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ABSTRACT: “Two quantum dots, both alike in composition, but
differing in structure, where we lay our scene, From broader classes,
to bring deeper understanding, to the crystalline core that drives the
quantum dot’s sheen.” In this contribution we examine two families
of silicon quantum dots (SiQDs) that bring to mind the Capulets
and the Montagues in Shakespeare’s Romeo and Juliet because of
their stark similarities and differences. SiQDs are highly
luminescent, heavy-metal-free, and based upon earth-abundant
elements. As such, they have attracted attention for far-reaching
applications ranging from biological imaging to luminescent solar
concentrators to light-emitting diodes that rely on their size-
dependent optical response. Unfortunately, correlating SiQDs “size”
to their photoluminescence (PL) maximum is often challenging.
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Herein, we provide essential structural insight into the correlation between the dimensions and PL maximum of SiQDs through a
direct comparison of samples that exhibit statistically identical physical dimensions (drgy) and chemical compositions but different
crystallite size (dypp) and PL maxima. We then expand the scope of this investigation and systematically compare groupings of
SiQDs: one in which the dygp and drpgy agree and one where dygp < drgy. This latter comparison clearly shows that dygp, better
predicts SiQD optical response when using the well-established effective mass approximation.

emiconductor nanoparticles (quantum dots, QDs) are

fascinating structures that exhibit size- and shape-depend-
ent optoelectronic properties. Prototypical CdSe@ZnSQDs
have been widely studied and are generally well-understood,
and many reports of prototype applications have appeared; in
fact, InP-based QDs are revolutionizing consumer electronics
as active systems in QLED-TV displays.”” Unfortunately,
legislation limits the use of heavy metals in consumer products
and curtails widespread implementation of many QDs;’
furthermore, alternative QD materials such as InP contain
costly non-earth-abundant elements and exhibit “clear evidence
of carcinogenic activity” in animal models.” In this context, QDs
comprised of abundant, nontoxic elements must be prepared,
manipulated, understood, and deployed.’

Silicon-based QDs (SiQDs) are attractive for many
applications because they are heavy-metal-free, comprised of
earth-abundant elements, and are biologically compatible. In
this context, a variety of methods have been developed to
prepare and functionalize these promising materials," "' and
prototype applications, including light-emitting diodes,"”
luminescent solar concentrators (LSCs),">'* biological imag-
ing agents,ls’lé sensors,’”'® and lithium ion battery ano-
des,"””* have appeared. Many of these uses rely on the unique
tailorable optical properties of SiQDs; for example, LSCs take
advantage of the large Stokes shift (i.e., the energy difference
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between excitation and photoluminescence maxima) that arises
in part because of the indirect nature of the Si band gap.''*
Despite impressive advances, including spectral tuning
throughout the full visible region and photoluminescence
(PL) quantum yields rivaling that of compound semiconductor
QDs, challenges remain;>' ™% paramount among these is the
limited predictability of the PL maximum size dependence that
appears throughout the literature.*®

The origin of SiQD PL is clearly complex;”” > for
convenience, SiQDs can be categorized into two broad
groupings based upon PL properties and associated excited-
state lifetimes.”® The first involves SiQDs exhibiting PL
characterized by short-lived excited states (ie, 7 = nano-
seconds); in these cases the PL maximum that often appears in
the blue spectral region (i.e., 390—500 nm) is dependent on
excitation wavelength and largely independent of particle size.
Such behavior has previously been attributed to surface-state-
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mediated relaxation processes involving heteroatom-containing
species (e.g,, N, Cl, O, etc.).”"****?*7%> Other SiQDs show PL
throughout the yellow/orange to near-IR regions with long-
lived excited states (i.e.,, T = microseconds) consistent with the
indirect band gap of silicon; the proposal that this
luminescence arises from band-gap-based processes is further
supported as the PL maximum generally trends with particle
size and is broadly consistent with carrier quantum confine-
ment 25293336

A comprehensive review of SiQDs exhibiting microsecond
lifetimes has appeared, and a detailed discussion is beyond the
scope of the present contribution.”® However, for context it is
useful to consider that while the PL response of these QDs has
been attributed to carrier confinement, the PL maximum of
seemingly identical particles can vary greatly and its energy
frequently does not correlate well with effective mass
approximation (EMA) predictions (Figure 1).26’37_39 Numer-
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Figure 1. A summary of representative literature data showing the
relationship between SiQD peak PL emission and particle
dimension.””*?***"=3! Predicted relationships obtained using the
effective mass approximation (EMA)>* [solid line; Eg(r) =112 +
3.77/1*] and linear combination of atomic orbitals (LCAO)ZG’42
[dashed line; Ej(r) = 1.12 + 3.77/r*¥] are shown for comparison.

