danceON: Culturally Responsive Creative Computing

William C. Payne
New York University
Brooklyn, NY, United States
william.payne@nyu.edu

Carlie Charp
University of Colorado Boulder
Boulder, CO, United States
carlie.charp@colorado.edu

Edd V. Taylor
University of Colorado Boulder
Boulder, CO, United States
edd.taylor@colorado.edu

O P

O
Y0 %

DOOOOC) | RN
(RO000Y | lpeaed
111 ool

I8 | H"\ RN .

e

Yoav Bergner
New York University
Brooklyn, NY, United States
yoav.bergner@nyu.edu

R. Benjamin Shapiro
University of Colorado Boulder
Boulder, CO, United States
ben.shapiro@colorado.edu

Mary Etta West
University of Colorado Boulder
Boulder, CO, United States
Mary.West@colorado.edu

Danielle Albers Szafir
University of Colorado Boulder
Boulder, CO, United States
danielle.szafir@colorado.edu

Kayla DesPortes
New York University
Brooklyn, NY, United States
kayla.desportes@nyu.edu

Figure 1: Animations coded in danceON to original choreography. Featuring high school student teams (left to right): Dripping
with Power, Black Lives Matter, Love Yourself, and Colorful Escape.

ABSTRACT

Dance provides unique opportunities for embodied interdisciplinary
learning experiences that can be personally and culturally relevant.
danceON is a system that supports learners to leverage their body
movement as they engage in artistic practices across data science,
computing, and dance. The technology includes a Domain Specific
Language (DSL) with declarative syntax and reactive behavior, a me-
dia player with pose detection and classification, and a web-based
IDE. danceON provides a low-floor allowing users to bind virtual
shapes to body positions in under three lines of code, while also en-
abling complex, dynamic animations that users can design working
with conditionals and past position data. We developed danceON
to support distance learning and deployed it in two consecutive
cohorts of a remote, two-week summer camp for young women of
color. We present our findings from an analysis of the experience

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CHI 21, May 8-13, 2021, Yokohama, Japan

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8096-6/21/05...$15.00
https://doi.org/10.1145/3411764.3445149

and the resulting computational performances. The work identifies
implications for how design can support learners’ expression across
culturally relevant themes and examines challenges from the lens
of usability of the computing language and technology.

CCS CONCEPTS

« Applied computing — Interactive learning environments;
+ Human-centered computing — User interface programming.

KEYWORDS

computing education, data literacy, dance, culturally responsive
pedagogy, design based research

ACM Reference Format:

William C. Payne, Yoav Bergner, Mary Etta West, Carlie Charp, R. Benjamin
Shapiro, Danielle Albers Szafir, Edd V. Taylor, and Kayla DesPortes. 2021.
danceON: Culturally Responsive Creative Computing. In CHI Conference on
Human Factors in Computing Systems (CHI "21), May 8-13, 2021, Yokohama,
Japan. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3411764.
3445149

1 INTRODUCTION

Data-centric computing systems are increasingly influencing our
lives [62]. It is important to empower all individuals to understand
and critique these technologies. Both computing and data literacy

https://doi.org/10.1145/3411764.3445149
https://doi.org/10.1145/3411764.3445149
https://doi.org/10.1145/3411764.3445149
mailto:permissions@acm.org
mailto:kayla.desportes@nyu.edu
mailto:edd.taylor@colorado.edu

CHI ’21, May 8-13, 2021, Yokohama, Japan

education have struggled with inclusion [22, 59, 61]. Researchers
have called for culturally relevant learning environments [31, 42, 64]
that center computing and data experiences around communities
and problem spaces that learners care about [21, 22, 53, 76-78].

Creative or artistic computing can promote reflection on the
intent and perception of a computational art piece and generate
shareable artifacts that embody learners’ experiences, identities,
and communities [46]. Data-driven artistic education has potential
to expand our notion of sense-making and how it can occur [60].
Fusing data science and creative computing can support learners’
integration of skills and knowledge to explore, represent, and expe-
rience data in ways that transcend traditional data representation
practices [9, 21, 22, 28].

danceON (dance Object Notation) is an educationally-focused
programming system for creating visual animations that respond to
data from body movement. The system was developed as part of an
ongoing Design-Based Research collaboration [6, 83] with a com-
munity organization, STEM From Dance! (SFD). Our shared goal is
to engage young women of color in creating artistic computational
artifacts within culturally relevant dance learning experiences.

This paper describes the danceON system and findings from a
pilot integration in an SFD summer camp. The work contributes to
the literature in three ways:

(1) We illustrate how declarative syntax and reactive behaviors
may be designed to integrate body and code in an educational
and artistic context.

(2) We present an artifact analysis from an in-situ study of
danceON demonstrating early evidence of embodied cre-
ative coding and cultural relevancy, which we analyze from
the perspective of our design.

(3) We outline implications for the design of systems intended to
introduce data science and computing concepts in a creative
and equitable manner.

2 RELATED WORK

danceON aims to foster computing literacy by bridging dance and
technology in ways that empower users to create innovative and
expressive pieces with minimal barriers to entry. To achieve this
goal, we draw on innovations from culturally relevant education,
embodied learning, dance and computing education, and work
exploring the design of programming languages.

2.1 Dance and STEM/Computing Education

Underrepresentation of women of color in STEM fields, including
computing, is a complex and persistent problem of equity and (inter-
sectional) identity [4, 76]. Theoretical foundations for pedagogical
reforms use the terms culturally responsive [31], culturally rele-
vant [42], and culturally sustaining [64], with differences in nuance
and emphasis. Common to these approaches is a recognition that
students’ lives outside the classroom matter in designing learning
experiences inside the classroom. Learners bring their own personal
and cultural experiences, values, and knowledge to formal instruc-
tion. Gonzalez et al. [33] recognize that (mathematical) knowledge
is embedded in social context and advocates for the transformation

Thttps://www.stemfromdance.org

Payne, et al.

5«

of learners’ “funds of knowledge” into meaningful, situated activ-
ities. Reviewing some of these efforts, Aronson and Laughter [2]
found that culturally responsive teaching and relevant pedagogy
are associated with increased student interest, self-efficacy, and
ability to engage in content area discourses. As a cultural practice
deeply embedded in various communities of color in the United
States [37], dance provides rich potential for exploring cultural
ways of learning [34].

Recent work on dance and computing learning experiences de-
signed for young women of color has demonstrated opportunities
for learners to tap into their funds of knowledge and cultural re-
sources [8, 15, 20, 68]. Exploratory studies of data visualization
with high school step dancers showed how grounding educational
systems in the experiences and passions of users can create en-
gaging and authentic learning experiences [8]. Researchers have
also demonstrated potential for learners to bring self-identified
themes into a physical computing environment where learners
created dances around socio-political issues such as deforestation
and bullying [20]. Developers of Dancing Alice [18, 43], which
enables learners to program an avatar to dance, observed that learn-
ers’ prior experiences with dance supported their efforts reasoning
through computing challenges. The Virtual Environment Interac-
tions (VEnvl) [19, 44, 45, 65] builds on this work with a library of
motion captured dance movements that users can invoke. This work
highlights how dance-computing technology can support learners
in using their bodies as an object to think through computational
problems. The present work extends these explorations with a focus
on programming animations that are overlaid on and responsive to
video capture of dance.

In addition to Dancing Alice and VEnvl, some recent educa-
tional systems targeting both young learners and content at the
intersection of STEM and dance include Embodied Physics? and
Dance Party?, a block-based environment for choreography using
animated sprites. Whereas Dance Party offers an entry-level expe-
rience in imperative programming (e.g., loop blocks) with preset
affordances (e.g., backgrounds, sprites, and dance moves), danceON
uses a domain-specific language to encourage abstraction both
about the human body and about user-defined animated objects.

2.2 Programming Languages and Learning

Learning to program is difficult. Decades of research has shown that
even when demonstrating success in undergraduate programming
courses, learners still struggle to solve computational problems
that experts deem trivial [79, 81]. Blocks-based programming lan-
guages, such as Scratch and Blockly, were developed specifically
to support novices. Research has demonstrated that these drag-
and-drop programming interfaces can improve the usability of the
coding experience [39, 52] and provide pedagogical benefits such
as improved learning and a more discoverable language [71, 85, 86].
However, they are sometimes dismissed as inauthentic to “real”
programming [23, 84], and can lead learners to create syntactically
perfect, yet buggy programs [50, 80]. danceON pursues a different,
complementary, strategy for supporting learning. It is a text-based
language, and supports exploration of ways in which alternative

Zhttps://www.terc.edu/projects/embodied-physics/
Shttps://code.org/dance

https://3https://code.org/dance
https://2https://www.terc.edu/projects/embodied-physics
https://1https://www.stemfromdance.org

danceON

programming paradigms can ameliorate issues learners face with
interpretability and applicability of code.

When programming, learners often face difficulties understand-
ing what a computer can and cannot do [63, 66]. Even for experi-
enced programmers, the meanings of programs may be surprising
[41, 70], in part because languages describe computational pro-
cesses as a function of the lexicon and behaviors of the program-
ming environment rather than of the domain. A programmer must
map the nouns, verbs, and relations of a non-computational do-
main to those of the programming paradigm (e.g. loops, variables,
etc.), inventing an ad-hoc machine-readable representation of their
domain to express solutions to a target problem [63]. Beginner pro-
grammers must do this translation into computational form while
simultaneously learning the programming language, paradigm, and
notional machine that they are attempting to use [24]. Domain
Specific Languages (DSLs) offer one solution to this.

DSLs, such as the music coding environment Impromptu [7],
close the distance between the semantics of a domain and those
of a programming environment used to construct tools for use
within that domain. Researchers have just begun to investigate the
affordances of DSLs and related TSLs (Task Specific Languages)
for easing students’ and teachers’ entry into programming [17, 55,
56]. danceON explores how a DSL can support learners’ semantic
understanding of animations that respond to body movement and
position data into a culturally relevant experience.

