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Abstract

We consider the task of 3D pose estimation and tracking
of multiple people seen in an arbitrary number of camera
feeds. We propose TesseTrack', a novel top-down approach
that simultaneously reasons about multiple individuals’ 3D
body joint reconstructions and associations in space and
time in a single end-to-end learnable framework. At the
core of our approach is a novel spatio-temporal formula-
tion that operates in a common voxelized feature space ag-
gregated from single- or multiple camera views. After a per-
son detection step, a 4D CNN produces short-term person-
specific representations which are then linked across time
by a differentiable matcher. The linked descriptions are
then merged and deconvolved into 3D poses. This joint
spatio-temporal formulation contrasts with previous piece-
wise strategies that treat 2D pose estimation, 2D-to-3D lift-
ing, and 3D pose tracking as independent sub-problems that
are error-prone when solved in isolation. Furthermore, un-
like previous methods, TesseTrack is robust to changes in
the number of camera views and achieves very good results
even if a single view is available at inference time. Quan-
titative evaluation of 3D pose reconstruction accuracy on
standard benchmarks shows significant improvements over
the state of the art. Evaluation of multi-person articulated
3D pose tracking in our novel evaluation framework demon-
strates the superiority of TesseTrack over strong baselines.

1. Introduction

This paper addresses the problem of tracking and re-
constructing in 3D articulated poses of multiple individ-
uals seen in an arbitrary number of camera feeds. This
task requires identifying the number of people in the scene,
reconstructing their 3D body joints into consistent skele-
tons, and associating 3D body joints over time. We do
not make any assumption on the number of available cam-
era views and focus on real-world scenarios that often in-
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Figure 1: We illustrate the output of Tessetrack on the Tagging sequence.
The top two row potray the projections of keypoints on two views, while
the bottom row shows the 3D pose tracking. Observe smooth tracking of
people in the wild with moving cameras for long duration of time.

clude multiple close-by interacting individuals, fast mo-
tions, self- and person-person occlusions. A key challenge
in such scenarios is that people might strongly overlap and
expose only a subset of body joints due to occlusions or
truncations by image boundaries (c.f. Fig. 1), which makes
it harder to reliably reconstruct and track articulated 3D
human poses. Most multi-view strategies rely on multi-
stage inference [9, 13, 20, 7, 8, 21, 15, 35] to first estimate
2D poses in each frame, cluster same person poses across
views, reconstruct 3D poses from clusters based on triangu-
lation, and finally link 3D poses over time [9, 8]. Solving
each step in isolation is sub-optimal and prone to errors that
cannot be recovered in later stages. This is even more true
for monocular methods [4, 26, 33, 25, 42] where solving
each step in isolation often represents an ill-posed problem.

We propose TesseTrack, a top-down approach that si-
multaneously addresses 3D body joint reconstructions and
associations in space and time of multiple persons. At
the core of our approach is a novel spatio-temporal formu-
lation that operates in a common voxelized feature space
obtained by casting per-frame deep learning features from
single or multiple views into a discretized 3D voxel vol-
ume. First, a 3D CNN is used to localize each person in
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Figure 2: The complete pipeline of tessetrack has been illustrated. Initially, the video feed from multiple cameras is passed through shared HRNet to
compute the features required for detection and 3D pose tracking. The final layer of the HRNet is passed through a 3D convolution to regress to the center of
the human 3D bounding boxes. Each of the hypotheses is combined with the HRNet final layer to create a spatio-temporal Tube called tesseract. We use a
learnable 3D tracking framework for a person association over time using spatio-temporal person descriptors. Finally, the associated descriptors are passed
through deconvolution layers to infer the 3D pose. Note that the framework is end-to-end trainable except for the NMS layer in the detection network.

the voxel volume. Then, a fixed spatio-temporal volume
around each person detection is processed by a 4D CNN to
compute short-term person-specific representations. Over-
lapping representations at neighboring time steps are fur-
ther scored based on attention aggregation and linked using
a differentiable matcher. Finally, 3D body joints of the same
person are consistently predicted at each time step based on
merged person-specific representations. Notably, all com-
ponents are implemented as layers in a single feed-forward
neural network and are thus jointly learned end-to-end.