ous explanations for these deviations have appeared, such as
broad particle size distributions,* among others.***" As such,
alternative strategies [e.g., empirical pseudopotential approx-
imation (linear combination of atomic orbitals, LCAO),">**
empirical tight binding band theory,"*** and ab initio local
density approximation]46 for correlatin§ the PL maximum to
SiQD dimensions have been proposed.”®***%**

It is well-established that many challenges (as well as
intriguing properties) associated with preparing and exploiting
SiQDs arise from the extended covalent bonding manifested
within the Si diamond-like crystal structure. While amorphous
surface layers have been implicated in ultrafast SiQD
photoluminescence,”* ™ the uniformity of the SiQD internal
structure has largely been overlooked.”” We previously
demonstrated that the Si core of large (drgpy~ 9—64 nm)
SiQDs exhibits a radially graded structure consisting of a highly
disordered surface that transitions to a crystalline core; in
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contrast, the structure of small SiQDs (drgy~ 3 nm) is
dominated by disorder and they only possess very small
crystallite regions (i.e., dxgp ~ 1.2 nm).”” Knowing that the
electronic structure of bulk silicon strongly depends on
crystallinity (e.g., amorphous Si Egoptica = 1.6—1.7 €V; bulk
crystalline Si E, = 1.1 eV),”® we endeavored to explore the
impact of internal structure on SiQD optical response. Herein,
we describe an evaluation of the size dependence of the SiQD
PL maximum and excited-state lifetime while systematically
varying particle and crystallite sizes, as determined by
transmission electron microscopy (TEM) and X-ray powder
diffraction (XRD), respectively.

B RESULTS AND DISCUSSION

To probe the impact of an internally graded crystal structure
on SiQD optical properties it was necessary to predictably
prepare QDs with the same particle sizes (determined using
TEM; drpy) and different crystallite sizes (determined using
XRD, dygp) while maintaining all other contributing factors
(e.g., surface chemistry/oxidation) the same. Drawing on our
intimate knowledge of the hydrogen silsesquioxane (HSQ)-
based procedure and the structure of the resulting
SiQDs,”*?7%" we prepared two different composites consist-
ing of nanocrystalline silicon domains encased within an SiO,-
like matrix via HSQ reductive thermal processing at 1200 and
1300 °C. Evaluation of the Si domain sizes using TEM was
precluded by the oxide matrix; however, consistent with
expectation,””®” XRD revealed reflections attributable to
nanocrystalline Si domains, and as expected, it revealed larger
domains for products processed at higher T (i.e., d50 ~ 3.7
nm, d;30 ~ 6.1 nm).

Freestanding SiQDs were liberated from an HSQ-derived
SiO,-like matrix upon etching with alcoholic aqueous hydro-
fluoric acid. Drawing on the reasonable expectation that
amorphous/disordered silicon is more susceptible to this
etching process, the definition of the etching time allowed
isolation of SiQDs from the composites that possess
statistically identical dygy but different dypp, dimensions (i.e.,
different thicknesses of disordered Si shells). As a result of
experimental variations of the SiQD/SiO, composite, it is
important to qualitatively monitor the appearance/color of the
etching mixture. Doing so provides a qualitative indication of
the SiQD size (i.e., d ~ 2.5 nm, yellow; d ~ 3 nm, yellow/
orange; d ~ S nm, orange; not freestanding, brown/black);
however, the exact etching time depends on the specific
composite and all SiQDs must be characterized following
surface functionalization using quantitative methods (vide
infra) to confirm their dimensions.

Following isolation, the SiQDs were surface-functionalized
using size-independent radical-induced hydrosilylation to
render them solution-processable and minimize reactions
(e.g., oxidation) that are known to deleteriously impact optical
response.’’ Fourier-transform infrared spectra of the resulting
materials are consistent with successful functionalization and
show the features expected for surface-bonded dodecyl
moieties [Figure S1, Supporting Information (SI)].11 For the
following discussion, SiQDs resulting from composites
prepared at 1200 and 1300 °C will be referred to as 1200-
SiQD and 1300-SiQD, respectively.

