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A proof of Carleson’s °-conjecture

By BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

Abstract

2

In this paper we provide a proof of the Carleson e“-conjecture. This

result yields a characterization (up to exceptional sets of zero length) of the
tangent points of a Jordan curve in terms of the finiteness of the associated
Carleson e?-square function.
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98 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

1. Introduction

Over the last thirty years, beginning with the work of Jones [Jon90] and
David-Semmes [DS91], there has been a great deal of activity concerning the
study of geometric square functions that measure the regularity of sets through
a multi-scale analysis. Usually, the motivation for the study of such geometric
square functions stems from the wish to solve different problems in complex
analysis, harmonic analysis, or PDEs that depend on (variants of) quantita-
tive rectifiability. For example, in the solution of the Vitushkin’s conjecture
for sets of finite length by David [Dav98], Melnikov’s curvature of measures
and its connection with Jones’ S-numbers play an essential role; see Léger
[L99]. Analogously, the solution of the David-Semmes problem concerning
the L2-boundedness of the codimension 1 Riesz transform by Nazarov, Tolsa,
and Volberg [NTV14] uses the so-called BAUP criterion for uniform rectifia-
bility found by David and Semmes; see [DS93, p. 139]. More recently, Naber
and Valtorta [NV17] have extended the use of related techniques involving an
L?-variant of the Jones’ S-numbers to solve different questions in the area of
free boundary problems, and more precisely, on the singularities of minimizing
harmonic maps.

In this paper we solve a longstanding conjecture of Lennart Carleson con-
cerning another geometric square function. To formulate the problem we need
to introduce some notation. Let Q7 be a proper open set in R?, and set
I =00 and Q- = R%2\ QF. For « € R? and r > 0, denote by It (z,r) and
I~ (z,r) the longest open arcs of the circumference dB(xz,7) contained in QF
and Q, respectively. (They may be empty.) Then we define

e(x,r) = % max(|7rr—7—[1(l+(3:,r))|, |7 —Hl(I_(x,r))D.

Here H! denotes the one-dimensional Hausdorff measure. The Carleson &2-
square function is given by

(1.1) E(x)? ::/D 6(.%',7’)2%.

If T is a line, then £(x) = 0 for all x € T'. Carleson conjectured that (1.1)
encodes some regularity properties of I

CONJECTURE 1.1 (Carleson’s e2-conjecture). Suppose I is a Jordan curve.
Except for a set of zero H'-measure, T' has a tangent at x € T if and only if
E(x) < 0.

See Section 2.6 below for the precise definition of a tangent. This conjec-
ture may be found in Bishop [Bis92, Conj. 3], Bishop-Jones [BJ94], Garnett-
Marshall [GMO05, p. 220], and David-Semmes [DS91, §21], for example.
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A PROOF OF CARLESON’S ¢2-CONJECTURE 99

The “only if” direction of Conjecture 1.1 is a well-known result: When
I" is a Jordan curve, it follows from the Ahlfors distortion theorem and an
argument of Beurling that

E(x) < oo for H'-a.e. tangent point of T.
See [BJ94, p. 79], for example. Therefore, the content of Conjecture 1.1 is that
the converse statement should also hold true.

In this paper we prove Conjecture 1.1. We also show that an analogue
of this result also holds for two-sided corkscrew open sets, which have a scale
invariant topological assumption but are not necessarily connected; see Sec-
tion 2.5 below for the definition. Our precise result is the following theorem.

THEOREM 1.2. Let Qt C R? be either a Jordan domain or a two-sided
corkscrew open set, let T' = 0O, and let £ be the associated square function
defined in (1.1). Then the set G = {x € I : E(z) < oo} is rectifiable and at
H!-a.e. point of G there exists a tangent to T.

Recall here that a set £ C R? is called rectifiable if there are Lipschitz
maps f; : R — R2, i € N, such that

(1.2) H(E\UZ fi(R)) = 0.
As a corollary, we get

COROLLARY 1.3. Let I' € R? be a Jordan curve or a two-sided corkscrew
open set, and let € be the associated square function defined in (1.1). Then, the
set of tangent points of I' coincides with the points x € T' such that £(x) < oo,
up to a set of zero measure H.

One should compare Theorem 1.2 to an influential theorem of Bishop-
Jones [BJ94], who obtained an analogue of the £2-conjecture for the S-numbers
introduced by Jones [Jon90]. Define

1
(1.3) Boor(B(z,r)) = -  inf sup  dist(y, L).
r Lﬁ%?zl,lrn)(;z yerNB(z,r)

In other words, B r(B(z,7)) is the infimum over 8 > 0 so that I' N B(z,r) is
contained in a strip of width r3. Certainly then we have that

(1.4) e(x,r") < Boor(B(z, 7)) whenever r/2 <1’ <1,

whenever z is a tangent point of I' and that r is small enough. Bishop-Jones
(Theorem 2 in [BJ94]) proved that, up to a set of H!-measure zero, a Jordan
curve I" has a tangent at x € I if and only if

1
(1.5) /O 5“};(3(1;,7«))2% < +oo.

The arguments used in [BJ94] to show that (1.5) holds for the tangent
points x € are also valid for two-sided corkscrew open sets. Consequently, in
view of (1.4), this result completes the proof of Corollary 1.3. (In the case of
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100 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

Jordan domains, one can alternatively appeal to the aforementioned argument
based on the Ahlfors distortion theorem.) In the opposite direction, while the
Bishop-Jones theorem is weaker than Theorem 1.2, it has a beautifully concise
proof.

In the monograph [DS91], David and Semmes develop a quantitative ana-
logue of rectifiability for Ahlfors regular sets, and prove characterizations of it
in terms of square functions involving modifications of the S-numbers. When
Conjecture 1.1 is discussed on page 141 of [DS91], it is described how the co-
efficients e(x, r) are not sufficiently stable to apply the methods developed in
[DS91], even if one only wishes to show the rectifiability of an Ahlfors regular
subset of {z € I : £(z) < o0}.

With this in mind, one can point to Main Lemma 4.1 below as one of the
main technical innovations of this paper, which roughly speaking provides some
control of the numbers S 1(B(z,7)) at points where £(x) < co. This amount
of control on the S-numbers is nowhere near strong enough to directly obtain
(1.5), but it is sufficient to be able to adapt a scheme originating in the work
of David and Semmes [DS91] and adapted to the non-homogeneous setting by
Léger [LQQ], which enables us to prove Theorem 1.2; see Main Lemma 4.2.

Crucial to the proofs of both of the main lemmas changed to lower case
here is the introduction of several smoother square functions (see Section 3).
While being controlled by the Carleson square function, these smoother square
functions behave in a considerably more stable manner in compactness argu-
ments, and this additional stability enables us to obtain some basic geometric
information about natural limit situations (namely, that the limiting “curve”
should contain an analytic variety; see property (1) of Lemma 6.3). This ba-
sic information is then considerably refined by employing the admissible pairs
property (Definition 6.2), which is obtained as a consequence of the finiteness
of the Carleson square function itself; see, for instance, Lemmas 7.3 and 8.5.
Additionally, of central importance to the proof of Main Lemma 4.2 is the fact
that the smoother square functions control the Lipschitz constant of a com-
pactly supported Lipshitz graph (see Section 9), and it is this property that
provides the main mechanism required to adapt Léger’s scheme.

Of course, as a consequence of Theorem 1.2 and Theorem 2 of [BJ94], we
have that, up to a set of H!-measure zero, £(x) < co if and only if (1.5) holds
atx el

Acknowlegement. This work began at the workshop Harmonic Analysis in
Nonhomogeneous Settings and Applications at the University of Birmingham
in June 2019. Special thanks go to Maria Carmen Reguera for organizing this
workshop and inviting the authors. We also thank Jonas Azzam for stimulating
conversations about the project in its early stages.
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A PROOF OF CARLESON’S ¢2-CONJECTURE 101

2. Preliminaries

2.1. Constants. We will denote by C,c > 0 absolute constants that may
change from line to line. We will often use the symbol A < B to mean that
A < CB. The symbol A 2 B is just another way of writing B < A. The
symbol A ~ B means that both A < B and B < A. If a constant is allowed
to depend on a given parameter, the parameter dependence will be described
in parenthesis or a subscript; for example, C., and C(e, ») both denote a
constant that may depend on parameters € and ». Then A <. .. B means that
A< C(e, »)B.

We shall write A < B to mean that “A is much smaller than B,” namely,
that A < ¢B for a sufficiently small absolute constant ¢ > 0.

2.2. Balls, annuli, and neighborhoods. Balls B(x,r) are assumed to be
open. Also, when we say that a set B C R? is a ball, we mean an open ball,
unless otherwise stated. We denote by r(B) its radius.

The notation A(z,r, R) stands for an open annulus centered at x with
inner radius r and outer radius R.

For a set E and r > 0, the notation U, (E) denotes the open 7 neighbor-
hood of E.

2.3. Jordan domains. A domain is a connected open set. We call a domain
QT a Jordan domain if its boundary I' = 9QT is a Jordan curve. In this case
(by the Jordan curve theorem), Q= = R2\Q* is also a Jordan domain.

