This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX 1

Double-Edge Embedding Based Provenance
Recovery for Low-Latency Applications in
Wireless Networks

J. Harshan', Amogh Vithalkar’, Naman]hunjhunwala*, Manthan Kabraf, Prafull Manav', Yih-Chun Hu*

fIndian Institute of Technology Delhi, India.
“University of Illinois Urbana-Champaign, U.S.A

Abstract—A number of applications in next-generation multi-hop networks, e.g. vehicular networks, impose low-latency requirements
on data transmission thereby necessitating the underlying relays to introduce negligible delay when forwarding the packets. While
traditional relaying techniques such as amplify-and-forward protocols may help the packets to satisfy latency-constraints, such
strategies do not facilitate the destination in learning the path traveled by the packets, which in turn could be used for either learning
the topology of the network or detecting security threats on the network. In addition to low-latency constraints, vehicular networks also
result in variable network topology owing to the mobility of the nodes, which in turn imposes additional challenges to the destination in
learning the path traveled by the packets. Thus, with potential applications to vehicular networks, we address the problem of designing
provenance embedding algorithms that reduce the delays on the packets and yet assist the destination in determining the path traveled
by the packets with no knowledge of the network topology. We propose a new class of provenance embedding techniques, referred to

as double-edge (DE) embedding techniques, wherein a subset of the relay nodes in the path strategically skip the provenance
embedding process to reduce the delays on the packets. Using fixed-size bloom filters as tools to implement the double-edge
embedding ideas, first, we derive upper bounds on the error-rates of the DE embedding techniques so that the parameters of the
bloom filter can be chosen to facilitate provenance recovery within a given quality of service. Subsequently, we present experimental
results on a test bed of XBee devices and Raspberry Pis to demonstrate the efficacy of the proposed techniques, and show that the DE
embedding techniques offer latency benefits upto 17 % along with remarkable reduction in error-rates in comparison with the
baselines. We also present a security analysis of the proposed provenance embedding methods to asses their vulnerabilities against

various attacks including impersonation threats.

Index Terms—Provenance, multi-hop networks, low-latency, bloom filters, security

1 INTRODUCTION

Multi-hop networks have been extensively studied in the
past as a means of achieving pervasive and ubiquitous
communication over a broad class of wireless devices, e.g.,
in satellite communications and wireless sensor networks.
In such networks, a group of wireless devices (henceforth
referred to as nodes) are interconnected in such a way
that packets from a source node are communicated to the
intended destination in a multi-hop manner through several
intermediate nodes. While a majority of contributions in
this topic have proposed protocols to achieve a reliable end-
to-end multi-hop network, a number of contributions have
also proposed protocols to facilitate the so-called provenance
recovery at the destination, wherein provenance refers to the
information on the path traced by the packet in the network.
One of the objectives of provenance recovery methods is in
determining the topology of the network since the inter-
mediate relay nodes cannot directly communicate with the
destination. This objective is particularly relevant in sensor
network applications wherein the centralized control station
is interested in learning the coverage area of sensor de-
ployment [3]- [10]. Other objectives include determining the
trustworthiness of the received packets to protect the multi-

hop network against various security threats [11]- [21]. For
either of these applications, the protocols for provenance
recovery take the assistance of the intermediate relay nodes
by asking them to embed their signatures on a dedicated
portion of the packets. This way, upon receiving the packet,
the destination learns the path traced by the packet by
verifying the participation of the legitimate nodes using
their pre-shared signatures.

As part of the recent developments, next-generation
networks have envisioned to accommodate the network
requirements of a wide range of wireless devices under
the settings of Device-to-Device (D2D), and Vehicle-to-
Vehicle/Infrastructure (V2X) communication, wherein the
networks must also support low-latency and ultra-reliability
features [1] on its packets. In this context, the low-latency
feature refers to the requirement that the packets from
a source are expected to reach the destination within a
given deadline (say in milliseconds). Example applications
include a network of autonomous vehicles that intend to
communicate their observations to a central infrastructure
in a multi-hop fashion, thereby expecting commands from
the infrastructure for subsequent actions. Due to the con-
trol nature of the underlying messages, the turn-around
time from vehicle-to-infrastructure-to-vehicle is desired to

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX

Fig. 1: A multi-hop network model comprising 8 mobile
nodes and one fixed destination. With no prior knowledge
on the network topology, the destination has to determine
the path traced by the packets while satisfying latency-
constraints on them.

be bounded within a given time-interval, beyond which
the response may be categorized as irrelevant. Furthermore,
with applications involving critical infrastructures, these
events of deadline-violation in the response may also lead
to undesirable outcomes, sometimes even catastrophic.

Although provenance recovery techniques have been
studied on a wide range of applications [3]- [21], we high-
light that they have not been studied in low-latency ap-
plications, e.g., V2X communications. Towards envisaging
provenance recovery methods using low-latency packets,
we immediately notice that the additional processing-delay
incurred because of provenance embedding algorithm at
each node is an overhead, and this may not be favorable to
packets supporting low-latency applications. Furthermore,
we note that the existing provenance embedding methods
are not directly applicable in the context of V2X communi-
cation owing to the mobility of the underlying relay nodes.
Thus, identifying the unique challenges in the mobility of
relay nodes in V2X communication along with the conflict
between the objective of provenance recovery and the as-
sociated delay incurred by embedding the signatures, we
revisit the design of provenance recovery mechanisms that
support low-latency applications in next-generation wire-
less networks.

1.1 Problem Statement

With potential applications to V2X and wireless sensor net-
works, we consider an abstract network model comprising
n — 1 mobile nodes and a fixed destination, as exempli-
fied in Fig. 1. One of the n — 1 nodes acts as a source
to communicate its packets to the destination through a
subset of the remaining n — 2 nodes in a multi-hop fashion.
The network is also vulnerable to security threats by an
external attacker which is capable of executing a number of
adversarial manipulations. Towards facilitating low-latency
routing of packets on the above network model, our prob-
lem statement is to design new provenance embedding
algorithms that (i) reduce the delay introduced on the
packets during their journey, (ii) assist the destination in
determining the path traced by the received packets with
no knowledge on the network topology, and (iii) detect a
wide range of security threats posed by an external attacker.
Henceforth, throughout the paper, we only consider the
delays contributed by the provenance embedding algorithm
and the corresponding crypto-primitives. Other network-
related delays due to queues, packet re-transmissions, etc.

2

are not considered in order to keep the focus on provenance
embedding methods.

1.2 Contributions

Towards handling the premise of no knowledge of network
topology at the destination, we first identify that embedding
the identity of the relay nodes in the provenance portion of
the packet does not convey information on the order of the
nodes that forwarded the packet. Therefore, to circumvent
this problem, we introduce a new framework of provenance
embedding algorithms that assist the destination in recover-
ing the path traced by the packet, and also reduce the delay
on the packets during their journey. Specifically:

1) We propose a bloom filter [4], [14] based provenance
embedding method, referred to as the edge embedding
technique, wherein each relay node, instead of embedding
its identity in the bloom filter, embeds the identity of the
edge with its preceding node in the bloom filter. As a
result, the destination can verify the membership of the
participating edges from the bloom filter, and then recover
the path traced by the packet using a depth first search algo-
rithm despite not knowing the network topology. In order
to identify the right choice of the bloom filter parameters,
we propose upper bounds on the error-rates of the edge
embedding technique as a function of the number of nodes
in the network, number of hops, bloom filter size, and the
number of hash functions used by each node. Subsequently,
we verify the tightness of the bounds by comparing them
with the results from simulations, and show that the number
of hash functions which minimizes the upper bound is close
to that which minimizes the exact expression (see Section 3).
2) Capitalizing on the idea of edge embedding technique, we
propose the Deterministic Double-Edge (DDE) embedding
mechanism, wherein a relay node embeds the identity of
the pair of edges linked to it: one through which the packet
is received and the other through which the packet is sent.
With this idea, it is straightforward to observe that a node
can cover two edges of the path in one-shot, and as a
consequence, the next node in the path need not modify
the provenance. Thus, at most half the nodes on the path
skip the provenance embedding process thereby resulting in
reduced delay on the packet. We show that the hop-counter
of the provenance part, which is used by the destination to
learn the hop-length, can be used to coordinate the skipping
strategy among the nodes. Similar to the edge embedding
technique, we use bloom filters to implement the DDE em-
bedding technique, and then propose upper bounds on the
error-rates of the DDE embedding technique as a function of
the number of nodes in the network, number of hops, bloom
filter size, and the number of hash functions used by each
node. Subsequently, we verify the tightness of the bounds
by comparing them with the results from simulations, and
show that the number of hash functions which minimizes
the upper bound is close to that which minimizes the exact
expression (see Section 4).

3) We demonstrate the benefits of both edge and double-
edge embedding techniques on a test bed of six nodes, each
comprising a Raspberry Pi 3+ and a Digi XBee S2C, for com-
putation and communication purposes, respectively. For a
given bloom filter size, we compute the number of hash

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX

TABLE 1: Summary of Contributions and Impact of the Proposed Methods. Notations are as defined as in Table 3.

Provenance Embedding Latency Coordination Complexity at the destination Provenance size
Method overhead to verify the bloom filter to achieve a given error-rate
Edge embedding h(Tg + Tp) Not needed O(n?)
DDE embedding hTg + _%JTP Uses hop-counter O(n?) Less than edge embedding
with N =1
DDE embedding hTg +Tp Uses hop-counter N x O(n3)
with N = 2]

functions that minimizes the error-rates of the edge and
the double-edge embedding techniques, and subsequently
implement them on the test bed to measure the latency and
the error-rates. With hop-lengths of 3,4 and 5, we show that
the double-edge embedding method outperforms the edge
embedding method both in terms of delay (reduction of at
most 15-17%) as well as error-rates (see Section 5).

4) We present a security analysis of the proposed techniques
against various threats posed by an external attacker. We
specifically focus on impersonation threats [22], wherein
an external attacker, after compromising one of the nodes
in the path, modifies the bloom filter contents to force the
destination in recovering an incorrect path that differs from
the actual path at the position of the compromised node.
Although the identities of the edges and the double-edges
of a node can be held private to mitigate such attacks,
we show that owing to false-positive characteristics of the
bloom filter, impersonation attacks can be executed with
non-zero success-rate. However, through experiments, we
show that impersonation attacks can be detected with high
accuracy at the destination provided the bloom filter size is
sufficiently large (see Section 6).

A summary of our contributions along with a compari-
son between the proposed techniques are listed in Table 1.
Since the identity of the edges (or double-edges) are embed-
ded into the provenance at a single layer, our framework
falls under the well known class of linear provenance as
against aggregated provenance [24], wherein information
from different layers are embedded in the provenance.