Prior to evaluating the size and optical properties of the
SiQDs, it is essential to confirm that the degree and speciation
of surface oxidation is consistent across the sam})les, because
these factors can also impact SiQD PL response.””** To do so,
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Figure 2. (a) Si 2p XP spectrum with deconvolution/fitting of the data for 1200-SiQDs and 1300-SiQDs. Fitting peaks are shown as Si 2p,, and
2ps/, components corresponding to Si(0) (i.e., orange), Si(I) (i.e., green), and Si(II) (i.e., blue). The black trace is the experimental spectrum and
the red dashed line represents the overall fitting envelope. (b) TEM image of 1200-SiQDs and 1300-SiQDs. Inset: average shifted histogram with
the average size and the distribution width. (c) XRD data for 1200-SiQDs and 1300-SiQDs showing the experimental powder pattern (black) with
fitting (red for 1300-SiQDs and purple for 1200-SiQDs) and residuals (light gray).

the Si 2p XP spectra of the 1200- and 1300-SiQDs (Figure 2a)
were deconvoluted into component spin—orbit couples (Si
2p,, and 2p;,,) corresponding to Si(0) (ie. orange), Si(I)
(i.e., green), and Si(II) (i.e., blue).”” Integrating the total area
of the Si(I) and Si(II) components and comparing it to the
integrated area of the Si(0) component provided an estimation
of the ratio of oxidized surface silicon species to elemental
silicon. For the present samples, the total integrated signal of
the Si(I) and Si(II) components corresponds to 21% for 1300-
SiQDs and 27% for 1200-SiQDs of the total Si 2p signal
intensity. This, combined with the reasonable assumption that
the degree of surface functionalization (i.e., surface density of
Si—C bonds) is equivalent for both samples, indicates that the
1200- and 1300-SiQDs have similar amounts of oxidation.
Furthermore, closer inspection of the O and Si spectral
envelopes indicates that the speciation of the oxides is near
identical. In this context, we expect the influence (if any) of
surface oxide species on the optical properties of 1200- and
1300-SiQDs to be similar.

Turning to the evaluation of QD particle and crystallite sizes,
a side-by-side comparison of sample size distributions obtained
from HAADF-STEM and bright-field TEM (see Figure S2, SI)
was statistically identical at the 0.05 confidence level when
evaluated using a two-sided t test. Upon the basis of this fact,
bright-field TEM analysis was chosen to evaluate the liberated
dodecyl-functionalized particles. This analysis afforded drgy of
53 + 1.4 and 54 + 1.1 nm (Figure 2b) for the 1200- and
1300-SiQDs, respectively, and they are statistically similar to a
95% confidence interval. To complement the TEM analyses,
crystallite sizes of the identical samples were determined using
XRD. Diffraction data were fit to the NIST Si line shape
standard (640f) as an “infinite” crystallite reference to account
for instrumental broadening and line shape. Having accounted
for instrumental broadening and Gaussian and Lorentzian peak

6840

shape parameters, with the assumption that atomic displace-
ment parameters and crystallographic site deficiencies do not
play a role, only size and strain contributions to line
broadening remain and can be qualitatively accounted for on
the basis of their diffraction angle dependence.””®* In contrast
to the drgy values, which were statistically identical, the dygp
values (i.e, crystallite sizes) determined from diffraction data
(Figure 2c) were 3.2 + 1.22 and 4.7 + 0.4 nm for 1200-SiQDs
and 1300-SiQDs, respectively. A straightforward comparison of
the drgy and dygp clearly shows that, despite having the same
physical dimensions, 1200-SiQDs have a smaller crystallite size
(and by extension thicker disordered Si shell). This is further
supported by high annular angle dark field scanning trans-
mission electron microscopy (HAADF-STEM) that shows
thicker disordered layers on 1200-SiQDs (1.7 nm for 1200-
SiQDs vs 1.0 nm for 1300-SiQDs; Figures S3 and S4, SI). Our
data analyses reasonably assume that the bright area in the
HAADF-STEM images is representative of the overall SiQD
size without the organic ligand (which has a lower Z-contrast
compared to the silicon) and that the lattice fringes are
representative of the dimensions of the crystalline core. With
these caveats, the difference in the dimensions of these
particles indicates a thicker disordered layer on the 1200-
SiQDs.