Our main contribution is a novel spatio-temporal formu-
lation that allows simultaneous 3D body joint reconstruc-
tion and tracking of multiple individuals. In contrast to the
multi-person 3D pose estimation approach of [46] who sim-
ilarly aggregate per frame information in 3D voxel space,
we address a more challenging problem of multi-person 3D
pose tracking and propose end-to-end person-specific rep-
resentation learning. TesseTrack does not make assump-
tions on the available number of camera views and performs
reasonably well even in the purely monocular setting. Re-
markably, using only a single view allows achieving simi-
lar MPJPE 3D joint localization error compared to the five-
view setting of [460], while using the same five-view set-
ting results in 2.4 x reduction in MPJPE error (c.f. Sec. 4).
In contrast to the multi-person 2D pose tracking method
of [49] who rely on short-term spatio-temporal represen-
tation learning, our approach operates on the aggregated
spatio-temporal voxel volume and provides a richer hypoth-
esis comprising of tracked 3D skeletons.

Our second contribution is a novel learnable track-

ing formulation that allows extending person-specific
spatio-temporal representation learning to arbitrary-long se-

quences. In contrast to [49] who use a heuristic pairwise
tracking score based on pose distance and perform match-
ing using the Hungarian method, we rely on an attention
aggregation layer and a differentiable representation match-
ing layer based on the Sinkhorn algorithm. Importantly, we
match person-specific representations instead of the deter-
mined body pose tracklets, which allows to learn more ex-
pressive representations. In Sec. 4 we demonstrate that the
proposed learnable tracking formulation not only improves
tracking accuracy but also improves joint localization.

Our third contribution is a novel framework for the eval-
uation of multi-person articulated 3D pose tracking. Exper-
imental evaluation on the Panoptic dataset [21] shows that
TesseTrack achieves significant improvements in per-joint
tracking accuracy compared to strong baselines.

Finally, our fourth contribution is an in-depth ablation
study of the proposed approach and thorough comparisons
to current methods on several standard benchmarks. In
Sec. 4 we demonstrate that proposed design choices result
in significant accuracy gains, thereby establishing a new
state of the art on multiple datasets.

2. Related Work

Single Person 3D Pose Estimation methods can be sub-
divided into multi-view and monocular approaches. Multi-
view approaches often rely on triangulation [ 18] of per view
2D poses to determine a 3D pose [9, 13, 21]. To improve
robustness to 2D pose estimation errors, [1, 41] jointly rea-
son over 2D poses seen from multiple viewpoints. Recent
monocular approaches typically lean on powerful neural
networks to mitigate the ambiguity of recovering 3D from
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2D joint locations [34, 26, 41, 20, 37, 53, 11, 12]. [34, 26]
directly regress 3D poses from 2D joint locations using deep
networks. While being quite simple, they suffer from inac-
curacies of 2D joint localization and the fact that appear-
ance is not used during 3D pose prediction. [20, 37, 53, 17]
intend to overcome these limitations by predicting a 3D vol-
umetric representations from images: [ | 7] augments 2D de-
tection heatmaps with latent 3D pose features to predict 3D
pose, [20] projects 2D feature maps to 3D volume and pro-
cesses the volume to predict 3D joint locations. Similarly
to [20, 37, 53, 17], we cast per-frame deep learning features
from single or multiple views into a common discretized
space. However, we address a more challenging problem
of multi-person 3D pose tracking and process 4D spatio-
temporal volumes to compute person-specific representa-
tions that allow to predict spatially and temporally consis-
tent skeletons of multiple people. Our method is also re-
lated to [12, 11] who perform spatio-temporal representa-
tion learning optimized specifically for monocular case by
introducing occlusion-aware training and spatio-temporal
pose discriminator [11]. In contrast, our approach was not
yet tuned to a monocular case and thus is expected to im-
prove when using similar strategies.

Multi-person 3D Pose Estimation methods typically split
the problem into 2D joint grouping in single frames and 3D
pose reconstruction. 2D grouping is done using bottom-
up [40, 10, 24, 36] or top-down [45, 50] strategies. In multi-
view scenarios, recent approaches typically rely on trian-
gulation of 2D poses of the same individual to reconstruct
3D poses [13, 15], while earlier methods extend pictorial
structures model to deal with multiple views [0, 8, 7]. Inde-
pendently solving 2D pose estimation, multi-view match-
ing and triangulation are prone to errors. [46] project per
view 2D joint heatmaps into a voxelized 3D space and di-
rectly detect people and predict their 3D poses in this space.
Monocular approaches [30, 52] encode 2D and 3D pose fea-
tures and jointly decode 3D poses of all individuals in the
scene. Encoding the pose for all joints/limbs of the full-
body, regardless of available image evidence, leads to po-
tential encoding conflicts when similar body parts of dif-
ferent subjects overlap. Similar to [46] we cast per-frame
feature maps into a voxelized 3D space and follow a top-
down approach which starts with detecting people in this
space. However, we address a more challenging problem
of multi-person 3D pose tracking, which requires reason-
ing in spatio-temporal volumes extracted around person de-
tections and merging extracted person-specific representa-
tions to reliably reconstruct and track 3D skeletons in ar-
bitrarily long sequences. In contrast to [46] and similarly
to [30, 52] our approach can operate in a purely monocu-
lar setting. However, unlike [30, 52] our approach does not
suffer from encoding conflicts, since we cast feature maps
into a common voxelized 3D space.

