 2) and
1/80 (curve 3) is used. c, d Zoom (a, b) along the x-axis for 0 ≤ ξ ≤ 0.1. Symbols ©, � and � correspond to the numerical
results for the different ξ used in the calculations

2.1.2 Neumann boundary conditions

Similar to the Dirichlet boundary conditions, the effect of the varying coefficient ξ on the maximum relative
error in displacement emax

u and in velocity emax
v of the numerical results obtained by the new approach with

the Neumann boundary conditions can be analyzed. The numerical results show that the errors emax
v and emax

u
remain almost constant in the range 0 ≤ ξ ≤ 1 (including very small coefficients ξ , 10−9 ≤ ξ ≤ 10−1) and
only slightly increase at 1 ≤ ξ ≤ 1.5. This behavior is similar to that shown in Fig. 2 for the Dirichlet boundary
conditions.

In order to analyze the order of accuracy of the new approach on conforming and non-conforming meshes,
Fig. 5 shows the errors emax

u and emax
v as a function of the number N of degrees of freedom at mesh refinement

in the logarithmic scale at ξ = 0.1, 0.5, 1 and 1.2. The slopes of the curves at large N in Fig. 5 correspond
to the order of accuracy of the new approach; i.e., for the considered ξ , the order of convergence of the new
approach for the displacement and for the velocity with the Neumann boundary conditions is close to four.
Similar to the Dirichlet boundary conditions in Sect. 2.1.1, with the Neumann boundary conditions the errors
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Fig. 3 The maximum relative errors in displacement emax
u (a) and in velocity emax

v (b) at the final time T = 0.25 as a function of
the number N of degrees of freedom in the logarithmic scale for the 1-D wave equation with the Dirichlet boundary conditions
at both ends. The new approach with conforming (ξ = 1, curve 3) and non-conforming (ξ = 0.1 (curve 1), ξ = 0.5 (curve 2)
and ξ = 1.2 (curve 4)) meshes is used at mesh refinement. Symbols �, ©, � and × correspond to the results for the different N
used in the calculations

emax
u and emax

v are close to each other for ξ = 0.1, ξ = 0.5, ξ = 1 and slightly greater for ξ = 1.2 at the same
h.

It can be concluded that for the 1-Dwave equationwith the Dirichlet and/or Neumann boundary conditions,
the new approach yields very close results on conforming and non-conforming meshes with the same grid size
h and provides the 4th order of accuracy.

2.2 2-D Poisson equation

The application of the new approach to irregular domains with Cartesian meshes is considered to the test
problems with the following exact solutions to the Poisson equation:

u(x, y) = η sin(βx)eβ(y−ymax) (6)

with β = 4π and zero loading function f = 0, and

u(x, y) = η1 sin(β1x − β2y) cos(β3x − β4y) (7)

with β1 = 2π , β2 = 3π , β3 = 4π , β4 = 5π and nonzero loading function f (x, y) = η1(−(β2
1 + β2

2 + β2
3 +

β2
4 )sin(β1x − β2y)cos(β3x − β4y) + 2(−β1β3 + β2β4)cos(β1x − β2y)sin(β3x − β4y)). In Eqs. (6) and (7),

ymax is the maximum y coordinate of the domain and the coefficients η = 100 and η1 = 50 are used.
In order to study the effect of conforming and non-conformingmeshes on the accuracy of the new approach

in the 2-D case, first a simple rectangular plate with the dimensions 1 × 0.8 is considered on rectangular and
square Cartesian meshes where by is the aspect ratio of rectangular meshes (by = 1 for the square meshes);
see Fig. 6a. Then, the new approach is applied to a 2-D complex irregular domain presented by a trapezoidal
plate OPQR with a circular hole. The angle θ = 40◦ of the trapezoidal plate is considered in calculations;
see Fig. 9a.

For the finite element solution of the test problems by the commercial software COMSOL, quadrilateral
(Fig. 11a) and triangular (Fig. 11b) meshes generated by COMSOL are used in calculations.

2.2.1 Dirichlet boundary conditions

For the two problems considered in this section, the Dirichlet boundary conditions are applied along the entire
boundaries according to the exact solutions (Eqs. (6) and (7)).

First, let us analyze the effect of conforming and non-conforming square (by = 1) Cartesian meshes on the
accuracy of the numerical solutions obtained by the new approach for the rectangular plate; see Fig. 6a. For
this problem, we use the exact solution given by Eq. (7). In order to create a simple non-conforming Cartesian
mesh of size h, we use a conforming Cartesian mesh of size h for the plate with the dimensions 1 × 0.8
and then move the upper boundary QR of the plate in the vertical direction by a distance ξh (0 ≤ ξ ≤ 1)
with respect to the fixed mesh; see Fig. 6b, c. In this case, the height H of the plate is changed from 0.8
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(a) (b)

(c) (d)

(e) (f)

After basic computation

(g)

After filtering stage

(h)

After basic computation

After basic computation

After basic computation

After filtering stage

After filtering stage
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Fig. 4 The velocity distribution along the bar at time T = 0.5 after basic computations (a, c ,e, g) and after the filtering stage (b,
d, f, h) for the 1-D impact problem. Conforming [ξ = 1 (a, b)] and non-conforming [ξ = 0.5 (c, d), ξ = 0.1 (e, f) and ξ = 10−5

(g, h)] meshes with 101 degrees of freedom are used. Curves 1 and 2 correspond to the numerical results obtained by the new
approach and by the linear finite elements. Curve 3 corresponds to the exact solutions
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Fig. 5 The maximum relative errors in displacement emax
u (a) and in velocity emax

v (b) at the final time T = 0.25 as a function of
the number N of degrees of freedom in the logarithmic scale for the 1-D wave equation with the Neumann boundary conditions
at both ends. The new approach with conforming (ξ = 1, curve 3) and non-conforming [ξ = 0.1 (curve 1), ξ = 0.5 (curve 2)
and ξ = 1.2 (curve 4)] meshes is used at mesh refinement. Symbols �, © , � and × correspond to the results for the different
N used in the calculations
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Fig. 6 The rectangular plate OPQR with conforming (a) and non-conforming (b) rectangular Cartesian meshes of size h and
the aspect ratio by . c Zooms region 1 of b of the non-conforming mesh located close to the upper boundary QR with the Dirichlet
boundary conditions

to 0.8 + ξh. The stencils for the non-conforming meshes include the grid points inside the plate and the
boundary points (Fig. 6b, c). The boundary points are obtained by the intersection of the boundary with the
horizontal, diagonal and vertical grid lines of the Cartesian mesh; see Part 1 of the paper for more details. The
corresponding coefficients di (i = 1, 2, . . . , 8) used for the nonuniform stencils close to the upper boundary
QR are: d1 = d2 = d3 = d4 = d5 = 1 and d6 = d7 = d8 = ξ with 0 ≤ ξ ≤ 1; see Fig. 6c and Part 1 for
more details.

Remark: Despite the fact that for the conforming and non-conforming meshes we consider the plates with
slightly different heights, the exact solutions for these plates are the same and are given by Eq. (7). This allows
us to estimate the effect of parameter ξ of the non-conforming meshes with the selected element size h on the
accuracy of numerical results.