2.4. Measures. Throughout the paper, by a measure we shall mean a non-
negative locally finite Borel measure.
For Cy > 0, a measure u has Cy-linear growth if

w(B(z,7)) < Cor for all z € R? and r > 0.

For a ball B C R?, we write

This should be understood as a kind of one-dimensional density of u over B.

2.5. Two-sided corkscrew open sets. Let € C R? be an open set. We say
that €2 satisfies the c-corkscrew condition (or just the corkscrew condition) if
there exists some ¢ > 0 such that for all z € 9 and all 0 < r < diam((),
there exists some ball B C QN B(x,r) with r(B) > cr.

We say that Q satisfies the two-sided (c-)corkscrew condition if both €
and R? \ ) satisfy the (c-)corkscrew condition.

We say that Q C R? is a two-sided corkscrew open set (or domain) if it is
an open set (or domain) that satisfies the two-sided corkscrew condition.

This content downloaded from
108.215.24.170 on Wed, 01 Sep 2021 22:04:13 UTC
All use subject to https://about.jstor.org/terms



102 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

For example, quasicircles are two-sided corkscrew domains. Indeed, qua-
sicircles are simply connected two-sided corkscrew domains that satisfy a Har-
nack chain condition, according to Peter Jones (see Theorem 2.7 in [JK82]),
or in other words, they are the same as planar simply connected NTA do-
mains. On the other hand, it is easy to check that there are simply connected
two-sided corkscrew domains that are not quaiscircles.

2.6. Cones and tangents. For a point € R?, a unit vector u, and an
aperture parameter a € (0,1) we consider the two-sided cone with axis in the
direction of u defined by

Xa(z,u) ={y € R?: |(y — ) -ul > aly — x|}

Given an open set QT C R? and = € 907, we say that 9QT has a tangent
at x, and that x is a tangent point for Q" if there exists a unit vector u such
that, for all a € (0,1), there exists some r > 0 such that

o0t N X, (z,u) N B(x,r) = 2,

and moreover, one component of X, (z,u) N B(z,r) is contained in QT and the
other in Q= = R?\QF. The line L orthogonal to u through x is called a tangent
line at x. Notice that this notion of tangent is associated with the domain Q7
and it would be more appropriate to say that L is a tangent for Q.

3. Smoother square functions

Several smoother versions of the Carleson square function play an impor-
tant role in our analysis, as one can see by the statements of Main Lemmas 4.1
and 4.2 in the next section. In this section we show that these smoother square
functions are controlled by the Carleson square function (with the addition of
an absolute constant).

Suppose that QT C R? is an open set, I' = 9QF and O~ = RQ\m.

First denote
T_ L[ el dy‘,

ot =155 )

and set
o dr

1
.A(:E)Qz/o at(z,r) p

More generally, for a non-negative smooth function ¢ : R — [0, 00) satis-

fying
/ @(t)ty/log(e+ t)dt < oo,
0

set ¥(z) = ¢(|z|). Consider

1

aw(;p,r):‘cw_ﬁ Q+w<$;y)dy‘, where c¢:/]R

o

2
+
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A PROOF OF CARLESON’S ¢2-CONJECTURE 103

and define
17,72 ! o dr
Ay (z)” = ; ay(x, ) put

LEMMA 3.1. There is a constant Cy ., such that for every x € R2, every
R >0, and M > 1, we have

R MR 00
dr dr t\1/2
2 <o / 2= 2/ )t logt —)  dt.
/0 ay(z, ) = Cuy ; e(z,r) " + y o(t) <og )

Proof. Observe that, by integrating polar coordinates centered at x,

B ap@r) = e — :2/000 o(2)H @B, 5) 0¥ ds
= Ti? /000 go(%) (ms — H'(0B(z,s) N QT)) ds| .

Next recall that I (z,s) are the longest arcs in QF N 9B(z, s), so
I (x,s) C 0B(z,5)NQT C dB(z,s) \ [ (w,s),
and consequently
HYU I (z,5)) < HYOB(x,5)NQT) < 21s — HX (I (x, 5)).
Subtracting 7s from this inequality easily yields that
|ms — H' (OB(z, s) NQ1)| < se(z, 5),
which when plugged into (3.1) yields

(3.2) ay(z,r) < 1 /OOO w(?)s(w,s) sds.

Squaring both sides of (3.2) and integrating over r € (0, R) yields

R dr\"? Rrv [~ /s 2 gr\"?
(/0 cw(»”lr,?“)?7 < /0 (72/0 cp()s(x,s)sds) g
R 0 2 1/2
=(/ (/ go(t)e(x,tr)tdt) d’")
0 0 r
Minkowski’s inequalit; o R 1/2
< ! y/ (/ f—:(a:,tr)gdr) o(t) tdt
0 0 r

_ /OOO (/OtRs(x,u)Q CZL)W o) ¢ dt.

For t > 1 and some M > 1, we split

tR MR tR MR
d d d d t
/ ez, u)? &< / e(z,u)? =y / == / e(z,u)? L log™ —.
0 0 0 u M

u u MR U
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104 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

This bound certainly also holds for ¢ € (0, 1), so we get

oo tR du 1/2 MR du 1 00
/0 (/0 e(z,u)? u) e(t)tdt < (/0 e(z,u)? u> /0 p(t) tdt

+ -
+ / o(t)t (log ) dt,
and the lemma follows. O

/2

M

4. The two main lemmas and the proof of the main theorem

Having introduced an array of square functions, we may now state the pri-
mary two gtechnical results of this paper. The paper splits into two essentially
disjoint parts, which use very different techniques.

Part 1. The first part of the paper concerns the use of compactness ar-
guments to show, roughly speaking, that the curve I' must be quite flat near
points where the Carleson square function is finite.

MAIN LEMMA 4.1. Let QT C R? be either a Jordan domain or a two-
sided corkscrew open set, let ' = 0Q%, and let p be a measure with 1-linear
growth supported on I'. Let B be a ball centered at " such that

u(B) = 6r(B)

for some 0 € (0,1). Given any € > 0, there exists 6 € (0,1), depending on 6
and £ (and the two-sided corkscrew parameter in that case), such that if

r(B) r
L[ e+ ot @) Tt < (7).

then
ﬁoo,F(B) <e.

Observe that, roughly speaking, this lemma ensures that S r(B) is as as
small as wished if a suitable square function involving the coefficients e(x,r)
and o™ (x,r) is small enough on supp N 7B, assuming also that u has linear
growth and that pu(B) is not too small. It is important to remark that the
lemma yields an estimate of the flatness of I' N B, not only of supp N B. This
will be crucial later for the proof of Theorem 1.2.

The proof of Main Lemma 4.1 is considerably easier in the case of two-
sided corkscrew open sets, since these sets are rather stable under natural limit
operations (see Lemma 7.2). Jordan domains do not have similar stability
properties and so the analysis is much more delicate. However, the case of the
two-sided corkscrew open set is nevertheless very instructive, as a key part of
our analysis is that, if QT is a Jordan domain, then at points and scales where
1 has a lot of mass, and the Carleson square function is small, one can find
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A PROOF OF CARLESON’S ¢2-CONJECTURE 105

corkscrew balls (Lemma 8.2). This property, which is much weaker than the
two-sided corkscrew condition insofar as it tells us nothing about I' at points
where p has little mass, is still sufficient for us to prove Main Lemma 4.1 with
a considerable amount of additional work.

Part 1I. The second part of this paper is concerned with improving the
local flatness that is provided by Main Lemma 4.1 into a rectifiability property.
For this we work with the general scheme introduced by David and Semmes
[DS91] and extended to the non-homogeneous context by Léger [L99]. In fact
we will not require the full strength of the Carleson square function, but rather
a smoother square function.

MAIN LEMMA 4.2. Let QF C R? be an open set, and let T = 0QF. Fix
co € (0,1), 8 > 0 and € > 0. Let By be a ball centered at I' and let p be
a measure with 1-linear growth supported on T' N By satisfying the following
conditions:

* i(Bo) > cor(Bo);
¢ Boor(B) <€ for any ball B centered at I' such that u(B) > 6 r(B);
e for a radial function ¢ € C*(R?) with Ip,1) < ¥ < 1p,1.1), it holds that

r(Bo)/e dr
/ a¢(:c,r)27 < ¢ for every x € supp(u).
0

If 0 is small enough in terms of cg, and e is small enough in terms of 0 and cy,
then there exists a Lipschitz graph A with slope at most 1/10 such that

H(A) > (Bo).

The key property of the square function generated by the coefficients a,,
that enables a Léger type construction are the Fourier estimates carried out in
Section 9; see, in particular, Lemma 9.1. Subsequently, we carry out the con-
struction itself, which has several subtleties due to the nature of our particular
square function.

4.1. The proof of Theorem 1.2. Before beginning the proof we recall some
basic facts about densities: For a set E C R?, we set
HYE N B(z,7r))

YENB
OY*(z, E) = limsup il (a:,r)), Ol(z, E) = lim inf .
r—0 2r r—0 2r

For the proof of the following simple lemma see, for example, [Mat95, Th. 6.1].
LEMMA 4.3. If E C R? satisfies H'(E) € (0,00), then

1

3 <OY(z,E) <1 for H'-a.e.x € E.
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106 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

We will also require two simple properties of Lipschitz graphs. Suppose
that A is a Lipschitz graph in R?, and F C A, then for H'-a.e. x € F,

e A has a tangent at x, and

e Ol(z,F) =0 (2, F) = 1.