Having shown that 1200-SiQDs and 1300-SiQDs exhibit
near-identical physical size (i.e., drgy) as well as composition
(i.e, degree of oxidation, oxidation speciation, surface
functionalization) and differ only in the size of the crystalline
core (i.e., dygp), we endeavored to evaluate the impact of the
disordered Si shell on the optical properties of 1200-SiQDs.
The PL spectra of SiQD toluene solutions (Figure 3a) were
evaluated using the 351 and 364 nm lines of an Ar ion laser
and show maxima of 837 and 955 nm for 1200-SiQDs and
1300-SiQDs, respectively. The marked red-shift in PL
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Figure 3. Comparing (a) the photoluminescence emission of 1300-
SiQDs (purple) and 1200-SiQDs (red), as well as (b) the
luminescence lifetimes of 1300-SiQDs (purple fit) and 1200-SiQDs
(red fit). Photoluminescence emission data were collected on an
Ocean Optics 2000+ spectrometer. Luminescence lifetimes were fit to
a stretched exponential function and the mean time constants were
then calculated as described below.* The fitting parameters are
reported in Table S2 (SI).

maximum with increased dygp suggests that the dimensions of
the nanocrystalline domain dominate SiQD PL and band gap;
there is no demonstratable indication of a contribution from
the disordered surface silicon species to these properties. This
observation is consistent with the amorphous silicon shell
having a wider band gap than the crystalline core, providing a
core@shell structure similar to that of more commonly studied
CdSe@Zn$S systems (ie., type I QDs).”> Contrary to the
CdSe@ZnS QD case, in which the ZnS shell grows epitaxially
on the CdSe core to reduce interfacial dark defects and
increase the PL QY, the graded interface between the
crystalline and amorphous components of the 7present SiQDs
can reasonably be expected to be ill-defined.’”**%” As such,
there is no obvious trend in the present PL QY data for the
core@shell systems (Figure S7, SI).

Time-resolved photoluminescence (TRPL) traces were fit
with a stretched exponential model given by

I, = A exp[—(¢/7)"] + dc (1)

From the # and 7 fitting parameters, the mean time constant
(referred to henceforth as the mean lifetime) was obtained
according to

LG/p)
I'(1/p) (2)

This model has been widely applied to SiQDs and tends to fit
the TRPL data quite well for the purposes of extracting a mean
lifetime.®* The 1300-SiQDs exhibit a longer mean lifetimes
(i.e, 547 us for 1300-SiQDs vs 267 us for 1200-SiQDs),
consistent with experimental reports*® and models’> showing
longer lifetimes for larger SiQDs. Upon examining the mean
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lifetimes of all of the SiQDs here studied as a function of PL

. 1 E/E,
energy, an obvious trend was observed where — = A’e /Eo

(Figure 4; A’ = 62.5 s™' and E, = 0.34 eV). This trend is
consistent across literature,””’" is independent of synthetic
method and has been implicated with the indirect band gap of
silicon.®®

10

3 . . .
1.0 1.2 14 16 18 2.0 22
PL Max (eV)

Figure 4. A plot of the maximum photoluminescence energy against
the lifetimes for all SiQDs in this study. A clear trend is observed that

can be fit to the equation % = A'e®F0%5770 where A’ = 62.5 57" and
E, = 0.34 eV (the black line).

To further explore the broader scope of the relationship
between SiQD optical properties and dygzp, SiQD/SiO,
composites were prepared via reductive thermal processing
of HSQ at 1100, 1200, and 1300 °C, in order to have a wider
range of Si crystallite sizes.””*" SiQDs were liberated upon
alcoholic HF etching for predetermined times (see Table S1,
SI) and surface-functionalized with Si—C tethered 1-dodecyl
surface groups via AIBN radical-initiated hydrosilylation.
Subsequently, the drgy, dxpp, and PL properties were
evaluated and compared. This method yielded SiQDs with
varying disordered layer thicknesses, where in all cases the
drpy is larger than dygp, (Figure S8, SI).

To better illustrate/understand the relationship between
SiQD dimensions and optical properties, we categorized the
present data into two groups: (1) samples in which the drgy is
substantially larger than dypp (ie, drgy — dxgp > 2 nm).
(These particles possess comparatively thick amorphous/
disordered Si layers on their surfaces.) and (2) samples for
which drpy and dygp are similar (i.e., drgy — dygp < 0.8 nm)
(These particles possess a thin amorphous/disordered Si layer
on their surfaces.). Data were subsequently plotted and
compared with the predictions of the effective mass
approximation (EMA; Figure Sc,d).