Multi-person 3D Pose Tracking was only addressed by
few approaches [4, 9, 51, 29]. The multi-view approach
of [9] follows a multi-stage inference where 2D poses are
first predicted per frame, same person 2D poses are trian-
gulated across views to recover 3D poses which are finally
linked over time. In contrast, our formulation operates in a
common spatio-temporal volume, is end-to-end learnable,
and is not restricted to the multi-view setting only. An
earlier monocular approach [4] relies on 2D tracking-by-
detection and 2D-to-3D lifting to track 3D poses of walking
pedestrians with a little degree of articulation. In contrast,
we do make no assumptions about the type of body mo-
tions or people activities and address a harder problem of
multi-person articulated 3D pose tracking. [51] compute
per frame 2D and 3D pose and shape hypothesis and per-
form joint space-time optimization under scene constraints
to reconstruct and track 3D poses. [29] encodes per frame
2D and 3D pose features and identities for all visible body
joints of all people and employs a fully-connected deep net-
work to decode features into complete 3D poses, followed
by a spatio-temporal skeletal model fitting. In contrast,
to [51, 29] who resort to a piece-wise trainable strategy,
our approach is end-to-end trainable and thus can propagate
people detection, tracking, and pose estimation errors back
to input image pixels. Furthermore, our formulation seam-
lessly incorporates additional views, if available, to boost
accuracy. We envision though that similar spatio-temporal
model fitting strategies as in [51, 29] can be used to refine
the output of our method.

3. TesseTrack: Multi-Person 3D Pose Tracking

To learn person tracking and pose estimation in 3D we
build multiple differentiable layers with intermediate super-
visions. Our network is made up of three main blocks, each
one with an associated loss. The first block is a person de-
tection network in 3D voxel space (3.1). Given person de-
tections, a 4D CNN extracts a spatio-temporal representa-
tion of each detected person over a short period of time. In
order to track people, we then solve an assignment prob-
lem between the set of descriptors for two frames ¢ and
t+ At (3.2). All matched descriptors which overlap are then
merged into a single descriptor which is finally deconvolved
into a 3D pose for the person tracked at central frame (3.3).

3.1. Person Detection Network

Our approach starts with a multi-view person detection
network (PDN) trained to detect people in 3D at a specific
time instance. We use HRNet [45] as our backbone for ex-
tracting image-based features at each frame. We use the
pre-final layer of the network and pass it through a single
convolution layer to convert it into a feature map of size
R. The feature maps coming from all the camera views are
then aggregated into a 3D voxelized volume by an inverse
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image projection method, similarly to [20], with the criti-
cal difference that we don’t fuse the 2D joint heatmaps in
3D but the richer feature vectors picked from the pre-final
layer of HRNet. The voxel grid is initialized to encompass
the whole space observed by the cameras. Using the cam-
era calibration data, each voxel center is projected into the
camera views. We aggregate all the feature vectors picked
in image space by concatenating them and passing through
a shallow network with a softmax layer. This produces a
unique feature vector of size R. We thus end up with a data
structure of size R x W x H x D dimensions, where W, H,
D are the dimensions of the voxel grid and R is the dimen-
sion of the feature maps. We then apply 3D Convolutions
to this volume to generate detection proposals. For each
person, we train the network to detect its "center”, which is
defined as the midpoint between neck and center of the hips.
The loss at each time ¢ is expressed directly as a distance be-
tween the expected heatmap and the output heatmap, simi-
larly to the CenterNet approach [14], except that our frame-
work is in 3D instead of 2D:

W H D
w,h,d v h,d
Ly = Z ZZHVPred Ver |l (1)
w=1h=1d=1
We apply non-maximum suppression (NMS) on the 3D
heatmaps and only retain the detections with large score.