1.3 Related Work

Typical use-cases of network provenance include discerning
the origination of a message, the path traveled by it, and
the details on how the messages were derived and which
parties were involved in its derivation. The related work
on network provenance can be broadly classified into two
groups: (i) contributions in non-adversarial environments
wherein the focus is on designing provenance schemes to
support diagnostics by minimizing the transmission over-
head due to provenance [3]- [10], and (ii) contributions in
adversarial environments wherein the provenance schemes
are proposed to detect and mitigate specific form of threats
on the network [11]- [21].

In the latter class of contributions, which is the sub-
ject matter of this work, [11] studied false data injection
attacks in wireless sensor networks and proposed a com-
bined packet marking- and logging-scheme for traceback to
reconstruct the entire path. A provenance based mechanism
is also proposed in [12] to handle packet dropping attacks.
This study utilized the inter-packet delay based provenance
transmission technique and devised a detection mechanism

based on the distribution of these delays. [13] used in-
packet bloom filter to encode the IDs of the nodes that are
on the path of the packets. In [14], the authors proposed
a light-weight provenance encoding and decoding scheme
based on bloom filters to securely transmit provenance in
sensor networks. They also extended the scheme to incor-
porate data provenance binding, and to include packet-
sequence information that supports detection of packet-loss
attacks. In [15], the authors design energy-efficient prove-
nance encoding schemes and demonstrate their feasibility
in IP traceback to wireless sensor networks. Recently, the
authors in [16] proposed a light-weight data protocol based
on bloom filters and analyzed the leakage of information
to an adversary having partial knowledge of the bloom
filter. The authors in [17] proposed a path tracing approach
for routing protocol for low-power and lossy-networks,
wherein the proposed method identifies packet drops and
misbehaving nodes in the network. While contributions
in [11]- [17] proposed embedding techniques to facilitate
the destination to detect various attacks, another class of
provenance methods [19], [20], [21] focused on designing
vigilance policies at the intermediate nodes against several
threat models before forwarding the packets. We highlight
that our work falls in the category of [11]- [17], but not
[19], [20], [21]. For a detailed survey on the state-of-the-art
developments in secure network provenance, we refer the
readers to [18]. To highlight the novelty of our work, we
have listed the main differences between our work over the
existing contributions in Table 2.

2 NETWORK MODEL

We consider a wireless network, as exemplified in Fig. 1,
comprising a set of n nodes, denoted by V' = {1,2,...,n}.
One of the nodes in / is the destination, one of them acts as
the source, whereas a subset of the remaining 7 —2 nodes as-
sist the source in relaying the packets to the destination. The
destination is also connected to a network of gate-way nodes
via secure back-haul links, in order to form the core net-
work.! We make the following assumptions on our network
model: The destination is geographically fixed, whereas the
other n — 1 nodes are mobile, and as a result, the network
topology is unknown to the destination. The destination has
more computational power than the other nodes. Each node
has a unique secret-key pre-shared with the core network,
using which it can authenticate itself through one of the
gate-way nodes. Each node in the network authenticates its
identity with its neighboring nodes using a public-key cryp-
tosystem based authentication protocol [26]. As an example,

1. In the context of vehicular networks, we can envisage gate-way

nodes as access points deployed at the entry points of the geographical
area over which V2X communication is enabled.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX

TABLE 2: Novelty of our approach with respect to existing contributions

Reference Existing contributions Limitation with respect to our work
[4] Use of multi-dimensional The destination has to wait
bloom filter for provenance for multiple packets to determine the provenance
[5] Use of arithmetic coding to learn This method works in a static topology
the topology and to reduce the provenance size but fails in a changing topology
Also, needs prior probability to execute arithmetic coding
[6] Use of dictionary-based leaning to This method works in a static topology.
determine the topology and reduce the provenance size | The efficiency of this method reduces in changing topology
[9] Use of compressed sensing methods Provenance can be tampered
to reduce provenance size with a low chance of detection, by an impersonator
in an adversarial environment
[12] Bloom filter based provenance is used The embedding method used in this work
in a known topology fails to detect the provenance in an unknown topology
[13] This work uses a light-weight in-packet The method used in this work fails to evaluate
bloom filter type provenance to securely the provenance and find a path in a changing topology
transmit the packet in the network
[14] Bloom filter based provenance is used This method fails in an unknown topology
with a node embedding technique in a known topology
to identify packet dropping attacks

the nodes may use a traditional pseudonym-based signa-
tures [25], wherein either a gate-way node or the destination
distributes a list of pseudonyms along with the public-key
certificates and private-key signatures of each node. This
distribution can be accomplished through a secure channel
using the unique secret-key of the node pre-shared with the
core network. During the neighbor discovery phase, node
b, for b € N, signs a message based on its pseudonym and
the private-key signature to its neighbor, say node a, and
subsequently gets verified using the corresponding public-
key certificates.? Among the nodes in N, there exists a
directed edge from node a to node b, for a,b € N, if (i)
the latter node is within the coverage range of the former,
and (ii) the two nodes successfully authenticate each other.

Typical applications that support the above assumptions
include V2X communication [2] and wireless sensor net-
works [14], wherein the role of the destination is played
by the road-side unit and the central control station, respec-
tively, and the roles of the remaining n — 1 nodes are played
by the mobile vehicles and mobile sensors, respectively.
Since the nodes are mobile and their coverage areas may
be limited, the set of edges that exists among the nodes is a
subset of £, where €& = {e, | a,b € N s.t. a # b}, where
€aq,» denotes the direct edge from node a to node b.

The source node, say node 41, for i1 € A, has N packets,
denoted by their identities {p;, 1 <1 < N}, to communicate
to the destination within a given deadline. These N packets
are routed through h hops, for 1 < h < n — 1, with the help
of h—1 relay nodes, denoted by i2, 43, ..., i, € N.Suppose
that the [-th packet traverses the following nodes in the
order i1 — 4o — ... — 1), before reaching the destination.
Upon receiving the I-th packet, the destination intends to de-
termine the path traveled by the packet, henceforth referred
to as provenance of the [-th packet. To assist provenance
determination, the source node uses a packet structure,

2. It is well known that frequent distribution of public-key certificates
and private-key signatures is a drawback of this authentication mech-
anism. However, we remark that optimization of the communication-
overheads of the authentication protocol is out of scope of this work,
and we have used this technique only to emphasize the use of a strong
authentication algorithm in our network model.

which includes dedicated bits to provide the provenance
information. We apply fixed-size bloom filters [4] of size m
bits to convey the provenance information on the packet.
In particular, each relay node uses its unique-key to embed
the identity of its attribute in the bloom filter by setting
k random positions, for 1 < k < m, to one. We also
include a hop-counter in the provenance portion to provide
information on the number of hops to the destination. Upon
receiving the bloom filter contents and the hop-counter, the
destination verifies the nodes’ attributes (using their pre-
shared keys) to determine the path traveled by the packet.

When facilitating low-latency communication of packets
over a multi-hop network, we address the following two
types of provenance recovery constraints at the destination:
(i) Strict recovery constraint, wherein the destination must
recover the path traced by every packet, and (ii) Relaxed
recovery constraint, wherein the destination must recover
the path traced by a set of N consecutive packets (assuming
all the IV packets travel the same path).

2.1 Threat Model

We consider both passive and active threats on our network
model. Under the class of passive threats, we assume the
presence of an external attacker that is keen on eavesdrop-
ping the provenance information. In order to address this
passive threat, we propose to keep the provenance part
of the packet confidential by either using pair-wise keys
between adjacent nodes, or using a group-key, which is
shared among the n nodes in the network. When bloom
filters are used to convey provenance information in the
packet, confidentiality of the identity of the node’s attributes
is implicitly preserved due to the use of collision resistant
one-way hash functions. However, the hop-counter value
which is also a part of provenance must be kept confidential
since hop-counter in plain-text could potentially reveal the
origin of the packet to an external eavesdropper. There-
fore, we propose to encrypt the provenance portion in our
network model. As a result, when forwarding the packet,
a relay node decrypts the provenance portion from the
packet, modifies it, and then encrypts it before forwarding
the packet to the next node.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX

Under the class of active threats, we are interested in (i)
External attacks, wherein an attacker can execute a man-in-
the-middle attack (MitM) by manipulating the contents of
the packet, as well as (ii) Insider attacks, wherein an external
attacker compromises one of the nodes in the network [22],
[23], and then executes a number of adversarial manip-
ulations on the packet. With respect to the MitM attack,
we point out that link-level strategies such as message-
authentication-codes (MAC) can be employed for attack
detection. However, with respect to insider attacks, it is well
known that designing mitigation techniques are challenging
since the scope of adversarial manipulations by an insider is
unbounded owing to complete access to a legitimate node.
Inline with the objective of determining the provenance,
which forms the heart of this work, we consider the class
of impersonation attacks, wherein one of the nodes on the
path manipulates the bloom filter so as to misguide the
destination in learning a path that differs from the actual
path at the position of the compromised node. In order to
detect the impersonation attack, we propose to keep the
identities of the edges (or the double-edges) private from
the rest of the nodes, and only share it with the destination.
A detailed analysis on how the idea of obfuscating the
identities of the edges (or the double-edges) helps detecting
the impersonation attack is presented in Section 6.

Henceforth, throughput the paper, we use the notations
listed in Table 3. Furthermore, in a network of n nodes,
the path traveled by the packet from the source to the
destination is referred to as the main path. The notation c! is
used to represent factorial of a positive integer c. Given two
numbers a and b, such that b < a, we use () to denote
the number of ways of choosing b objects out of a. We
use Pr(-) to denote the usual probability operator. We use
{0,1}™ to represent the set of all m-length sequences over
the alphabet {0, 1}. If £ is a subset of U, then £ represents
the complement of £ in U.

TABLE 3: Notations used in this paper

Notation | Meaning of the symbol
n Number of nodes in the network
N Number of packets
D1 Identity of I-th packet
h Number of hops in the path
BF, bloom filter of [-th packet
m Size of the bloom filter
k No. of hash functions used in bloom filter
Tg Delay introduced by crypto-primitive operations
Tp Delay introduced by embedding the provenance

3 EDGE EMBEDDING TECHNIQUE

With no knowledge of the network topology, we point out
that the idea of embedding the identity of the participating
nodes into the bloom filter [14] does not help the destination
to recover the information on the order of the participating
nodes. Therefore, to circumvent this problem, we propose
to embed the identity of the participating edges into the
bloom filter since each relay node has the knowledge of
the preceding node in the path. Furthermore, we intend to
keep the identity of the edges of a node private from the
other nodes, and only share it with the destination so that
it can verify the memberships of the edges using the bloom

5

filter contents. In the following section, we explain the key
derivation protocol which is used by node a, for a € N, to
generate a secret-key corresponding to its edges, denoted by
Eo 2 {eva|bEN st a+#b}.