Consistent with our previous observations (see above), there
is a clear correlation between dypp and EMA predictions for
the photoluminescence of SiQDs in group 1 (i.e., drpy — dxrp
> 2 nm; Figure Sc)—this is not the case for drpy. We also note
that the EMA consistently overestimates particle size when
comparing to dygp. In contrast, for group 2, SiQDs that bear a
thin amorphous Si layer, the PL emission energy is closely
related to dypp and drpy (Figure Sd); furthermore, the EMA
appears to agree better with the data. We also note similar
relationships when evaluating time-resolved photolumines-
cence data in the context of drgy and dygp. To investigate the
effect of the size distribution on the mean luminescence
energies, we tested a model similar to that reported in ref 39.
For particles with the same annealing temperature, and thus
presumably similar defect distributions and shell thickness, we
find that a somewhat better match to the XRD data can be
obtained if the size distribution is factored into the analysis
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Figure 5. A schematic representation of Si QDs showing the thick (a)
and thin (b) amorphous layers surrounding the crystalline core. A
comparison of the relationship between PL energy (c and d) and
lifetimes (e and f) with dpgy (blue squares) and dygp (red circles) for
SiQDs with a thick amorphous layer (>1 nm; a, ¢, e) and a thin
amorphous layer (<0.4 nm; b, d, f). The solid and dashed black lines
in parts ¢ and d represent the EMA and LCAO as in Figure 1. The
solid black line in parts e and f is a fitting from all of the dypp vs
lifetime data according to eq 3.

(Figure S18, SI). It is important to note that the impact of the
size distribution is not as obvious for the materials presented
here when compared to those reported in ref 39 because the
SiQDs reported previously were isolated through size-selected
precipitation (i.e., they have narrow size distributions) and
they likely have no disordered shell due to the extended
etching process employed.

Theory predicts that the radiative lifetime of a silicon
nanocty: tal scales approximately as the inverse cube of the
radius.”"”? Thus, the mean lifetime data were fit to an inverse
cubic function of the XRD radius given by

3

Loafl) e

T dxrp 3)
where A” = 0.105 nm® s™' and C = 8.55x107* 57!, which
appeared to yield a good fit to the experimental data (Figure
Se,f). Of course, there is also a strong nonradiative
contribution that cannot be measured directly; however,
under certain specific conditions (i.e., for a single defect) the
dominant nonradiative decay rate also scales inversely with the
crystallite volume.”” Obviously, the actual nonradiative rate
depends on the abundance and types of defects present in the
samples, which may differ and likely explains some of the
differences between the data and the model shown in Figure
Se f.

The direct relationship between theoretical PL energy and
lifetimes and the crystallite diameter of these SiQDs, especially
when they have a thin amorphous layer (group 2), suggests
that the crystalline core controls the optical response.
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However, the relationships among SiQD luminescence, graded
structure, and size presented for group 1 are similar to those
previously noted for CdSe@CdSe,S,_x@CdS QDs, in which
the confinement of carriers (i.e., electrons and holes) depends
upon a radially varied structure.”* A detailed study of the
interplay of these factors in the SiQD optical behavior is
obviously complicated by the poorly defined nature of the
transitional region between the crystalline core and amorphous
shell; however, one can expect that the confinement should be
stronger when the shell is thinner, as implied by the results in
Figure 4. This clearly highlights the importance (and promise)
of establishing methods for controlling the uniformity of the
internal SiQD structure, as well as preparing well-defined
core@shell SiQD systems.

B CONCLUSION

In conclusion, the photoluminescence of functionalized SiQDs
has been evaluated in the context of internal crystallinity by
examining crystallite and particle dimensions using X-ray
diffraction and transmission electron microscopy. For SiQDs
prepared via the widely employed “HSQ method”, the dxyp
provides a better representation of the optically active QD
dimensions, regardless of the presence of an amorphous
overlayer. In cases in which a thick Si amorphous layer is
present, no obvious correlation between drpy and the
photoluminescence is noted. However, EMA estimates derived
from dpgy; and dygp dimensions agree reasonably well with the
data when thin amorphous Si layers are present. This
fundamental understanding of SiQD structure and its influence
on their luminescence properties illuminates a foundation on
which future efforts to better control SiQD optical response
can be constructed.