2.3 Opportunities in Declarative and Reactive
Languages

Computing education intended to cultivate Computational Think-
ing (CT) - defined as the use of abstraction and automation for
problem solving by an information processing agent [57, 87] — has
typically made use of general-purpose, imperative programming
languages. These educational experiences and tools emphasize con-
cepts and practices like sequencing instructions, using variables to
store and access information, and controlling program flow with
conditionals and loops [3, 11]. In contrast, danceON explores the use
of a declarative language where one does not specify the sequential
processes for program execution, but instead declares what the prop-
erties of a desired program would be. danceON is heavily influenced
by Vega-Lite [73], a declarative DSL for creating data visualizations.
Vega-Lite’s users declare properties of a visualization, including
the type of representation (e.g. bar graph), the mappings between
data attributes and visual elements, and the interaction possibilities
available to a viewer. Vega-Lite’s user community* demonstrates
the affordances of a declarative DSL to enable users to craft clear
and sophisticated programs without need for imperative program-
ming. danceON attempts to offer these same affordances, adapting
their approach for use in generating dynamic visual overlays for
dance videos.

In addition to being declarative, danceON integrates a reactive
programming paradigm. Similar to declarative programming, re-
active programming does not require the programmer to describe
all of the sequential operations that the computer must execute.
Instead, one describes sets of relations between values, and the

“https://github.com/vega/vega-lite/issues

CHI ’21, May 8-13, 2021, Yokohama, Japan

computer automatically propagates changes to dependent values
[5]. To illustrate reactivity, consider following code:

* b

T 0O T o
o
S v W Ul

If executed by Python (an imperative language), the value of c at
the end of this program’s execution would be 15, but in a reactive
language, the value c could be @ because the value of ¢ is a product
of b, and b is @. The lines of code do not denote the sequence of
program execution but a set of relations. Microsoft Excel formulae
are also reactive expressions. The reactive paradigm has been used
successfully in education: The Elm, Racket, Flapjax and Pyret pro-
gramming environments [51, 69] all provide reactive frameworks
for creating interactive Graphical User Interfaces (GUIs). Racket
[27, Section 2.4] has been used extensively within introductory
computing education [26, 54, 75]. We are intrigued by the potential
of the reactive approach to reduce the amount of state, and thus
complexity, that must be maintained by programmers, novice and
otherwise, who wish to create event-driven visualizations.

Researchers across data visualization, robotics, and programming
languages have explored fusing declarative and reactive program-
ming paradigms. For instance, Satyanarayan et al. [74] describes
the design of Reactive Vega, a language that allows declarative
description of visualizations, while Peterson et al. [67] and Huang
and Hudak [40] describe DSLs for declarative and reactive robot
control. In this paper, we explore how the fusion of declarative
and reactive programming might be applied to support computing
education for dynamic and artistic dance video overlays.

3 DESIGN OBJECTIVES

3.1 Context of Design Research

We developed danceON as part of a collaborative Design-Based
Research investigation [6, 83] with STEM From Dance. SFD is a
community organization that creates dance and computing experi-
ences intended to introduce young women of color to STEM fields.
SFD was founded in 2012 with the goal of “tackl[ing] diversity in
the STEM workforce” through providing girls of color with “access
to a STEM education by using dance to empower, educate, and
encourage them as our next generation of engineers, scientists, and
techies” SFD programs are intended to develop participants’ STEM
and dance skills, and to facilitate their development as confident,
resilient, curious, and creative people. These experiences are meant
to be fun and not feel like school or forced learning. SFD wants
learners to take with them an understanding that STEM fields apply
to their interests and that they have the capabilities and support
to continue on. The community extends beyond the current par-
ticipants, instructors, and organizational staff to professionals in
the STEM workforce and alumni from SFD who frequently return
to share their experiences. Family and friends join participants on
“family days” to witness final performances. In order for new tech-
nology to be adopted, the designs must first and foremost adhere
to SFD’s core values of making learners feel supported and capable,
and equip learners with tools to make polished art pieces that they
are proud to share.

https://4https://github.com/vega/vega-lite/issues

CHI ’21, May 8-13, 2021, Yokohama, Japan

Before our engagement, SFD already had curriculum for pro-
gramming animated projections with Processing [49] and wearable
electronics with microcontrollers but wanted to expand their of-
ferings. In past activities and performances, technology typically
consisted of blinking LEDs and projected animations that were hard-
coded to be synchronized with the music and were not interactive.
SFD’s founder hoped that technology could be more integrated with
the learners’ dancing such that it could “inform their dancing” Ad-
ditionally, she wanted to broaden the types of STEM disciplines that
participants could experience. Data science and machine learning
offered SFD value because they are “hot” topics that their partners
and funders would recognize, and they provide additional avenues
to create responsive technology.

3.2 Formative Design Work

We determined the design requirements of danceON through 11
formal interviews and 20 design meetings with SFD participants.
The semi-structured interviews were conducted with the CEO and
founder of the organization, six instructors, and four learners. The
interviews were designed to identify the values of the participants,
their experiences in the organizational activities, their current chal-
lenges, and their future goals. Four researchers employed thematic
analysis [10] on the transcribed student and instructor interviews
in which we iteratively honed themes through a recursive process
involving identifying, defining, applying, and refining. A detailed
analysis of this data is outside the bounds of this paper which
centers on the danceON system and is in preparation for separate
publication. The analysis informs our understanding of the philoso-
phy, values, and culture of SFD that led to embedding these values
in our design.

In conjunction with the interviews, the researchers engaged in a
series of weekly meetings with two of SFD’s leads: their founder
and CEO, and their Director of STEM and Art Education. The meet-
ings took place six months prior to the summer program in which
danceON was eventually deployed and provided a space to share
ideas, receive feedback on curricular and technology designs, and
develop plans for implementation. Throughout these meetings, we
refined a set of design goals. While we initially intended to work
with learners in person, COVID-19 forced us to move the summer
program to a remote format, to explore how to teach dance and
computing in a virtual, collaborative context, and to define what a
virtual performance would constitute. To guide these adjustments,
the organizational leads gathered and shared with us artistic perfor-
mances they thought would be culturally relevant and engaging for
their participants to emulate in projects integrating computing and
dance. We watched and discussed music videos including Bruno
Mars’s That’s What I Like, famous dancers on Instagram like Kida
The Great (@kidathegreat), and collaborations between artists and
technologists, like Maya Mann and Google Creative Labs.

3.3 Design Goals

We derived three core principles for danceON from our interviews
and discussions with the SFD leadership: 1. danceON should be
personally and culturally relevant to learners, 2. it should situate
art and code as mutually informing, and 3. it should deeply support

Payne, et al.

embodied learning of computer science concepts. We further divide
these principles into six design goals:

3.3.1 Personally and Culturally Relevant.

G1 Low barrier to entry: Clearly, accessibly, and immediately
incorporate learner interests, abilities, and the styles and
cultures of dance they care about.

G2 Wide room for expression: Enable learners to progress on
meaningful projects in which they are not constrained and
are able to express their complex identities, beliefs, passions,
and interests.

3.3.2 Creative Coding: Computing and art making are intertwined
and bidirectional.

G3 Artmotivates code: Ideas, music, and choreography present
clear opportunities to code unique, reactive animations.
G4 Code motivates art: The act of writing code and observing
the results leads to new opportunities for creative expression

through remixing the code and making new movements.

3.3.3 Embodied Learning: Body and movement are engaging metaphors
for learning important computing concepts.

G5 Data literacy - Make transparent the body position data
captured by computers and/or sensors while providing an
accessible interface to empower learners to understand, use,
and manipulate their own data for the purposes of making
art.

G6 Machine learning - Help learners understand the limitations
and biases embedded in the processes with which computers
see them, and introduce learners to the process of training a
machine.

For the preliminary design of danceON, we focus on the first four
of these principles to understand the usability, authenticity, and cre-
ative capacity of danceON. Notably, the bidirectional relationship
between art and code (G3, G4) echoes the “augmented expression”
guideline for professional interactive performances identified by
Gonzalez et al. [32]. While danceON is architected to consider G5
and G6, understanding the pedagogical utility of danceON is critical
future work and the subject of on-going longitudinal study.

4 THE DANCEON SYSTEM

danceON enables users to upload dance videos (or use their webcam)
and write code that creates responsive animations based on pixel
location data and pose-detection data (Figure 2). The live coding
environment implements a Domain Specific Language (DSL) that
updates the video panel with animations as the user is coding
allowing the user to quickly test and iterate on their code. The web-
based IDE provides feedback to users as they are working. Users
can toggle between overlays to gather information on pixel location
and pose-detection to assist them in making decisions as they work.
In the following section, we describe a subset of danceON’s core
features, highlighting how they tie back to our design goals (§3.3)
and meet the needs of novice programmers integrating dance and
animation.

danceON

() => [dance0Oll]

CHI 21, May 8-13, 2021, Yokohama, Japan

= Controls

Reference

- (pose) => [
. {

what: 'circle',

pose.rightWrist.y < pose.nose.y,
o {
d: [60, 30],

where: {
x: (pose.leftlrist.x + pose.rightWrist.x)/2,
y: (pose.leftlirist.y + pose.rightWrist.y)/2,
1,
when: pose.leftWrist.y < pose.nose.y &&

fill: [color(®, 200, 255, 255), color(@, 255, 200, 255)],

CODE RUN

O L YEETEPPEPEEPRY

Figure 2: danceON IDE: A. Video/webcam player (4.1) with built-in pose detection and classification (4.2); B. Skeleton and Cur-
sor overlays (4.3); C. Live coding environment features including feedback bar (4.4); D. Code editor (4.5.1); E. Natural language
object properties (4.5.2), F. Automatic lifting or list handling (4.5.3)

4.1 Video Window

danceON integrates a media player supporting webcam and up-
loaded video inputs, multiple pose detection/classification tools,
and interactive overlays for problem-solving and translating be-
tween virtual and physical spaces. The webcam mode allows users
to capitalize on live video to quickly test and iterate on code. For
example, a learner may define a pose condition, move their body in
real-time to test the boundaries of that condition, and then update
their code. Additionally, instructors can demonstrate new concepts,
techniques, and learner ideas in real-time (G3: Art motivates code,
G4: Code motivates art). Because of the computing power neces-
sary to run pose detection in real-time, users can also upload dance
videos for improved pose-detection accuracy. Another benefit is
that code is always live even when a video is paused. Animations
remain reactive while the performer can be frozen in place. Thus,
users may isolate specific regions of video and scrub frame by frame
to check if and when a pose condition is met or fine-tune the behav-
ior and appearance of an animation (Figure 3). When finished, users
can download their dance videos with the programmed animations
now integrated into their dances.