3.1 Key Derivation Algorithm for Edges

Based on the authentication mechanism discussed in Section
2, we assume that all the nodes (including the destination)
have the list of pseudonyms of all the authenticated nodes,
denoted by P = {m, | Vr € N}. Also, let k, denote the
unique pre-shared key of node a, for a € N, using which it
authenticates itself to a gate-way node. If node b, for b # q,
successfully authenticates with node q, to forward a packet,
then node a derives the secret-key representing the edge
from node b to node a as ky o = fE(ka, T, Ta), where fg(-)
is an appropriate pseudorandom function (PRF) to derive
a unique key based on the pseudonyms 7, and m, along
with the private key k,. Since the destination has the list
of pseudonyms, and also the list of unique pre-shared keys
of all the nodes in the network, it can locally derive the
same set of shared secret-keys associated to the edges of
the network. Furthermore, since k, is private to node a, the
secret-keys associated with its edges cannot be generated by
the other nodes in the network. In the above key derivation
algorithm, the secret-key k, can also be replaced by a private
pseudonym to provide privacy to the identity of the nodes.

3.2 Edge Embedding Algorithm

Lelelo o[+ fofef e[Jof s o o] +]e] o] <]o]

Fig. 2: An example for embedding edges in the bloom
filter. In this example, each node in the path embeds the
information of the preceding edge by using £k = 3 hash
functions into the bloom filter of size 19 bits.

Embedding Process: On the [-th packet, the source node
initializes the bloom filter values to zero, i.e., BF, =
[0, 0,...,0] € {0,1}™, sets the hop-counter to one, and
then encrypts the provenance before sending the packet
to node 7. The node ij, for 1 < j < h, receives
the [-th packet from i;_1, decrypts the provenance, and
then extracts the bloom filter portion, given by BF; =
[BFi(1),BF(2),...,BF;(m)] € {0,1}"™, and the hop-
counter value. Using k;;_, ;,, as derived in Section 3.1, the
bloom filter components are modified by node i; on k
positions as

BE (v,) =1, (1)

Z]‘ —
where

ngl,ij =H (kij—hij?pl?n’gdzl,ij) € [m], 2

such that 1 < r < k, and H(:, -, -) is a hash function which
generates a random number in [m] = {1,2,...,m} using

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX

the inputs (i) p;, which is the identity of the I-th packet,
(ii) nz(-;l i; is the nonce used to generate the r-th index, and
(iii) k;,_, 4, is the pre-shared key with the destination. In the
embedding process, nonce values are used to generate £ in-
dependent bit-locations on the bloom filter. After updating
the bloom filter, node i; updates the hop-counter, and then
encrypts the provenance before forwarding the packet to
the next node, denoted by node ;4. The above procedure
is followed by each relay node in the path iz, ..., i4. An
example for the edge embedding technique using bloom
filter is shown in Fig. 2. Due to distinct nonce values and
distinct identities given to the edges, we note that the
index values chosen at the output of the hash functions are
statistically independent. In practice, the value 1 < r < k
could be used as the nonce value to generate the r-th index.

Verification and Path Retracing: The total number of di-
rected edges available in the network is 2(3). Further-
more, since the destination is the sink node, and has the
knowledge of its preceding node, the total number of valid
edges for verification is 2() — 2(n — 1). Thus, the total
set of secret-keys at the destination is Kgg C {kp, =
fe(ka, ™, 7a) | a,b € N s.t. a # b}. Using Ksg and the pre-
shared nonce values, the destination verifies the identity of
edges with the received bloom filter, and a list of candidate

edges, denoted by Eg;ﬂ, is obtained as
4y ={eva € E| BF(vf)) =1,1 <7 <k},

where
ofl) = H (ko prnfl)) ©

Using Eg} and the hop-counter, the destination recovers the
path traced by the I-th packet from the subgraph formed
by Eg};. This task is accomplished using a path retracing
algorithm that uses a depth-first-search (DFS) on the graph
formed by Eg};. When m is sufficiently large with respect
to k and (), then the graph gD is likely to have only
the set of edges traced by the packet. However, when m
is comparable with respect to k and (3), then 5](3% may
have edges other than those participated in forwarding the
packet owing to probabilistic nature of bloom filter. We
define a false-positive (also referred to as error-rate) event in
provenance recovery, denoted by Er,, when more than one
path of hop-length h is recovered at the destination using
Eg}. Formally, error-rate of the edge embedding technique,
given by

Perror = Pr(Efp)7 (4)

which is the fraction of packets for which the destination
recovers more than one path of hop-length h from Eg}.

3.3 False-Positive Analysis of Edge Embedding Tech-
nique

Error-rate, as defined in (4), is a measure of the efficacy of
the bloom filter to help the destination in recovering the
provenance. In particular, for a given n, m, and h, we must
choose k € [m] such that the error-rate is minimized. In the
rest of this section, we propose an upper bound on the error-
rate of edge embedding technique so that it can be used to

6

arrive at the best value of k as a function of m,n and h.
From first principles, error-rate is given by

min(m,kh)

>

=1

Pr(Efp) = Pr(Efp|C;i)Pr(Cy), ®)
where Pr(C;) is the probability that ¢ positions of the bloom
filter have been chosen by the edges on the path traversed
by the packet, and Pr(Ey,|C;) is the probability that more
than one path of hop-length h is recovered at the destination
using £ g}? conditioned that ¢ positions of the bloom filter are
set. In other words, Pr(C;) can be written as the fraction of
the number of ways of distributing kh objects in 7 distinct
boxes so that no box remains empty and the number of ways
of distributing kh objects in m boxes. Considering two sets
Y and Z with kh and i elements, respectively, the numerator
of the fraction represents the number of onto functions from
Y — Z, and this can be calculated using the inclusion-
exclusion principle. Similarly, considering two sets) and
Z' with kh and m elements, respectively, the denominator
of the fraction represents the number of functions from
Y — Z’. Thus, we can write Pr(C;) as

() Soo(-1) () =)

Pr(C;) = 6
H(C)) — ©
Furthermore, Pr(Ey,|C;) can be written as

Pr(Epp|Ci) =1 = Pr(Efp|Cy), @)

where Pr(E},|C;) can be calculated by exhaustively count-
ing all the cases that do not result in false positives. Since
handling all possible cases that do not result in false posi-
tives is intractable, the following theorem provides a lower
bound on Pr(E¢,|C;) by considering a subset of cases that
are guaranteed not to result in false positives.

Theorem 1. For a given value of n, m, h, and k, a lower
bound on Pr(Ey,|C;) can be given as

Pr(Eyy|C;) > gp(n,m, h, k, i), ®)
where gg(n, m, h, k, i) is on the Right Hand Side of (18).

Proof: With no knowledge on the network topology,
the number of edges we need to consider for calculating
false positives is E = 2(},) —h—2(n—1)+ 1. The set of such
edges, denoted by &, is obtained by discounting the edges
on the path traversed by the packet, the edges that terminate
at the destination, and the edges that originate from the
destination. Note that edges that terminate at the destination
are discounted since the destination has the knowledge of
the penultimate node due to the neighbor discovery process.

The bloom filter values received at the destination will
have ¢ positions with ones and m — ¢ positions with zeros.
Given that the edges on the path traversed by the packet
have chosen i positions in the bloom filter, an edge in £ is
said to be lit if the k positions chosen by that edge is a subset
of the 7 positions chosen by the main path. Therefore, the
probability that an edge}C in £ is not lit in the bloom filter is

givenby ¢; =1 — <—>

. To compute the above expression,
m

we assume that the output of the hash functions across the
nodes are statistically independent. Note that since ¢ can
vary from 1 to min(kh,m), we take into consideration all

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX

possible values of 7 in this proof. To calculate a lower bound
on Pr(Ey,|C;), we count those events wherein although a
subset of £ is lit in the bloom filter, they do not contribute to
false positives. Henceforth, throughput the proof, we refer
to the path traced by the packet as the main path.

Case 1: We consider a scenario wherein no edge in € is lit
in the bloom filter. Since the index values chosen by the hash
functions are statistically independent across the edges, the
probability that no edge in £ is lit in the bloom filter is

Pf =4~ ©)

Case 2: We consider a scenario wherein edges that are
isolated from the main path are lit in the bloom filter. By
using k' > 1 to denote the number of such edges, the
probability of such a scenario is given by

_ 2(7“;71) 2(n—h—1) , ,
By = 2. (W)qf"“(l—qz—)’“, (10)
k'=1

where 2("‘3 _1) denotes the total number of isolated edges
from the main path. This case is as illustrated in Fig. 3. In
general, the number of ways to choose k' — k isolated edges
from n — h — 1 — v nodes is defined as

T(y,k) = (2(nk’ _2/17)>'

Henceforth, throughout the proof, we denote the term
g7 " (1—) as G.

11

1

3 5
Fig. 3: Case 2 of Theorem 1: Dark edges represent the path
traversed by the packet, whereas dashed edges represent
isolated edges.

Case 3: We consider three types of edges in &: (i) inward
directed edges which merge on one of the nodes (except the
second node) on the main path, (ii) outward directed edges
which originate from a node on the main path and may join
another path which does not merge on one of the nodes on
the main path, and (iii) edges that are isolated from the main
path and not terminating at edges of type-(i). An example
for this case is captured in Fig. 4.

We consider k' > 1 edges of & lit in the bloom filter,
out of which y edges are connected to the main path. Out
of those y edges, let z be the number of outward direct
edges from the main path, and y — z be the number of
inward directed edges which terminate on the main path.
The number of ways in which we can select y nodes (outside
the main path) that connect to the main path is ("7271).
The number of ways in which we can choose z nodes
(corresponding to outward edges) out of these is (). The
total number of nodes on which y — 2 edges can merge
on the main path is h — 1, and the total number of nodes
from which z edges can diverge from the main path is h.

7

With that, y edges of type-(i) and type-(ii) can be chosen in
("7;71) (Y)h*(h — 1)¥~* ways. Furthermore, we can select
the remaining k' — y isolated edges in

o (2(nh21y+z) +y—2)(n—h—-1—y+ z)> (12)
K —y

ways, where 2("~"717¥*#) represents the number of edges

after removing y — z nodes, and (y — z)(n —h—1—y + 2)

represents the number of outward directed edges from the

nodes where inward directed edges merge on the main path.

Overall, the probability of events in this case is given in (13).

Fig. 4: Case 3 of Theorem 1: Outward directed edges that
originate from nodes on the main path (dark edges), inward
directed edges that terminate at nodes on the main path,
and isolated edges.

Case 4: We consider two types of edges in &: (i) backward
loops, which start from a node on the main path and merge
at one of the preceding nodes on the main path (in the anti-
clockwise direction), and (ii) isolated edges which do not
have any connection with the edges on the main path and
also with the loops considered in (i). An example for this
case is presented by Fig. 5.