B EXPERIMENTAL SECTION

Materials. Reagents. Hydrofluoric acid (electronic grade, 48—
50%) was purchased from Fischer Scientific. Sulfuric acid (reagent
grade, 95—98%) was purchased from Caledon Laboratory Chemicals.
Fuming sulfuric acid (reagent grade, 20% free SO; bases) and
trichlorosilane (99%) were purchased from Sigma (now Millipor-
eSigma). All reagents were used as received unless otherwise specified.
All solvents were reagent grade and used as received. Toluene was
collected from a Pure-Solv purification system immediately prior to
use. Benzene was purchased from EMD Millipore (now Millipore
Sigma).

Preparation of Hydrogen Silsesquioxane (HSQ). HSQ was
synthesized via known literature procedures in which sulfuric acid is
used to selectively oxidize trichlorosilane. Dry toluene (45.0 mL) was
added to a mixture of concentrated (15.0 mL) and fuming (7.2 mL)
sulfuric acid under inert atmosphere. Once the addition was complete,
110 mL of dry toluene was added to 16 mL of trichlorosilane and
added dropwise over a few hours to the sulfuric acid solution. The
product dissolved in the organic layer was washed with sulfuric acid
solution. After drying the organic layer, most of the toluene was
removed via rotary evaporation and the rest was removed in vacuo.
The resulting white solid was stored under vacuum until use.

Preparation of the SiQDs/SiO, Composite. Thermal decom-
position of the HSQ, as previously reported, was used to produce the
SiQDs used in this study. Six grams of HSQ was annealed in a tube
furnace under a 5% H,/Ar atmosphere at 1100, 1200, and 1300 °C to
get various sizes of nanocrystals (the sizes associated with each
temperature can be seen in Table S1, SI). The composite was ground
using an agate mortar and pestle and then shaken for 6 h to prepare a
fine powder.

Preparation of Alkyl-Passivated SiQDs. The composite was then
etched using a 1:1:1 solution of ethanol:DI water:HF to remove the
SiO, matrix from the particles using 0.5 g of composite per etch and
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1S mL total of etching solution. The composite was etched as
described in the Supporting Information (Table S1), and the resulting
particles were extracted in toluene. The hydride-terminates SiQDs
(H-SiQDs) were centrifuged twice in toluene and redispersed in 10
mL of dry toluene with 6 mL of dodecene and 300 mg of AIBN. The
reaction mixture was degassed using three freeze—pump—thaw cycles
and placed in an oil bath at 70 °C overnight (~17 h).

The resulting SiQDs were purified via centrifugation using 10 mL
of toluene and 20 mL of methanol three times to remove any
unreacted dodecene and AIBN. The purified SiQDs were redispersed
in toluene for subsequent characterization.

Characterization. Fourier-Transform Infrared Spectroscopy.
Fourier-transform infrared spectroscopy (FTIR) was performed on
a Thermo Nicolet Continum FT-IR microscope by drop-casting
SiQDs onto a silicon wafer from dry toluene solutions.

X-ray Photoelectron Spectroscopy. X-ray photoelectron spectros-
copy (XPS) was measured using a Kratos Axis 165 Ultra X-ray
photoelectron spectrometer. A monochromatic Al Ka source
operating at 210 W with an energy hv = 1486.6 eV was used. Survey
spectra were collected with an analyzer pass energy of 160 eV and a
step of 0.3 eV. For high-resolution spectra, the pass energy was 20 eV
and the step was 0.1 eV with a dwell time of 200 ms. XPS samples
were prepared by drop-coating a dispersion of SiQDs in dry toluene
onto a copper foil. Spectra were calibrated to C 1s (284.8 €V) and fit
to appropriate spin—orbit pairs using CasaXPS (VAMAS) software
with a Shirley-type background. To fit the Si 2p high-resolution
spectrum, the doublet area ratio was fixed at 2:1 and the separation
was set at 0.6.