3.2. Spatio-Temporal Descriptors and Tracking

For each detected person we create a spatio-temporal

volume of fixed dimension centered on the person and
use a 4D CNN to produce a short time description of the
person around the detection frame. We call this spatio-
temporal volume a fesseract as it is a 4D volume of size
RXTxXxY xZ, where T represents temporal window size
and X,Y, 7 are the dimensions of the cuboid centered on the
detected person. The goal of extending the volume in time
around the detection frame is twofold. First, using a tem-
poral context allows to better estimate the joint positions in
the central frame, and especially to extrapolate/interpolate
occluded joints or to handle pose or appearance ambiguities
in a single frame. Second, extending a person’s description
in time generates a descriptor which overlaps with adjacent
frames, hence producing descriptors that can be matched by
similarity for tracking purposes.
Tesseract Convolutions. The input to this sub-network is
still the output of the HRNet pre-final layer which is cast
in 3D at each time stamp. We follow the same procedure
as for the person detection network to generate the features
for each time instance of the tesseract. The tesseract is then
passed through multiple 4D convolutions and max pooling
layers to produce a reduced size tesseract feature. These
features represent a spatio-temporal descriptor of a person
centered around a detection. This bottleneck descriptor is
used in both the tracking and pose estimation modules.
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Figure 3: The learnable tracking framework. The input is the tesseract
features for multiple detected humans at two different time instances. The
output is an assignment matrix providing the correspondence between the
detected persons at different times.

Attention Aggregation. Before temporal matching, as il-
lustrated in Fig 3, we pass the features into a Graph Neural
Network to integrate contextual cues and improve the fea-
tures distinctiveness. We use two types of undirected edges:
self edges, connecting features belonging to the same time
instance and cross edges, connecting features from adjacent
time instances. We use a learnable message passing formu-
lation to propagate the information in the graph. The result-
ing multiplex network starts with a high-dimensional state
for each node and computes at each layer an updated rep-
resentation by simultaneously aggregating messages across
all incident edges for all nodes.

Let (Vx! be the intermediate representation for element i
at time instance ¢ at layer /. The message m._,; is the result
of the aggregation from all features of persons j : (i,5) €
€, where € € €017, €cross- Following [43, 5, 47] we pass
the input through multiple message passing updates to get a
final matching descriptors given as linear projections. They
are given as f} = W.(F)xt + b. for features at time ¢ and
fi(t+m) = W(L)x§+At + b. at time t + At, where W are
the weights learned for the GNN.

Temporal Matching Layer. The final features of the atten-
tion module are passed through a trained matching layer,
which produces an assignment matrix. For a given time
instance t, we consider the features of N and M persons
at time ¢ and ¢ + At respectively. As in the standard bi-
partite graph matching formulation, an optimal assignment
P is a permutation matrix which maximizes the total score
Zi,j S; ;P ; where S ¢ RMXN is a score matrix. We
compute the similarity S; ; between the descriptor ¢ at time
t and the descriptor j at time ¢ + At using the inner product
between descriptors S; ; =< f}, f;tJrAt) >. As opposed
to learned visual descriptors, the matching descriptors are
not normalized, and their magnitude can change as per the
feature during training to reflect the prediction confidence.
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To let the network suppress some predicted persons
(false detections) and to handle changes in the number of
persons in the scene, we augment each set with a dustbin
so that matching is always computed on a fixed length fea-
ture vectors. This leads to optimal assignments for each
available detection and the rest unassigned dustbins always
correspond one-to-one with the next time instance. Follow-
ing recent end-to-end learning approaches which include an
optimal assignment step, such as [31, 43], we use the Sof-
tassign algorithm [16] to solve the assignment problem by
a differentiable operator. The Softassign algorithm is based
on Sinkhorn iterative matrix balancing, which projects an
initial score matrix into a doubly stochastic matrix by it-
eratively normalizing the matrix along rows and columns.
When applied to the matrix exzp(S~/7), it has been shown
that Sinkhorn balancing corresponds to solving an entropy
regularized problem which converges to the optimal assign-
ment solution as 7 goes to 0 [31]. The Softassign algorithm
can be efficiently implemented on GPU by unrolling a fixed
number of Sinkhorn iterations. After 7" = 100 iterations,
we get a final score matrix P and the association for the
detection ¢ at time ¢ is then extracted as arg max; F; ;.

Since all of the above layers are differentiable, we can
train the tracking module in a supervised manner with re-
spect to the ground truth. Given ground truth associations
G between time ¢ and t 4+ At, the objective function to be
minimized is the log likelihood of the assignment P:

Lh=- Y logP,; 2)
(i,5)€G

3.3. 3D Pose Estimation

The last module of the network computes the persons’
3d poses using the persons descriptors and their tracking.

Spatio-temporal descriptors merging. If T is the tesser-
act temporal window size, then after tracking a person for T’
frames, we obtain T spatio-temporal descriptors of this per-
son which overlap at a common time and encode the per-
son’s pose and motion over a total time interval of length
2T — 1. We thus merge all these descriptors to estimate the
person’s pose at their common time. As previously, we use
a softmax-based merging strategy and the result is a single
tesseract description for the central frame.