Fig. 5: Case 4 of Theorem 1: Backward loops that originate
from a node on the main path (dark edges) and terminate at
one of the preceding nodes on the main path, and isolated
edges. As shown, the 3-edged backward loop from node ‘4’
to node ‘3’ results in false positives, and therefore we have
omitted such cases.

First, we count single-edged backward loops under type-
(i). Based on Fig. 5, if we select node ‘1’ as the terminating
node of the loop, then we can choose its originating node
in h — 1 ways (by excluding the destination and the node
itself). With node ‘2" as the terminating node, we can choose
the originating node in h — 2 ways, and similarly, with node
‘h—1’, we can choose the terminating node in only one way.
Thus, the total number of single-edged backward loops is

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX

Pf = Z ZZ <"— - 1> <y>h (h— 1)V *RG.

k'=1y=12=0

(13)

Lo=h—-1+ ZZ;% 3. Out of these Lq choices, we can select
t loops which correspond to ¢ edges in (“°) ways. With ¢
edges as backward loops as per type-(i), the rest of the k' —¢
edges can be selected as isolated edges in T'(0, t) ways under
type-(ii), where T'(-,) is as defined in (11).

To generalize, we consider backward loops formed with
a+2 nodes, out of which the originating and the terminating
nodes are on the main path, whereas the o intermediate
nodes are not on the main path. Similar to the case when
a = 0, the total number of (a + 1)-edged backward loops is
givenby L, = h— 1"'2;5 ® (h—2—3). We can select ¢ loops

out of these L, choices in (“*) ways. These ¢ loops will
correspond to (a + 1)t edges. For these loops, we can select
at nodes which are not on the main path in ("7""")(at)!
ways. Subsequently, we can select the remaining &' — (a+1)¢
edges as isolated edges in T'(at, (o + 1)t) ways. Thus, the
probability of the events in this case is given in (14).

Case 5: We consider two types of edges in &: (i) forward
loops, which originate from a node on the main path and
terminate at one of the nodes in the downstream of the main
path, and (ii) isolated edges that have no connection to the
main path and also to the forward loops mentioned in (i).

An example for this case is shown in Fig. 6

OO

Fig. 6: Case 5 of Theorem 1: Forward loops that originate
from a node on the main path (dark edges) and terminate at
one of the nodes in the downstream on the main path, and
isolated edges.

First, we consider loops that are formed by nodes on the
main path. As illustrated in Fig.6, if we select node ‘1" as
the originating node, then we can choose the terminating
node in h — 2 ways (excluding the destination, node 2" and
the node itself). Similarly, for node ‘2, we can select the
terminating node in h — 3 ways, and finally for node ‘h — 17,
there are no available choices. Thus, the number of forward
loops of type-(i) are L} = ZZ;? B. Out of these L choices,
we can select ¢ loops in (Lt(’) ways. These t loops will result
in t edges under type-(i). With that the remaining k' —¢ edges
of type-(ii) can be selected in T'(0,¢) ways. Generalizing the
above result to forward loops with o + 2 nodes such that
a of them are outside the main path, the probability of this
case is given in (15), where L/, = Zg;gf‘l B.

Case 6: We consider (i) inward directed paths of length
at least two which terminate at one of the nodes on the

main path, (ii) outward directed edges (which do not form a
loop) that originate from a node on the main path, and (iii)
isolated edges with no connection to the edges on the main
path and those considered in (i). In particular, at any node
on the main path, there can be only one inward directed
path, however, there can be more than one outward directed
path. This case is illustrated using Fig. 7.

&p
©

Fig. 7: Case 6 of Theorem 1: Inward directed paths of length
at least two that terminate at one of the nodes on the main
path (dark edges), outward directed edges that originate
from a node on the main path, and isolated edges.

Let the length of an inward directed path be 8 > 2.
Inward directed paths can terminate at any of the h — 3
nodes on the main path. Let us choose [of these paths. These
correspond to [edges. The total number of ways in which
inward directed paths of length 3 can be formed at / nodes is
A= ("7 ("5 "=1)(1B)!. We then choose k' —13 more edges,
out of which z edges are of type-(ii) and k' — 5 —x edges are
of type-(iii). Since these = outward edges can originate from
any of the i nodes on the main path, we can select them in
B = (""" 17P)h® ways. The rest of the &' — I8 — x edges
can be chosen in T(l 8,18+ x) ways. Overall, the probability
of this case is given in (16).

E h—1h—B K-8
=3 3> AN BI(BIB+2)G. (16)
k'=18=21=1 =0

Case 7: As a generalization of Case 6, we consider a
scenario wherein there exists an outward directed edge at
that node which has an inward directed path. This case is
illustrated in Fig. 8 (see paths connected to nodes ‘4" and
’5"). Using counting arguments similar to that of Case 6, the
probability of this case is given by

E h—1h—B K —IB—1

=Y 334 Y Br(si+i+a)G, (17)

k'=1p=2 I=1 z=0

where A = ("7071) (lﬂ+l) (I8+1)!and B =

From Case 1 to Case 7, we have considered a set of events
which are guaranteed not to generate false positives given
that ¢ positions of the bloom filter are lit by the edges on the
main path. Therefore, summing the probabilities of these

(nfhflflﬁfl) he.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX

z E b Lo\ [(n—
PE=3 3> 1,
k’=1a=0 t=0
h—2 L,

9
- 1> ((te))(T(at, (o + 1)) (14)
- 1) ((ta))(T(at, (a + 1)1)C (15)

Fig. 8: Case 7 of Theorem 1: A generalization of Case 6,
wherein there is an outward directed edge at a node which
also has an inward directed path of length at least two
terminating on it.

discussed events gives us a lower bound on the probability
of not witnessing false positives. Thus, we get

7 —
Pr(Ey,|Ci) > > PF, (18)
j=1
where Plg ,Pzg S .,P7g are respectively given in (9), (10),
(13), (14), (15), (16), and (17). 0

Note that gg(n, m, h, k, i) can be numerically computed
givenn,m, h, and k. By substituting the lower bound given
by Theorem 2 in (7), we obtain an upper bound on
Pr(Ey,|C;). Subsequently, substituting this upper bound on
Pr(E,|C;) and the exact expression of Pr(C;) in (5), we
obtain an upper bound on the average probability of false
positives of the edge embedding technique.

To verify the tightness of the proposed upper bound,
we compare it with the error-rates obtained through sim-
ulations for several values of n and h. In particular, for a
given value of n and h, we vary the bloom filter size (m),
and accordingly compute the error-rates as a function of the
number of hash functions. The plots, which are presented
in Fig. 9 and Fig. 10, highlight that for a given n and h, (i)
the upper bound gets tighter, especially around the value
of k that minimizes the error-rate, as the bloom filter size
increases, and (ii) the value of k£ that minimizes the upper
bound is close to that which minimizes the exact value.
These results imply that when the bloom filter size is large,
our proposed upper bound can be used to arrive at an
appropriate value of k for a given m, h and n.

4 DoUBLE-EDGE EMBEDDING TECHNIQUE

In the edge embedding technique, each relay node executes
the following sequence of operations: (i) Decryption of the

False positive %
False positive %

10 20 30 40
No. of hash functions (k)

n=6,h=3,m=40

50

No. of hash functions (k)
n=6,h=3, m=32

100 100

80 80
60 60

40 40

False positive %
False positive %

20 20

o LB .
10 0 10 20 30 40

No. of hash functions (k)

20
No. of hash functions (k)

30 40 50 50

Fig. 9: Comparison between the error-rate of edge embed-
ding scheme and the upper bound for [n, h] = [6, 3].

n=14,h=6,m=48

"

n=14,h=6,m=40

100 100 ¥
= El
N ® 80
2 80 2
8 3 60
Qo Q
2 60 8
K —E8—F.PExp 5 40
—¥— F.P UB
40 20 2
0 5 10 15 20 25 0 5 10 15 20 25
No. of hash functions (k) No. of hash functions (k)
n=14,h=6,m=56 n=14,h=6,m=64
100 ¥
= 8 2
$ $
= 60 =
I3 I3
o o
Q Q
o 40 ©
2 2
I I
20

0

0 5 10 15 20

No. of hash functions (k)

Fig. 10: Comparison between the error-rate of edge embed-
ding scheme and the upper bound for [n, h| = [14, 6].

25 5 10 15 20

No. of hash functions (k)

provenance information from the packet, (ii) Update process
of the provenance information, and (iii) Encryption of the
provenance information. As a result, the total delay on each
packet is Tiotat = h(TE + Tp), where Tg and Tp are the
delays introduced by the crypto-primitives (which include
decryption and encryption operations) and the provenance
embedding operations, respectively.

In this section, we present an enhancement to the edge
embedding technique in order to reduce the delay on the
packets. The basic idea is that each node, except the source

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX

and the destination, has a pair of edges linked to it: one
through which the packet is received and the other through
which the packet is sent. If the relay node can embed
the information of these two edges into the provenance,
then it can cover two edges of the path in one-shot. As a
consequence, the next node in the path need not modify the
provenance. Overall, with this idea, at most half the nodes in
the path modify the provenance thereby reducing the delay
on the packets. We refer to this scheme as the double-edge
embedding technique. To execute double-edge embedding,
we formally define a double-edge of a node as below:

Definition 1. Given three nodes a,b,c € N, we define the
two-tuple (ep 4, €q,c) as a double-edge of node « if there
exists a pathb — a — c.

In the following definition, we introduce an embedding
pattern on the packets to capture the participation of various
nodes in the embedding process.

Definition 2. On the I[-th packet that traverses a
path of hop-length h, the binary vector e =
lei(1),e/(2),...,e/(h)] € {0,1}" is referred to as the
embedding pattern on the I-th packet, wherein €;(j) = 1
if the j-th node modifies the provenance, otherwise
e(j) =0.

As an example, when h = 4, ¢, = [0 1 1 0] indicates
that the second and the third nodes in the path modify
the provenance on the I-h packet but not the first and the
fourth nodes. With the double-edge embedding technique,
we identity the structure of the embedding pattern that
minimizes the delay on the packet and also assists the
destination in retracing the path traveled by the packet.

Proposition 1. With h denoting the number of hops, the
optimal embedding pattern that minimizes the delay on
the I-th packet, for some [, such that 1 <! < N, is

7{ 0101 ...01]€{0,1}",
e =

0101 ...10]€{0,1}",

Proof: Owing to double-edge embedding, a necessary
condition on the optimal embedding pattern is the absence
of consecutive zeros. While this can be achieved in two
ways, we choose the one wherein the first component is
zero. Since the destination has the knowledge of its preced-
ing node, the path traced by the packet can be recovered
despite having e;(h) = 0 when h is odd. O

A practical solution to follow the embedding pattern
of Proposition 1 is to use the hop-counter in the packet
structure, and then ask the nodes to modify the provenance
depending on the received hop-counter value. In particular,
the nodes can be asked to update the bloom filter contents
when the received hop-counter value is odd. Using the
embedding pattern given in Proposition 1, the total delay
incurred by such an embedding technique is

if h is even;
otherwise.