Figure 7a shows the logarithm of the maximum relative error in temperature emax
u as a function of ξ at the

selected mesh sizes h. As can be seen from Fig. 7a, emax
u is almost constant in the range 0.1 ≤ ξ ≤ 0.9 and

becomes smaller in the ranges 0 ≤ ξ ≤ 0.1 and 0.9 ≤ ξ ≤ 0.1. Then, at very small 10−9 ≤ ξ ≤ 10−3 the
error emax

u is almost constant (Fig. 7b) and has the minimum value. This means that the new approach yields
accurate numerical results at small ξ ; i.e., large difference in distances between the points included into a
non-uniform stencil does not decrease the accuracy of the new approach. A better accuracy for the conforming
meshes at ξ = 1 in Fig. 7a is explained by the fact that for square meshes the order of the local truncation error
of the uniform stencils for conforming meshes is three orders higher than that of the non-uniform stencils for
non-conforming meshes; see Part 1 of the paper.

Next, the difference in the accuracy of the new approach on uniform square and rectangular meshes for the
rectangular plate with the fixed dimensions 1× 0.8 is studied. For the rectangular meshes, at mesh refinement
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Fig. 7 The logarithm of the maximum relative error in temperature emax
u as a function of the coefficient ξ (a) and Log10ξ for

small ξ (b) for the rectangular plate (Fig. 6a). The numerical solutions of the 2-D Poisson equation with nonzero loading function
and the Dirichlet boundary conditions are obtained by the new approach on square (by = 1) Cartesian meshes of size h = 1/12
(curve 1), h = 1/24 (curve 2) and h = 1/48 (curve 3). b Zooms a along the x-axis for 0 ≤ ξ ≤ 0.1. Symbols © ,� and �
correspond to the results for the different coefficients ξ used in the calculations

Fig. 8 The maximum relative error in temperature emax
u as a function of

√
N at mesh refinement in the logarithmic scale where

N is the number of degrees of freedom. The numerical solutions of the 2-D Poisson equation with zero (a) and nonzero (b)
loading functions for the rectangular plate (Fig. 6a) with the Dirichlet boundary conditions are obtained by the new approach.
The conforming (curve 1) and non-conforming (curve 2) square meshes with by = 1 as well as the conforming (by = 0.8, see
curve 3) and non-conforming (by = 0.7, see curve 4) rectangular meshes are used. Symbols �, ©, � and � correspond to the
results for the different N used in the calculations

we use the aspect ratio by = 0.8 for conforming meshes and by = 0.7 for non-conforming meshes. (The
non-conforming meshes are non-conforming with the upper boundary QR of the plate only.) Figure 8 shows
the errors emax

u for zero and nonzero loading as a function of the number N of degrees of freedom at mesh
refinement in the logarithmic scale. Similar to Fig. 7, the new approach on conforming square meshes yields
more accurate results than those obtained on non-conforming square meshes at the same N ; compare curves
1 and 2 in Fig. 8. This is in agreement with the theoretical results. (See the comments about Fig. 7.) It can
also be seen from Fig. 8 that the results obtained by the new approach on the conforming and non-conforming
rectangular meshes are close and are less accurate than those on conforming and non-conforming square
meshes at the same N ; see curves 1–4. This is in agreement with the theoretical results for the new approach
in Part 1 related to the same order of accuracy of the results on conforming and non-conforming rectangular
meshes and a higher order of accuracy of the results on conforming and non-conforming square meshes.

The slopes of the curves in Fig. 8 at large N approximately describe the order of accuracy of the numerical
techniques because

√
N is approximately proportional to the mesh size h. (This is strictly valid for conforming

meshes.) As can be seen from Fig. 8, at mesh refinement the order of accuracy of the new approach is close
to six for conforming square meshes and to five for non-conforming square meshes; see curves 1 and 2 at
large N . In contrast to the square meshes, the order of accuracy of the new approach is close to four for both
conforming and non-conforming rectangular meshes; see curves 3 and 4 at large N . This is in agreement with
the theoretical results reported in Part 1 of the paper.

Next, let us analyze the application of the new approach to amore complicated irregular domain represented
by a trapezoidal plate OPQR with a circular hole; see Fig. 9a. Due to a higher accuracy of the new approach on
square meshes, this problem is solved on square Cartesian meshes; e.g., see Fig. 9b–d. Similar to the previous
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Fig. 9 A 2-D trapezoidal plate OPQR with a circular hole of radius 0.25 centered at S(0.6, 0.35) (a) and the Cartesian mesh
(b). c and d Zoom regions 2 and 3 of b of the non-conforming mesh located close to the boundary with the Dirichlet boundary
conditions

problem, we consider that the boundaries OP , PQ and OR are always conforming with the Cartesian mesh
(Fig. 9b). For the non-conformingmeshes, the boundary nodes for the trapezoidal plate in Fig. 9b–d are selected
similar to those for the rectangular plate. (See also Part 1 of the paper for more details.) Figure 9c and d zooms
Fig. 9b in the vicinity of the upper boundary (see region 1 in Fig. 9a) and the circular boundary (see region
2 in Fig. 9a) in order to show the locations of the boundary nodes on the non-conforming mesh for the new
approach. Figure 10 shows the distributions of temperature uexact(x, y) and the relative error in temperature
eu(x, y) in the trapezoidal plate for zero and nonzero loading functions. As can be seen from Fig. 10a and b,
the maximum temperature and the maximum relative error in temperature for the zero loading function are
located close to the right upper corner of the plate.

In order to compare the accuracy of the new approach with FEM, Fig. 12 shows the error emax
u for these

techniques as a function of the number N of degrees of freedom at mesh refinement in the logarithmic scale.
(See Fig. 11 for examples of quadrilateral and triangular finite element meshes.) As can be seen from Fig. 12,
at the same N the new approach yields more accurate results than those obtained by the conventional linear
Q3, quadratic Q6 and cubic Q10 triangular finite elements as well as by the conventional linear Q4, quadratic
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Temperature TemperatureError in temperature Error in temperature

(a) (b) (c) (d)

Fig. 10 The distributions of the temperature uexact(x, y) (a, c) and the relative error in temperature eu(x, y) (b, d) for the
trapezoidal plate with the circular hole; see Fig. 9a. The numerical solutions of the 2-D Poisson equation with zero (b) and
nonzero (d) loading functions and the Dirichlet boundary conditions are obtained by the new approach on the square (by = 1)
Cartesian mesh of size h = 1/96

P

Q

R

O

R

O P

Q

(a) (b)

Fig. 11 Examples of meshes with quadrilateral (a) and triangular (b) linear finite elements that are generated by the commercial
software COMSOL for the discretization of the 2-D plate OPQR shown in Fig. 9a

Fig. 12 The maximum relative error in temperature emax
u as a function of

√
N at mesh refinement in the logarithmic scale for

the trapezoidal plate with the circular hole (Fig. 9a); N is the number of degrees of freedom. The numerical solutions of the 2-D
Poisson equation with zero (a), nonzero (b) loading functions and the Dirichlet boundary conditions are obtained by the new
approach on square (by = 1) Cartesianmeshes (curve 1), by the conventional linear Q4, quadratic Q9 and cubic Q16 quadrilateral
finite elements (curves 2–4) and by the conventional linear Q3, quadratic Q6 and cubic Q10 triangular finite elements (curves
5–7). Symbols �, ©, ×, ∗, +, � and � correspond to the results for the different N used in the calculations
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Fig. 13 The logarithm of the maximum relative error in temperature emax
u as a function of the coefficients ξ (a) and Log10ξ for

small ξ (b) for the rectangular plate (Fig. 6a). The numerical solutions of the 2-D Poisson equation with zero loading function
and the combined Neumann and Dirichlet boundary conditions are obtained by the new approach on square (by = 1) Cartesian
meshes of size h = 1/12 (curve 1), h = 1/24 (curve 2) and h = 1/48 (curve 3). b Zooms a along the x-axis for 0 ≤ ξ ≤ 0.1.
Symbols ©, � and � correspond to the results for the different coefficients ξ used in the calculations

Q9 and cubic Q16 quadrilateral finite elements. (The quadratic and cubic finite elements have much wider
stencils and require more computation time compared to the linear finite elements at the same N .) It can be
also seen that at the same accuracy the new approach requires a smaller number N of degrees of freedom
compared to those for linear and high-order (up to the third order) finite elements; see Fig. 12.