Both properties follow easily from Lebesgue’s theorem on the almost every-
where differentiability of absolutely continuous functions on the real line.

Proof of Theorem 1.2 using the Main Lemmas 4.1 and 4.2. We have to
show that the set G ={z €T : £(z) < oo} is rectifiable and that for H!-a.e.
x € G, there exists a tangent to I'.

Standard arguments (see, for instance, [Mat95, Lemma 15.13]) yield the
rectifiability of the set G from the existence of tangents to I' D G at H!-a.e.
point of G. Therefore our goal is to prove the statement about the existence
of tangents.

For the sake of contradiction, suppose that the (Borel) subset Fy C G of
those points € G which are not tangent points for I' has positive H! measure.
Consider a subset F' C Fy such that 0 < H!(F) < co. (The existence of F is
a non-trivial statement; see [Mat95, Th. 8.13].)

Since the Carleson square function &(z)? < oo for H!-a.e. z € F, we have
from Lemma 3.1 that

1
/ [e(x,r)? + ot (z, )% + ad,(ac,r)Q]ﬁ < oo for Hl-a.e. z € F,
0 r

where 9 is the function from Main Lemma 4.2.
By replacing F' by a subset with positive H! measure if necessary, we may
assume that

4.1 lim elx,m)? +at(x,7)? + ay(x,r)? ﬁ:0 uniformly in F
0 v r
S—> 0
and
(4.2) HY(B(z,7) N F) < 3r for all 2 € R* and r > 0.

(This second inequality is a consequence of the fact that ©%*(x, F) < 1 for
Hl-ae. z € F.)

For the choice ¢g = 1/9, pick # > 0 and then ¢ € (0,0) small enough pos-
itive numbers so that Main Lemma 4.2 is applicable. Then choose > 0 small
enough so that Main Lemma 4.1 is applicable with the choice ¢ replaced by 6.

!More precisely, we may choose r* > 0 sufficiently small to ensure that there is a ball B* =
B(z*,r*) such that the set F* :={z € FNB* : H'(FN B(z,r)) < 2r for every r € (0,2r*]}
has positive measure (so H'(F*) > 0). For any z € R? and r > 0 with B(z,r)NF* # @, there
exists ' € F* such that B(z’,2min(r*,r)) D B(z,r) N F*, and therefore H'(B(z,r)NF*) <
2. 2min(r*,r) < 3r. Replacing F with F* yields the desired statement (4.2).
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A PROOF OF CARLESON’S ¢2-CONJECTURE 107
Let R be small enough so that

TR/e r
(4.3) /0 (e(z,r)® + ot (2, 1) + ay(z,7)?) d7 < min(J, ¢)

for all z € F.

Denote p = %’Hl |- Then u has 1-linear growth. Recalling that ©1*(z, F)
> 1/2 for H'-a.e. x € F, we can find a ball By centered at F with radius smaller
than R such that p(Bg) > 7(Bo)/9 = cor(Bo)-

We look to apply Main Lemma 4.2 with the measure v = pu|p, (which
satisfies v(By) > cor(Bp)). Notice that if B is a ball with v(B) > 0r(B), then
certainly B N By # @, and r(B) < r(By)/0 < r(By)/e. Consequently, from
(4.3) we infer that

r(B) .
/ / [e(@,m)* + at (7)) du(ar)d7 < u(7B).
7B J0O

But trivially we have u(B) > 6r(B), and so Main Lemma 4.1 yields that

/Boo,F(B) <e.
On the other hand, it is also immediate from (4.3) that

r(Bo)/e dr
/ ay(z,7)>—dv(z) < e on supp(v).
0 T
Consequently, we may apply Main Lemma 4.2 to find a Lipschitz graph A such
that the set Iy = F N A satisfies H!(F}) > 0.
As a consequence, for H'-a.e. z € F, we have

(4.4) O©l(x, F1) =1 and A has a tangent at z.

We claim that every x € F) satisfying (4.4) the tangent line for A at z is also
a tangent to I'.

To verify the claim, we will appeal to Main Lemma 4.1. Fix x € F] satis-
fying (4.4). Observe that (4.1) along with the condition ©1(x, F1) = 1 ensure
that for any € > 0, we can find rg > 0 such that for every r < ry, we can
apply Main Lemma 4.1 with the measure p and the ball By = B(z,r) (with
the constant ¢y equal to, say, 1/4). Therefore,

(4.5) lim B (B, 1)) = 0.

Now, let u be a unit vector orthogonal to the tangent line L at z to A.
Insofar as ©}(x, F}) =1 and F; C A C T, (4.5) ensures that
dist(y, L
lim  sup dist(y, L) =0.
r—0 yel'NB(z,r) r
Therefore, for every a € (0,1), I'NXy(z, u)NA(z,7/2,r) = @ for all sufficiently
small » > 0.
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But the condition I' N X4 (z,u) N A(x,r/2,r) = @ for all r small enough
clearly implies that I'N X, (x, u)NB(z,r) = @ for all r small enough. Further, it
is immediate that the condition (4.1) implies that one component of X,(x,u)N
B(z,7) is contained in Q7 and the other in Q~, and so I' has a tangent at z.
Therefore our claim follows, and this in turn clearly contradicts the fact that
the points in Fj, and thus the ones in F}, are not tangent points for I'. ([

Part I: Flatness via compactness arguments
5. Basic compactness properties

5.1. Weak convergence of measures. We say that a sequence of (Borel)
measures ; converges weakly to a measure p if

lim fdp; = /R2 f du for every f € Co(R?),

j—o00 R2

where Cp(R?) denotes the continuous functions with compact support. We re-
call the following basic compactness result; see, for instance [Mat95, Th. 1.23].

LEMMA 5.1. If puj is a sequence of measures in R? such that, for all R > 0,
sup; 5 (B(0, R)) < oo, then u; has a weakly convergent subsequence.

It is not difficult (see [Mat95, Th. 1.24]) to see that weak limits are lower-
semicontinuous on open sets and upper-semicontinuous on compact sets. Com-
bined with Lemma 5.1, we arrive at the following result.

LEMMA 5.2. Fiz Cy,co € (0,00). Fiz a ball By C R?. Suppose that y; is
a sequence of measures with Co-linear growth such that uj(By) > cor(Byg) for
every j. Then there is a subsequence uj;, of the measures that converges weakly
to a measure p with Co-linear growth satisfying 11(Bg) > cor(Bo).

We next establish some basic facts about convergence of sets.
5.2. Convergence of sets. For B C R? and = € R?, set
dist(x, B) = d(z, B) = inf |z — b|.
ist(, B) = d(z, B) = inf |z — I

For non-empty sets A and B, we define the excess of A over B to be the
quantity

excess(A, B) = sup d(z, B),
€A

and we put excess(&, B) = 0 while excess(A, @) is left undefined.

Observe that excess(A, B) < € means that the open e-neighborhood of B
contains A.

The Hausdorff distance between A and B is given by

disty (A, B) = max{excess(A, B), excess(B, A)}.
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A PROOF OF CARLESON’S ¢2-CONJECTURE 109

For compactness arguments, we will require a notion of local convergence.
To this end, we follow [BL15] and introduce the relative Walkup-Wets distance.
For non-empty sets A, B, we define, for R > 1,

dr(A, B) = max{excess(A N B(0, R), B),excess(BN B(0,R),A)}.

(The reader should not be concerned that the quantity dr need not satisfy the
triangle inequality.)
Observe that

(5.1) de (A,B) < dRQ(A, B) < diStH(A, B) if RQ > Rl.

Definition 5.3 (Local Convergence). A sequence of non-empty sets E; con-
verge locally to a non-empty set E (written E; — E locally) if, for every R > 0,
lim dR(Ej,E) =0.

j—o0
We refer the reader to Section 2 of [BL15] for a more thorough introduction

to this notion of convergence. In variational analysis, this notion of convergence
is called convergence in the Attouch-Wets topology.

LEMMA 5.4. If E; are non-empty closed sets that converge locally to a
non-empty closed set E, then

(1) a compact set K satisfies KNE = & if and only if there is a neighborhood
of K that has empty intersection with Ej; for all sufficiently large j; and

(2) if the sets E; are contained in a fized compact set, then E; converge locally
to E if and only if E; converges to E in the Hausdorff distance.

Proof. Both properties are straightforward consequences of the local con-
vergence, so we shall only verify the “if” direction of (1). If K N E = &, there
exists 7 > 0 such that Ky, the d-neighborhood of K, satisfies

inf |z —y| >4
zeKs,yeE

But then there exists R > 0 such that K95 C B(0, R). But then
dor(Ej, E) < § for sufficiently large 7,

so the open d-neighborhood of E contains E; N B(0,2R) for sufficiently large j.
Consequently, Ks N E; = K; N E; N B(0,2R) = @ for sufficiently large j. O

We next state a basic compactness result.