4.2 DPose Detection: PoseNet, OpenPose, &
Teachable Machine

danceON is intended to support video processing of dances recorded
in home environments without any additional sensors or equipment
such as a green screen (G1: Low barrier of entry). Pose estimation
in danceON uses the open source computer vision libraries PoseNet

Frame: 256 257 258

Figure 3: A user can scrub one frame at a time to observe
and fine tune the behavior of their code including to check
the exact frame when a condition based on body position
evaluates to true. In this example, the text “Hands up!” is
displayed when both wrists are above the nose.

[82] and OpenPose [13] and provides horizontal and vertical coordi-
nate estimates of body parts (specifically: eyes, nose, ears, shoulders,
elbows, wrists, hips, knees, and ankles). PoseNet runs in the web
using TensorFlow.js supporting real-time pose estimation, but in

https://TensorFlow.js

CHI ’21, May 8-13, 2021, Yokohama, Japan

early testing we found that OpenPose produced more accurate of-
fline results. Given our goal of supporting learner growth through
enabling high-quality projects (G2: Wide room for expression), we
did not want data quality to be a limiting factor. In our current sys-
tem, learners may upload their videos to be processed remotely via
OpenPose and then can upload the resulting JSON files to danceON.

danceON also integrates with Teachable Machine, a web-based
tool in which users can rapidly train models to differentiate between
poses [14]. Once they train a classifier, they can export the model
and upload it to danceON. The classifier can then be used to trigger
animations on poses its been trained it on. While integrated into
the tool, this feature was not tested in our study due to timing
constraints.

4.3 Position & Pose Overlays

To facilitate learners connecting their body and movement to its
data representation, we implemented two toggleable overlays: Pixel
Position and Skeleton overlay (shown in Figure 2). The Pixel Posi-
tion overlay displays the x and y coordinates of the mouse pointer.
It is intended to aid reasoning within the virtual canvas helping
learners find points of interest, e.g. to find absolute coordinates
to relate body position against and to render a shape over; or to
estimate the relative distance between body parts while a video is
paused. The Skeleton overlay draws indicators over all body parts
captured by the computer vision algorithm. When hovered over, the
Skeleton overlay displays each part’s ID for reference in code (e.g.
leftAnkle, rightWrist, etc.). The Skeleton overlay also clearly
exposes inaccurate and missing data. While the overlays highlight
data representations of one’s body (G5: Data literacy), they are also
intended to aid in problem solving (G1: Low barrier of entry) and
converting artistic ideas into code (G3: Art motivates code).

4.4 Live Coding IDE

danceON is a live coding environment that integrates features for
programmers such as syntax highlighting, error checking, and auto
complete for functions, objects, and properties. Live coding pro-
vides real-time feedback and connections between artistic output
and code as evidenced in prior work with music [1, 48, 72] (G3: Art
motivates code, G4: Code motivates art). The program is always ac-
tive providing immediate feedback [58] as virtual objects displayed
always reflect the current state as long as there are no syntax errors.
In practice, live coding manifests in two distinct ways depending
on which media stream is currently active (§4.1). If the webcam is
toggled, the user simultaneously codes and physically moves their
body to render animation changes. If a pre-recorded dance is used
instead, the user codes and manipulates a virtual body through
playing/pausing/scrubbing the video. Both cases constitute live
coding as programs render immediately and react to changes in the
active media.

A consequence of liveness is the regular occurrence of errors that
appear as the user adds and edits code. Syntax errors (e.g. missing
commas or brackets) prevent code from being interpreted while
semantic errors (e.g. undeclared variables) produce unexpected
behaviors. danceON tracks code across four states: empty, syntax
errors, semantic errors, and correct. It communicates the current
state to the user via a bar below the editor (Figure 2) and an error

Payne, et al.

message overlay on the video panel if applicable. The intention
behind this feature is to make clear that errors are not mistakes
or barriers but an ongoing part of the programming process, as
the indicator shifts constantly across states as the user drafts code.
Intended to reduce frustration, danceON maintains a history of
error-free code segments, allowing a learner to “Revert Back” to
prior working code (G1: Low barrier of entry).

The interface comes pre-populated with code examples and a
short dance performance video to start experimenting with in the
IDE (G1: Low barrier of entry). The code examples are intentionally
plain encouraging users to understand and remix the code and
develop their own style (G2: Wide room for expression). In contrast,
we asked a staff member from SFD to record a short video of herself
dancing in her own style at home to serve as a model for the learners
(G1).

4.5 danceON Language Features

danceON is a Domain Specific Language (DSL) [16] that is built in
Javascript and uses the browser-based drawing library p5.js [49].
The language supports numerous shape primitives including circles,
squares, lines, triangles, points, etc.; text; and various parameters
of customization including size, fill (color and transparency), and
stroke.

4.5.1 Declarative Grammar, Reactive Behavior. danceON uses a
concise, declarative grammar to specify the position and behavior
of virtual shapes and reactive behavior meaning that virtual shapes
always reflect the current state of an incoming data stream, e.g. the
current position of a moving dancer. danceON aims to clearly define
the boundaries between the physical body, body data capture, code,
and visual representation.

Consider a learner who wants to hold a glowing orb in her hands.
The following code written in Javascript using p5.js composes [25]
the statements that integrate body, code, and animation with other
constructs to draw a circle in between her hands.

let xPos, yPos, pose;
function setup() { ... }

function draw() { // main loop
pose = runPoseDetectionAlgorithm();
if (pose != undefined) {
xPos = (pose.leftWrist.x + pose.rightWrist.x) / 2;
yPos = (pose.leftWrist.y + pose.rightWrist.y) / 2;
circle(xPos, yPos, 30);

The danceON code below removes the imperative description of
how the program should execute, including variable assignments, a
conditional statement, and the draw loop. By reducing need for plan
composition in a general purpose programming language, danceON
foregrounds the relationship between body data and the properties
of a shape drawn in reaction to those data both lowering the barrier
to entry (G1), and expanding opportunities for movement and code
to interact (G3, G4).

danceON

Figure 4: Painting to the screen using past position data.

(pose) => [
{
what:'circle',
where: {
x: (pose.leftWrist.x + pose.rightWrist.x) / 2,
y: (pose.leftWrist.y + pose.rightWrist.y) / 2,

3
1;

4.5.2 Natural Language. A danceON program consists of a list of
objects that define the behavior of virtual shapes and text in natu-
ral terms using the keywords what, where, when, and how, (Table
1). For example, where applies to coordinates and geometry, (e.g.
“where should that line connect t0?”), while when applies to condi-
tionals, e.g. (“when I move my hands up, show the words “boom!”).
While these generic words might be ill-suited for use in a general
purpose programming language where they could interpreted in
limitless ways, their meaning is heavily constrained in the context
of danceON, a DSL supporting very specific and limited effects. The
what property is mandatory (i.e. there will be an error message
without it) while other properties possess default behaviors if not
specified. For example, if the user does not specify where to draw
something, danceON will draw it at random locations on the screen.
This lowers the requirements to create a “valid” program so users
can more swiftly implement and then expand their code using ad-
ditional keywords to control their animations (G1: Low barrier of
entry).

4.5.3 Automatic Lifting. danceON supports “auto-lifting” in which
properties of objects may be either single values or lists. This tech-
nique has been implemented in other computing curricula and
has demonstrated promise for simplifying what would normally
require iterative or recursive constructs [27, 29, 36, 75]. The chief
data source in danceON is a stream of movement data up to the cur-
rent moment in time-i.e., a list named poseHistory. Auto-lifting
eases accessing that data and supports a conceptual and creative
leap from working solely with the current body position or pose
(“where am I now?”) to working with the history of positions up

CHI 21, May 8-13, 2021, Yokohama, Japan

to the current point (“where have I been?”) (G3: Art motivates
code, G4: Code motivates art). The position history can be used
in estimating physical properties like velocity as well as underpin
sophisticated animations like tracing along the screen, silhouettes
that move in canon behind the dancer, and others. For example, the
(quite advanced) danceON program below produces an animation
of painting to the screen, captured in Figure 4. It uses filter to
isolate 60 recent body positions and map to access coordinates from
the body part leftWrist. By using two lists at an offset, (indices
0--59 and 1--60), the program draws line segments between each
successive point.

(pose, poseHistory) => [

{
what: 'line',
where: {
x1: poseHistory.filter((_, i) => i < 60)
.map(p => p.leftWrist.x),
y1: poseHistory.filter((_, i) => i < 60)
.map(p => p.leftWrist.y),
x2: poseHistory.filter((_, i) => i <61 && i > 0)
.map(p => p.leftWrist.x),
y2: poseHistory.filter((_, i) => 1 <61 & i > @)
.map(p => p.leftWrist.y),
3,
how: {
stroke: 'cyan',
strokeWeight: 4,
b
}

1;

5 CONTEXT DRIVEN ITERATIVE
DEVELOPMENT

We deployed and studied danceON within a remote SFD summer
camp using methods drawn from Design Based Research (DBR)
practice in education [6]. We partnered with the organizational staff
and instructors, iterated on danceON and its curriculum in response
to emergent needs and learner interests (§5.3), and captured rich
accounts of the intervention and its context (§6). While a messy,
real-world environment lacks some of the control that a laboratory
study would offer, proponents of DBR in the Learning Sciences
express concerns about the ecological validity of evaluations that
occur outside an authentic context [83]. The method provides an
understanding of the complexities of the educational innovation in
practice. In essence, work with youth and instructors was essential
to our formation of danceON, and we consider insights gained from
deploying early-stage tools both as part of our design process and as
a way to assess the design. As demonstrated in prior DBR research,
this work feeds into the iterative development of danceON ensuring
that it becomes increasingly aligned with learning theory, design,
measurement, and practice over time [38].