As we mentioned earlier, the slopes of the curves at large N in Fig. 12 approximately describe the order
of accuracy of the numerical techniques because

√
N is approximately proportional to the mesh size h.

According to Fig. 12, for the irregular domain the order of accuracy of the new approach is almost constant at
mesh refinement and is close to five; see Fig. 12. This is in agreement with the theoretical results reported in
Part 1 of the paper.

2.2.2 Neumann boundary conditions

Here, we consider the same two problems as those in Sect. 2.2.1. The Poisson equation with zero loading
function is considered below. The combined Neumann and Dirichlet boundary conditions are applied as
follows: for the rectangular plate (Fig. 6a), the Neumann boundary conditions are imposed along QR and
the Dirichlet boundary conditions are imposed along the remaining boundary; for the trapezoidal plate with
the circular hole (Fig. 9a), the Neumann boundary conditions are imposed along QR and the circular hole as
well as the Dirichlet boundary conditions is imposed along the remaining boundary. All boundary conditions
are applied according to the exact solution (Eq. (6)). The grid points located close to the boundary with the
Neumann boundary conditions have stencils that include 8 internal grid points along with 4 boundary points
with the Neumann boundary conditions. (See Fig. 29 and Part 1 of the paper.)

First, let us analyze the effect of conforming and non-conforming square (by = 1) Cartesian meshes on the
accuracy of the numerical solutions obtained by the new approach for the rectangular plate. Figure 13a shows
the logarithm of the maximum relative error emax

u as a function of the coefficients ξ for the new approach.
(See Fig. 6b, c and Sect. 2.2.1 for the explanation of ξ ; however, the boundary points for the stencils are
selected according to Fig. 29.) The error emax

u on non-conforming meshes (0 ≤ ξ < 1) is always smaller
than that on conforming meshes (ξ = 1) at the same mesh size h; see Fig. 13a. Moreover, at very small
10−9 ≤ ξ ≤ 10−1 the error emax

u is almost constant and is also smaller than that for ξ = 1 (Fig. 13b); i.e.,
for the combined Neumann and Dirichlet boundary conditions, the new approach yields more accurate results
on non-conforming meshes compared to those on conforming meshes. The difference in the accuracy of the
new approach on non-conforming and conforming meshes for different boundary conditions (see Sect. 2.2.1)
is explained by the different stencils used for the different boundary conditions. For the Neumann boundary
conditions, the 8-point stencils used provide the same order of accuracy on non-conforming and conforming
meshes. For the Dirichlet boundary conditions, the 9-point stencils used yield a higher order of accuracy on
conforming meshes compared to that on non-conforming meshes; see Part 1 of the paper.

Next, let us consider the application of the new approach to the irregular domain represented by the
trapezoidal plate with the circular hole; see Fig. 9a. The distribution of temperature uexact(x, y) for this
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Fig. 14 The maximum relative error in temperature emax
u as a function of

√
N at mesh refinement in the logarithmic scale for

the trapezoidal plate with the circular hole (Fig. 9a); N is the number of degrees of freedom. The numerical solutions of the 2-D
Poisson equation with zero loading functions and the combined Neumann and Dirichlet boundary conditions are obtained by
the new approach on square (by = 1) Cartesian meshes (curve 1), by the conventional linear Q4 and quadratic Q9 quadrilateral
finite elements (curves 2 and 3) and by the conventional linear Q3 and quadratic Q6 triangular finite elements (curves 4 and 5).
Symbols �, ©, ×, � and � correspond to the results for the different N used in the calculations

problem is shown in Fig. 10a. The numerical results show that the maximum relative error in temperature is
located close to the right upper corner of the plate similar to that shown in Fig. 10b.

In order to compare the accuracy of the new approach with FEM, Fig. 14 shows the error emax
u for these

techniques as a function of the number N of degrees of freedom at mesh refinement in the logarithmic
scale. Similar to the Dirichlet boundary conditions in Sect. 2.2.1, at the same N the new approach with the
combined Neumann and Dirichlet boundary conditions yields more accurate results than those obtained by the
conventional linear Q3 and quadratic Q6 triangular finite elements as well as by the conventional linear Q4
and quadratic Q9 quadrilateral finite elements. (The quadratic finite elements have wider stencils and require
more computation time compared to the linear finite elements at the same N .) As we mentioned earlier in
Sect. 2.2.1, the slopes of the curves at large N in Fig. 14 approximately describe the order of accuracy of the
numerical techniques because

√
N is approximately proportional to the mesh size h. According to Fig. 14, the

order of accuracy of the new approach is almost constant at mesh refinement and is close to five. This is in
agreement with the theoretical results reported in Part 1 of the paper.

It can be concluded that at the computational costs of the linear elements, the new approach for the 2-D
Poisson equation with the Dirichlet and/or Neumann boundary conditions yields much more accurate results
than those obtained by the linear and quadratic finite elements on irregular domains.

2.3 2-D wave equation

The application of the new approach to irregular domains with Cartesian meshes is considered to the test
problems with the following exact solutions to the 2-D wave equation:

u(x, y, t) = sin(βx)sin(βy)cos(
√
2βt) (8)

with β = 5π and zero loading function f = 0, and

u(x, y, t) = sin(β1x) sin(β2y) cos(β3t) (9)

with β1 = 5π , β2 = 4π , β3 = 2π and nonzero loading function f (x, y, t) = (−β2
3 − c2(β2

1 +
β2
2 )) sin(β1x) sin(β2y) cos(β3t). The wave velocity c = 1 and the observation time T = 0.2 are chosen.

The initial conditions are applied according to the exact solutions (Eqs. (8) and (9)) at time t = 0.
Similar to the Poisson equation, to study the effect of conforming and non-conforming meshes on the

accuracy of the new approach for the wave equation, first a simple rectangular plate with the dimensions
1 × 0.8 is considered; see Fig. 6a. Then, the new approach is applied to a 2-D complex irregular domain
presented by a trapezoidal plate OPQR with a circular hole. The angle θ = 40◦ of the trapezoidal plate is
considered in calculations; see Fig. 9a.
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Fig. 15 The logarithm of the maximum relative errors in velocity emax
v (a, b) and in displacement emax

u (c, d) at the final time
T = 0.2 as a function of the coefficient ξ (a, c) and Log10ξ for small ξ (b, d). The numerical solutions of the 2-D wave equation
for the rectangular plate (Fig. 6a) with nonzero loading function and the Dirichlet boundary conditions are obtained by the new
approach on square (by = 1) Cartesian meshes with size h = 1/6 (curve 1), h = 1/12 (curve 2) and h = 1/24 (curve 3). b, d
Zoom a, c along the x-axis for 0 ≤ ξ ≤ 0.1. Symbols ©, � and � correspond to the results for the different coefficients ξ used
in the calculations

2.3.1 Dirichlet boundary conditions

For the two problems considered in this section, the Dirichlet boundary conditions are applied along the entire
boundaries according to the exact solutions (Eqs. (8) and (9)).