Tesseract deconvolution. The merged tesseract is finally
passed through multiple 4D deconvolution layers to produce
3D heatmaps of person’s joints at time ¢. If 77, denotes
the 3D heatmap obtained for the joint g, the predicted joint
position k%, , is obtained by a soft-argmax operator, i.e. by
a heatmap scores-weighted average of the voxel centers.
Similar to [20], we then combine two loss functions
for the pose estimation task: a L1 distance computed on
the keypoints positions and a loss on the response of the

heatmap at the ground truth joint position:

Q
td
LP - Z [||k313red - kéTul - ﬁ log(Tlg'red(kg;T))] ’ (3)
q=1
where () is the number of joints. In the end, we train our
network end-to-end to minimize the sum of the three losses
defined above over time, the person detection loss L%, the
tracking loss L%, and the pose estimation loss L'

L=Y |Lh+alh+y > L, @
teD pETP(t)

where D is the total duration of the sequence and T P(t)
represent the true positive detections at time ¢. The gradient
is propagated back to the initial images, including through
the HRNet backbone which is shared by the detection mod-
ule and the tracking + pose estimation modules.

4. Experiments
4.1. Datasets and Metrics

We selected the following standard 3D human pose es-
timation datasets for experimental evaluation. All datasets
provide calibrated camera poses.

Human3.6M [19] was captured from 4 cameras with a sin-
gle human performing multiple actions. The dataset con-
tains 8 actors performing 16 actions captured in controlled
indoor settings. Motion capture was used to create ground
truth 3D poses. We use 6 sequences to train and 2 se-
quences (S09, S11) to test our algorithm.

TUM Shelf [6] was captured indoors using 5 stationary
cameras, with 4 people disassembling a shelf. The dataset
provides sparse 3D pose annotations. Severe occlusions and
random motion of the persons are the key challenges.
TUM Campus [6] was captured outdoors using 3 station-
ary cameras, with 3 people interacting on campus grounds.
Similar to Shelf, it provides sparse 3D pose annotations.
The dataset is challenging for 3D pose estimation due to
a small number of cameras and wide baseline views.

CMU Panoptic [21] was built to understand human inter-
actions in 3D. It contains 60 hours of data with 3D poses
and tracking information captured by 500 cameras. We fol-
low [46] and sample the same 5 cameras for evaluation, and
use the same sequences for training. We split the training
and testing sequences following [22].

Tagging [48] was captured in unconstrained environments
where people are interacting in a social setting. There are
no constraints on the motion of the cameras or the num-
ber of persons during the capture. This ”in the wild” setting
makes this dataset particularly interesting for 3D pose track-
ing. However, since no GT pose annotations are available,
we only use this dataset for qualitative evaluation.
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Evaluation details. @ Mean Per Joint Position Error
(MPJPE) [44] evaluates 3D joint localization accuracy in
mm and represents L2 distance between the GT and pre-
dicted joint locations. Percentage of Correct Keypoints
(3D-PCK) [13] provides a more global view on the accuracy
of 3D pose estimation and is computed similarly to its 2D
PCK counterpart [3]. On Human3.6M we follow [20] and
provide all comparisons using root-centered MPJPE metric.
On Panoptic dataset, we follow [46] and provide all com-
parisons using non-root-centered MPJPE.

Implementation Details. We train TesseTrack on 8 V100
GPUs with 32 GB memory each. As model does not fit
into a single GPU, we share the fesseract convolutions and
the backbone across 2 GPUs. Each GPU has propagation
weights of a single time instance. The tracking and the de-
convolution modules are shared among both GPUs. During
testing, the model can be computed on a single GPU using
sequential processing. A learning rate of 0.01 is used for
all the modules. The Temporal Window (7") and the step
size (At) used across the experiments is 5 unless specified.
The module was trained with @ = 19 keypoints with the
voxel volumes size 64. For all indoor experiments (Panop-
tic, Human3.6M and Shelf) we use a voxel volume of 12m
and for outdoor experiments (Campus, Tagging) the size is
50m. For the tesseract a fixed volume size of 2.5m is used
across all datasets. We use panoptic [2 ] keypoint format in
all the experiments except for Human3.6M evaluation. As
Shelf, Campus and Tagging datasets have no training GT
annotations we use multi-view triangulation to obtain auto-
annotated 3D labels to finetune PDN module only. We use
HRNet [45] for feature extraction with R =32anda =1,
B =~ = 0.01 in all experiments.