5.1 Overview of the Camp

During the remote summer camp, two separate cohorts engaged
with danceON across eight days of instruction over a two-week
span with a STEM instructor and dance instructor. Both cohorts

CHI ’21, May 8-13, 2021, Yokohama, Japan

Payne, et al.

Property | Description Example(s)
what Type of virtual object to draw. “circle”, “text”
Static or dynamic position binding.
where Varies across virtual object types. {x: 50, y: pose.leftWrist.y}
Random if not declared.
when Condition for whether to draw. true, pose.leftWrist.y <pose.nose.y
Appearance description.))
how Varies across virtual object types. {d: 30, fill: color(0, 255, 255, 255)}
Table 1: Virtual Object Properties
Statement Psuedocode/Code
When I raise my right wrist, what: circle . .
Instructor . where: my right wrist
a small purple circle . . .
Example . . when: I raise my right wrist
follows my right wrist.
how: small, purple
what: ‘triangle’,
when: pose.leftWrist.y <180,
where:{
“When someone’s left wrist x1:pose.leftWrist.x+10,
is raised above y:180, yl:pose.leftWrist.y+10,
Learner A a small yellow triangle appears x2:pose.leftWrist.x-10,
on their left wrist.” y2:pose.leftWrist.y-10,
x3:pose.leftWrist.x+20,
y3:pose.leftWrist.y+-10,},
how:{fill:color(225,225,28,255) }
what: ‘circle’,
when: pose.rightEye.y <160,
“When I raise my head’s position, where:{ .
Learner B . " x: pose.rightEye. x,
small blue circles come out! .
y: pose.rightEye.y,
2
how:{fill: color(0,0,255,255)}

Table 2: Superhero Challenge: Learner code excerpts and statements from Day 4 of Week 1.

were entirely young women in high school without prior program-
ming instruction or experience. 11 learners enrolled in the first
cohort, though 2 dropped out before submitting their final project
contributions. 10 learners enrolled and completed the second camp.
During the first four days, learners were introduced to danceON
as they worked independently on a “superhero challenge” where
they wrote English descriptions and implemented and modified
corresponding code in danceON. They submitted their progress
each day as they learned new danceON properties (Table 2). In
days 5-7, learners formed teams and worked on group projects that
were due the morning of day 8, leaving time to ensure individual
videos could be produced and sent to a video editor to stitch them
together.

While the camp ran from 9am to 3pm each day, only 1 to 2 hours
of time was allocated to technical instruction and project work
with danceON. The remainder of each day consisted of social time,
dance instruction, and presentations by invited speakers. During
the first week of each camp, researchers acted primarily as passive
observers only occasionally asking questions or helping debug code.

We wrote observational notes and retained learner brainstorming
and collaboration documents, code snippets, and dance videos.

5.2 danceON Usability Challenges

Observing learner progress remotely was difficult because we rarely
had access to screens. Occasionally learners shared their screens to
request help and most submitted superhero code progress at the end
of the first four days. We witnessed syntactic and semantic mistakes,
especially early in each camp. Learners submitted code containing
missing or mismatched brackets or commas and occasionally wrote
programs misaligned with written goals. For example, at the end
of day 1, a learner submitted the code along with the statement
“When I move my right arm, a blue triangle follows my right arm”
what: 'triangle',
where: {
X: pose.rightArm.x,
y: pose.leftArm.y,
The above contains multiple errors:

e Missing curly braces.

danceON

e Mismatched goal statement: A coordinate is drawn from the
left arm.

e Incorrect object properties: A triangle requires coordinates
of three points: x1--x3 and y1--y3. The learner may have
modified circle code, which can be described with single x
and y coordinates and a diameter.

e Missing body part: An arm property is not included in data
outputted by our pose detection algorithm, unlike shoulders,
wrists, or elbows.

While most code segments submitted did not include so many
errors, and the learner submitted a correct, expanded program three
days later adding color and referencing the shoulder, it reflects com-
mon mistakes. We did not observe learners using the IDE features to
debug their code, e.g. inline syntax error notification, autocomplete,
etc. We also did not observe learners referencing or copying from
the embedded help examples. Because there was so little technical
work time during lectures, the instructor did not model debugging
strategies to the learners.

5.3 Important Features Implemented During
the Camp

As part of our ongoing Design-Based Research process [83], we
made four substantial changes to danceON based on needs that
arose during project work so that learners could achieve their artis-
tic ideas in code (G3: Art motivates code), and could implement
high quality performances to full songs with multiple animations
(G2: Wide room for expression).

5.3.1 Access to Video Time. Initially, we withheld access to the
playback time of an uploaded video to ensure that learners could
only trigger animations through body position and movement. We
were concerned, based on past performance examples gathered dur-
ing instructor interviews, that learners would ignore opportunities
to define choreography and code in direct relation to each other
(G3, G4), and instead use time as the sole mediator between anima-
tion and code. However, the decision to withhold access to time
impeded learner progress on projects where they isolated specific
sections and lyrics to divvy up work and code discrete animations.
We provided learners access to time within an object’s when prop-
erty, (e.g. when: video.time() < 10). This enabled learner plans,
but resulted in “psuedo-imperative” programs in which previously
stateless objects were listed in order as if to be executed in time.

5.3.2 Recipes. Instructors and researchers created new code seg-
ments intended to be modified, or “recipes,” based on learner dis-
cussion and keywords written in brainstorming documents. We
made this decision in response to two limitations. First, by using
an in-progress DSL and not a widely used creative coding environ-
ment, learners lacked existing examples they could access online
and use in their projects. Second, while virtually everything learn-
ers proposed was possible in danceON, instructors and researchers
expressed concerns that learners would not be able to implement
everything from scratch in three-and-a-half days. While their super-
hero statements (Table 2) referenced single shapes, they were not
given instruction on combining or repurposing shape primitives to
simulate more realistic phenomena. Thus we built and dispersed
recipes including “rain”, “fire”, and “ribbons.” At times we built

CHI ’21, May 8-13, 2021, Yokohama, Japan

recipes in advance and used structured time to encourage learners
to play with and discuss them, while at other times we built recipes
live using structured time to describe their inner-workings. When
possible, we conveyed to learners that recipes should be thought
of as starting points and encouraged learners to not only integrate
code in their environment, but to adapt it for their specific video
and use it as an example to aid in crafting choreography that takes
the animation into account.

5.3.3 Generic and Specific Shapes. To close gaps between what
danceON initially supported and observations of learners’ expres-
sive desires, we added additional shapes beyond the built-in primi-
tives. We added generic shape and curve objects that could use any
number of vertices allowing for irregular, complex contours and
animations over multiple points of the body (e.g. to create lightning
that travels vertically down a body or a wave that curves from one
wrist across the chest to the other). We also added a heart shape,
accessible via the what property, to support a team whose theme
was “Love Yourself” While a heart could certainly be made using
the primitives, we felt it was more important for learners to plan
how to use the heart in their videos rather than figure out how to
create one.

5.3.4 Data Cleaning. Learners recorded videos under many condi-
tions: indoors, outdoors, dark lighting, etc. In many videos, partial
regions of their bodies were temporarily or entirely out of frame.
As a result, pose detection algorithms performed with mixed suc-
cess, occasionally mispredicting body part positions or leaving out
body parts entirely. For example, an ear would not be detected if
a learner tilted her head sideways to the camera. Because videos
were due near the end of the camp, there was no time for retakes
or for teaching learners to write code that takes into account in-
correct or missing data. Given SFD’s main objective of supporting
confidence development, we were concerned that learners would
feel embarrassed if their videos showed obvious glitches in the
public showcase. As a result we made two changes. First after both
camps, instructors and researchers made slight modifications to
learner projects to catch some blatant instances of disfigured shapes
resulting from missing data. Second, before the second camp, we
implemented a hidden heuristic condition that replaces a missing
value with its last known position. We did not notify learners of
this feature.

6 OVERVIEW OF LEARNER ARTIFACTS

Four teams of four-to-six learners created performance videos. Each
video consisted of a unique theme and song selection, original chore-
ography, animations coded in danceON, and dance videos. Learners
recorded the videos individually, and the danceON-embellished
videos were stitched together by an editor following learner in-
structions. To guide learners, instructors followed a similar process
and timeline for both cohorts. On Day 3, learners worked inde-
pendently to generate thematic, aesthetic, and musical ideas on
brainstorming sheets. Instructors synthesized learner documents
into four project ideas in the first cohort-Rainfall, Black Lives Mat-
ter, LGBTQ, and Female Empowerment-and six project ideas in the
second cohort-Smoky Day, Colorful Escape, Love Yourself, Stronger
Together, African Identity, and Hip Hop in Space. They provided

CHI ’21, May 8-13, 2021, Yokohama, Japan

Payne, et al.

(a) Dripping with Power

(b) Black Lives Matter

Figure 5: (a) Virtual clouds fall, water levels rise, and lightning flashes as learners dance to the song “Rain” with an umbrella.
(b) Animation and choreography representing the song lyric, “burning into flames”

learners with brief descriptions and possible song choices and asked
learners to rank their favorites. On Day 4 of each camp, the last
day of structured danceON learning, instructors determined the
projects and assigned learners to teams: Dripping with Power/Black
Lives Matter in the first camp and Colorful Escape/Love Yourself
in the second camp. Below, we include a thick description of one
team Dripping with Power’s process to detail how danceON was
used in its remote, collaborative context, and then we outline the
artifacts produced by the other three teams.

6.1 Dripping With Power

6.1.1 Ideation. Dripping With Power contained five learners who
ranked “Girl Power” or “Rainfall” as their top choice. They decided
immediately to organize their video into two segments: a mono-
logue, that they hoped could represent female empowerment, and a
dance section. In attempting to find a connection between two seem-
ingly disparate themes, one learner remembered an impactful scene
from “Hidden Figures,” a film that depicts three African-American
female engineers who encounter racism and sexism while working
in a segregated NASA unit in 1960’s Virginia. In the movie scene,
one engineer is dripping wet and explains to her white colleagues
that she has been absent because she needs to regularly travel half-
a-mile outside to reach the nearest bathroom allowable for use to
black people. Agreeing that the clip fits the theme, Dripping With
Power then selected a song: a slowed-down remix of the classic
R&B love song “Rain” by the vocal trio SWV (Sisters With Voices).