First, let us analyze the effect of conforming and non-conforming square (by = 1) Cartesian meshes on
the accuracy of the numerical solutions obtained by the new approach for the rectangular plate; see Fig. 6a.
The wave equation with nonzero loading function and the exact solution given by Eq. (9) is used. For non-
conforming meshes, the stencils with the same grid and boundary points as those for the Poisson equation in
Sect. 2.2.1 are used; see Part 1 of the paper for more details.

Figure 15a and c shows the logarithm of the maximum relative errors in velocity emax
v and in displacement

emax
u as a function of the coefficient ξ at the selected mesh sizes h for the new approach. (See Fig. 6b, c
and Sect. 2.2.1 for the explanation of ξ .) As can be seen from Fig. 15a and c, the errors emax

u and emax
v are

practically constant in the range 0 ≤ ξ ≤ 1. This means the new approach yields numerical results with the
same accuracy for conforming (ξ = 1) and non-conforming (ξ �= 1) Cartesian meshes. Moreover, at very
small 10−9 ≤ ξ ≤ 10−1 the errors emax

u and emax
v are almost constant and have the same values as those in the

range 0.1 ≤ ξ ≤ 1; see Fig. 15. This means that large difference in distances between the nodes included into
a stencil does not decrease the accuracy of the new approach.

Next, let us consider the application of the new approach to the irregular domain represented by the
trapezoidal platewith the circular hole; seeFig. 9a. Figure 16a, b, d, e shows the distributions of the displacement
uexact(x, y, T ), the velocity vexact(x, y, T ) as well as the relative errors in displacement eu(x, y, T ) and in
velocity ev(x, y, T ) in the plate at the final time T = 0.2 for zero loading functions; see Fig. 16a, b, d, e.
As can be seen from Fig. 16a, b, d, e, the error distribution resembles the solution of the wave equation with
multiple minimum and maximum. (For example, compare (a) and (b) for the displacements as well as (d) and
(e) for the velocities in Fig. 16.) This means that the Dirichlet boundary conditions on irregular domains are
accurately met by the new approach and the error distribution is mainly affected by the accuracy of the regular
internal stencils inside the domain.
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Fig. 16 The distributions of the displacement uexact(x, y, T ) (a), the velocity vexact(x, y, T ) (d), the relative errors in displacement
eu(x, y, T ) (b) and in velocity ev(x, y, T ) (e) obtained by the new approach with 1829 degrees of freedom as well as the relative
errors in displacement eu(x, y, T ) (c) and in velocity ev(x, y, T ) (f) obtained by the conventional linear triangular elements with
1831 degrees of freedom at the final time T = 0.2. The 2-D wave equation with zero loading function and the Dirichlet boundary
conditions is considered for the trapezoidal plate with the circular hole; see Fig. 9a. The square (by = 1) Cartesian mesh of size
h = 1/48 is used with the new approach

In order to compare the accuracy of the new approach with FEM, Fig. 17 shows the errors emax
u and emax

v
for these techniques as a function of the number N of degrees of freedom at mesh refinement in the logarithmic
scale. As can be seen from Fig. 17, at the same N the new approach yields more accurate results than those
obtained by the conventional linear Q3, quadratic Q6 and cubic Q10 triangular finite elements as well as
by the linear Q4, quadratic Q9 and cubic Q16 quadrilateral finite elements. (The quadratic and cubic finite
elements have much wider stencils and require more computational time compared to that of the linear finite
elements at the same N .) The distribution of the relative errors in displacement eu(x, y, T ) and in velocity
ev(x, y, T ) in the plate with zero loading function at the final time T = 0.2 is shown in Fig. 16c, f for the linear
triangular finite elements with 1831 degrees of freedom. As can be seen from Fig. 16b, c, at approximately
the same numbers of degrees of freedom, the distributions of the errors in displacement obtained by the new
approach and by the conventional linear triangular elements are similar and approximately differ in amplitudes
by a factor of 500 for all points; i.e., the new approach yields much more accurate results at all points.

As we mentioned in Sect. 2.2.1, the slopes of the curves at large N in Fig. 17 approximately describe the
order of accuracy of the numerical techniques because

√
N is approximately proportional to the mesh size h.

As can be seen from Fig. 17, the order of accuracy of the new approach is almost constant at mesh refinement
and is close to four for the displacement and for the velocity. This is in agreement with the theoretical results
reported in Part 1 of the paper.

Currently, we analyze and improve the space-discretization error with the use of the new approach. Below,
we also show the effect of the size �t of time increments used for time integration of the new approach (with
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Fig. 17 The maximum relative errors in displacement emax
u (a, c) and in velocity emax

v (b, d) at the final time T = 0.2 as a function
of

√
N at mesh refinement in the logarithmic scale (Fig. 9a); N is the number of degrees of freedom. The numerical solutions of

the 2-D wave equations with zero (a, b) and nonzero (c, d) loading function and the Dirichlet boundary conditions are obtained
by the new approach on square (by = 1) Cartesian meshes (curve 1), by the conventional linear Q4, quadratic Q9 and cubic
Q16 quadrilateral finite elements (curves 2–4) and by the conventional linear Q3, quadratic Q6 and cubic Q10 triangular finite
elements (curves 5–7). Symbols �, ©, ×, +, �, � and � correspond to the results for the different N used in the calculations

the implicit second-order trapezoidal rule) and the conventional finite elements (with the implicit second-order
BDF method implemented in COMSOL). Figure 18 shows the errors in displacement and velocity for the new
technique and finite elements as a function of the size of time increments for the selected space discretization
meshes (e.g., we selected the meshes that provide approximately the same error in displacement for the new
approach and for the different order finite elements; see Fig. 18a at small �t ). As can be seen, all approaches
yield stable and convergent results at time refinement. At large �t , the error in time is much larger than the
error in space and the slopes of the curves at large �t in Fig. 18 correspond to the second order of convergence
in time. The larger error in time for the finite elements in Fig. 18a compared to that for the new approach is
explained by the use of the BDF method that has significant damping. At small �t , the error in time becomes
small and the total error is related to the error in space for the numerical approaches used. (See the horizontal
parts of the curves in Fig. 18 at small�t .) For all time-dependent problems considered in the paper, small time
increments are used in calculations in order to exclude the error in time.

2.3.2 Neumann boundary conditions

Here, we consider the same two problems as those in Sect. 2.3.1. The wave equation with zero loading function
is considered below. The combined Neumann and Dirichlet boundary conditions are applied as follows: For
the rectangular plate (Fig. 6a), the Neumann boundary conditions are imposed along QR and the Dirichlet
boundary conditions are imposed along the remaining boundary; for the trapezoidal plate with the circular
hole (Fig. 9a), the Neumann boundary conditions are imposed along QR and the circular hole as well as the
Dirichlet boundary conditions are imposed along the remaining boundary. All boundary conditions are applied
according to the exact solution (Eq. (8)). The grid points that are close to the boundary with the Neumann
boundary conditions have stencils that include 8 internal grid points along with 3 boundary points with the
Neumann boundary conditions. (See Fig. 29 and Part 1 of the paper.)
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Fig. 18 The maximum relative errors in displacement emax
u (a) and in velocity emax

v (b) at the final time T = 0.2 as a function of
the size of time increments �t in the logarithmic scale. The trapezoidal plate with the circular hole (Fig. 9a) is considered. The
numerical solutions of the 2-D wave equation with zero loading functions and the Dirichlet boundary conditions are obtained
by the new approach on the square (by = 1) Cartesian mesh with N = 1408 (curve 1), and by the linear finite elements with
N = 365,158 (curve 2), the quadratic finite elements with N = 9813 (curve 3), the cubic finite elements with N = 5265 (curve
4) on triangular meshes;N is the number of degrees of freedom. Symbols©,�, � and� correspond to the results for the different
�t used in the calculations