Toorat = WT5 + | 5] 7. (19)

Note that each node adds a delay of Tz seconds irrespec-
tive of its participation in the embedding process since
the information on whether to modify the provenance is
communicated using the hop-counter, which is also kept
confidential along with the bloom filter portion.

10

[oft]ofoJoJtfofofofifof1]oJof1]0]

Fig. 11: An example for embedding double-edges in the
bloom filter. In this example, the second node embeds the
identity of the double-edge ‘1’-'2’, and the fourth node
embeds the identity of the double-edge ‘3’-4’ by using k = 3
hash functions into a bloom filter of 16 bits.

4.1 Key Derivation Algorithm for Double-Edges

Similar to the edge embedding technique, we intend to keep
the identity of the double-edges of a node private from the
rest of the nodes, and only share it with the destination
so that it can verify the memberships of the double-edges
using the bloom filter contents. Along the lines of Section
3.1, if node b and node ¢, for b # a and ¢ # a, suc-
cessfully authenticate with node a, to forward and receive
the packet, respectively, then node a derives the secret-key
representing the double-edge between node b and node c as
kv.a.c = fpE(ke, T, e, Tc), Where fpp(-) is an appropriate
PRF to derive a unique key based on the pseudonyms m,,
m,, and 7. along with the private key k,. Meanwhile, since
the destination has the list of pseudonyms, and also the list
of unique pre-shared keys of all the nodes in the network, it
can locally derive the same set of shared secret-keys.

A detailed explanation on the double-edge embedding
process is given below. We refer to this scheme as the
Deterministic Double-Edge (DDE) embedding scheme since
the embedding pattern is a priori decided.

4.2 Deterministic Double Edge Algorithm

Embedding Process: The initial values of the bloom filter and
the hop-counter are set to zero. The node ¢;, for 1 < j < h,
extracts the hop-counter value and the bloom filter portion,
given by BF; = [BF(1), BF(2),...,BE;(m)] € {0,1}™.
Depending on whether the hop-counter value is even or
odd, it then uses k;;_, i, i;,, (as derived in Section 4.1) to
update the bloom filter contents on k random positions as

(r) _
BE (o i) = 1. (20)
where
() _ (r)
Vij l1ijije = H (kijflaijaiwrl) Pty nij—laij7ij+1) ’ (1)

for 1 < r < k such that H(-,-,-) is a hash function which
generates a random number in [m] using the inputs (i) p;,
which is the identity of the I-th packet, (i) ;" ; ; ., is the
nonce used to generate the 7-th index, and (iii) k;_, i, i;,,
is the key shared with the destination. After updating the
bloom filter, node i; updates the hop-counter. An example
for double-edge embedding technique using bloom filter
is shown in Fig. 11. Due to distinct nonce values and
distinct identities given to the double-edges, we note that
the index values chosen at the output of the hash functions
are statistically independent.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX

Verification and Path Retracing: The total number of
double-edges including the destination is 6(7;), where the
term 6 takes care of various double-edge patterns using a
given set of three nodes. However, among them, the desti-
nation must not appear as either the first node or the second
node of the double-edge, and therefore, the total number of
valid double-edges is at most 6(};) — 2(n — 1)(n — 2). Thus,
the total set of secret-keys at the destination for provenance
verificationis Kpg C {kb,a,c = fpE(Ka, T, Tas Te) | a,b,c €
N s.t. b # ¢}. Using Kpg and the pre-shared nonce values,
the destination verifies the identity of the double-edges with
the received bloom filter values, and a list of candidate
double-edges, denoted by DE %)F, is obtained as

DEWr = {(eb,areare) € E X E| BR(v))) = 1,1 <r <k},

where
Ulgfu?,c =H (kb,a,c,pl, ni?ti,c) .

When m is sufficiently large with respect to (}) and k, the

(22)

list DE g)F provides only the set of double-edges traced by
the packet. However, when m is comparable with respect

to (3) and k, the shortlisted candidates of double-edges

in DE g)F may have more edges than those participated
in forwarding the packet. Similar to the edge embedding
technique, the destination recovers the path traced by the
l-th packet using a DFS algorithm on the graph formed
by DE g)F As a consequence, we define error-rate as the
fraction of packets for which the destination recovers more
than one path of hop-length i from DE g)F

Although the double-edge embedding technique gives
an advantage in terms of delay over the edge embedding
technique, note that the destination has to verify more
candidates in the bloom filter than in the latter technique.

4.3 False-Positive Analysis of DDE Embedding Tech-
nique

Similar to the edge embedding technique, we analyze the
error-rate of the deterministic double-edge embedding tech-
nique. From first principles, the error-rate is defined as

mzn(m,kL%J)

>

i=1

Pr(Eyfp) = Pr(Eyp|Ci)Pr(Cs), (23)
where Pr(C;) is the probability that i positions of the bloom
filter have been chosen by the double-edges on the path
traversed by the packet, and Pr(E/,|C;) is the probability
that more than one path of hop-length h is recovered at the
destination using DE %?F conditioned that 7 positions of the
bloom filter are set. With that Pr(C;) is written as
™S (1)) (D) (=)™

0y = (D Dol Q) =)

mk LfJ

Furthermore, Pr(E;,|C;) is the probability of false positive
given that ¢ positions of the bloom filter are lit by the double-
edges of the path traversed by the packet. We can write it as

(24)

Pr(Ey,|Cy) = 1 - Pr(Ey,|C)) 25)

where Pr(Ef,|C;) can be calculated by exhaustively count-
ing all the cases that do not result in false positives. Since

11

handling all possible cases is intractable, the following the-
orem provides a lower bound on Pr(E/,|C;) by considering
a subset of cases that are guaranteed not to result in false
positives.

Theorem_Z. For a given value of n, m, h, and k, the term
Pr(E},|C;) can be lower bounded as

Pr(Esp|Ci) > gpp(n,m, h,i, k), (26)

where gpgr(n,m, h,i, k) is on the Right Hand Side of
(34).

Proof: With no knowledge on the network topol-
ogy, the number of double-edges we need to consider for
calculating false positives depends on whether i + 1 is
even or odd. When h + 1 is even, the number of double-
edges, denoted by D, for calculating false positives is D =
()31 — (";1)3! — 251 where the first term represents the
total number of double-edges in a network of n nodes, the
second term represents the number of double-edges which
includes the destination, and the third term represents the
number of double-edges on the main path traversed by the
packet. When h + 1 is odd, the number of double-ed%es for
calculating false positivesis D = (3)3!—(";")3!+ (") — &,
where the third term is the number of double-edges which
end at the destination. Since the second node of such
double-edges is known to the destination, the term (")
takes care of various possible candidates for the first node
of the double-edges. Note that the first, the second and the
fourth terms are similar to the case when h + 1 is even.
Henceforth, we denote the above set of double-edges by
DE.

Similar to the proof of Theorem 1, the probability that a
double-edge in DE is not lit in the bloom filter is given by

k
g=1- <#) . To calculate a lower bound on Pr(E},|C;),

we consider specific cases of double-edges (being lit in the
bloom filter) which are guaranteed not to result in false
positives.

Case 1: We consider a scenario wherein no double-edge
in DE is lit in the bloom filter. Since the output of the hash
functions across double-edges are statistically independent,
the probability of this event is given by

PPE =¢qf. 27)

Case 2: We consider a scenario wherein double-edges
that are isolated from the main path are lit in the bloom
filter. By using &’ > 1 to denote the number of such double-
edges, the probability of such a scenario is given by

_ (n7§’71)3! (n7h71)3| , ,
Py =y (i) "M (1-gf. @28)
k=1

An example for this case is shown in Fig. 12. In general, the
number of ways to choose k' — isolated double-edges from
n —h — 1 — vy nodes is defined as

Vi) 2 <(nk,3_,_:)3!> |

Henceforth, in the rest of the proof, we denote the term
g7 " (1—gq)¥ as H.

(29)

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX

QA

Fig. 12: Case 2 of Theorem 2: Dark double-edges represent
the path traversed by the packet, whereas dashed edges
represent isolated double-edges.

Case 3: We consider two types of double-edges: (i)
outward directed double-edges that originate from one of
the nodes on the main path such that both the second and
the third nodes of the double-edge lie outside the main
path, and (ii) isolated double-edges which do not have any
connection with the main path. This case is illustrated in
Fig. 13. Under type-(i), we assume that a node on the main
path has at most one outward directed double-edge.

With a total of k' double-edges lit in DE, 3 of them
can be of type-(i) and the remaining k' — 8 can be of
type-(ii). Under type-(i), the number of ways of selecting
the originating nodes from A nodes on the main path (};)
(excluding the destination). With a given originating node
on the main path, the number of ways of choosing a double-
edge (directed outward) is (n — h — 1)(n — h — 2) since
the other two nodes lie outside the main path. Thus, the
total number of ways of choosing 3 double-edges of type-(i)
is (g)((n —h —1)(n — h — 2))%. With that the remaining
k" — B isolated double-edges can be chosen in V' (0, §) ways.
Overall, the probability of this scenario is

D min((h),k") (h

> 3 ()

k=1

pPPE =) ((n—h—1)(n—h—2))’V (0, 3)H
(30)
Note that (30) is valid when h + 1 is either even or odd.

Case 4: We consider two types of double-edges: (i)
Double-edges such that the first edge is on the main path,
in the direction of the packet-flow, whereas the second edge
is directed outward connecting a node that lies outside the
main path, and (ii) isolated double-edges that do not have
any connection with the main path. An example for this case
is captured in Fig. 14.

With a total of &’ double-edges lit in DE, B of them can be
of type-(i) and the remaining k' — /3 can be of type-(ii). Under
type-(i), the total number of ways of selecting 8 nodes as
the second node of the double-edges is (") (excluding the
source and the destination). Further, the number of ways of
selecting the third node which lies outside the main path is
(n — h — 1)P. Thus, the total number of ways of choosing
/3 double-edges of type-(i) is ("5')(n — h — 1)7. With that

B
the remaining k' — f isolated double-edges can be chosen in

12

‘ GO

Fig. 13: Case 3 of Theorem 2: Outward directed double-
edges that originate from nodes on the main path (dark
edges), and isolated double-edges.

o6

Q

2 b
1 3 5 7

Fig. 14: Case 4 of Theorem 2: Outward directed double-
edges such that the first edge is on the main path (dark
edges) in the direction of the packet-flow whereas the sec-
ond edge is directed outwards, and isolated double-edges.