Electron Microscopy. Transmission electron microscopy (TEM)
and HR-TEM were performed on a JEOL JEM-ARM200CF S/TEM
(Cold Field Emission Gun) electron microscope with an accelerating
voltage of 200 kV using SiQDs drop-coated from a toluene solution
onto a holey carbon-coated copper grid. The SiQD size was
determined by averaging the size of 300 particles using Image]
software (version 1.51j8) and plotted as an average shifted histogram
as outlined previously by Buriak and co-workers.”®

HAADEF-STEM was performed using the same instrument and
sample grids. Images were subsequently processed using a Radial
Wiener Filter in the Gatan Microscopy Suite 3.0 and subjected to
trend subtraction (Figure SS, SI).”® The thickness of the amorphous
layer was determined using Image] by overlaying two perpendicular
lines spanning the diameter of the crystalline domain (revised Figure
SSa, filtered image, SI) and the total particle diameter (revised Figure
S5b) and calculating the difference. This procedure was repeated for
no fewer than 20 particles for each sample.

Powder X-ray Diffraction. Powder X-ray diffraction was measured
using a Rigaku Ultima IV multipurpose X-ray diffraction system
equipped with a Cu Ka source for most of the samples. Samples were
drop-cast on a zero-background Si wafer and data were collected in a
thin-film orientation. For thin-film diffraction, a paralle] beam was
used with a glancing angle of 0.5°. Some data were also collected at
the Canadian Light Source (CLS) synchrotron, with a wavelength of
0.6892 A, using transmission mode. These methods gave equivalent
data within the errors associated with the techniques and fitting
parameters. To account for instrumental effects, a diffraction pattern
for the NIST Si line shape standard (640f) was acquired using the
identical conditions (i.e., sample holder, size step, calibration file, etc.)
employed for SiQD analyses. The standards were analyzed by fitting
the width of the reflections taking into account Ka; and Ka,
contributions. The fit can be found in Figure S16 (SI). Pawley fitting
of powder patterns was performed using the TOPAS software package
to determine the crystallite domain size using the integral breadth,
fwhm, and Lorentzian broadening methods.®® A sample-independent
synthetic peak was required at ~22° for all measurements on the
laboratory instrument, which is believed to originate from the sample
holder imperfections or amorphous products/unreacted materials.
Synchrotron diffraction data required other small peaks (8°, 9°, 11°,
14°, 16°, and 19°) due to imperfections in the background
subtraction from the Kapton tube (sample holder).

6843

Photoluminescence Characterization. Photoluminescence spec-
troscopy measurements were performed on a solution of silicon
nanocrystals dispersed in toluene in a quartz cuvette. Silicon
nanoparticles were excited using an argon ion laser with a 351 nm
emission wavelength. The resulting photoluminescence was collected
by an optic fiber, passed through a 500 nm long-pass filter to eliminate
scattered light from the excitation source, and fed into an Ocean
Optics USB2000+ spectrometer with a spectral range from 300 to
1000 nm and a sensitivity of 41 photons per count at 600 nm. The
spectral response was calibrated using a reference light source from
Ocean Optics. Photoluminescence lifetime measurements were
acquired using an argon ion laser (351 nm, ~20 mW) modulated
by an acousto-optic modulator (~S50 ns response time) operated at a
frequency of 200 Hz with a 50% duty cycle. The photoluminescence
was fed into an optic fiber and passed through a 500 nm long-pass
filter and was then incident on a Hamamatsu H7422P-50 photo-
multiplier tube (PMT) interfaced with a Becker-Hickl PMS-400A
gated photon counter. The photoluminescence data were collected
with a total of 10 000 sweeps for good signal-to-noise ratio using 1 ys
time steps. A log-normal fitting of the data in MatLab was used to
calculate the luminescence decay. The lifetimes were measured for
each sample individually with peak emissions at different energies (no
wavelength selection was performed).

Quantum efficiency measurements were performed using a
homemade integrating sphere with a 365 nm light-emitting diode
excitation source. Sample solutions were diluted to have an
absorbance between 0.1 and 0.15 at 405 nm, and then they were
transferred into a cuvette that was lowered into the integrating sphere
on a magnetic holder, as was a distilled water blank. The
photoluminescence and excitation intensities were captured through
a fiber attached to the sphere and analyzed with a calibrated Ocean
Optics spectrometer. The equation QE = (Ipp,sumple = Ipt,plank)/ (Texplank
- Iex’sample) was used to calculate the absolute quantum efficiency,
were Ip is the integrated photoluminescence intensity and I, is the
excitation intensity recorded inside the sphere. The measurements
were performed in quintuplicate.
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