Fig. 19 The distributions of the displacement uexact(x, y, T ) (a), the relative error in displacement eu(x, y, T ) (b), the velocity
vexact(x, y, T ) (c) and the relative error in velocity ev(x, y, T ) (d) at the final time T = 0.2. The trapezoidal plate with the circular
hole (Fig. 9a) is considered. The numerical solutions of the 2-D wave equation with zero loading function and the combined
Neumann and Dirichlet boundary conditions are obtained by the new approach on the square (by = 1) Cartesian mesh of size
h = 1/60

Fig. 20 The maximum relative errors in displacement emax
u (a) and in velocity emax

v (b) at the final time T = 0.2 as a function
of

√
N at mesh refinement in the logarithmic scale for the trapezoidal plate with the circular hole (Fig. 9a); N is the number of

degrees of freedom. The numerical solutions of the 2-D wave equation with zero loading function and the combined Neumann
and Dirichlet boundary conditions are obtained by the new approach on square (by = 1) Cartesian meshes (curve 1), by the
conventional linear Q4 and quadratic Q9 quadrilateral finite elements (curves 2 and 3) and by the conventional linear Q3 and
quadratic Q6 triangular finite elements (curves 4 and 5). Symbols ©, �, ×, � and � correspond to the results for the different
N used in the calculations
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First, let us analyze the effect of conforming and non-conforming square (by = 1) Cartesian meshes on the
accuracy of the numerical results obtained by the new approach for the rectangular plate; see Fig. 6. The errors
emax
v and emax

u are practically independent of ξ in the range 0 ≤ ξ ≤ 1 as well as for small ξ , 10−9 ≤ ξ ≤ 10−1.
This behavior is similar to that shown in Fig. 15 for the Dirichlet boundary conditions. This means the accuracy
of the new approach is not affected by large difference in distances between the nodes included into a stencil.

Next, let us consider the application of the new approach to the irregular domain represented by the trape-
zoidal plate with the circular hole; see Fig. 9a. Figure 19 shows the distributions of displacement uexact(x, y, T )
and velocity vexact(x, y, T ) as well as the relative errors in displacement eu(x, y, T ) and in velocity ev(x, y, T )
in the trapezoidal plates at the final time T = 0.2. It can be seen from Fig. 19 that the maximum relative errors
are located close to the boundaries with the Neumann boundary conditions; i.e., in the vicinity of the upper
boundary (QR) and the circular hole. In contrast to the Dirichlet boundary conditions in Sect. 2.3.1 (see also
Fig. 16), the accuracy of the 8 nodes stencils used for the grid points close to the Neumann boundaries is lower
than that of the stencils used for the grid points inside the domain.

In order to compare the accuracy of the new approach with FEM, Fig. 20 shows the errors emax
u and emax

v
for these techniques as a function of the number N of degrees of freedom at mesh refinement in the logarithmic
scale. As can be seen from Fig. 20, at the same N the new approach yields more accurate results than those
obtained by the conventional linear Q3 and quadratic Q6 triangular finite elements as well as by the linear
Q4 and quadratic Q9 quadrilateral finite elements. (At the same N, the quadratic finite elements have wider
stencils which require more computational time compared to that of the linear finite elements.)

As we mentioned in Sect. 2.2.1, the slopes of the curves at large N in Fig. 20 approximately describe the
order of accuracy (convergence) because

√
N is approximately proportional to the mesh size h. Similar to

Sect. 2.3.1 with the Dirichlet boundary conditions, the order of accuracy (convergence) of the new approach
is almost constant at mesh refinement and is close to four for the displacement and for the velocity; see curves
1 in Fig. 20. This is in agreement with the theoretical results presented in the Part 1 of the paper.

It can be concluded that at the computational cost of the linear elements, the new approach for the 2-
D wave equation with the Dirichlet and/or Neumann boundary conditions yields more accurate results than
those obtained not only by the conventional linear finite elements but also by the conventional quadratic finite
elements on irregular domains.

2.3.3 Highly oscillatory waves on a complex irregular domain

Let us consider a trapezoidal plate OPQR with a quadrilateral hole ABCD and a 4-sector hole that is
symmetric with respect to the horizontal and vertical axes passing through its center S; see Fig. 21a. For the
test problem, we select the following highly oscillatory exact solution:

u(x, y, t) = sin(25πx)sin(25πy) cos(25
√
2π t) (10)

with zero loading function f (x, y, t) = 0. This solution has many local minima and maxima for the displace-
ment and for the velocity on the considered irregular domain; see Fig. 21b and c. The wave velocity c and the
observation time T are selected to be c = 1 and T = 2. The initial conditions over the entire domain at time
t = 0 and the Dirichlet boundary conditions along the entire boundaries are calculated according to the exact
solution (Eq. (10)).

The problem was solved by the new approach as well as by the linear Q3 and quadratic Q6 triangular finite
elements. First, we compare the results for the new approach and for linear finite elements because they have
the similar widths of the stencil equations. The computation time on the desktop computer (Intel(R) Core(TM)
i7-4790 CPU@ 3.60GHz with 16.0 GB RAM) was about 17 min for the new approach with 48,210 degrees of
freedom (using our non-optimized MATLAB code) and about 11 h for the linear finite elements with 652,462
degrees of freedom by the modern commercial code COMSOL.

Figure 22 shows the distribution of the relative errors in velocity and in displacement of the numerical
solutions for these two techniques. As can be seen from Fig. 22a and c, the maximum error for the numerical
results obtained by the new approach is close to 15×10−3 (or 1.5%) for both displacements and velocities. On
the other hand, with approximately 14 times more degrees of freedom compared to that for the new approach,
the linear finite elements yield the numerical results with about the 30% error for the displacements and for
the velocities; see Fig. 22b and d; i.e., this error is about 20 times greater than the error for the new approach.

For linear finite elements with the second order of convergence, we can predict that for the maximum error
of 1.5% (the same as for the new approach) we need to increase the number of degrees of freedom for the
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Fig. 21 a A 2-D trapezoidal plate OPQR (θ = 40◦) with a quadrilateral hole ABCD (A(0.2, 0.95), B(0.8, 0.75), C(0.75, 1.05),
D(0.35, 1.2)) and 4-sector hole centered at S(0.6, 0.35)with F(0.6, 0.3),G(0.65, 0.35), H(0.6, 0.4), E(0.55, 0.35) andα = 30◦.
b, c The distribution of the displacement u(x, y, T = 2) (b) and the velocity v(x, y, T = 2) (c) for the exact solutions
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Error in displacement Error in velocityError in velocityError in displacement

Fig. 22 The distribution of the relative errors in displacement eu(x, y, T = 2) (a, b) and in velocity eu(x, y, T = 2) (c, d) of
the numerical solutions obtained by the new approach with 48210 degrees of freedom (a, c) and by the linear triangular finite
elements with 652,462 degrees of freedom (b, d). The square (by = 1) Cartesian mesh of size h = 1/200 is used for the new
approach

Table 1 Comparison of number of degrees of freedom N for different numerical techniques

Maximum error NOLT EM NQ3
NQ3

NOLT EM
NQ6

NQ6
NOLT EM

30% 11,263 652,462 58 47,020 4.17
15% 15,609 1,277,691 82 55,896 3.58
1.5% 48,210 13,000,000(estimated) 270 222,048 4.6

linear elements to approximately 13,000,000 (Table 1). In this case, we are not able to solve this problem by
the finite elements on our desktop computer due to a prohibitively large computational time.