V' (0, 8) ways. Overall, the probability of this scenario is

D_min((h=D)K) 7
3 (;

k'=1

PPt =)(n —h—1)°V(0,8)H
C2Y)
Note that (31) is valid when h + 1 is either odd or even.

Case 5: We consider two types of double-edges: (i)
Double-edges such that the first edge merges with a node
on the main path whereas the second edge is on the main
path, however, in the direction opposite to that of packet-
flow, and (ii) isolated double-edges that are not connected
to the edges on the main path. An example for this case is
shown in Fig. 15.

With a total of &’ double-edges lit in DE, B of them
can be of type-(i) and the remaining ¥’ — § can be of type-
(ii). Similar to the counting arguments used in Case 4, the
probability of the events in this scenario can be written as

D min((h— 1)k)<h_1

B=1

DE _
P5

S S

k'=1

) (n—h—1)%(V(0,3))H.

(32)
Note that (32) is also valid when h + 1 is either odd or even.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX

0
o}

P

O

Fig. 15: Case 5 of Theorem 2: Inward directed double-edges
such that the first edge merges at a node on the main path
(dark edges) whereas the second edge is on the main path
against the direction of packet-flow.

Case 6: We consider three types of double-edges: (i)
Double-edges such that the first edge merges with a node
on the main path whereas the second edge is on the main
path either in or opposite to the direction of packet-flow, (ii)
Double-edges that merge with the main path such that only
the third node of the double-edge is on the main path (the
first two nodes of the double-edge do not lie on the main
path), and (iii) isolated double-edges that are not connected
to the main path. An example for this case is in Fig. 16.

500 9
)

S
1 3 5

Fig. 16: Case 6 of Theorem 2: Inward directed double-edges
such that the first edge merges at a node on the main
path (dark edges) whereas the second edge is on the main
path either in the direction of the packet-flow or against it.
This case also considers inward directed double-edges that
terminate at nodes on the main path.

When h + 1 is odd, double-edges of type-(i) can merge
at any of the % nodes (excluding the source node) on the
main path, whereas double-edges of type-(ii) can merge at
any of the % nodes (excluding the source node) on the main
path. Similarly, when h + 1 is even, double-edges of type-(i)
and type-(ii) can merge at any of the |4 | — 1 and [%] nodes
(excluding the source node) on the main path, respectively.
In addition to the above options, source node can be a part
of both type-(i) and type-(ii) since the resultant path does
not lead to false positives.

With a total of &’ double-edges lit in the bloom filter, let
j of them be of type-(i), and /3 be them be of type-(ii). We
consider j > 0 and 8 > 0 to avoid over counting double-
edges in Case 5. The total number of ways to select j nodes

13

of type-(i) and 3 nodes of type-(ii) are B and A respectively,
h
where B = (L%g.*l) and A = (LEJ), when h + 1 is even, and

h—2

B=(7)and A= (%), when h + 1 is odd. Under type-(i),
the first node of the double-edge can be selected inn—h—1
ways. With that the number of double-edges under type-(i)
can be chosen in B(n — h — 1)7 ways. After merging on a
node on the main path, double-edges can be formed in two
ways, either in the direction of packet-flow or against it. As
a result we have to multiply the number of possible double-
edges under type-(i) by 2/. However, when h+1 is even, the
double-edge of type-(i) terminating at the penultimate node
of the main path cannot have its second edge in the direction
of the packet flow. Therefore, we multiply the number of
possible double-edges under type-(i) by D = 2/~ mod 2),

Under type-(ii), the first node and the second node of
the double-edge can be respectively selected in n — h — 1
and n — h — 2 ways. With that the number of double-edges
under type-(ii) can be chosen in A(n — h — 1)?(n — h —
2)# ways. In addition to j double-edges of type-(i) and 3
double-edges of type-(ii), the source node can have one of
the following possibilities of double-edges: double-edge of
type-(ii), double-edge of type-(i), double-edges of both type-
(i) and type-(ii), neither type-(i) nor type-(ii).

Overall, including the above possibilities of double-
edges, the probability of this case is given by PP¢, as
given in (33), where the value of the pair {a,b} can be
{1,1},{1,0},{2,1}, and {0,0}, which takes care of one
of the possible types of double-edges on the source, and
V(0,84 j + a) takes care of the ways to pick k' — 8 —j—a
double-edges that are isolated from the main path.

From Case 1 to Case 6, we have considered only a subset
of cases which are guaranteed not to generate false positives.
As a result, given that ¢ positions in the bloom filter were lit
by the double-edges of the main path, we can lower bound
the probability of not witnessing false positives as

6 —
Pr(Ep, | Ci) >) PP¥,

34)

Jj=1
where Plﬁ € Pgﬁ e Pﬁﬁ € are respectively given in (27),
(28), (30), (31), (32), (33). 0

By substituting the above lower bound given by Theo-
rem 2 in (25), we get an upper bound on the probability
of false positives given that ¢ positions in the bloom filter
are lit by the double-edges on the main path. Furthermore,
substituting this upper bound and the exact expression of
Pr(C;) in (23), we get an upper bound on the probability of
false positives of the double-edge embedding scheme.

Similar to the edge embedding scheme, we verify the
tightness of the above upper bound by comparing it with
the results on error-rates obtained through simulations. The
plots, which are presented in Fig. 17 and Fig. 18, highlight
that the inferences made in the case of edge embedding
technique can be extended to the double-edge embedding
technique as well.

44 DDE Embedding with Relaxed Recovery Con-
straints

The delay expression in (19) is computed with the as-
sumption that the destination recovers the path traced by

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX

D
PPE=3"S"3N" N ABD(n—h—1)% (0 — h— 2P (V(0, 8+ j + o)) H

k'=18>035>0 {a,b}

14

(33)

n=8,h=4, m=24

100 ek

False positive %
False positive %

30 0 10 20 30 40
No. of hash functions (k)

n=8,h=4, m=40

No. of hash functions (k)
n=8,h=4,m=32

False positive %
False positive %

0 =2 0 A: s
0 10 20 30 40 50 0 10 20 30 4 50
No. of hash functions (k) No. of hash functions (k)

Fig. 17: Comparison between the error-rate of double-edge
embedding scheme and the upper bound for [n, h] = (8, 4].

n=12,h=5,m=24

n=12,h=5,m=32

100

2 80 EN
o o
2 2
8 60 H
Q Q
3 @
a2 8
£ 40 £
20 0
0 5 10 15 20 25 0 10 20 30 40
No. of hash functions (k) No. of hash functions (k)
n=12,h=5,m=40 n=12,h=5, m=48
100 100 §
—B—F.PExp
EN e 80 —*—F.PUB
2 2
= = 60
I3 73
o o
o (=3
@ o 40
K4 3
& £
20
- 0 b oot CFFRFRFFARFRAREEETEE
0 10 20 30 40 50 0 10 20 30 40 50

No. of hash functions (k) No. of hash functions (k)

Fig. 18: Comparison between the error-rate of double-edge
embedding scheme and the upper bound for [n, h| = [12, 5]

every packet. However, when the destination has relaxed
constraint to determine the provenance after observing a
number of packets, say N > 1, then the delay introduced

on each packet can be much lower than when N = 1.
This reduction can be accomplished by distributing the
optimal embedding pattern in Proposition 1 across N = L%J

packets. By distributing the provenance embedding process
over N packets, delay incurred by the embedding process
per packet is Tiotq; = hTE + Tp. This is because each node
has to execute the crypto-primitives irrespective of whether
it is embedding the provenance, and out of the i nodes,
only one node embeds the provenance on a pe}llcket, which

in turn contributes T}, seconds. When N > ||, only the

OO OO O ®

Fig. 19: When the destination has relaxed constraint to
determine the provenance over two packets, the embedding
pattern [0 1 0 1 0] can be distributed over two packets as
e1=[01000]and e = [0 00 1 0] to reduce the delay.

first L%J packets need to carry the provenance, whereas the
rest of N — L%J need not. Therefore, the destination needs
to wait for at least L%J packets to determine the path traced
by the packets. An example for the embedding patterns of
the 5-hop case is as shown in Fig. 19. A brief description of
the embedding process with relaxed recovery constraints is
given below when N = [2].
Embedding Process and Path Retracing: The node i;, for
1 < j < h, extracts the hop-counter and the bloom filter
portion BFj. Based on the hop-counter value and the value
of [, then node i; embeds the identity of its double-edge,
and then updates the hop-counter before forwarding the
packet to node ;1. This way, the destination receives
BF;, which is modified by at most one node in the path.
Using the bloom filter values on all the N packets, ie.,
{BF, | 1 <1 < N}, the destination constructs N sets of
double-edges, denoted by {’Dé'g)F | 1 <1 < N}, where
Dé’g)F is the list of shortlisted double-edges from BFE;.
Subsequently, the union of the shortlisted double-edges is
obtained as DEnion = U{L’DE%,)F. Finally, by feeding
DE ynion to the path retracing algorithm, the destination
determines the path traced by the set of N packets.

Fig. 20: Experimental setup of a network comprising six
nodes using Raspberry Pi 3+ and Digi XBee S2C devices.

5 EXPERIMENTAL RESULTS

In this section, we demonstrate the efficacy of the proposed
provenance embedding techniques on a test bed involving
a network of several XBee devices. The test bed setup as

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX

shown in Fig. 20 consists of n = 6 nodes, wherein each node
uses a Raspberry Pi 3+ and a Digi XBee S2C for computation
and communication purposes, respectively. To implement
H(:,-,-) in the provenance embedding process, we use the
standard SHA-256 protocol.

Our metrics of interest are the error-rates in provenance
recovery and the average latency offered per packet. In
this section, the total delay introduced by a provenance
embedding technique is referred to as the latency offered on
the packets. To measure the error-rates, we fix the number of
hops, and then route a sequence of 10° packets by varying
the paths. Subsequently, using the bloom filter observations
on these 10° packets, we compute the error-rates as defined
in (4). We define delay at a given node as the time taken
to transfer a packet from XBee’s receiving buffer to XBee’s
transmitting buffer after executing the required computa-
tions at Raspberry Pi 3+. The average delay numbers are
measured by routing an ensemble of 3000 packets through
a given node in the network. Using the experiments, we
observe that the average delay introduced by the crypto-
primitives at a node is 35ms, whereas the average delay in-
curred when executing the combination of crypto-primitives
and the provenance embedding process is more than 35ms,
and this additional delay is due to the implementation of %
hash functions on Raspberry Pi 3+. For instance, we observe
that the additional delay contributed by implementing the
sequence of k hash functions range from 4ms to 18ms when
k ranges from 1 to 15.

- - 100
240 | —©—Double-edge latency
220 —#—Single-edge latency 1
—+—Double-edge error 10°
200 —&—Single-edge error
M
E180] 2
) =
g 160; ugJ
3

30 40 50 60 70 80 90
Provenance size (bits)

Fig. 21: Comparison between edge and double-edge embed-
ding in terms of error-rate and latency on a network with
n = 6 and h = 3. For a given size of the bloom filter, the
value of £ that minimizes the error-rate is determined, and
the corresponding value of k is used to compute latency.