TesseTrack variants. We consider possible design choices
for TesseTrack components: F - casting backbone’s pre-
final layer features into the voxelized space, H - using 2D
joint detection heatmaps instead [46]; T - prediction using
tesseract spatio-temporal module, / - instantaneous predic-
tion per time instance instead; D - tracking using learned
matcher, G - using heuristic matching using the Hungarian
algorithm instead [49]; L - learned descriptor merging, A -
simple heatmaps averaging instead [49]. This results into
six TesseTrack variants: HI, FI, FT, FTGA, FTGL, FTDL.
We also consider a simple tracking baseline that performs
instantaneous prediction followed by the Hungarian match-
ing of poses across time, which we denote as FIG.

4.2. Multi-Person 3D Pose Estimation

In this section, we evaluate TesseTrack on the task of
multi-person 3D pose estimation. First, we demonstrate the
improvements due to various design choices and show the
robustness of TesseTrack to the number of available camera
views on the Panoptic dataset. Then, we compare to the
state of the art on Panoptic, Shelf and Campus datasets.

Model [ HI | FI [ FT [ FTGA | FTGL | FTDL
MPJPE (mm) | 163 | 13.8 | 8.0 | 75 | 13

Table 1: Ablation study of 3D pose reconstruction on the Panoptic dataset
using non-root-centered MPJPE. We observe a clear increase in reconstruc-
tion accuracy with each additional improvement added to the model. Using
the final layer of the backbone with a spatio-temporal descriptor-based net-
work and learned matching and merging (FTDL) provides the best results
in 3D reconstruction.

3D Localization Vs No. of Cameras 3D Tracking Acc. Vs No. of Cameras
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Figure 4: Impact of number of cameras on body joint localization error
(MPJPE) (left) and pose tracking accuracy (3D MOTA) (right). Tessetrack
(FTDL) shows the greatest advantage with lower number of cameras.

Ablation analysis on Panoptic dataset. MPJPE metric is
used for comparison. Results are shown in Tab. 1.

FI vs. HI. We observe an improvement in reconstruction
accuracy when using backbone features. This is because
2D heatmaps learned from 2D pose supervision might be
missing out on crucial information required for accurate 3D
joint reconstruction.

FTvs. FI. Most of the state-of-the-art methods use instanta-
neous 3D pose estimation and might struggle due to a lack
of consistency of keypoints over time. TesseTrack enforces
smoothness of the keypoints showing a clear improvement
in 3D pose reconstruction.

FTGL vs. FTGA. Corresponding the human poses across
time instances and merging them is generally a neglected
problem. Most of the methods just average joint locations
from different time instance inferences. We observe that
relying on a learned merging framework at the descriptor
level improves accuracy.

FTDL vs. FTGL. Differentiable matching module learns
person-specific representations that are essential for reliable
tracking. As expected, it improves over heuristic matching
based on the Hungarian algorithm.

Impact of Temporal Volumes.Tessetrack can operate with-
out temporal information, which leads to —5.8 mm MPJPE
loss on Panoptic dataset (c.f. FI vs. FT in Tab.6).
Robustness to number of cameras. We evaluate the ro-
bustness of the best found FTDL architecture to the num-
ber of available camera views. To that end, we vary the
number of cameras available at each time instance from one
(monocular) to ten. Results are shown in Fig. 4 (left). First,
we observe that FTDL can achieve a reasonable accuracy of
18.9mm in the pure monocular scenario, although it was not
specifically tuned for this setting. Intuitively, increasing the
number of camera views results in a clear improvement in
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Multi-View (5 views) Monocular Method | Neck [ Head | Shou. [ Elbow | Wrist [ Hip | Knee [ Ankle [ Avg

Method Tu et al. [46] | TesseTrack || Tuetal. [460] | TesseTrack FIG 89.7 | 874 | 90.8 88.0 82.2 | 92.7 | 89.1 924 | 87.6
MPIJPE (mm) 17.7 7.3 51.1 18.9 FTGL | 939 | 91.7 | 93.0 92.1 874 | 944 | 939 94.6 | 92.1
FTDL | 94.6 | 93.6 | 934 92.7 88.2 | 94.7 | 93.8 95.0 | 94.1

Table 2: Comparison to the state of the art on the Panoptic dataset in
multi-view and monocular settings. We show substantial improvement in
reconstruction compared to the baseline method due to temporal consis-
tency and end-to-end learnable framework.

Method Actor-1 | Actor-2 | Actor-3 | Total
Belagiannis et. [7] 93.5 75.7 84.4 84.5
Ershadi et. [15] 94.2 92.9 84.6 90.6
Dong et. [13] 97.6 93.3 98.0 96.3
Tu et al. [46] 97.6 93.8 98.8 96.7
TesseTrack 97.9 95.2 99.1 974

Table 3: Evaluation of 3D-PCK accuracy on the Campus dataset. Tesse-
Track ourperforms baselines due to the temporal consistency constraints.