The numerical results also show that in order to obtain the accuracy of 1.5% with the quadratic Q6 finite
elements, the increase in the number of degrees of freedom by approximately five times is required compared
to that for the new approach; see Table 1. (Quadratic finite elements also have wider stencils compared to those
for the new approach.) We should mention that this increase in the number of degrees of freedom is greater if
a higher accuracy is necessary. Moreover, in contrast to the complicated mesh generators used for the finite
elements, the new approach uses trivial Cartesian meshes for complex irregular domains.
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2.4 2-D heat equation

The application of the new approach to irregular domains with Cartesian meshes is considered to the test
problems with the following exact solutions to the 2-D heat equation:

u(x, y, t) = ηeβ2(y−ymax)−a(β2
1−β2

2 )t sin(β1x) (11)

with β1 = 4π , β2 = 12, η = 1000 and zero loading function f = 0, and

u(x, y, t) = eβ4(y−ymax)+β5t sin(β3x) (12)

with β3 = 7π
2 , β4 = 5π

2 , β5 = π and nonzero loading function f (x, y, t) = (β5 − a(β2
4 −

β2
3 ))e

β4(y−ymax)+β5t sin(β3x). In Eqs. (11) and (12), ymax is the maximum y coordinate of the domain and
the coefficient a = 100 is used. The observation times for the heat equation with zero and nonzero loading
functions are chosen to be T = 0.002 and T = 1, respectively. The initial conditions are applied according to
the exact solutions (Eqs. (11) and (12)) at time t = 0.

Similar to the Poisson and wave equations, the effect of conforming and non-conforming meshes on the
accuracy of the new approach for the heat equation is first analyzed for a simple rectangular plate with the
dimensions 1×0.8; see Fig. 6a. Then, the new approach is applied to a 2-D complex irregular domain presented
by a trapezoidal plate OPQR with a circular hole. The angle θ = 40◦ of the trapezoidal plate is considered
in calculations; see Fig. 9a.

2.4.1 Dirichlet boundary conditions

For the two problems considered in this section, the Dirichlet boundary conditions are applied along the entire
boundaries according to the exact solutions (Eqs. (11) and (12)).

First, the effect of conforming and non-conforming square (by = 1) Cartesian meshes on the accuracy of
the numerical solutions obtained by the new approach for the rectangular plate (Fig. 6) is analyzed. The error
emax
u is practically constant in the range 0 ≤ ξ ≤ 1 as well as for small 10−9 ≤ ξ ≤ 10−1. This behavior
is similar to that shown in Fig. 15c and d for the wave equation with the Dirichlet boundary conditions. This
means the accuracy of the new approach is not affected by large difference in distances between the nodes
included into a stencil.

Next, let us consider the application of the new approach to the irregular domain represented by the
trapezoidal plate with the circular hole; see Fig. 9a. The distributions of temperature uexact(x, y, T ) as well
as the relative error in temperature eu(x, y, T ) for the trapezoidal plate are shown in Fig. 23a and b for zero
loading function at the final time T = 0.002 and in Fig. 23c and d for nonzero loading function at the final time
T = 1. As can be seen from Fig. 23, the maximum temperature and the maximum relative error in temperature
are located close to the right upper corner of the plate.

In order to compare the accuracy of the new approach with FEM, Fig. 24 shows the errors emax
u for these

techniques as a function of the number N of degrees of freedom at mesh refinement in the logarithmic scale.
As can be seen from Fig. 24, at the same N the new approach yields more accurate results than those obtained
by the conventional linear Q3, quadratic Q6 and cubic Q10 triangular finite elements as well as by the linear
Q4, quadratic Q9 and cubic Q16 quadrilateral finite elements. (The quadratic and cubic finite elements have
much wider stencils and require more computational time compared to that of the linear finite elements at the
same N .)

As we mentioned in Sect. 2.2.1, the slopes of the curves at large N in Fig. 24 approximately describe the
order of accuracy of the numerical techniques because

√
N is approximately proportional to the mesh size h.

According to Fig. 24, except the first coarse mesh the order of accuracy of the new approach is almost constant
at mesh refinement and is close to four. This is in agreement with the theoretical results reported in Part 1 of
the paper.

In order to study the convergence of the new approach in more detail, Fig. 25 analyzes the curve 1 in Fig.
24b at small changes of the mesh size h. (Curve 1 in Fig. 25 corresponds to curve 1 in Fig. 24b.) Figure 25a
shows the convergence of the numerical results given by curves 1 in Fig. 24b when the mesh size h of the
square Cartesian grids decreases as h = 1/(Nx − 1) with the unit increments for Nx . (Nx is the number of
grid points along the x-axis for the considered domain; see Fig. 9a.) In this case, the vertical and horizontal
boundaries are conforming and the upper boundary as well as the circular boundary id non-conforming with
the Cartesian grids (Fig. 9b). As can be seen, the new approach converges even at small variations of the grid
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Fig. 23 The distributions of the temperature uexact(x, y, T ) (a, c) and the relative error in temperature eu(x, y, T ) (b, d) at the
final times T = 0.002 (a, b) and T = 1 (c, d) for the trapezoidal plate with the circular hole (Fig. 9a). The numerical solutions
of the 2-D heat equation with zero (b) and nonzero (d) loading function and the Dirichlet boundary conditions are obtained by
the new approach on the square (by = 1) Cartesian mesh of size h = 1/48

Fig. 24 The maximum relative error in temperature emax
u at the final times T = 0.002 (a) and T = 1 (b) as a function of

√
N

at mesh refinement in the logarithmic scale for the trapezoidal plate with the circular hole (Fig. 9a); N is the number of degrees
of freedom. The numerical solutions of the 2-D heat equation with zero (a) and nonzero (b) loading functions and the Dirichlet
boundary conditions are obtained by the new approach on square (by = 1) Cartesian meshes (curve 1), by the conventional linear
Q4, quadratic Q9 and cubic Q16 quadrilateral finite elements (curves 2-4) and by the conventional linear Q3, quadratic Q6 and
cubic Q10 triangular finite elements (curves 5–7). Symbols ©, ×, �, �, �, + and ∗ correspond to the results for the different N
used in the calculations

Fig. 25 The maximum relative error in temperature emax
u at the final time T = 0.002 as a function of the number Nx of grid

points along the x-axis (a) and as a function of the mesh size h (b) at mesh refinement in the logarithmic scale for the trapezoidal
plate with the circular hole (Fig. 9a). The numerical solutions of the 2-D heat equation with nonzero loading function and the
Dirichlet boundary conditions are obtained by the new approach on square (by = 1) Cartesian meshes. b Zooms curve 1 in a
for the interval 17 ≤ Nx ≤ 19 and shows curve 1 as a function of the mesh size h. Symbol © corresponds to the results for the
different Nx (a) or the different h (b) used in the calculations
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Fig. 26 The maximum relative error in temperature emax
u at the final time T = 0.002 as a function of

√
N at mesh refinement

in the logarithmic scale for the trapezoidal plate with the circular hole (Fig. 9a); N is the number of degrees of freedom. The
numerical solutions of the 2-D heat equation with zero loading function and the combined Neumann and Dirichlet boundary
conditions are obtained by the new approach on square (by = 1) Cartesian meshes (curve 1), by the conventional linear Q4 and
quadratic Q9 quadrilateral finite elements (curves 2 and 3) and by the conventional linear Q3 and quadratic Q6 triangular finite
elements (curves 4 and 5). Symbols ©, ×, �, � and � correspond to the results for the different N used in the calculations

size h. However, small oscillations may occur. These oscillations become smaller with the decrease in h. One
of the oscillations of curve 1 between Nx = 17 and Nx = 19 is shown in Fig. 25b in more detail using smaller
increments �h between the mesh sizes h1 = 1/(17− 1) = 0.0625 and h2 = 1/(19− 1) ≈ 0.0555. The small
oscillations of curve 1 are explained by the complicated dependence of the leading terms of the local truncation
error on the coefficients di of nonuniform stencils for the grid points close to the boundary (see Part 1 of the
paper and Fig. 28) because the coefficients di vary with small variations of the grid size h. This is a typical
behavior of the numerical techniques for irregular domains at a relatively large h. For example, the changes
in the angles of finite elements at small variations of the element size h also lead to small oscillations in the
convergence of the finite element techniques. We should also mention that the detailed study of convergence
of the new approach (similar to that in Fig. 25) was also applied to all numerical examples considered in this
paper and showed that the new approach yields stable and convergence results.