LEMMA 5.5. Suppose that E; is a sequence of closed sets in R? that inter-

sect B(0,1). Then there is a subsequence Ej, that converges locally to a closed

set B C R? (satisfying EN B(0,1) # 2).
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This statement can be proved by modifying the usual proof of the rela-
tive compactness of a sequence of closed subsets of a compact metric in the
Hausdorff topology; see also Theorem 2.5 of [BL15] and references therein.

Let us now fix open sets Q;r C R? with boundary r; = 89;. We write

Q]_ = R%@. Throughout this paper, we will always be working in situations

where also
(5.2) r;= 89;.

LEMMA 5.6. Let {Qj}] be a sequence of open sets in the plane. Set
Q; = R? \Qij, and suppose that I'; = 89; satisfies (5.2). Suppose there are
closed sets G,G~, Gy satisfying

Qif — G*  and 'y = Go locally.
Then
(1) The limit sets G,G~, Gq satisfy
GTUG =R} G'nG =G,
In particular, Gt \ Gy and G~ \ Gy are open.
(2) There are functions g+, g~ € L>(R?) such that for a subsequence Qﬁ,
lox — g°  weakly x in L°(R?),
ik
where
g =1imG"\Gy and gt =01in G\ Go.

Proof. For property (1), the fact that GT UG~ = R? is obvious. Since
I; = 8(2]-+ = 89; C Qj N Q;, it is clear that Go C GT N G~. On the other
hand, if x € G NG, then for any € > 0, there exists jo € N such that for

ijO?

dist(ac,Qj) <e and dist(ac,Qj_) <e.
That is, there exist y]i € jS such that |x—yji| < e. There exists some z € I'; in
the segment [y;r, y; |, and thus [z — z| < £ and dist(z, I'j) < e. Since this holds
for all j big enough, we deduce that = belongs to the limit in the Attouch-Wets
topology of {I';}, that is, to Go.

To see the openness of G\ Go, note that R? = (GT\ Go) UG~ is a disjoint
union. Thus G\ Gy = R?\ G~ is open. Analogously, G~ \ Go = R?\ G+ is
open.

We now turn our attention to verifying (2). The existence of g* € L>(R?)
such that, for a subsequence €2, , HQ?[ — g& weakly * in L>®(R?) is a stan-
dard consequence of the Banach-Alouglu theorem. Now consider a continuous
function ¢ compactly supported on G* \ Gy. Recall that G\ Gy is open and
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G\ Go = R?\ G~. Consequently, property (1) of Lemma 5.4 ensures that
there exists some € > (0 such that, for all £ big enough,

dist(supp ©, Q]_k> > e.

In particular, supp ¢ C Q;; for all k big enough, which implies that

/ Lo+ pdr = / wdz for all k big enough
R2 Jk R2

and proves that g7, the weak x limit of 1+ , equals 1 in G*\ Gp. The proof
ik
that g™ = 0 in G~ \ Gy is completely analogous. O

6. General compactness results
involving the Carleson square function

Throughout this section, fix a sequence of sets Q;r with Q; = RQ\@,

such that T'; = 89; = 0Q; (ie., (5.2) holds). Assume that Qif — GF and
I'; — Gy locally as j — co. Consequently, the sets G, G~ and G will satisfy
the properties of Lemma 5.6.

6.1. Complementary semicircumferences and admissible pairs. It will be
convenient to introduce the following definitions, which will be central to our
analysis.

Definition 6.1 (Complementary semicircumferences). We say that two
closed semicircumferences are complementary if they are contained in the same
circumference and their intersection consists just of their end-points.

Definition 6.2 (Admissible pairs). We say that a pair of two complemen-
tary closed semicircumferences (51, S2) is admissible (for the sequence of sets
{Qj‘ };) if there exists a subsequence of circular arcs I Jik C 0B(xj,,15,) N Q}i,
with z;, € I’
respectively.

jr» such that I;rk, 1 . converge to S1, So in Hausdorff distance,

It is immediate to check that, if (S7,S2) is an admissible pair, then
S1 € G*, Sy C G~ and that the common center of S; and Sy belongs to Gy.
Consequently, we will also say that S7 and So are admissible for G and G,
respectively. We call the common center and radius of Sy, So the center and
radius of the pair, respectively.

Observe that, for a given z € Gg, r > 0, there may exist more than one
admissible pair of semicircumferences centered at x with radius r.

Especially when dealing with Jordan domains, we will use the fact that the
set of admissible pairs is closed in the topology of Hausdorff distance; that is,
if {(S1,i,52,4)} is a sequence of admissible pairs (possibly with different centers
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and radii) such that S;;, Sa; converge respectively to Si, So, then (51, S2) is
an admissible pair.

To check this fact, just take for each ¢ a pair of arcs If , I;” contained in
0B(xj,rj)N Q;f_, with z; € 89;, for a suitable j; such that

| =

distz (I, S1,4) < .

~

It is clear that the arcs If , I, converge respectively to S1, S2 in Hausdorft
distance, and thus (S, S2) is an admissible pair.

6.2. A general convergence result. We set ¢j(x,r) and aj(:n,'r) to be the
coefficients e(z,r) and o (z,r) associated with Q;r

LEMMA 6.3. Fiz Cy,co > 0. Let {p;}; be a sequence of measures with
Co-linear growth supported on I'; converging weakly to a measure po (so po
is supported in Go, and has Cy-linear growth). Suppose By is a ball with
wo(Bo) > cor. Further assume that, for each j, both

7r(Bo) dr 1
(6.1) [ e T du) < us(750)
7Bo J0 r J
and
7r(Bo) dr 1
(6.2) [ e duy ) < (7B
7Bo J0 r J
Then

(1) there is an analytic variety Z such that supp(uo) N 7By C Z C Go;
(2) for all x € TBy Nsupp po and all v € (0,7r(By)), there is a pair of admis-
sible semicircumferences that are contained in 0B(z,T).

Proof. We may assume by scaling that By = B(0,1). The property (6.1)
is responsible for the first conclusion, while (6.2) is responsible for the second
conclusion.

Proof of (1). Recall from Lemma 5.6 that there is a subsequence of the
open sets Qﬁ whose characteristic functions converge weak-* in L to func-
tions g% with g™ =1 on GT\Gp and gt = 0 on G~\Go.

CLAIM 1. One has ozg(ac,r) = 0 for all x € TBy Nsupp o and all r €
(0,7r(By)), where

(6.3) of (z,7) =
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Proof of Claim 1. For any r > 0, the mapping z ag(a;, r) is continuous
on R?, so (6.3) will follow once we show that

7
(6.4) /B / ag (z,7)*r® dr duo(z) = 0.

Note that (6.1) implies that
. (7B
(6.5) / / 2 dr dyu () < 13 7B0) o €
7By k

Consider arbitrary non-negative smooth functions 17, (z), fl(oj) (r) compactly
supported in 7By and (0, 7), respectively. Define

~ ~ 3( 1 _|;|2 7\ 2
fr(z,r) = ]1730(33)Il[0,7](7“)r ﬁe o ]19;6 -5
Since IIQ;;c converges weakly * in L>(R?) to g*, then we have that

fr(z,7) = f(x,r) pointwise,

where

~ - 1 .2 T 2
Fa,r) = Trgy (@)D om) () r® (f B *g+_§> |

Clearly, fi is a uniformly bounded sequence on 7By X [0,7] with uniformly
bounded derivative. (It is to ensure this condition that we introduce the factor
r3 in (6.5), but a factor of r would be sufficient.) Thus by the Arzela-Ascoli
Theorem, we deduce that fi converges uniformly on compacts subsets to f,
up to a subsequence that we relabel.

To prove (6.4), we write

] arauot) = [ £arduo - )+ [ (7= 0 ardus + ] v du,

The first integral tends to 0 as & — oo, since clearly dr dpu;j, converges weakly
to drdug. Similarly, the second integral converges to 0 as k — oo, by the
uniform convergence on compact subsets of fi to f. As for the third integral,

'/ fdr duz, | < /B/ P drdu () <

by (6.5). This immediately gives that

[ #drdum =0,

we see that

and since 17p,(2), ]1(077)(7“) are arbitrary non-negative smooth functions com-
pactly supported in 7By and (0, 7) respectively, (6.4) follows. O
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CLAIM 2. For any x € R2, if there exists a sequence ry, — 0 such that
ag (x,r) = 0 for all k, then x € Gy.

Proof of Claim 2. Recall that g7 =1 in G\ Gp and g7 =0 in G~ \ Go.
So, if x € G\ Gy, then it is immediate to check that

1
lim — /g"’(y) e ly—al?/r? dy = /e_y2 dy =,

r—=07r

taking also into account that G*\ Gy is open. Thus o (z,7) is bounded away

from 0 for all » > 0 small enough.
Similarly, if z € G~ \ Gy, then lim,_q T%fRQ g_(y)e_‘y_’“"‘z/TZdy =0, so
af (z,7) is bounded away from 0 if r is sufficiently small. O

We now complete the proof of property (1). Set

Z=({zeR*: af (z,27%) =0},
k>0

where o is defined in (6.3). By Claims 1 and 2,

TBoNsupp ug C Z C Gy.
To see that Z is a real analytic variety, consider

2
Fo= ;02"“0&5{(-, 27k = ;02‘"3 (7“1;% gt xe P2 g) :
Then F is a real analytic function and Z = F~1(0).
Proof of property (2). Denote
E, = {x el NT7By: f075k(x,r)2 dT—T < ﬁ}

By Chebyshev’s inequality, we have

< YR u7B0) = % pu(7Bo).