Method Actor-1 | Actor-2 | Actor-3 | Total
Belagiannis et. [7] 75.3 69.7 87.6 77.5
Ershadi et. [15] 933 75.9 94.8 88.0
Dong et. [13] 98.8 94.1 97.8 96.9
Tu et al. [46] 99.3 94.1 97.6 97.0
TesseTrack 99.1 96.3 98.3 98.2

Table 4: Evaluation of 3D-PCK accuracy on the Shelf dataset. Tesse-
Track ourperforms baselines even in severe occlusions of the Shelf dataset.

joint localization accuracy. Compared to FTGL we observe
noticeable improvements for fewer cameras, which under-
lines the advantages of differentiable matching. Compared
to FIG, both FTGL and FTDL achieve dramatic improve-
ments in localization accuracy, which demonstrates the im-
portance of incorporating temporal information.
Comparison to the State of the Art on Panoptic dataset.
We compare FTDL to the state-of-the-art approach of [46]
in Tab. 2. TesseTrack achieves 2.4 x reduction in MPJPE in
multi-view setting, and 2.7x reduction in monocular sce-
nario, which clearly shows the advantages of the proposed
spatio-temporal formulation over [46].

Comparison to the State of the Art on TUM datasets. We
use 3D-PCK metric and compare on TUM Campus in Tab. 3
and on TUM Shelf in Tab. 4. FTDL achieves significant
improvements over the state of the art on both datasets.

4.3. Multi-Person Articulated 3D Pose Tracking

Most recent works on multi-person articulated 3D pose
tracking [9, 51, 29] focus on evaluation of 3D pose re-
construction accuracy using MPJPE [44] or 3D-PCK [28].
However, this is not clear how existing methods advance
actual body joint tracking accuracy in multi-person sce-
narios. We thus intend to fill in this gap and propose a
set of novel evaluation metrics for multi-person articulated
3D pose tracking. To that end, we build on the popular
Multiple Object Tracking (MOT) [32] and articulated 2D
pose tracking metrics [2] and extend them to the 3D pose
use case. The proposed metrics require predicted 3D body
poses with track IDs. First, for each pair of (predicted pose,

Table 5: 3D MOTA evaluations on the Panoptic dataset. Using an end-to-
end learnable framework (FTDL) systematically improves the accuracy of
3D pose tracking across all keypoints.

GT pose) 3D-PCK is computed. Predicted and GT poses
are matched to each other by a global matching procedure
that maximizes per pose 3D-PCK. Finally, Multiple Object
Tracker Accuracy (MOTA), Multiple Object Tracker Preci-
sion (MOTP), Precision, and Recall metrics are computed.
Evaluation details. Evaluation is performed on the Panop-
tic dataset using the proposed 3D MOTA metric. In the fol-
lowing we compare FTDL to FTGL and FIG.

Impact of temporal representations on tracking. Results
are shown in Tab. 5. Using temporal person descriptors
(FTDL and FTGL) significantly improves tracking accuracy
compared to instantaneous person descriptor (FIG). Using a
end-to-end learnable tracking framework (FTDL) instead of
a Hungarian matching algorithm (F7GL) further improves
tracking accuracy. This can be attributed to the fact that the
learnable descriptors matching can distinguish interacting
people much better than graph-based tracking methods.
Robustness to number of cameras. We analyze the accu-
racy of 3D pose tracking with respect to a varying number
of cameras. Results are shown in Fig. 4 (right). While an in-
creasing number of cameras allows improving the accuracy
of all variants, we observe that relying on spatio-temporal
representation learning results in significant tracking accu-
racy improvements specifically in the few cameras mode
(FTDL and FTGL vs. FIG). Furthermore, using a learn-
able tracklet matcher (FTDL) results in consistent increase
in tracking accuracy over a wide range of number camera
views. Both observations underline the advantages of the
proposed formulation when only a few cameras are avail-
able. Finally, in the pure monocular setting, FTDL achieves
a reasonable 76% 3D MOTA accuracy, despite not being
specifically tuned in this setting. We envision that incor-
porating scene constraints and performing spatio-temporal
articulated model fitting [5 1, 29] should significantly boost
the accuracy of TesseTrack in monocular setting.