6.1.2 Planning. Learners set out to work on transcribing the speech
from the movie and copying the song lyrics found online in a shared
Google Doc. Then, one learner shared her screen with the music
playing while others determined the time stamps of section breaks
(Intro, Verse - 0:45, Chorus - 1:16), and decided that two teams
of three would independently choreograph the first two sections,
while everyone would work together on the third section. One
learner, after demonstrating her acting prowess, convinced the
group that she could handle the monologue. With all roles set, the
group worked to identify opportunities for animations. Beginning
with the monologue, they highlighted the phrases “simple string
of pearls” and “skirt below the knees” as imagery that could be
emphasized through animation. Then processing the lyrics, learn-
ers recognized that the songwriter connects rising emotion with
heavier and heavier rainfall progressing from “misting rain” to
“raindrops” to “a dam at capacity” They imagined an increasingly
intense storm as the dance progressed assigning themselves to
work on clouds, water, lightning, and rain. They decided to use

an umbrella as a prop they would dance with and open to shield
themselves from the virtual storm.

6.1.3 Implementation. The Dripping With Power team finished
planning on Day 1 leaving two days to choreograph, code, record
dance videos early enough to use the offline OpenPose algorithm
to capture higher quality position data, and produce the final ani-
mated takes. It became clear that instructors and researchers would
need to take a larger role in writing code examples and direct-
ing learner progress. The researcher working with Dripping with
Power required learners to begin, end, and customize each code
segment, but live-coded some of the objects when communicating
syntax over Zoom became too tedious. With some guidance and
suggestions, the learners coded individual shapes - a cloud as a
group of overlapping grey ellipses, water as a semi-transparent
rectangle, lightning as a transparent shape with bright strokes that
connect through different body parts during a specific pose, and a
raindrop as a small vertical line flashing at a random position (Fig-
ure 5a). The researcher went beyond the scope of the lessons and
demonstrated/live coded how to make each of these shapes move.
Adding randomness caused the lighting to quiver. Mapping song
time to the y-value of some shapes of caused the clouds to descend
and water level to rise. Rain expanded from a single drop to a full
storm through passing a list of random raindrop positions whose
length was determined by playback time. Ultimately, the researcher
combined each of the individual storm elements uploaded by the
learners into one file and asked learners to get it working on their
devices and to “remix” it by changing the behavior and color of the
lightning to match their shirts. The team ran out of time and was
unable to add any animations to the monologue, and unfortunately,
one learner was unable to attend the final day of camp and did not
submit a video for inclusion in the final cut.

6.2 Black Lives Matter

Black Lives Matter consisted of five young women, though one
dropped out. They selected the song “Freedom” by Beyonce and
used animations to represent specific lyrics. For example, during the
lyrics “I'm telling these tears, go and fall away, fall away, May the
last one burn into flames,” two learners sway their arms over and
around their heads while “flames,” red and yellow, semi-transparent
triangles, emanate from their faces travelling upwards and disap-
pearing (Figure 5b). Other short animations include text displayed
to the screen, chains connecting their wrists, and a wave repre-
sented by a semi-transparent blue quadrilateral.

danceON

CHI ’21, May 8-13, 2021, Yokohama, Japan

i

Figure 6: Colorful Escape: From smoke and darkness to dancing clones. (Images use an instructor video with learner code.)

6.3 Colorful Escape

Colorful Escape consisted of five young women, and in contrast
to the other three teams, did not identify a current social issue at
the start. They used hip-hop and contemporary dance styles to
choreograph “A Sweeter Place” by Selena Gomez which describes
a desire to escape from pain reflecting a thematic idea from their
brainstorming document, “light from darkness” The team’s anima-
tions were organized by song section rather than specific lyrics and
include a dark overlay and nearly transparent shapes to resemble
smoke, colorful circles changing in size, animated triangles cover-
ing their torsos, abstract silhouettes surrounding their body, and
duplicate silhouettes (Figure 6). The team chose not to feature all
dancers at all times, but instead feature groups of two and then
three dancers in middle portions of the performance.

6.4 Love Yourself

Love Yourself contained five young women who identified with
core themes of self-love, perseverance, and living in the moment.
They chose to choreograph “Fight Song” by Rachel Platten in a
contemporary dance style. The learners integrated five discrete
animations: Two represent lyrics literally (waves and explosions),
one symbolizes the theme (a heart passed between screens), and two
are aesthetically driven featuring traces drawn with poseHistory
with the team’s predefined color palette (Figure 9). The explosion
animation (Figure 7) demonstrates an especially clear alignment
between music, choreography and animation: As the singer recites,
“I might only have one match, but I can make an explosion,” the
learners forcefully project their hands up and out, while circles
appear to explode. A code description is as follows:

e what: circle.

e when: portion of the song when the lyric occurs.

o where: multiple positions, in between the wrists.

e how: red and yellow, size determined by wrist distance.
Furthermore, Love Yourself attempted to pass a virtual heart

between videos to the lyrics, “Can make a heart open” (Figure 8).

One learner sketched out an arrangement of videos for the editor

to use and for the heart to travel along. With instructor support,

the learners coded the heart to move in and out of view based on

the approximate timing of specific lyrics. Yet, they did not see the

collage of videos until the final performance, and timing was not
adequate to convey the effect they intended.

7 OVERVIEW OF FINDINGS

We draw from observation notes, learner project videos, code, and
working documents to identify successes and limitations of the
current danceON prototype and deployment with respect to our
initial four design goals.

7.1 Personally and Culturally Relevant: Low
barrier of entry

danceON enabled two cohorts of novice programmers to code and
successfully complete original artistic projects in under two weeks
with assistance from the instructor and researchers. Its web im-
plementation and lack of additional hardware requirements en-
abled remote learning even for a few learners who only had partial
computer access. Furthermore, the system’s support for any video
featuring a single dancer allowed learners to select their own mu-
sic and dance in any style. We see early evidence from the camp,
including the superhero statements (§5) coded independently, that
danceON’s syntax and reactivity encouraged learners to draw con-
nections between their body and its representation in code. The
webcam mode and video overlays (§4.1) were used heavily by the
instructor while lecturing and asking questions.

Yet, instructors and researchers provided ample support to learn-
ers coding examples in advance to use as starting points and helping
them finish their projects to better realize their ideas (§5.3.2). While

\
[' Bt

Figure 7: Love Yourself: Explosion animation building on rel-
evant lyrical content and choreography.

CHI ’21, May 8-13, 2021, Yokohama, Japan

- 4

_ik i
U aely

Payne, et al.

4

Figure 8: Love Yourself: Frames captured across time as learners planned to move a heart between their screens, (e.g. entering
from the left and exiting out the bottom of the top row) relying on proper arrangement and accurate timing,.

the lack of time combined with the large scope of projects necessi-
tated additional support, certain features of danceON contributed
to a lack of scaffolding and complexity. The template examples
provided by our team only showed basic use of shape primitives
but not how to combine primitives or manipulate their properties to
simulate phenomena like fire or water, and it wasn’t clear whether
learners understood how to reference and copy the provided exam-
ples (§4.4). Additionally, danceON’s syntax is complex — especially
its punctuation. During instruction, learners experienced some diffi-
culties with comma placement and matching brackets (§5.2), while
projects became especially hard to manage as individuals worked
separately on discrete animations or song regions (§5.3.1).

7.2 Personally and Culturally Relevant: Wide
room for expression

danceON clearly supports personally and culturally relevant en-
gagement in a range of forms. We saw no shortage of ideas as
instructors synthesized ten potential themes worthy of further ex-
ploration. While three teams, Dripping With Power, Black Lives
Matter, and Love Yourself responded to social issues, including
women empowerment, racial justice, and self care respectively, the
Colorful Escape team was motivated by aesthetic alone. danceON
enabled the groups to explore narrative on their own terms. Drip-
ping with Power featured a soloist and a spoken monologue. Love
Yourself attempted to come together despite their physical dis-
tance through passing a heart between screens. Colorful Escape
used color as a storytelling vehicle, beginning their performance
covered in dark grey hues and concluding with brightly colored
virtual outfits and clones dancing side by side. The Black Lives
Matter Team displayed moments of evocative imagery including
becoming bound and later breaking free of virtual chains. As fur-
ther illustrated below, danceON’s environment supported countless
animation methods and mappings for learners to concretize their
ideas.

7.3 Creative Coding: Art motivates code

There are numerous instances of learners fulfilling artistic ideas in
code. Learners programmed animations that represent specific song
lyrics (e.g. Black Lives Matter’s flames) or captured a wider lyrical

theme (e.g. Dripping With Power’s storm). They wrote animations
to augment single gestures (e.g. Love Yourself’s explosions) and
entire sections (e.g. Colorful Escape’s clones). Learners chose shapes
and shape properties to adhere to their team’s theme, e.g. the Love
Yourself Team requested a heart shape while the Colorful Escape
team transitioned from dark grey to bright vivid colors.

7.4 Creative Coding: Code motivates art

In contrast, we observed a small number of instances where a
learner’s programming process led to new artistic ideas. After elect-
ing to animate a virtual storm, the Dripping With Power team chose
to use an umbrella as a key prop in their choreography. Furthermore,
unlike her teammates in Love Yourself who wrote specific anima-
tion ideas tied to lyrics and theme, one learner wrote poseHistory
under the Animation column of her team’s planning document
indicating an interest in experimenting with a data structure refer-
enced by the instructor but not given instruction time. Ultimately
her animation did not deviate far from the poseHistory example
included, but she independently copied and remixed it by accessing
multiple body parts and changing the colors to match her team’s
theme (Figure 9). Finally, learners across teams altered the appear-
ance of virtual objects to correspond with their final performance
videos, e.g. to match the color of their shirts, but we note that this
was often prompted by instructors.

8 DISCUSSION

Our Findings show that danceON’s systems are compatible with the
first four design goals we listed. In our Discussion, we reflect further
on the extent to which danceON achieved those goals and address
the implications for designing creative computing environments.