=

7
(B \ B < VE [ [ et T

Set 7, =1 — k=/4. For each z € E;, and 0 < r < 7, we have

1 7 o ds " 9 ds
> s i
\/E - /0 8k(x7 S) 5 /Tkr 8k($7 8) s

1 1
> inf 2log — ~ inf R
- seg;lcr,r} Sk(x, S) 8 Tk 86%71'}9’!‘,7"] ok (37, 8) k1/4

Hence, for all r € (0,7), there exists some s, € [, 7] such that

1
€k(:1:, 87’) 5 m
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In particular, this implies that for each € E; and 0 < r < 7, there exist
disjoint arcs I} (z,s,), I, (z,s,) C OB(x, s;) satisfying

(6.6) HU (I (2,s,) > (m— k%) r  and  IF(z,s) C Qf.
Let Ek C E} be a compact set such that
~ k—1 k—1 < 1 )
Ey) > —up(By) > — |1 — — 7By).
pe(Er) 2 —— () = — N 1,(7Bo)

Taking a subsequence if necessary, we can assume that pg] B, converges weakly

* to some measure ¢ and that Ek converges in the Hausdorff metric to some
compact set F C R2. In fact, since Ek C I'x, we have F' C Gqg. Further, it
is easy to check that suppo C F, and by (6.6) it follows that for all x € F
and all 7 € (0,7), there exists an admissible pair with radius r and center
x. It just remains to notice that o|rp, = pol7s,, since for f € Cy(7By),

0o i(7B
‘fﬁk fd“’f_fmofd/ﬁk‘ﬁ W )

7. The case when Q7 is a two-sided corkscrew open set

The objective of this section is to prove Main Lemma 4.1 in the case of a
two-sided corkscrew open set.

LEMMA 7.1. Let QY C R? be a two-sided c-corkscrew open set, let T =
O0T, and let p be a measure with Cy-linear growth supported on I'. Let B be
a ball centered at I' such that

u(B) = cor(B)

for some 0 < cg < Cy. Given any € > 0, there exists 6 > 0 (depending on
Co, co, ¢, €) such that if

7r(B) -
/73/0 (e(@,r)* +a’(z,r)°) deM(x) <o u(7B),

then
BOO,F(B) <e.
The next lemma shows that two-sided corkscrew open sets enjoy nice
limiting properties under Hausdorff limits.
LEMMA 7.2. Let {Qj}J be a sequence of c-corkscrew planar open sets such
that 0 € 9QF and inf; diam(Q) > 0. Let QF =R\ QF and T'; = 9Q. Then
the following holds:

(1) there is a subsequence ji so that

Q;z - Of  and I, =T locally;
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(2) the limit sets QL are two-sided corkscrew open sets such that Qo = R?\Q
and Too = ONL;

(3) QL satisfy the following: for any ball B such that B C QL | then a neigh-
borhood of B is contained in jSk for k sufficiently large.

Proof. This result is essentially known. See, for example Theorem 4.1
in [KT03]. However, we are not working under precisely the assumptions
in [KT03], so we provide a proof for the reader following Lemma 5.6. First,
Lemma 5.5 provides us with closed sets G* and G and a subsequence such that
jSk — G* and I';, — Go locally as k — oo. Taking the subsequence jj and
the sets GT and Gy provided in that lemma, we set I'oo = G, Qf = GT\G~
and Q=G \G™T.

Fix r€ (0, diam(2s)). Observe that r <liminfy_,., diam(€;,). If x€l',
then there is a sequence xj; € I'j, with limy_,2; = . Since Q; is a
two-sided c-corkscrew domain, and r < diam(€2;,) for sufficiently large k,
then there are :L‘;i € jS with |zj, — x;i| < r and B(:Uji,cor) C Qi for k
large enough. Passing to a further subsequence if necessary, we may assume
limy oo xjik = z*. But then B(z®,cor) C GF (for instance, any element of
either of these balls can be obtain as a the limit of a sequence belonging to the
respective sequences balls B(xi,cor)), and therefore B(x%, cor) C Q%. Also
notice that |z% — 2| < r.

On the other hand, property (1) from Lemma 5.6 ensures that R? =
QO Ul UQL and the union is disjoint, and so

[o = 0QL = 00.

Combining our observations yields that QF is a two-sided corkscrew open

set, and additionally, Qi — QF locally as & — oo. Therefore property (1)

of the lemma is proved. Now property (3) follows from property (1) from
Lemma 5.4, since I'so = 0Q% = 00. O

We next analyze what we can say about the natural limit situation given by
the conclusions of Lemma 6.3, taking into account that the limit set Gg = '
is the boundary of a two-sided corkscrew open set.

LEMMA 7.3. Let Qt C R? be a non-empty open set, and let Q~ = RQ\W
and T' = 0QF. Suppose that 00~ =T too. Let i be a measure with Cy-linear
growth supported on I', and let B be a ball centered in supp p. Suppose that

e there is an analytic variety Z with supp(ug) N B C Z C T'; and
e for each x € BNsupp u and all v € (0,3r(B)), there exist two complemen-
tary half-circumferences C*(z,7), C~ (x,7) with radius v and center x such
that
Ct(x,r)CcQF and C (z,7)C Q.

Then I' N B s a segment.
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We remark that the last property regarding the existence complementary
half-circumferences C*(x,7), C~(z,r) is a consequence of the existence of
admissible pairs.

Proof. Since y is non-zero and has linear growth, we have that H!'(Z) >
H!(supp p) > 0. Together with the fact that Z # R? (Q7 is non-empty), this
implies that there exists an analytic curve S such that (SN $B) > 0 (which
implies that H! (S N supp N %B) > 0, because of the linear growth of pu).

We claim that S is a segment. To prove this, it suffices to show that S
has vanishing curvature at any point of supp © N .S. Indeed, since this set has
positive length and the curvature of a real analytic arc is locally a real analytic
function (with respect the arc-length parametrization from an interval), this
implies that the curvature vanishes on the whole arc S, and thereby proves
that S is a segment.

To show that the curvature of S vanishes at supp u N S, we will use the
following property, which we will call the

KEY PROPERTY. Given * € B Nsuppp and r € (0,3r(B)), let I C
OB(z,r) be an arc such that H'(I) < 7r whose end-points belong both to QF.
Then I C C*(x,7r), and thus I C QF. The analogous statement holds replacing
QF by Q™ and Ct(z,r) by C~ (7).

To verify that the key property holds, note that if I is an arc as above, then
its end-points 21,2 do not belong to Q~ (because they belong to Q). This
implies that z1, 22 € CT(x,r), and thus either I or dB(x,7)\ I is contained in
C™(x,r). The latter cannot hold since H'(0B(z,r)\ I) > mr = H' (CT(x,7)),
and so we have I C CT(z,r).

We are ready now to show that the curvature of S vanishes at every
x € supp 1 N.S. Without loss of generality we assume that x = 0, and that the
tangent to S at 0 is the horizontal axis.

Seeking for a contradiction, suppose that S is strictly convex at 0 (i.e., if S
equals the graph of the real analytic function g : (=9, ) — R in a neighborhood
of 0, then ¢”(0) > 0).

Let 21, 22 be the two end-points of S, and let

dy = % Zrili% dist(z, z;).
Let r € (0,dp/2) be small enough so that B(z,7) N S\ {z} C R?, where R%
is the open upper half plane. We also assume that, moreover, the distance
of any point from S N B(x,r) to the horizontal axis is at most 7/1000. Let
y1 € SNOB(z,7/2). Since I' = 90T, there exists some ball By C QF satisfying

1
dist(y1, B1) +r(B1) < Edist(yl,R%).
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C3

Figure 1. The figure depicts the first case, where Bj is below
the red curve S. (The ratio of the radii of the balls By, Bs, B3
is not to scale; the reader should think of r(B;y) > r(Bsz) >

r(Bs).)

Let C be the circumference centered at x and passing through the center
of Bi, and let y2 be the point belonging to S N Cy that is closest to y;. (If r
is small enough, the set S N C} consist of two points by strict convexity.) Now
using that T' = 907, there exists some ball By C Q™ satisfying

1
dist(yz, B2) + 1(Ba) < 0 min (dist(yz, R2), 7(By)).

Now let C5 be the circumference centered at x and passing through the center
of By, and let y3 the point belonging to S N Cy that is farther from yo. (If 7 is
small enough, the set S N Cy consists of two points.)

We distinguish now two cases. In the first one we suppose that Bs is
above Bj (this happens if By is below S); see Figure 1.2 Then, using again
that T' = 9Q7T, there exists some ball B3 C Q% satisfying

(7.1) dist(ys, Bs) + r(Bs) < 1% min (dist(ys, B2 ), r(By)).