We compare the error-rates and the latency offered by
the proposed edge and double-edge embedding techniques
when the destination has strict recovery constraints to de-
termine the provenance. Their comparisons are presented in
Fig. 21, Fig. 22, and Fig. 23, for hop-lengths h = 3,4, and 5,
respectively. In each of the above figures, we vary the
provenance size from 27 bits to 91 bits in steps of 8, which
includes 3 bits for the hop-counter and the rest for the
bloom filter. For a given bloom filter size, we compute
the optimal value of k£ that minimizes the upper bound
on the error-rates in Theorem 1 and Theorem 2. Using the
corresponding value of k, the average delay contributed

15
710°
240} —©—Double-edge latency
—+—Single-edge latency |{ 1o
_220| —+—Double-edge error
g —&—Single-edge error 1 L9
~ 10 ‘é
EZOO 5
2 103 &
© w
180+
4107
160
-5
10

30 40 50 60 70 80 90
Provenance size (bits)
Fig. 22: Comparison between edge and double-edge embed-

ding in terms of error-rate and latency on a network with
n==6and h = 4.

by the provenance embedding process at a given node is
computed. Subsequently, the total delay is computed using
the number of nodes that modify the bloom filter and the
number of hops. In each of Fig. 21, Fig. 22, and Fig. 23,
the error-rates are plotted on the right-side of the y-axis,
whereas the average total latency offered are presented on
the left-side of the y-axis. As expected, all the three figures
confirm that the average latency offered by double-edge
embedding is lower than that of edge embedding. In Fig.
21, we observe that the benefits in latency numbers are not
the same with respect to the provenance size. This behavior
is attributed to the fact that the value of k € {1,2,...,m}
that minimizes the error-rate depends on the bloom filter
size, and as result, the latency numbers change since the
processing time at each relay node depends on the number
of hash functions used to embed the provenance. Similar
behavior can also be observed with h = 4 in Fig. 22 and
h = 5 in Fig. 23, wherein the latency numbers peak at the
intermediate values of the provenance size.

Interestingly, the plots show that double-edge embed-
ding outperforms edge embedding in terms of error-rates as
well. Although the number of double-edges to be verified
using the bloom filter is much larger than the number of
edges, the process of searching two successive edges at a
time in the DFS algorithm reduces the number of candidate
paths when compared with that of edge embedding.

5.1 DDE Embedding with Relaxed Recovery Con-
straints

In this section, we present the latency numbers of the DDE
embedding techniques when the destination has relaxed
constraint to learn the provenance after observing N pack-
ets. In Fig. 24, we present the provenance size on the x-axis
and the corresponding latency numbers on the y-axis. For a
given provenance size, the latency numbers are obtained by
solving for k to achieve the error-rate of pe;ror < 1072, From
the plots, it is evident that with N = 2, in order to achieve
an error-rate of 1072, the DDE embedding method with
N > 1 offers lower latency than with N = 1, however at the
cost of larger provenance size. We note that this behavior is
attributed to higher false-positive rates with N > 1 owing
to shortlisting of union of double-edges over the N packets.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX

260 ‘ ‘ e 400

—©—Double-edge latency
—#—Single-edge latency

—+—Double-edge error |}
—&—Single-edge error

240 1

o

£ 1022
-~ L ©
> 220 =
[3) S
= o
& 10°
-

200 ¢

180

30 40 50 60 70 80 901
Provenance size (bits)
Fig. 23: Comparison between edge and double-edge embed-

ding in terms of error-rate and latency on a network with
n==6and h = 5.

¥*
140
m
E120¢ O 3-hop DDE N=1 o
> { 4-hop DDE N=1
3 4-hop DDE N=2
2 I X 5-hop DDE N=1
© 100 % 5-hop DDE N=2
80 P ‘
A\>4
35 40 45

Provenance size (bits)

Fig. 24: Latency offered by the DDE embedding technique
with N = 1 and N > 1 to achieve an error-rate of 10~2.

We do not present experiment results with NV > 2 since the
minimum value of L%J is 2 in our experimental settings.

6 SECURITY ANALYSIS

In this section, we analyze the vulnerabilities of edge and
double-edge embedding methods against impersonation at-
tacks that could be executed by an external attacker after
compromising one of the nodes in the network. As de-
scribed in Section 2.1, the objective of the external attacker is
to manipulate the provenance information on the compro-
mised node so as to misguide the destination to recover a
path other than the one traveled by the packet. To mitigate
such attacks, we have proposed the use of private keys as
identities of the underlying edges (and the double-edges) of
the nodes. However, although the identities of the edges and
double-edges are private, we observe that the compromised
node can randomly generate k bloom filter positions, which
has a non-zero probability of collision with the positions
chosen by another legitimate edge (or double-edge) in the
network. In such events of collision, the destination is likely
to recover a different path in the network, which in turn is
not a desirable event in the network model.

Definition 3. A compromised node is said to successfully
execute a perfect impersonation attack if the destination

16

recovers exactly one path from the bloom filter such that
the recovered path differs from the actual path at the
position of the compromised node.

For instance, if the actual path traveled by the packet is
i1 — o — i3 — ... — iy, and if node i3 would like to
impersonate as node i5, for some i5 € A/, then in order to
execute a successful attack the destination must recover only
one path, ie., iy — i — i3 = ... — ip, from the bloom
filter. Henceforth, we define the success-rate of the perfect
impersonation attack as the fraction of packets for which
the attacker is able to successfully misguide the destination
in recovering a path which differs from the actual path
at the position of the compromised node. The following
propositions showcase results on vulnerabilities of edge and
double-edge embedding methods against perfect imperson-
ation attacks.

Proposition 2. With the edge embedding method, the
success-rate of perfect impersonation attack is zero.

Proof: The result is straightforward to prove. O

Proposition 3. With the double-edge embedding method,
the success-rate of perfect impersonation attack is
bounded away from zero.

Proof: With double-edge embedding, the success-rate
of perfect impersonation attack depends on whether the
attacker has compromised a node that embeds its double-
edge or the one that skips the embedding process. Since the
information on the hop-counter is kept confidential by the
legitimate nodes, an external attacker may compromise one
of these two types of nodes. In the case of compromising a
node that skips the embedding process, it is straightforward
to note that the attacker cannot execute perfect imperson-
ation attack since the preceding and the succeeding nodes
will correctly embed their double-edges thereby embedding
a path in the provenance. As a result, we consider the case
when the attacker compromises a node that embeds the
identity of its double-edges. Suppose that node b, for some
b € N, is compromised by an external attacker, and node
b was scheduled to embed the identity of the double-edge
(€a,b; €b,c), Where eq p is the directed edge connecting node
a and node b, and e . is the directed edge connecting node b
and node c. Furthermore, suppose that the attacker attempts
to impersonate node d, for some d # b. Since the attacker
does not have the identity of the double-edge (eq.4;€d,c)
(since it is private to node d), it attempts to randomly gen-
erate k statistically independent index values in the bloom
filter with uniform distribution. In such a case, the success-
rate of perfect impersonation attack is the probability with
which the index values generated by node d using the
double-edge (€4 4, €4,c) coincides with that of the randomly
generated index values by the attacker. It is important to
note that the success-rate of perfect impersonation attack
also depends on the number of index values chosen by the
other double-edges on the path. In particular, the success-
rate can be formally written as

(L3)k

Psuccess = §

i=1

k .
Pr(Ci) Z (m]_ Z) (pmatch)27 (35)

J=0

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX

0
10 : : 1
—*—Single-edge 3 hops
X —— Double-edge 3 hops
g —¥— Single-edge 4 hops ~ 0.95
£ 107 —O—Double-edge 4 hops | 'O —r—Single-edge 3 hops
2 —B— Single-edge 5 hops g 0.9 —£5— Double-edge 3 hops ||
..E —e— Double-edge 5 hops | © —3¥— Single-edge 4 hops
a g —O— Double-edge 4 hops
8 10-2 1=0.85 —O— single-edge 5 hops |
g ‘.“_, —E—Double-edge 5 hops
Y
- 2 08
S 103 12
Z 8075
3 104 12
<
o 0.7
107 *—

40 60 - 80v M 40 60 80 100
Provenance Size Provenance Size

Fig. 25: Comparison of success-rate and failure-rate of im-
personation attack for n = 6 and various values of h. For
each value of m, the optimal value k is chosen based on the
results in Theorem 1 and Theorem 2.

where Pr(C;) is the probability that i positions, for 1 < ¢ <
([%] — 1)k, of the bloom filter have been set by the double-
edges contributed by the ([2] — 1) legitimate nodes in the
path, the term pp,q¢cn is the probability that the attacker
chooses k index values in the bloom filter such that j distinct
index values, for 0 < j < k, are chosen outside the set of i
index values (which are chosen by the other double-edges)
and the remaining k — j index values are chosen at any of
those 1+ 7 index values of the bloom filter. Note that the term
P2 e @ppears in (35) owing to statistical independence
between the index values chosen by the attacker and that of

node d. Furthermore, it can be shown that p,,qtcn is lower

M)GHEE))
mk

bounded by (. Therefore, psyccess can be lower

bounded by

(141-1k k N L VNG EEDNN
> Pr(CﬂZ(mj)(W) . (36)
i=1 j=0

Thus, we have shown that the success-rate of the perfect
impersonation attack on double-edge embedding method is
bounded away from zero. O

The intuition behind the results in Propositions 2 and
3 is that the edge embedding method adds redundancy in
conveying the path information to the destination, and as
a result, the destination cannot be misguided to recover
another path even if the attacker manages to impersonate
the identity of another edge in the bloom filter. On the
other hand, the double-edge embedding method adds no
redundancy owing to which the attacker has non-zero prob-
ability of successfully executing the perfect impersonation
attack by swapping a double-edge of the path with another
double-edge in the network.