8.1 Connecting the Virtual and Physical World

Within a curriculum built upon reflective ideation in which young
women generated themes and ideas to use as the basis of their dance,
danceON succeeded at developing strong connections between the
computational thought process and the artistic depiction of their
ideas. First, our deployment demonstrates how simplicity provides
room for artistic freedom and contextual sense-making. danceON

danceON

Figure 9: Love Yourself: A learner remixed an example to
use both wrists and ankles, and create fading trails in her
group’s color palette.

enabled learners to create metaphorical and symbolic representa-
tions related to the lyrical and thematic content of the songs and
their ideas. While available objects and properties were simple (i.e.
lines, circles, triangles, etc.), learners composed and repurposed
them to create understandable phenomena, such as multiple verti-
cal lines representing “rain”; and yellow and red circle “explosions.”
These representations were authentic in that they enabled learn-
ers’ choreography to respond to them in recognizable ways, e.g.
integrating props like the umbrella used by Dripping with Power
as the animations rained (Figure 5a). Second, danceON enabled
learners to create animations that they simply found aesthetically
pleasing, rather than metaphorically significant. Crucially, aesthetic
ideas held power because they were attached to real, physical body
movement. For example, learners created a fading trail of circles
tied to each of their wrists and ankles (Figure 9). While circles in
isolation may be uninteresting, when matched to dancer move-
ments, they augment choreography connecting data to the physical
world, e.g. visualizing movement speed, and interacting with real
objects like learner shirts. These physical-to-virtual connections
were only made possible because of the underlying design centered
on learner-uploaded dance videos. In prior work in which learners
programmed avatar dancers, Daily et al. [19] noted learners’ desire
to close the gap between the avatar and their identity. In danceON,
learners work directly with their own videos and their own bodies
potentially opening opportunities for the art piece to more easily
align with their identity.

8.2 Design for Learning Progress

In our initial deployment of danceON, we observed a clear trajec-
tory of learners working with increasingly long and sophisticated
media and data. Learners first explored individual danceON object
properties in isolation, then constructed single-gesture, reactive
behaviors in their superhero statements, and finally worked on

CHI 21, May 8-13, 2021, Yokohama, Japan

large performances bringing together diverse, sophisticated anima-
tions. However, learners struggled to independently realize their
complex ideas under time constraints (§5.3.2), and experienced dif-
ficulties understanding the textual-language and debugging error
messages (§5.2). These difficulties point to specific opportunities
to scaffold the learning progression through the design of the lan-
guage and IDE. danceON, and other creative coding environments,
could benefit from implementing adaptive design paradigms such
as Ability-Based Design [88], in which an interface is responsive
to a user’s ability and malleable when that ability changes. Sim-
ilarly, the language levels approach [41] implements progressive
disclosure to programming languages and interpreters/compilers
in which the programmatic interface of a system matches the com-
plexity of a user’s current understanding. For example, if danceON
applied language levels to support understanding through clearer
error messages, an early level might prevent variable definitions
(or other bindings). A learner who forgets to place quotation marks
around the word circle, would receive a message hinting that they
forgot quotation marks along with reasoning and a suggested fix,
e.g. “did you forget quotation marks around ‘circle’?” rather than
the message “circle is not defined” which requires more knowledge
of programming to understand and resolve. This kind of error mes-
sage would be feasible within the constraints of the language level
precisely because it does not allow definitions — circle would be a
member of a pre-defined set of names within the program’s scope,
permitting the use of the clearer error message.

8.2.1 Improvements to the danceON Editor. The editing environ-
ment is inextricably linked to the programming language, and we
see further design opportunities to support the collaboration and
work habits we observed, as well as expand and adapt to changing
skill levels. For example, several media-focused novice program-
ming tools, including Scratch [47], JES [35], and EarSketch [30],
combine a programming editor with a direct manipulation media
viewing/editing environment. Currently, all of danceON’s editing is
carried out through code. Once learners began their group projects,
danceON code morphed from unordered sets of relationships and
behaviors as we intended, to long, ordered lists essentially contain-
ing timed events (§5.3.1). This became challenging for learners to
read, edit, and collaborate remotely on with their peers. A solution
could include a timeline below the video, into which learners drag-
and-drop animation “scenarios,” defined by danceON scripts that
become operative within visually selected segments of the timeline.
Such a feature, which introduces complexities like multiple scripts
and media-based state, may be hidden at first to guide learners to-
ward learning to primarily trigger animations through movement
rather than micro-timing.

8.2.2 Future Learning Opportunities. The above design proposals
derive from observations of relatively brief learner experiences with
danceON, and thus pertain more to the beginning of a learning
progression. However, danceON is intended to support complex
projects and use cases, and further research is necessary to un-
derstand how to promote creativity and learning at later stages.
During the camp we observed how learners independently trans-
lated English statements into declarative code chunks (Table 2)
that were clearer and more succinct than in general creative cod-
ing environments (§4.5). Yet, we did not witness learners gaining

CHI ’21, May 8-13, 2021, Yokohama, Japan

Figure 10: Black Lives Matter: Key point locations of the el-
bows are out of view in the second frame causing the ‘rope’
animation to disconnect from the body and visibly ‘glitch’

enough mastery over the danceON syntax to treat objects as a
low-level grammar with which to realize broader creative goals.
Learners, such as one inspired by the flames described in a Beyonce
song (Figure 5b), certainly expressed relevant and meaningful goals.
Realizing those ideas however was much more complex than the
challenges they overcame in which there was always a one-to-one
mapping between stated goal and code implementation. Continua-
tion of the design-based research with learners and instructors over
a longer period is necessary to understand how to scaffold more
advanced problem decomposition in a dance computing context.

8.3 Messy, Glitchy Data Art

While danceON successfully represented and exposed body posi-
tion data, it could better facilitate interaction with and guide learner
understanding of missing and incorrect data. danceON’s declara-
tive, reactive programming system is centered around the output
of computer vision algorithms run on homemade dance videos. As
described in Section 5.3.4, these algorithms are imperfect and oc-
casionally generate data with missing or inaccurate body position
information, especially if body parts are occluded (e.g. Figure 10).
In the context of this deployment, we and SFD leads viewed inac-
curate and missing data unfavorably since they produced apparent
“mistakes” threatening the success of final projects.

Future work might investigate how errors and noise in data
could offer organic opportunities for discovery, learning, and inspi-
ration. In promoting data empowerment for non-technical learners,
“[c]ultivating skepticism of ‘raw’ data” should be seen as an im-
portant goal of any data literacy program [21]. Focusing attention
on errors in data can lead to better understanding of the limita-
tions of data collection systems. System constraints can in turn
lead to thoughtful workarounds or, in the current context, may
be harnessed for creative effect. For example, some game design-
ers embraced technical challenges in the “seamful design” of early
location-based mobile games [12].

A structured inquiry process into data imperfections might invite
the learner to seek out the boundaries of motion capture technol-
ogy and to differentiate between systematic and random errors in
data (G5: Data literacy). Guiding questions include: Under what
conditions do body keypoints disappear? What are the limitations
of a two-dimensional (depth-less) system when the dancer’s arms
are pointing towards the camera? How still is standing still, when
tiny fluctuations in alignment (or lighting) can manifest as visible

Payne, et al.

jitter in the location of a dancer’s knee? How fast is too fast for
the computer to track a hand? More broadly, to what extent is the
computer’s “perception” different from a human observer’s?
danceON’s design may also be further extended to support user
interactions with incorrect data. For example, an additional layer
to the Skeleton overlay (§4.3) could allow users to manually drag
body data coordinates that appear incorrect and add body part data
that is missing. Or, an additional tab may allow users to toggle
rules/heuristics, (e.g. if a left or right body part is missing, reflect
the position of its known partner over the center of the body, if a
body part is missing use its last known position, etc.), and observe
whether such choices improve results and/or yield unintended
consequences. A feature for advanced use could provide further
algorithmic control over missing data based on hypothesized causes
in a particular video. Still, accurate data is a lesser priority than
scaffolding an authentic learner experience of data wrangling.

9 CONCLUSION

In this paper, we presented the first iteration of danceON, a system
for integrating dance and animation in culturally relevant, creative
computational learning environments. Our ongoing design-based
research investigation with STEM From Dance (SFD) led us to
create a tool to engage young women of color in computing and
provide novices ease of entry into explorations at the boundaries
of data and dance. The four learner projects we describe highlight
the affordances of danceON: its support for a range of opportuni-
ties for personal expression and its potential for creating mutually
informing relationships between computation, data, and dance. We
identified opportunities to embed scaffolding within danceON’s
design to account for learners’ growing expertise. Additionally, we
addressed the benefit of real-world, messy data to critically engage
learners working at the seams of technology. Our work sets a path
for future developments to explore the connections between dance
and data-driven systems and to push the bounds of how learners
can engage in meaningful embodied learning experiences.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support for this project by the
National Science Foundation (STEM+C 1933961). We thank the ad-
ministrators and instructors who guided us and worked tirelessly to
provide a supportive and rewarding summer learning environment—
Yamilée Toussaint Beach, Elena Hartoonian, Stacie Cannon, and
Shannon Peng. Finally, we thank Shriram Krishnamurthi whose
feedback and insights inspired portions of our Discussion.

REFERENCES

[1] Samuel Aaron, Alan F. Blackwell, and Pamela Burnard. 2016. The development

of Sonic Pi and its use in educational partnerships: Co-creating pedagogies for

learning computer programming. Journal of Music, Technology and Education 9,

1(52016), 75-94. https://doi.org/10.1386/jmte.9.1.75_1

Brittany Aronson and Judson Laughter. 2016. The Theory and Practice of Cul-

turally Relevant Education: A Synthesis of Research Across Content Areas. Re-

view of Educational Research 86, 1 (2016), 163-206. https://doi.org/10.3102/

0034654315582066

[3] Computer Science Teachers Association. 2017. CSTA K-12 Computer Science
Standards, Revised 2017. http://www.csteachers.org/standards

[4] Mary M Atwater, Melody Russell, and Malcolm B Butler. 2013. Multicultural
science education: Preparing teachers for equity and social justice. Springer Science
& Business Media.