In the case that Bj is below B; (which happens if B is above S), using that
I' = 09, we can choose the ball B3 so that B C £~ also satisfies (7.1).

In any case, let C3 be the circumference centered at x passing through the
center of Bg. Then it follows that C5 intersects By, Bs, B3. Observe that, in
either case, B1, By, By C R%r.

In the first case, there is an arc in C'3 whose end-points belong respectively
to Bi, B3 (which are contained in Q1), passes through Bs, and its length is
smaller than H!(C5)/2, due to the fact that its end-points belong to R%. By
the Key Property, this arc is contained in QF, which is a contradiction because

2 All colored figures are viewable in the online version of the article:
https://doi.org/10.4007 /annals.2021.194.1.2
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A PROOF OF CARLESON’S ¢2-CONJECTURE 119

By € Q7. In the second case we deduce that there is an arc in Cs that joins Bs

and Bs (which are contained in 27) and passes through By, with length smaller

than H'(C3)/2. By the Key Property, the arc is contained in Q~. This is again

a contradiction, because By C Q7. Hence, the curvature of S at x is zero.
We now appeal to the following simple fact.

LEMMA 7.4. If a real analytic variety Z C R? contains a segment S, then
it also contains the line L that supports the segment.

Proof of Lemma 7.4. By a suitable translation and rotation we can as-
sume that the line L supporting S coincides with the horizontal axis of RZ.
Let ® : R? — R be a real analytic function such that Z = ®~1(0). Then,
the function defined by ¢(x1,z2) = ®(z1,0) is real analytic, and it vanishes in
the interior of the set S x R and thus it vanishes identically in R?. That is,
®(x1,0) = 0 for all z; € R or, in other words, L C ®~1(0) = Z. O

Returning to the proof of Lemma 7.3, Lemma 7.4 shows that I' contains
a line L such that u(L N $B) > 0.

Our next objective consists of showing that ' " B C L N B, which will
complete the proof of the lemma. Again, without loss of generality, suppose
that L is the horizontal axis.

Suppose that BﬂRiﬂQJr # @. We intend to show that then B(T]R?F cOr.

For z € L, consider the semicircular extension of QT N B(z,3r(B)) N R
with respect to the center x defined by

(7.2) U = U (8B(z,r) NR2).
r€(0,3r(B)):0B(z,r)NQ+TNR2 £o

Observe that U, is also an open set.
CraM 3. If x € supp(p) N B(z,3r(B)) NR2, then
Q" N B(x,3r(B)) = U.

Proof of Claim 3. The arguments we use are similar to those required to
show that the curve S had vanishing curvature. We need to show that U c Q
(recall L € 90). Assuming otherwise, there exists some point y € U N Q~.
By connectivity, then we deduce that there exists some r € (0, 3r(B)) such that

OB(z,r)NQTNRL #2 and 9B(z,r)NTNRE # 2.

Because of the existence of some point 3 € dB(z,r) N T NR2, the fact that
' = 9927, and the openness of US, we deduce that there exists some ball
B! c U} NnQ~. Let C] be the circumference centered at z passing through
the center of Bj. Choose one of the two points z € C] N L so that the shortest
arc in C] that joins z to B intersects QF; see Figure 2.
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B, Cc Q™

Figure 2. This figure depicts the geometric setup in the proof
of Claim 3. In particular, observe the arc I’ with end-points
belonging to O~ that intersects Q.

Again by the fact that I' = 9Q~, there exists some ball B C 2~ such that

1
r(B) + dist(z, BY) < 100 min (r(Bj), dist(By, L)).
Let CY be the circumference centered at x passing through the center of Bj. It
is easy to check that there is an arc I’ C C), whose end-points belong respec-
tively to Bf and B), such that it intersects Q7, and moreover has length smaller
than $7!(C}). Since B} and BY are contained in Q~, the whole I’ is contained

in Q~ by the Key Property, which contradicts the fact that I’ NQFT #@. O

Recall that we are assuming that BN Ri NQT # & and we want to show
that then B ﬁ]Ri C Q7. Suppose that this not the case. Of course, this implies
that if zp € supp(u) N L is the center of B, then B(zp,2r(B))NR2 ¢ Q. Let
V be a connected component of QT N B(zp,2r(B)) NR%. Since, by Claim 3,
V' coincides with its semicircular extension centered at xp, it is of the form

V = A(zp, s1,s2) N Ri or V=DB(zp,s1)N Ri,

with s1 < 2r(B) in any case (because V # B(zp,2r(B)) NR% by assumption).
Let 2’ € %OB N LNsuppu, 2’ # xp. (The existence of 2/ is an immediate
consequence of the linear growth of p.) By Claim 3, the semicircular extension
U, centered at ' is also contained in Q7 but then

Q> Uy D U (0B(«',r) NR2) D 0B(xp,s1) NR,
r€(0,3r(B)):0B(z/,r)NRI NV #&

which contradicts the definition of V' as a connected component of Q.
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A PROOF OF CARLESON’S ¢2-CONJECTURE 121

We have now verified that if BNR2 N Q" # @, then BNR2 C Q. But
by completely analogous arguments, we see that if B N Ri N Q™ # &, then
BN R%r C 7, and one can interchange the upper half plane with the lower
half plane. We therefore conclude that B N 9Q+ C L, and the proof of the
Lemma 7.3 is complete. |

Proof of Lemma 7.1. By renormalizing it suffices to prove the lemma for
the ball By := B(0,1). We argue by contradiction: then there exists an € > 0
such that for all k¥ € N, there exists a two-sided c-corkscrew open set Q;: with
Iy = an containing 0 supporting a measure p with Cp-linear growth with
ur(Bo) > co, so that we have

7 r
(7.3) /73 /0 (en(z,r)* + aff (z,1)?) d7 dug(z) < %,uk(%)

and

Boo,l"k (Bo) > €.

Here we denote by ej(z,r) and «; (z,7) the coefficients £(z,r) and o™ (z,r)
associated with Qz

Observe that the condition p(Bpy) ~ 1 and the linear growth of u imply
that diam(€2) > diam(I'y) > diam(ByNsupp py) 2 1. Therefore, passing to a
subsequence (which we relabel) if necessary, we may apply Lemma 7.2 to find
a two-sided c-corkscrew open set QF such that T' = 9QF, O~ = R?\ QF, and

lim Qf = QF and lim T =T locally as k — oo.
k—o0 k—o00
This implies that s r(Bo) > €.

Next, Lemma 5.2 ensures that, by passing to a further subsequence if nec-
essary, we may assume that the measures uj converge weakly to a measure p,
supported on I', with Cp-linear growth and u(Bg) > co.

We now apply Lemma 6.3. Therefore, there is an analytic variety Z such
that 7By Nsupp(u) C Z C T', and for every x € 7By N supp(u) and r € (0,7),

there are complementary semicircumferences (C*,C™)

7.4
(74) centered at x with radius r satisfying C* c QF

Since p(Bp) > ¢y, we can now find a ball B’ centered on supp(u) N By such
that 7By D B’ D By such that supp(u) N B’ C Z and (7.4) holds for every
x € supp(u) N B" and r € (0,3r(B’)). We now apply Lemma 7.3 with the ball
B’ to conclude that I'no N B’ (and so I' N By) is a segment. This, however,
contradicts the fact that B r(Bo) > €. O
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8. The case of Jordan domains

In this section we shall prove Main Lemma 4.1 in the case of a Jordan
domain, which we restate for the benefit of the reader.

LEMMA 8.1. Let QT C R? be a Jordan domain, let T' = 0QF, and let p
be a measure with Cy-linear growth supported on I'. Let B be a ball centered
at T' such that

u(B) > cor(B)

for some ¢y € (0,Cp). Given any € > 0, there exists 6 > 0 (depending on
Co, co,€) such that if

r(B) -
/73/0 (e ) + o (7)) %du(m) <5 u(7B),

then
ﬁoo,F(B) <e.

The first auxiliary result we need is the following, which states that, at
points where the Carleson square function is sufficiently small, we may find
corkscrew balls.

LEMMA 8.2. Let QT C R? be a Jordan domain. Let x € T = 0QF, r > 0,
and ' € T NOB(x,r). Suppose that

/27« (e(z,t)® + (2, 1)?) dt <4
0 t

for some § > 0. If § is small enough, then there are two balls BT C B(z,r)NQ*
such that 7(BT) ~ r(B~) ~ r, where the implicit constants are absolute.

Proof. Without loss of generality, we may assume that x = 0, r = 1, and
x’ lies on the horizontal axis. It will be convenient to work with rectangles in
polar coordinates. For intervals I C (0,00) and P C [—m, 7], define

X(I,P) = {se" :s 1,0 € P}.