2.4.2 Neumann boundary condition

Here, we consider the same two problems as those in Sect. 2.4.1. The combined Neumann and Dirichlet bound-
ary conditions are applied as follows: For the rectangular plate (Fig. 6a), the Neumann boundary conditions are
imposed along QR and the Dirichlet boundary conditions are imposed along the remaining boundary; for the
trapezoidal plate with the circular hole (Fig. 9a), the Neumann boundary conditions are imposed along QR and
the circular hole as well as the Dirichlet boundary conditions are imposed along the remaining boundary. All
the boundary conditions are applied according to the exact solution (Eq. (11)). Similar to Sect. 2.3.2, the grid
points located close to the boundary with the Neumann boundary conditions have the stencils with 8 internal
grid points along with 3 boundary points with the Neumann boundary conditions. (See Fig. 29 and Part 1 of
the paper.)

First, the effect of conforming and non-conforming square (by = 1) Cartesian meshes on the accuracy of
the numerical results obtained by the new approach for the rectangular plate (Fig. 6) is analyzed. The numerical
results show that the error emax

u on non-conforming meshes (0 ≤ ξ < 1) is smaller than that on conforming
meshes (ξ = 1) and is practically constant for small ξ , 10−9 ≤ ξ ≤ 10−1. This behavior is similar to that
shown in Fig. 13 for the Poisson equation with the Neumann boundary conditions. This means the accuracy
of the new approach is not affected by large difference in distances between the nodes included into a stencil.

Next, let us consider the application of the new approach to the irregular domain represented by the
trapezoidal plate with the circular hole; see Fig. 9a. Figure 23a shows the distributions of the exact solution for
the temperature uexact(x, y, T ) at the final time T = 0.002. The distribution of the relative errors in temperature
eu(x, y, T ) in the trapezoidal plate at the final time T = 0.002 is similar to that shown in Fig. 23b for the
Dirichlet boundary conditions; i.e., the maximum relative error in temperature is located close to the right
upper corner of the plate.

In order to compare the accuracy of the new approach with FEM, Fig. 26 shows the error emax
u for these

techniques as a function of the number N of degrees of freedom at mesh refinement in the logarithmic scale. As
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can be seen from Fig. 26, at the same N the new approach yields more accurate results than those obtained by
the conventional linear Q3 and quadratic Q6 triangular finite elements as well as by the conventional linear Q4
and quadratic Q9 quadrilateral finite elements. (The quadratic finite elements have wider stencils and require
more computational time compared to that of the linear finite elements at the same N .)

As we mentioned in Sect. 2.2.1, the slopes of the curves at large N in Fig. 26 approximately describe the
order of accuracy (convergence) because

√
N is approximately proportional to the mesh size h. According to

Fig. 26, the order of accuracy for the temperature of the new approach is almost constant and is close to four.
This is in agreement with the theoretical results reported in Part 1 of the paper.

It can be concluded that at the computational cost of the linear elements the new approach for the 2-
D heat equation with the Dirichlet and/or Neumann boundary conditions yields more accurate results than
those obtained not only by the conventional linear finite elements but also by the conventional quadratic finite
elements at mesh refinement on irregular domains.

3 Concluding remarks

In the considered paper, the new numerical approach developed in Part 1 of the paper has been applied to the
time-dependent wave and heat equations as well as to the time-independent Poisson equation on regular and
irregular domains with Cartesian meshes. Three-point stencils in the 1-D case and 9-point stencils in the 2-D
case that are similar to those for the linear quadrilateral finite elements are considered in the paper. The main
numerical results can be summarized as follows:

• The numerical solutions of the 1-D wave equation as well as the 2-D wave and heat equations for a simple
rectangular plate show that the accuracy of the new approach on non-conforming meshes is practically the
same as that on conforming meshes for both the Dirichlet and Neumann boundary conditions. Moreover,
very small distances (0.1h − 10−9h where h is the grid size) between the grid points of a Cartesian mesh
and the boundary do not decrease the accuracy of the new technique.

• For the Poisson equation with the Dirichlet boundary conditions, the new approach for regular domains
and conforming meshes yields the sixth order of accuracy on square Cartesian meshes and the fourth order
of accuracy on rectangular Cartesian meshes. Therefore, the accuracy of numerical results on conforming
squaremeshes is higher than that on non-conforming squaremeshes.Nevertheless, even on non-conforming
square meshes the new technique yields much more accurate results compared to those obtained by the
linear and quadratic finite elements at the same number of degrees of freedom. Similar to the wave and
heat equations, very small distances (0.1h − 10−9h where h is the grid size) between Cartesian grid points
and the boundary do not decrease the accuracy of the new technique for the Poisson equation.

• The application of the new approach to the 2-D problems on an irregular domain shows that the order of
accuracy is close to four for the wave and heat equations and is close to five for the Poisson equation. This
is in agreement with the theoretical results of Part 1 of the paper. The detailed numerical study shows stable
and convergent numerical results obtained by the new approach.

• The comparison of the numerical results obtained by the new approach and by FEM shows that at similar
9-point stencils, the accuracy of the new approach on irregular domains is two orders higher for the wave
and heat equations and three orders higher for the Poisson equation than that for the linear finite elements.
Moreover, the new approach yields even much more accurate results than the quadratic finite elements as
well as the cubic finite elements (with the Dirichlet boundary conditions) with much wider stencils. The
new technique will allow the solution of new real-world problems that cannot be solved by FEM due to a
prohibitively large computation time; e.g., see Sect. 2.3.3.

• The wave and heat equations can be uniformly solved with the new approach. The order of the time
derivative in these equations affects the time integration scheme but does not affect the coefficients of the
stencil equations of the semidiscrete systems.

The application of the new approach to 3-D problems will be considered in the future.
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Appendix A. The summary of the new numerical approach developed in Part 1 of the paper.

The wave and heat equations in domain 
 can be uniformly written as:

∂nu

∂tn
− c̄∇2u = f, (A.1)

where n = 2 and c̄ = c2 for the wave equation as well as n = 1 and c̄ = a for the heat equation, c is the
wave velocity, a is the thermal diffusivity, f (x, t) is the loading term and u is the field variable. The Poisson
equation in domain 
 has the following form:

∇2u = f. (A.2)

The Neumann boundary conditions n ·�u = g1 on �t and the Dirichlet boundary conditions u = g2 on �u are
applied where n is the outward unit normal on �t and �t and �u denote the boundaries with the Dirichlet and
Neumann boundary conditions, respectively. The initial conditions are u(x, t = 0) = g3, v(x, t = 0) = g4
in 
 for the wave equation and u(x, t = 0) = g3 in 
 for the heat equation where gi (i = 1, 2, 3, 4) are the
given functions.