4.4. Single Person 3D Pose Estimation

We compare to the state-of-the-art methods on Human
3.6M using the MPJPE metric under Protocol #1.
Multi-View scenario. Comparison to multi-view ap-
proaches is shown in Tab. 6 (bottom). TesseTrack clearly
improves over the state of the art, which underlines the
advantages of the proposed spatio-temporal formulation.
Specifically, using temporal consistency improves the joint
localization accuracy for ambiguous poses like sitting down
and walking a dog. We conclude that temporal constraints
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Protocol #1

[ Dir [ Disc | Eat [ Greet | Phone [ Photo | Pose | Purch | Sit

[SitD | Smok | Wait

Walk | WalkD | WalkT | Total

Monocular methods, (MPJPE, mm)

Martinez et al. [27] 51.8 | 56.2 | 58.1 | 59.0 | 69.5 78.4 55.2 | 58.1 74.0 | 946 | 623 59.1 | 65.1 | 49.5 524 62.9
Iskakov et al. (monocular) [20] 419 | 492 | 469 | 47.6 | 50.7 579 | 41.2 | 509 573 | 749 | 48.6 | 443 | 413 | 528 42.7 49.9
Pavllo et al. [39] 45.2 | 46.7 | 433 | 45.6 | 48.1 55.1 44.6 | 443 573 | 658 | 47.1 44.0 | 49.0 | 32.8 339 46.8
Cheng et al. [12] 38.3 | 41.3 | 46.1 | 40.1 | 41.6 519 | 41.8 | 409 51.5 | 584 | 422 | 446 | 41.7 | 33.7 30.1 429
Chengetal. [11] 36.2 | 38.1 | 42.7 | 359 | 38.2 45.7 36.8 | 420 | 459 | 51.3 | 418 41.5 | 43.8 | 331 28.6 40.1
TesseTrack 384 | 46.2 | 443 | 432 | 448 48.3 529 | 36.7 | 453 | 545 | 634 | 444|419 | 462 39.9 44.6
Multi-view methods, (MPJPE, mm)

Martinez et al. (multi-view) [27] 46.5 | 48.6 | 54.0 | 51.5 | 675 70.7 48.5 | 49.1 69.8 | 79.4 | 57.8 53.1 | 56.7 | 422 454 57.0
Pavlakos et al. [38] 41.2 | 492 | 428 | 434 | 55.6 46.9 | 403 | 63.7 97.6 | 119.0 | 52.1 427 | 519 | 418 39.4 56.9
Kadkhodamohammadi & Padoy [23] | 39.4 | 469 | 41.0 | 42.7 | 53.6 54.8 414 | 50.0 59.9 | 78.8 | 49.8 46.2 | 51.1 | 40.5 41.0 49.1
Iskakov et al. [20] 19.9 | 20.0 | 189 | 185 | 20.5 19.4 184 | 22.1 22,5 1287 | 212 20.8 | 19.7 | 22.1 20.2 20.8
TesseTrack (FI) 18.0 | 19.8 | 199 | 19.0 | 20.1 17.6 21.1 | 23.7 26.8 | 20.6 | 20.0 19.5 | 19.2 | 21.7 18.6 20.4
TesseTrack 175 | 19.6 | 17.2 | 183 | 18.2 17.7 18.0 | 18.0 | 20.5 | 20.3 | 194 17.2 | 189 | 19.0 17.8 18.7

Table 6: 3D pose reconstruction accuracy of different methods on the Human3.6M dataset using root-centered MPJPE metric and Protocol #1 from [20].

Panoptic Dataset

Frame 100

Frame 200

Shelf Dataset

|
Frame 50

Frame 25

Figure 5: Qualitative results on Panoptic and Shelf datasets. TesseTrack can track people in the wild as well as when interacting in close proximity.

boost reconstruction accuracy in challenging actions.
Monocular scenario. Comparison to monocular meth-
ods is shown in Tab. 6(top). Despite not being specifi-
cally tuned for the monocular scenario, TesseTrack with-
out bells and whistles outperforms most of the monocular
approaches [12, 11]. Both [12, 11] also rely on spatio-
temporal representation learning, but introduce occlusion-
aware training which proved to be very useful specifically
in monocular case, while [11] further reduce the error by
adding a spatio-temporal discriminator to verify pose plau-
sibility. Both improvements are orthogonal to our approach
and thus can be incorporated to improve monocular case.

5. Conclusion

Reliably reconstructing and tracking the 3D poses of
multiple persons in real-world scenarios using calibrated
cameras is a challenging problem. In this work, we address
it by proposing a novel formulation, TesseTrack, which

jointly solves the tasks of tracking and 3D pose recon-
struction within a single end-to-end learnable framework.
In contrast to previous piece-wise strategies which first
reconstruct 3D poses based on geometrical optimization
algorithms and then subsequently linking the poses over
time, TesseTrack infers the number of persons in a scene
and jointly reconstructs and tracks their 3D poses using
a novel 4D spatio-temporal CNN and a learnable track-
ing framework using differentiable matching. Experimental
evaluation on five challenging datasets show significant im-
provements not only in multi-person 3D pose tracking but
also in multi-person 3D pose reconstruction accuracy.
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