We call such a set a polar rectangle.
Put mg to be the two-dimensional Lebesgue measure. We begin with a
claim:

CrAamM 4. There is an absolute constant ¢ > 0 such that the following
holds: For intervals I C [1/2,1] and P C [n/4,3n/4] U [-37/4,—n /4], if §
is sufficiently small (depending on £(I) and ¢(P)), then there exists a polar
rectangle X' C X(I, P) such that mo(X') > ema(X) and either X' C QF or
X' ca.
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A PROOF OF CARLESON’S ¢2-CONJECTURE 123

Let us first show how to prove the lemma using Claim 4. First, take I =
[1/2,1] and P = [r/4,3m/4]. Then we get a polar rectangle X' = X(I’, P’) C
X(I, P) with ma(X’) 2 1, and such that X’ ¢ Q%, provided ¢ is small enough.
For definiteness let us assume that X’ € Q7. We then apply the claim again
with I replaced by I’ and P replaced by —(3P’) = {—6: 0 € $P'}. (Here for
an interval P, aP is the concentric interval of sidelength af(P).) As long as
§ is small enough, there is a polar rectangle X" = X(I", P") Cc X(I',—(3P"))
with X” € QF, and ma(X”) > 1. We need to verify that X” c Q™.

However, if X” c QF, then we would have that every circumference
C(0,s), with s € I”, has its intersection with X” or X’ contained in Q¥.
But C(0,s)\(X'UX”) is comprised of two arcs with length at most equal to
(m—£(P"))s. Thus £(0,s) 2 1 for all s € I”, whence fol £(0,5)% > 1. We have
therefore arrived at a contradiction if § is sufficiently small.

Finally, since X" and X" have Lebesgue measure > 1, we can inscribe in
them balls of radius ~ 1, and this completes the proof of the lemma. O

We now return to verify the claim.

Proof of Claim 4. We may assume that X = X (I, P) C Ri, the upper
half-plane (i.e., P C [r/4,37/4]). First split X (I, P) into 1000 polar rectangles
X; = X(I, Pj) with {(P}) = 1955¢(P). Write I = [ry,72]. Fix 5 > 0, and
consider the circumferences

Cs = 0B(0,s) for s € ((1 — »)ry + »ry,72).

If § is sufficiently small, 99% of these circumferences intersect I' in at most
four of the polar rectangles X;. In this case, we call Cs good.
Next, for each polar rectangle X, consider

m; = H' ({s € [(1 = 5)rg + 3er1,72] : Cs is good and Cs N X; NI # &}).

Fubini’s theorem yields
ij S 4%(7’2 — 7’1),
J
and so there exists jo with m;, < %(TQ —7r1).
Consequently,

H! ({s € [(1 = 50)rg + 3er1,72] : Cs N X, NT # 2})

<my, +H ({s € (1 — 3)ry + 3er1,79) : Cs is not good})
< %(Tz —7r1) + Wlo%(rz —r1) < %%(TQ —71),
and we conclude that at most only 2% of the circumferences Cs, s € ((1 — s)r2
+ sry,12), intersect I' in Xy = X(I, Pj,).
Using the pigeonhole principle, we infer that we can find three pairwise
disjoint intervals Iy, Is and I3 in [(1 — 3¢)ry + 211, r2], such that
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Figure 3. This figure depicts a circumference C(z/,s) crossing
Xjo.k1 to the right of X 1, and crossing X r, to the right of

Koz

o ((Iy) 2 »(rog —11);
o dist([;, 1)) 2 »(ro — 1) if j # k; and
e C(0,5) N X,, x NI' = @ whenever s € 0I), for k =1,2,3.

Consider the three polar rectangles X;, = X(Ij, Pj,), which certainly
contain )Nijmk = X(Ik,fN’jO) with ]3;0 = - Pj,. We will show that one of the
rectangles )zj07k, for some k£ =1, 2, 3, does not intersect I.

Let us write I'=/([0, 1]) with (0)=0=+(1). First suppose I' ﬂ)zjmk #+ o
for some k € {1,2,3}. If we consider ug such that y(ug) € on,k and u; =
max{u : y([ug, u]) C Xj, x}, then since C(0,s) N X, NI' = @ for s € 01}, and
0 = ~(0) = y(1) ¢ X,,.k, we must have that y(u;) € {se? : s € I,0 € IP;,}.
We say that I' goes to the right (left resp.) if y(u1) lies on the right (left)
side boundary of X . Assuming that )N(jovk NT # @ for every k = 1,2, 3, we
therefore see that I' must go to one direction (either left or right) in two of
the rectangles, say X r, and Xj, ,. For definiteness let us say the direction
is right; analogues arguments handle the other case.

If we fix 2 = 1075¢(P;), say, then there is an interval J with ¢(J) > s¢(I)
so that for every s € J, the circumference C(2/,s) crosses X, i, to the right
of ijo,,ﬂ and also crosses X, r, to the right of )Zjo,,w. Therefore, insofar as
I' goes to the right in both Xj, x, and X k,, a circumference C(z’,s) with
s € J intersects I' in the well-separated polar rectangles X, », and Xj, x, (see
Figure 3), and so £(2,5) 2, ¢ 1. But then f02 5(3:’,8)2% Zoeun 1. If 5 s
small enough, then we have reached a contradiction. U
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We begin by reviewing Lemma 5.6 in the context of a sequences of Jordan
domains.

LEMMA 8.3. Let {Qj}] be a sequence of Jordan domains in the plane

such that 0 € 8Qj. Let QJ_ = R? \Qij and I'; = 8(2;’. Then the following
holds:

(1) There is a subsequence of domains Q;i, and there are closed sets G, G, Gy
such that

Qii — G and Tj, — Go locally.

(2) The limit sets GT,G~, Gy satisfy
GtuG  =R?’ G'NG =G
In particular, G\ Gy and G~ \ Gy are open.

Proof. The existence of the locally convergent subsequences follows from
Lemma 5.5. Property (2) is then a consequence of Lemma 5.6. ]

We remark that, in the above situation, Gy need not coincide with G™ or
O0G~. Further, Gy may have non-empty interior, and G* \ Gy may be empty.

Our next lemma reviews the basic convergence result Lemma 6.3, also
taking into account Lemma 8.2.

LEMMA 8.4. Let {Qj}] be a sequence of Jordan domains in the plane that

intersect some ball By. Let Q; = R? \Qi;r and I'; = 89;. Suppose G* and
Go are closed sets with

Qi;t — Gt and I'; = Go locally as j — oo.

Suppose ji; are measures supported on I'; with Cy-linear growth that converge
weakly to a measure ug satisfying po(Bo) > cor(Bg). Suppose (6.1) holds, i.e.,

7r(Bo) dr 1
/” / ot (2,12 L dpyy () < £ (7Bo),
7By JO r J

where aj are the coefficients o™ associated with Qj, and (6.2) holds, i.e.,

7r(Bo) dr 1
/ / ei(ar)* U dpi(x) < L 7By,
7Bo J0O r J

where €(-,-) are the coefficients (-, -) associated with Qj Then

(1) there is an analytic variety Z with 7By Nsupp(po) C Z C Go;
(2) for all x € TBy Nsupp po and all v € (0,7r(By)), there is a pair of admis-
sible semicircumferences that are contained in OB(x,r);
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(3) for every M > 0, there exists a constant ¢(M) > 0 such that whenever
x € Bo Nsupp(po) and r € (0,7(By)) are such that po(B(x,r)) > r/M,
then there are two balls BT C B(z,2r) N G* \ Go with r(B¥) > ¢(M)r.

Proof. The first two statements are shown in Lemma 6.3. The third as-
sertion is proved by passing to the limit in the result in Lemma 8.2. Indeed,
fix 7' = 5375 Then for sufficiently large j, y1;(B(z, r)\B(z,7")) > 73;. Since
), we have liminf; , p;(B(z,s)) > 0, whence

r’
' 2

1 / /77“ L, odr
Y7 DAY ei(y,r)” —du;(y
Mj(B(Ovs)) B(z,s) J0 J ( ) r j( )

<
~ Ju(B(0, )
Consequently, for § > 0 as in Lemma 8.2 and for sufficiently large j, we can

find z; € B(xz, s) Nsupp(u;) with fow 5?(@-,7’)2 % < 4. But now, as j — oo,

x € supp(u), for any s € (0
1i(7By) = 0 as j — oo.

1
p(B(z,r)\B(z,1"))
+

so for large j we can find z; € supp(u;) N B(z,7)\B(z,r") with f07r i (z5,1)" 4

< 4. Notice that z; € 0B(zj,t;) with t; € (r'/2, 3r). We apply Lemma 8.2

with the points z; and 2 and radius ¢; (note that 2¢; < 7r) to find balls Bji €
Qf N B(z;, 3r) such that r(B;-—L) 2 17- If s is small enough, Bj.E C B(z,3r/2)
and we may pass to a subsequence B]j-; that converge in Hausdorff distance
to balls B ¢ G* with BT c B(z,2r). But then if y € BT (say y € BT
for definiteness), then a neighborhood of y is contained in B;-; for sufficiently
large k, and so liminfy dist(z,T'j, ) > 0, which ensures that y € GT\Gy. Thus
B* C G*\Gy. O

71“ dr 2M
/ / el (y,r)? — dpj(y) < =—p;(7Boy) — 0,
B(z,r)\B(z,r") J0 T Jr

)2 o

Our next result is an analogue of Lemma 7.3. The reader should notice
that the conclusion is weaker. This is due to the fact that we only can infer
anything about the structure of the boundary set Gy at points where u has
lots of mass (via property (3) of Lemma 8.4).