[2

https://doi.org/10.1386/jmte.9.1.75_1
https://doi.org/10.3102/0034654315582066
https://doi.org/10.3102/0034654315582066
http://www.csteachers.org/standards

danceON

[10]

(1]

[12

[13]

[14]

[15]

[16]

[17]

[18]

[19

[20

[21

[22]
[23

[24

[25

[26]

[27

[28

[29]

Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stijn
Mostinckx, and Wolfgang de Meuter. 2013. A survey on reactive programming.
ACM Computing Surveys (CSUR) 45, 4 (2013), 1-34.

Arthur Bakker. 2018. Design research in education: A practical guide for early
career researchers. Routledge.

Jeanne Shapiro Bamberger and Armando Hernandez. 2000. Developing musical
intuitions: A project-based introduction to making and understanding music. Oxford
University Press, USA.

Yoav Bergner, Shiri Mund, Ofer Chen, and Willie Payne. 2020. Leveraging interest-
driven embodied practices to build quantitative literacies: A case study using
motion and audio capture from dance. Educational Technology Research and
Development (2020), 1-24.

Rahul Bhargava, Ricardo Kadouaki, Emily Bhargava, Guilherme Castro, and
Catherine D’Ignazio. 2016. Data murals: Using the arts to build data literacy. The
Journal of Community Informatics 12, 3 (2016).

Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative Research in Psychology 3, 2 (1 2006), 77-101. https://doi.org/10.1191/
1478088706qp0630a

Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and as-
sessing the development of computational thinking. In Proceedings of the 2012 an-
nual meeting of the American educational research association, Vancouver, Canada,
Vol. 1. 25.

Gregor Broll and Steve Benford. 2005. Seamful design for location-based mobile
games. In International Conference on Entertainment Computing. Springer, 155—
166.

Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2018.
OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields.
(2018). arXiv:1812.08008

Michelle Carney, Barron Webster, Irene Alvarado, Kyle Phillips, Noura Howell,
Jordan Griffith, Jonas Jongejan, Amit Pitaru, and Alexander Chen. 2020. Teach-
able Machine: Approachable Web-Based Tool for Exploring Machine Learning
Classification (CHI EA "20). Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/3334480.3382839

Dionne N Champion. 2018. The STEAM dance makerspace: A context for integra-
tion: An investigation of learning at the intersections of STEM, art, making and
embodiment. Ph.D. Dissertation. Northwestern University.

John Clements, Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and
Shriram Krishnamurthi. 2004. Fostering Little Languages. Dr. Dobb’s Journal 29,
3 (2004), 16-24.

Kathryn Cunningham. 2020. Purpose-first Programming: A Programming Learn-
ing Approach for Learners who Care Most About What Code Achieves. In Proceed-
ings of the 2020 ACM Conference on International Computing Education Research.
348-349.

Shaundra B Daily, Alison E Leonard, Sophie Jorg, Sabarish Babu, and Kara Gunder-
sen. 2014. Dancing alice: Exploring embodied pedagogical strategies for learning
computational thinking. In Proceedings of the 45th ACM technical symposium on
Computer science education. 91-96.

Shaundra B Daily, Alison E Leonard, Sophie J6rg, Sabarish Babu, Kara Gundersen,
and Dhaval Parmar. 2015. Embodying computational thinking: Initial design of
an emerging technological learning tool. Technology, Knowledge and Learning 20,
1(2015), 79-84.

Kayla DesPortes, Monet Spells, and Betsy DiSalvo. 2016. The MoveLab: Develop-
ing Congruence Between Students’ Self-Concepts and Computing. Proceedings
of the 47th ACM Technical Symposium on Computing Science Education - SIGCSE
’16 (2016), 267-272. https://doi.org/10.1145/2839509.2844586

Catherine D’Ignazio. 2017. Creative data literacy. Information Design Journal 23,
1(7 2017), 6-18. hittps://doi.org/10.1075/id}.23.1.03dig

Catherine D’Ignazio and Lauren F Klein. 2020. Data feminism. MIT Press.
Betsy DiSalvo. 2014. Graphical qualities of educational technology: Using drag-
and-drop and text-based programs for introductory computer science. IEEE
computer graphics and applications 34, 6 (2014), 12-15.

Benedict du Boulay, Tim O’Shea, and John Monk. 1981. The black box inside the
glass box: presenting computing concepts to novices. International Journal of
Man-Machine Studies 14, 3 (1981), 237-249.

Alireza Ebrahimi. 1994. Novice programmer errors: Language constructs and
plan composition. International Journal of Human-Computer Studies 41, 4 (1994),
457-480.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2009. A functional I/O system or, fun for freshman kids. ACM Sigplan
Notices 44, 9 (2009), 47-58.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2018. How to design programs: an introduction to programming and
computing. MIT Press.

Lila Finch, Celeste Moreno, and R Benjamin Shapiro. 2020. Teacher and stu-
dent enactments of a transdisciplinary art-science-computing unit. Instructional
Science (2020), 1-44.

Kathi Fisler. 2014. The recurring rainfall problem. In Proceedings of the tenth
annual conference on International computing education research. 35-42.

(30]

[31

(32]

@
&

(41

[42

[43

[44

[45

[46

TS
2.0

[53

[54

CHI 21, May 8-13, 2021, Yokohama, Japan

Jason Freeman, Brian Magerko, Tom McKlin, Mike Reilly, Justin Permar, Cameron
Summers, and Eric Fruchter. 2014. Engaging underrepresented groups in high
school introductory computing through computational remixing with EarSketch.
In Proceedings of the 45th ACM technical symposium on Computer science education
- SIGCSE ’14. ACM Press, New York, New York, USA, 85-90. https://doi.org/10.
1145/2538862.2538906

Geneva Gay. 2002. Preparing for culturally responsive teaching. Journal of
teacher education 53, 2 (2002), 106-116.

Berto Gonzalez, Erin Cherry, and Celine Latulipe. 2012. Dance-inspired tech-
nology, Technology-inspired dance. NordiCHI 2012: Making Sense Through De-
sign - Proceedings of the 7th Nordic Conference on Human-Computer Interaction.
https://doi.org/10.1145/2399016.2399078

Norma Gonzélez, Rosi Andrade, Marta Civil, and Luis Moll. 2004. Bridging funds
of distributed knowledge: Creating zones of practices in mathematics. 6, 1-2
(2004), 115-132. https://doi.org/10.1207/s15327671espr0601-2_7

Kris D Gutiérrez and Barbara Rogoff. 2003. Cultural ways of learning: Individual
traits or repertoires of practice. Educational researcher 32, 5 (2003), 19-25.
Mark Guzdial. 2003. A media computation course for non-majors. In Proceedings
of the 8th annual conference on Innovation and technology in computer science
education. 104-108.

Brian Harvey and Matthew Wright. 1999. Simply Scheme: introducing computer
science. Mit Press.

Katrina Hazzard-Gordon. 1985. African-American vernacular dance: core culture
and meaning operatives. Journal of Black Studies 15, 4 (1985), 427-445.
Christopher M Hoadley. 2004. Methodological alignment in design-based research.
Educational psychologist 39, 4 (2004), 203-212.

Robert Holwerda and Felienne Hermans. 2018. A usability analysis of blocks-
based programming editors using cognitive dimensions. In 2018 IEEE symposium
on visual languages and human-centric computing (VL/HCC). IEEE, 217-225.
Liwen Huang and Paul Hudak. 2003. Dance: A declarative language for the control
of humanoid robots. Yale, Department of Computer Science, Yale University New
Haven, CT 06520, Tech. Rep. (2003).

Shriram Krishnamurthi and Kathi Fisler. 2019. Programming paradigms and
beyond. The Cambridge Handbook of Computing Education Research 37 (2019).
Gloria Ladson-Billings. 2014. Culturally relevant pedagogy 2.0: aka the remix.
Harvard Educational Review 84, 1 (2014), 74-84.

Alison E Leonard and Shaundra B Daily. 2014. The Dancing Alice Project: Com-
putational and embodied arts research in middle school education. In Proceedings
of the 45th ACM Technical Symposium on Computer Science Education.

Alison E Leonard, Shaundra B Daily, Sophie Jorg, and Sabarish V Babu. 2020.
Coding moves: Design and research of teaching computational thinking through
dance choreography and virtual interactions. Journal of Research on Technology
in Education (2020), 1-19.

Alison E Leonard, Nikeetha Dsouza, Sabarish V Babu, Shaundra B Daily, Sophie
Jorg, Cynthia Waddell, Dhaval Parmar, Kara Gundersen, Jordan Gestring, and
Kevin Boggs. 2015. Embodying and programming a constellation of multimodal
literacy practices: Computational thinking, creative movement, biology, & virtual
environment interactions. Journal of Language and Literacy Education 11, 2 (2015),
64-93.

Lindsay Lindberg, Deborah Ann Fields, and Yasmin B Kafai. 2020. STEAM maker
education: Conceal/reveal of personal, artistic and computational dimensions in
high school student projects. In Frontiers in Education, Vol. 5. Frontiers Research
Foundation, 1.

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 1-15.

Bill Manaris, Blake Stevens, and Andrew R. Brown. 2016. JythonMusic: An
environment for teaching algorithmic music composition, dynamic coding and
musical performativity. Journal of Music, Technology and Education 9, 1 (5 2016),
33-56. https://doi.org/10.1386/jmte.9.1.33_1

Lauren McCarthy. 2020. p5.js. https://p5js.org

Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. 2011. Habits
of programming in scratch. In Proceedings of the 16th annual joint conference on
Innovation and technology in computer science education. 168-172.

Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael
Greenberg, Aleks Bromfield, and Shriram Krishnamurthi. 2009. Flapjax: A pro-
gramming language for Ajax applications. Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications, OOPSLA
(2009), 1-20. https://doi.org/10.1145/1640089.1640091

Sten Minér. 1992. Interacting with structure-oriented editors. International
Journal of Man-Machine Studies 37, 4 (1992), 399-418.

Jessica Morales-Chicas, Mauricio Castillo, Ireri Bernal, Paloma Ramos, and
Bianca L Guzman. 2019. Computing with relevance and purpose: A review of
culturally relevant education in computing. International Journal of Multicultural
Education 21, 1 (2019), 125-155.