Appendix A.1. The stencil equations for the 1-D wave equation

The following 3-point stencils on conforming and non-conforming uniform meshes are used:

h2(m1ü
num
A−1 + m2ü

num
A + m3ü

num
A+1) + c2(k1u

num
A−1 + k2u

num
A + k3u

num
A+1) = f̄ + f̄ Neum, (A.3)

where the case of zero loading f = f̄ = 0 is considered below, A = 2, . . . , N − 1, N is the total number of
grid points (Fig. 1). The coefficients m j and k j ( j = 1, 2, 3) are determined in Part 1 from the minimization
of the local truncation error and are given: a) by Eq. (15) of Part 1 for the internal nodes A = 3, . . . , N − 2
located far from the boundary ( f̄ Neum = 0); b) by Eq. (14) of Part 1 for the nodes A = 2, N − 1 located
close to the boundary with the Dirichlet boundary conditions ( f̄ Neum = 0); c) by Eq. (29) of Part 1 for the
nodes A = 2, N − 1 located close to the boundary with the Neumann boundary conditions (for the Neumann
boundary conditions, f̄ Neum = f1 where f1 is determined by Eq. (30) of Part 1). The coefficientsm1 = k1 = 0
are zero in Eq. (29) of Part 1; i.e., the 2-node stencils, Eq. (A.3) with m1 = k1 = 0, are used for the points
located close to the boundary with the Neumann boundary conditions.

Appendix A.2. The stencil equations for the 2-D wave and heat equations

The following 9-point stencils on Cartesian meshes are used:

h2
{
m1

dnunum(A−1),(B−1)

dtn
+ m2

dnunumA,(B−1)

dtn
+ m3

dnunum(A+1),(B−1)

dtn
+ m4

dnunum(A−1),B

dtn
+ m5

dnunumA,B

dtn

+m6
dnunum(A+1),B

dtn
+ m7

dnunum(A−1),(B+1)

dtn
+ m8

dnunumA,(B+1)

dtn
+ m9

dnunum(A+1),(B+1)

dtn

}

+c̄{k1unum(A−1),(B−1) + k2u
num
A,(B−1) + k3u

num
(A+1),(B−1) + k4u

num
(A−1),B + k5u

num
A,B

+k6u
num
(A+1),B + k7u

num
(A−1),(B+1) + k8u

num
A,(B+1) + k9u

num
(A+1),(B+1)} = f̄ A,B + f̄ Neum

A,B , (A.4)
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Fig. 27 The spatial locations of the degrees of freedom ui, j (i = A − 1, A, A + 1, j = B − 1, B, B + 1) that contribute to the
9-point uniform stencil for the internal degree of freedom uA,B located far from the boundary

Fig. 28 The spatial locations of the degrees of freedom ui, j (i = A − 1, A, A + 1, j = B − 1, B, B + 1) that contribute to the
9-point nonuniform stencil for the internal degree of freedom uA,B located close to the boundary with the Dirichlet boundary
conditions

where f̄ A,B = 0 in the case of zero load f = 0 and f̄ A,B is defined by Eq. (45) of Part 1 for nonzero load
f �= 0, the superscript n in the time derivative in Eq. (A.4) and the material parameter c̄ are n = 1 and
c̄ = a for the heat equation as well as n = 2 and c̄ = c2 for the wave equation. The coefficients m j and k j
( j = 1, 2, . . . , 9) along with the coefficients li (i = 1, 2, 3, 4) used for the Neumann boundary conditions
(see below) are determined from the minimization of the local truncation error and are: a) given by Eq. (39)
of Part 1 for the internal nodes located far from the boundary (Fig. 27) and f̄ Neum

A,B = 0; b) calculated by the
solution of 17 linear algebraic equations bp = 0 for p = 1, 2, . . . , 11, 13, 14, 15, 17, 20, 26 (bp are given by
Eq. (C.1) of Part 1) for the nodes located close to the boundary with the Dirichlet boundary conditions (see
Fig. 28) and f̄ Neum

A,B = 0; c) calculated by the solution of 6 linear algebraic equations given by Eq. (52) of Part
1 (as well as Eqs. (C.2) and (A.2) of Part 1) for the nodes located close to the boundary with the Neumann
boundary conditions and f̄ Neum

A,B = c̄h(l1g1(x1, y1, t) + l2g1(x2, y2, t) + l3g1(x3, y3, t)) + h3l4
∂ng1(x2,y2,t)

∂tn

where xi , yi (i = 1, 2, 3) are the coordinates of 3 boundary points (Fig. 29) and g1(xi , yi , t) expresses the
Neumann boundary conditions. The coefficients m7 = k7 = 0 for the stencil in Fig. 29 are zero; i.e., the
8-node cut stencils, Eq. (A.4) with m7 = k7 = 0, are used for the points located close to the boundary with
the Neumann boundary conditions.

Appendix A.3. The stencil equations for the 2-D Poisson equation

Nine-node stencils for the degree of freedom unumA,B of the time-independent Poisson equation can be obtained
from Eq. (A.4) with c̄ = 1 and m j = 0 ( j = 1, 2, . . . , 9) as follows:

k1u
num
(A−1),(B−1) + k2u

num
A,(B−1) + k3u

num
(A+1),(B−1) + k4u

num
(A−1),B + k5u

num
A,B

+k6u
num
(A+1),B + k7u

num
(A−1),(B+1) + k8u

num
A,(B+1) + k9u

num
(A+1),(B+1) = f̄ A,B + f̄ Neum

A,B , (A.5)
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Fig. 29 The spatial locations of the degrees of freedom ui, j (i = A − 1, A, A + 1, j = B − 1, B, B + 1) that contribute to
the 8-point cut stencils for the internal degrees of freedom uA,B and uA,B+1 located close to the boundary with the Neumann
boundary conditions. • designates the 8 nodes contributing to the stencil equation

where f̄ A,B = 0 in the case of zero load f = 0 and f̄ A,B is defined by Eq. (D.1) of Part 1 for nonzero load
f �= 0. The coefficients k j ( j = 1, 2, . . . , 9) alongwith the coefficients li (i = 1, 2, 3, 4) used for theNeumann
boundary conditions (see below) are determined from the minimization of the local truncation error and are:
a) given by Eq. (58) of Part 1 for the internal nodes located far from the boundary (Fig. 27) and f̄ Neum

A,B = 0; b)
calculated by the solution of 8 linear algebraic equations bp = 0 for p = 1, 2, . . . , 8 (bp are given by Eq. (C.3)
of Part 1) for the nodes located close to the boundary with the Dirichlet boundary conditions (see Fig. 28) and
f̄ Neum
A,B = 0; c) calculated by the solution of 11 linear algebraic equations bp = 0 for p = 1, 2, . . . , 11 (bp are

given by Eq. (C.4) of Part 1) for the nodes located close to the boundarywith the Neumann boundary conditions
and f̄ Neum

A,B = c̄h(l1g1(x1, y1) + l2g1(x2, y2) + l3g1(x3, y3)) + +l4g1(x4, y4) where xi , yi (i = 1, 2, 3, 4) are
the coordinates of 4 boundary points (Fig. 29), and g1(xi , yi ) expresses the Neumann boundary conditions.
The coefficients k7 = 0 for the stencil in Fig. 29 are zero; i.e., the 8-node stencils, Eq. (A.5) with k7 = 0, are
used for the points located close to the boundary with the Neumann boundary conditions.
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