6.1 Experimental Results on Impersonation Attacks

In this section, we present experimental results to analyze
the success- and failure-rate of impersonation attack on
edge and double-edge embedding methods. To evaluate
the effect of the attack, we assume that the value of k is

17

already optimized to minimize the error-rate as a function
of n, h and m (similar to the results presented in Section
5). To generate the results, we assume that one of the n
nodes is compromised by an external attacker, and the
compromised node, instead of using the identity of its edge
(or the double-edge), uses a random identity to generate
k index values in the bloom filter. Meanwhile, the other
nodes on the path embed the identities of their edges (or
double-edges) in a legitimate fashion as per the protocol. As
a result, the destination witnesses one the following events
when recovering the path information from the bloom filter:
Type-one: No path (of hop-length as indicated by the hop
counter) is recovered, Type-two: Only one path (of hop-
length as indicated by the hop counter) is recovered that is
other than the path traveled by the packet, and Type-three:
More than one path (of hop-length as indicated by the hop
counter) is recovered. Among the above three events, we are
interested in computing the fraction of events of Type-two,
wherein the destination successfully recovers only one path
that is other than the path traveled by the packet. When m
is sufficiently large the events in this case are due to perfect
impersonation attack, wherein the recovered path differs
from the actual path only at the position of the compromised
node. However, when m is not large, then the events in
this case are due to relaxed form of impersonation attack,
wherein the recovered path differs from the actual path at
more than one node. Such events are formed because the
attacker’s index values in the bloom filter coincide with that
of a legitimate edge (or a double-edge) in the network, and
simultaneously, other edges (or double-edges) are also lit in
the bloom filter due to false positives, thereby contributing
a single path to the destination. In short, events of Type-two
capture the success-rate of the attacker in misguiding the
destination to recover a different path albeit not knowing
the identity of other nodes.

Other than computing the success-rate, we are also
interested in computing the fraction of events of Type-
one and -three, as they assist the destination to detect an
impersonation attack. Note that without the impersonation
attack, at least one path is recovered from the bloom filter,
and moreover, the error-rate is a priori optimized to a small
non-zero number. As a result, computing the fraction of
union of events of Type-one and -three, helps the destination
to quantify the failure-rate of the impersonation attack. In
Fig. 25, we have plotted the success-rate and the failure-
rate of the impersonation attack for both edge and double-
edge embedding methods with various values of m, k and
h. In particular, the values of m, k and & are as chosen in
Fig. 21-23. The plots on the left-side of Fig. 25 show that
with edge embedding, the success-rate is dominated by the
events of relaxed form of impersonation attacks, whereas
with double-edge embedding the success-rate is a combi-
nation of perfect as well as relaxed form of impersonation
attacks. The plots also show that edge embedding is more
resilient to impersonation attack than DE embedding, and
this behavior in the order also corroborates with the results
in Propositions 2 and 3. With respect to failure-rates, we
show through the plots on the right-side of Fig. 25 that
impersonation attacks can be detected at a high rate both in
edge embedding and DE embedding when the bloom filter
size is sufficiently large.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3001185, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IBTEX CLASS FILES, VOL. XX, NO. X, XXXX
7 SUMMARY AND CONCLUSIONS

To conclude, we have proposed new provenance embedding
algorithms while facilitating low-latency routing of packets
over a multi-hop network. We have derived bounds on the
error-rates of the proposed techniques in order to select an
appropriate number of hash functions for a given number
of hops, bloom filter size, and the total number of nodes.
We have demonstrated the latency benefits of the double-
edge embedding ideas on a test bed of XBee devices, and
have also presented a security analysis to asses their vul-
nerabilities against impersonation attacks. We observe that
the proposed technique does not provide 50% reduction in
latency although at most half the nodes skip the provenance
embedding process. This behavior is attributed to the fact
that majority of the delay is contributed by executing the
crypto-primitives at each node. Therefore, for future re-
search, we intend to explore the idea of skipping crypto-
primitves at some nodes to further reduce the latency, and
study the associated trade-offs in security features.

ACKNOWLEDGMENTS

This work was supported by the Indigenous 5G Test Bed
project from the Department of Telecommunications, Min-
istry of Communications, New Delhi, India.

REFERENCES

[1] N. A. Johansson, Y. E. Wang, E. Eriksson and M. Hessler, “Radio
Access for Ultra-Reliable and Low-Latency 5G Communications,”
in the Proc. of 2015 IEEE International Conference on Communication
Workshop (ICCW), London, 2015, pp. 1184-1189.

[2] K. C. Dey, A. Rayamajhi, M. Chowdhury, P. Bhavsar, and J. Martin,
“Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) Com-
munication in a Heterogeneous Wireless Network—performance
Evaluation,” in Transportation Research Part C: Emerging Technologies,
vol.68, pp. 168-184, 2016.

[3] A. Ramachandran, K. Bhandankar, M. B. Tariq, and N. Feamster,
“Packets with Provenance,” Georgia Tech CSS Technical Report, GT-
CS-08-02, 2008.

[4] D. Sy and L. Bao, “Captra: Coordinated Packet Traceback,” in
ACM/IEEE 5th International Conference on Information Processing in
Sensor Networks, pp. 152-159, 2006.

[5] S. R. Hussain, C. Wang, S. Sultana, and E. Bertino, “Secure Data
Provenance Compression using Arithmetic Coding in Wireless
Sensor Networks,” in IEEE 33rd International Performance Computing
and Communications Conference (IPCCC), pp. 1-10, 2014.

[6] C. Wang, S. R. Hussain, and E. Bertino, “Dictionary Based Secure
Provenance Compression for Wireless Sensor Networks,” in IEEE
Trans. on Parallel and Distributed Systems, vol. 27, no. 2, pp. 405-418,
2016.

[7] H.S.Lim, Y. S. Moon, and E. Bertino, “Provenance-based Trustwor-
thiness Assessment in Sensor Networks,” in Proceedings of the ACM
7th International Workshop on Data Management for Sensor Networks,
pp- 2-7, 2010.

[8] M. Keller, J. Beutel, and L. Thiele, “How was Your Journey?:
Uncovering Routing Dynamics in Deployed Sensor Networks with
Multi-hop Network Tomography,” SenSys, pp. 15-28, 2012.

[9] Z. Liu, Z. Li, M. Li, W. Xing, and D. Lu, “Path Reconstruction in
Dynamic Wireless Sensor Networks using Compressive Sensing,”
in IEEE/ACM Trans. on Networking, vol. 24, no. 4, pp. 1948-1960,
2016.

[10] X.Lu, D.Dong, X. Liao, and S. Li, “Pathzip: Packet Path Tracing in
Wireless Sensor Networks,” in IEEE 9th International Conference on
Mobile Ad-Hoc and Sensor Systems (MASS 2012), pp. 380-388, 2012.

[11] J. Xu, X. Zhou, and F. Yang, “Traceback in Wireless Sensor Net-
works with Packet Marking and Logging,” in Frontiers of Computer
Science, Springer, no. 03, pp. 308-315, 2011.

18

[12] S. Sultana, E. Bertino, and M. Shehab, “A Provenance based
Mechanism to Identify Malicious Packet Dropping Adversaries in
Sensor Networks,” in International Conference on Distributed Comput-
ing Systems Workshops, Minneapolis, USA, June 2011, pp. 332-338.

[13] B. Shebaro, S. Sultana, S. Reddy Gopavaram, and E. Bertino,
“Demonstrating a Lightweight Data Provenance for Sensor Net-
works,” in ACM Conference on Computer and Communications Secu-
rity, pp. 1022-1024, 2012.

[14] S. Sultana, G. Ghinita, E. Bertino, and M. Shehab, “A Lightweight
Secure Scheme for Detecting Provenance Forgery and Packet Drop
Attacks in Wireless Sensor Networks,” in IEEE Transactions on
Dependable and Secure Computing, no. 3, pp. 256-269, 2015.

[15] S.M. 1. Alam and S. Fahmy, “A Practical Approach for Provenance
Transmission in Wireless Sensor Networks,” Ad Hoc Networks, no.
16, pp. 2845, 2014

[16] M. Klonowski and A. M. Piotrowska, “Light-weight and secure
aggregation protocols based on bloom filters,” Computers and Secu-
rity, no. 72, pp. 107-121, 2018.

[17] S. Suhail, M. Abdellatif, S. R. Pandey, A. Khan, and C. S. Hong,
“Provenance-enabled packet path tracing in the RPL-based internet
of things,” available online at arXiv:1811.06143, 2018.

[18] C.Wang, W. Zheng, and E. Bertino, “Provenance for Wireless Sen-
sor Networks: A Survey,” in Data Science and Engineering, Springer,
vol. 01, no. 3, pp. 189-200, 2016.

[19] J. Naous, M. Walfish, A. Nicolosi, D. Mazie‘res, M. Miller, and A.
Seehra, “Verifying and enforcing network paths with ICING,” in
the Proc. of ACM CoNEXT, 2011.

[20] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and A. Perrig,
“Lightweight source authentication and path validation,” in the
Proc. of ACM SIGCOMM, 2014.

[21] H. Wang, C. Qian, Y. Yu, H. Yang, and S. S. Lam, “Practical
network-wide packet behavior identification by ap classifier,” in
the Proc. of ACM CoNEXT, 2015.

[22] E. Shi and A. Perrig, “Designing secure sensor networks,” in IEEE
Wireless Communications, vol. 11, no. 6, pp. 3843, Dec. 2004.

[23] E Liu, X. Cheng and D. Chen, “Insider attacker detection in
wireless sensor networks,” IEEE INFOCOM 2007, Anchorage, AK,
2007, pp. 1937-1945.

[24] M. Imran, H. Hlavacs, F. A. Khan, S. Jabeen, F. G. Khan, S. Shah,
and M. Alharbi, “Aggregated provenance and its implications in
clouds,” in Future Generation Computer Systems, vol. 81, pp. 348-358,
April 2018.

[25] M. Raya and J. P. Hubaux, “Securing vehicular ad hoc networks,”
Journal of Computer Security, vol. 15, no. 01, pp. 39-68, 2007

[26] V. Kumar, H. Li, J. M. Park, K. Bian, and Y. Yang, “Group Sig-
natures with Probabilistic Revocation: A Computationally-Scalable
Approach for Providing Privacy-Preserving Authentication,” in the
Proc. of ACM SIGSAC Conference on Computer and Communications
Security, pp. 1334-1345, Oct. 2015

J. Harshan is an Assistant Professor in the Department of Electrical
Engineering, IIT Delhi. His research interests include wireless networks,
security, and coding theory.

Amogh Vithalkar received the B.Tech. degree in Electronics and Com-
munication from IlIT Delhi, India. He is currently a project assistant at
IIT Delhi, working on security for connected devices in 5G. His research
interests include wireless networks, security, radar signal processing,
and antenna design.

Naman Jhunjhunwala is pursuing B.Tech. degree in the Department
of Mathematics. His research interests include machine learning, algo-
rithms and probability.

Manthan Kabra is pursuing B.Tech. degree in the Department of Math-
ematics, [IT Delhi. His research interests include applied probability,
statistics, machine learning and discrete mathematics.

Praful Manav is pursuing B.Tech. degree in the Department of Electrical
Engineering, IIT Delhi. His interests include signal processing, commu-
nication systems, applied probability and control systems.

Yih-Chun Hu is an Associate Professor in the Department of Electrical
and Computer Engineering, University of lllinois at Urbana-Champaign,
USA. His research interests include network security and wireless net-
works.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on June 10,2020 at 23:42:10 UTC from IEEE Xplore. Restrictions apply.