Marco T Morazan. 2018. Infusing an HtDP-based CS1 with distributed program-
ming using functional video games. J. Funct. Program. 28 (2018), e5.

https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://arxiv.org/abs/1812.08008
https://doi.org/10.1145/3334480.3382839
https://doi.org/10.1145/2839509.2844586
https://doi.org/10.1075/idj.23.1.03dig
https://doi.org/10.1145/2538862.2538906
https://doi.org/10.1145/2538862.2538906
https://doi.org/10.1145/2399016.2399078
https://doi.org/10.1207/s15327671espr0601-2_7
https://doi.org/10.1386/jmte.9.1.33_1
https://p5js.org
https://doi.org/10.1145/1640089.1640091

CHI ’21, May 8-13, 2021, Yokohama, Japan

[55]

[56]

[57

[58]

o
A

[60]

(61

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Bahare Naimipour, Mark Guzdial, and Tamara Shreiner. 2019. Helping social
studies teachers to design learning experiences around data: Participatory design
for new teacher-centric programming languages. In Proceedings of the 2019 ACM
Conference on International Computing Education Research. 313-313.

Bahare Naimipour, Mark Guzdial, and Tamara Shreiner. 2020. Engaging pre-
service teachers in front-end design: Developing technology for a social studies
classroom. In Proceedings of Frontiers in Education (FIE) 2020. IEEE.

Enrico Nardelli. 2019. Do we really need computational thinking? Commun.
ACM 62, 2 (2019), 32-35.

Chris Nash and Alan Blackwell. 2012. Liveness and flow in notation use. NIME
2012 Proceedings of the International Conference on New Interfaces for Musical
Expression (2012), 76-81.

National Science Foundation, National Center for Science and Engineering
Statistics. 2019. Degrees awarded to women: Mathematics and statistics, 1997,
2006, 2016. https://ncses.nsf.gov/pubs/nsf19304/digest/field- of-degree-women#
mathematics-and-statistics

Tor Ole B Odden and Rosemary S Russ. 2019. Defining sensemaking: Bringing
clarity to a fragmented theoretical construct. Science Education 103, 1 (2019),
187-205.

Thudiya Finda Ogbonnaya-Ogburu, Angela D.R. Smith, Alexandra To, and Kentaro
Toyama. 2020. Critical Race Theory for HCIL In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems. ACM, New York, NY, USA,
1-16. https://doi.org/10.1145/3313831.3376392

Cathy O’neil. 2016. Weapons of math destruction: How big data increases inequality
and threatens democracy. Broadway Books.

John F Pane, Chotirat Ratanamahatana, and Brad A a Myers. 2001. Studying the
language and structure in non-programmers’ solutions to programming problems.
International Journal of Human-Computer Studies 54, 2 (2001), 237-264.

Django Paris. 2012. Culturally sustaining pedagogy: A needed change in stance,
terminology, and practice. Educational Researcher 41, 3 (2012), 93-97. https:
//doi.org/10.3102/0013189X12441244

D. Parmar, J. Isaac, S. V. Babu, N. D’Souza, A. E. Leonard, S. Jorg, K. Gundersen,
and S. B. Daily. 2016. Programming moves: Design and evaluation of applying
embodied interaction in virtual environments to enhance computational thinking
in middle school students. In 2016 IEEE Virtual Reality (VR). 131-140.

Roy D Pea. 1986. Language-independent conceptual “bugs” in novice program-
ming. Journal of educational computing research 2, 1 (1986), 25-36.

John Peterson, Gregory D Hager, and Paul Hudak. 1999. A language for declara-
tive robotic programming. In Proceedings 1999 IEEE International Conference on
Robotics and Automation (Cat. No. 99CH36288C), Vol. 2. IEEE, 1144-1151.
Nichole Pinkard, Caitlin Kennedy Martin, and Sheena Erete. 2020. Equitable
approaches: opportunities for computational thinking with emphasis on creative
production and connections to community. Interactive Learning Environments 28,
3 (2020), 347-361.

Joe Politz, Benjamin Lerner, Sorawee Porncharoenwase, and Shriram Krish-
namurthi. 2019. Event loops as first-class values: A case study in pedagogic
language design. The Art, Science, and Engineering of Programming (2019).
https://doi.org/10.22152/programming-journal.org/2019/3/11

[70] Justin Pombrio, Shriram Krishnamurthi, and Kathi Fisler. 2017. Teaching pro-

gramming languages by experimental and adversarial thinking. In 2nd Summit
on Advances in Programming Languages (SNAPL 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

(71

[72

[73

<
=t

[75

[76

[77

<
&

(85]

(86]

(87]

(8]

Payne, et al.

Thomas W Price and Tiffany Barnes. 2015. Comparing textual and block interfaces
in a novice programming environment. In Proceedings of the eleventh annual
international conference on international computing education research. 91-99.
Charlie Roberts, Jesse Allison, Daniel Holmes, Benjamin Taylor, Matthew Wright,
and JoAnn Kuchera-Morin. 2016. Educational design of live coding environments
for the browser. Journal of Music, Technology and Education 9, 1 (5 2016), 95-116.
https://doi.org/10.1386/jmte.9.1.95_1

Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A grammar of interactive graphics. IEEE Transactions on Visual-
ization & Computer Graphics (Proc. InfoVis) (2017). https://doi.org/10.1109/tvcg.
2016.2599030

Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. 2015. Re-
active vega: A streaming dataflow architecture for declarative interactive visu-
alization. IEEE transactions on visualization and computer graphics 22, 1 (2015),
659-668.

Emmanuel Schanzer, Shriram Krishnamurthi, and Kathi Fisler. 2018. Creativity,
customization, and ownership: Game design in Bootstrap: Algebra. In Proceedings
of the 49th ACM Technical Symposium on Computer Science Education. 161-166.
Kimberly A Scott, Kimberly M Sheridan, and Kevin Clark. 2015. Culturally
responsive computing: A theory revisited. Learning, Media and Technology 40, 4
(2015), 412-436

Kimberly A Scott and Mary Aleta White. 2013. COMPUGIRLS4€™standpoint:
Culturally responsive computing and its effect on girls of color. Urban Education
48,5 (2013), 657-681.

Kristin A Searle and Yasmin B Kafai. 2015. Culturally responsive making with
American Indian girls: Bridging the identity gap in crafting and computing with
electronic textiles. In Proceedings of the Thir gonference on GenderIT. 9-16.
Otto Seppild, Petri Ihantola, Essi Isohanni, Juha Sorva, and Arto Vihavainen.
2015. Do we know how difficult the rainfall problem is?. In Proceedings of the
15th Koli Calling Conference on Computing Education Research. 87-96.

R Benjamin Shapiro and Matthew Ahrens. 2016. Beyond blocks: Syntax and
semantics. Commun. ACM 59, 5 (2016), 39-41.

Elliot Soloway. 1986. Learning to program= learning to construct mechanisms
and explanations. Commun. ACM 29, 9 (1986), 850-858.

Tensorflow. 2020. Pose Detection in the Browser: PoseNet Model.

The Design-Based Research Collective. 2003. Design-Based Research: An Emerg-
ing Paradigm for Educational Inquiry. Educational Researcher 32, 1 (1 2003), 5-8.
https://doi.org/10.3102/0013189X032001005

David Weintrop and Uri Wilensky. 2015. To block or not to block, that is the
question: students’ perceptions of blocks-based programming. In Proceedings of
the 14th international conference on interaction design and children. 199-208.
David Weintrop and Uri Wilensky. 2017. Comparing block-based and text-based
programming in high school computer science classrooms. ACM Transactions on
Computing Education (TOCE) 18, 1 (2017), 1-25.

David Weintrop and Uri Wilensky. 2017. How block-based languages support
novices. Journal of Visual Languages and Sentient Systems 3 (2017), 92-100.
Jeannette M Wing. 2008. Computational thinking and thinking about computing.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 366, 1881 (2008), 3717-3725.

Jacob O. Wobbrock, Shaun K. Kane, Krzysztof Z. Gajos, Susumu Harada, and Jon
Froehlich. 2011. Ability-based design: Concept, principles and examples. ACM
Trans. Access. Comput. 3, 3, Article 9 (April 2011), 27 pages. https://doi.org/10.
1145/1952383.1952384

https://ncses.nsf.gov/pubs/nsf19304/digest/field-of-degree-women#mathematics-and-statistics
https://ncses.nsf.gov/pubs/nsf19304/digest/field-of-degree-women#mathematics-and-statistics
https://doi.org/10.1145/3313831.3376392
https://doi.org/10.3102/0013189X12441244
https://doi.org/10.3102/0013189X12441244
https://doi.org/10.22152/programming-journal.org/2019/3/11
https://doi.org/10.1386/jmte.9.1.95_1
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.3102/0013189X032001005
https://doi.org/10.1145/1952383.1952384
https://doi.org/10.1145/1952383.1952384

	Abstract
	1 Introduction
	2 Related Work
	2.1 Dance and STEM/Computing Education
	2.2 Programming Languages and Learning
	2.3 Opportunities in Declarative and Reactive Languages

	3 Design Objectives
	3.1 Context of Design Research
	3.2 Formative Design Work
	3.3 Design Goals

	4 The danceON System
	4.1 Video Window
	4.2 Pose Detection: PoseNet, OpenPose, & Teachable Machine
	4.3 Position & Pose Overlays
	4.4 Live Coding IDE
	4.5 danceON Language Features

	5 Context Driven Iterative Development
	5.1 Overview of the Camp
	5.2 danceON Usability Challenges
	5.3 Important Features Implemented During the Camp

	6 Overview of Learner Artifacts
	6.1 Dripping With Power
	6.2 Black Lives Matter
	6.3 Colorful Escape
	6.4 Love Yourself

	7 Overview of Findings
	7.1 Personally and Culturally Relevant: Low barrier of entry
	7.2 Personally and Culturally Relevant: Wide room for expression
	7.3 Creative Coding: Art motivates code
	7.4 Creative Coding: Code motivates art

	8 Discussion
	8.1 Connecting the Virtual and Physical World
	8.2 Design for Learning Progress
	8.3 Messy, Glitchy Data Art

	9 Conclusion
	Acknowledgments
	References