LEMMA 8.5. Suppose G, G~ and G are three closed sets satisfying GTU
G~ =R? and Gt NG~ = Gqy. Suppose that g is a measure with Co-linear
growth and that there is a real analytic variety Z with supp(uo) C Z C Gy.
Let By C R? be some ball such that p(Bgy) > 0 and

(1) for every M > 0, there exists a constant ¢(M) > 0 such that whenever
x € Bo Nsupp(po) and r € (0,7(By)) are such that po(B(x,r)) > r/M,
then there are two balls BT C B(x,2r) N G* \ Gy with r(B*) > ¢(M)r;

(2) for every x € 2By and r € (0,2r(By)) there exist two complementary
semicircumferences Ct(xz,r), C~(x,r) with radius v and center x such
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that
Ct(z,r)c Gt and C (z,7)CG".
Then there is some line L such that

L C Gy and /Lo(Bo N L) > 0.

There is some natural repetition in the proof of Lemmas 8.5 and 7.3, but
since the proofs are also quite substantially different, and some readers may
want to only consider the case of Jordan domains, we repeat all the relevant
details here.

Proof. Since i is non-zero and has linear growth, it is clear that H!(Z) >
H'(supp po) > 0. Together with the fact that Z # R? (which follows from
property (1), since p(Bp) > 0), this implies that there exists some analytic
arc S such that po(S N By) > 0 (which implies that H'(S N supp N By) > 0,
because of the linear growth of 1).

We claim that S is a segment. To prove this it suffices to show that S
has vanishing curvature in a set positive measure pg. Indeed, since this set has
positive length and the curvature of a real analytic arc is locally a real analytic
function (with respect the arc-length parametrization from an interval), this
implies that the curvature vanishes on the whole arc S. Thus S is a segment.

To show that the curvature of S vanishes in some set of positive measure py,
we will again use the

KEY PROPERTY. Given © € B Nsuppug and r € (0,3r(By)), let I C
OB(z,r) be an arc such that H'(I) < wr whose end-points belong both to
G\ Go. Then I C G*. The analogous statement holds replacing GT by G~.

We verify the Key Property as follows: if I is an arc as above, then its end-
points 1,z do not belong to G~ (because they belong to G \ Gy). Hence,
if (CT,C7) is a pair of complementary semicircumferences at x with radius r
satisfying C* C GF, we have that 21, 2o € CT, and thus either I or dB(x,r)\I
is contained in C*. The latter cannot happen since H!(0B(z,r) \ I) > nr =
H1(CT), and so we have I ¢ CT C GT.

We are ready now to show that the curvature of S vanishes at some set of
positive measure pp. We consider some set F' C S such that H1(F) > 0 and
wolr = hH!|F for some function h =~ 1 (with the implicit constant possibly
depending on S, F, and other parameters). Without loss of generality we
assume that zg = 0 is a density point of F' and that the tangent to S at xzg
is the horizontal axis. Aiming for a contradiction, suppose that S is strictly
convex at zg. (That is, if S equals the graph of the real analytic function
g: (—9,0) — R in a neighborhood of z, then ¢”(0) > 0.)
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Let z1, zo be the two end-points of S, and let

1
dp = = min dist(zo, 2;).

1=1,2
Let r € (0,dp/2) be small enough so that ¢”(Ilg(x)) is comparable to
¢" (Mg (x0)) in B(xg,r) NS, where Iy is the orthogonal projection on the
horizontal axis. We will prove the following.

CramM 5. There exist some z € B(xg,7/10) NS Nsupp o and some 1’ €
(0,7/10) and an arc I C OB(z,7") with H'(I) < 7' such that either its end-
points belong to GT \ Go and I intersects G~ \ Gy, or its end-points belong to
G\ Gy and I intersects G\ Gy.

The preceding claim asserts that the strict convexity of g at xy implies
that the Key Property is violated. Hence S is a segment. Lemma 7.4 then
ensures that Z also contains the line L that supports the segment, thereby
completing the proof of the lemma (up to verification of the claim). O

Proof of Claim 5. Since z¢ is a density point of F'in S, we can take some
t € (0,7/10) such that H'(F N B(zo,t)) > (1 — 7) H'(S N B(zo,t)), where
7 € (0,1073) is some small parameter to be fixed below.

Denote by Ly the horizontal axis, and let J = (—t/2,t/2) C Ly, so that
SN B(xo,t) D g(J).

We will appeal to the following simple lemma.

LEMMA 8.6. Fix 3 > 7, and suppose that F is a finite family of pairwise
disjoint intervals contained in (—t/2,t/2) satisfying

> HU(9(T)) = 3! (S N Blao, t)).
TeF
If F' denotes the subfamily of intervals T € F satisfying H'(g(T) N F) >
»H(g(T)), then
> HYg(T) N F) = »H' (SN B(wo, ).
TeF!

Proof. Suppose the conclusion fails. Then insofar as F are pairwise dis-
joint intervals, and H1(g(T) N F) < »H'(g(T)) for T € F\F', we have

> HUg(T) N F) < 251 (S N B(ao, 1))
TeF
But then
HY(B(zo,t) N F) < 25HY (S N B(ao, t)) + H' (S\ U g(T))
TeF
< (1 — %)H' (S N Bz, t)).
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A PROOF OF CARLESON’S ¢2-CONJECTURE 129

The right-hand side is strictly smaller than (1 — 7)H'(S N B(zo,t)), which is
our desired contradiction. g

We split J into three intervals Jj, J., J, (where [, ¢, r, stand for left, center,
right) with disjoint interiors such that H'(J;) = H'(J.) = H'(J,) = H (J)/3.
Next we split J; into IV intervals with disjoint interiors of the same length, and
we take N = c;H!'(J)~!, with ¢; € (0,1) to be chosen below (depending on
g"(0)). We denote by J},...,J¥ this family of intervals. By standard argu-
ments, we find a subfamily {J}rer, of {J},..., JN} such that the intervals
{10Jf} ek, are pairwise disjoint and moreover

> HU () 2 H (g(I) Z H' (S N Bxo, ).
keK;

We may therefore apply Lemma 8.6, with s some absolute constant (provided
7 is small enough), to find a subfamily {JF}ren, C {Jf} rek, of the intervals
Jlk such that

(8.1) H (Fng(Jh) = "' (g(JF))

and

(8.2) > HY(FNg(F) 2 1 (S N B(xo, t)).
ke H,

Next, note that condition (8.1) ensures that we can apply property (1) for each
k € Hj to find a ball B: satisfying

B c Ug(Jlk)(g(Jﬁ)) nat, with r(B) = H(JF),

where U;(A) stands for the f-neighborhood of A. Observe that, by the strict
convexity of S, we have dist(g(JJ"), Ly) ~ £(J)%. On the other hand,

dist(B;", g(J)) < £(Jf) < E(]\‘;) = cl(J)2

So if we choose ¢; small enough, then the balls B,j are contained in R%r and
far from L.

Next, let I, k € Hj, be the projection of the balls Blj, k € Hj, on the
axis Ly. The intervals Iy, k € H;, are disjoint, and moreover,

(8:2)
> HY (L)) 2 Y HA(9(Iy) 2 HU(S N Bl 1))
keH,; keH,
Therefore, appealing to Lemma 8.6 once again, with s some absolute constant,
we find a family of indices M; C H; such that

(8.3) HYF Ng(1x)) ~ Hl(g(%lk)) ~ ((Iy) for every k € M,
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and

> HYF N g(F1k) = HU(S N B(xo, t).

keM,

Since (8.3) holds, we may apply property (1) for each k € M; to find some
ball B, satisfying
By CUL,, )(g(%lk)) naQ*,  r(By) ~H ().
10tk

Again, by the strict convexity of S, the balls B, are contained in Ri and far
away from Lpy. Further, by construction the projection Il (B, ) is contained
deep inside Iy (B;") for each k € M;. In fact, by shrinking the balls B, if
necessary, we can assume that

Iy (B;) CIg(3B;7) for each k € M,.

Now we denote
wi= J Tu(3B;).
keM,;

By the disjointness of the intervals 10Jlk, k € M, the intervals II H(%B,; ) are
disjoint and we deduce that H'(W;) ~ H'(J) ~ t.

Next we define an analogous family of balls {Bf}keMT and a set W,
replacing the left interval J; by the right one J,.

We claim that there is some x € J. NIy (F) such that

Wlﬂ(2x—WT) #* 2.

In fact, for an arbitrary point y, € W, the set {2z —y, : x € J.NIIy(F)} is of
the form I\ X, where [ is an interval of length 2¢(J;) that contains J; and X
is an exceptional set with length at most 2H!(J \ Iy (F)) < cH'(g(J)\ F) <
ctl(J). So for 7 small enough, {2z —y, : x € J.NIIx(F)} intersects W, since
HE W) = £(J) > crl(J).

The preceding argument shows that there exist y; € Wi, y, € W,., and

x € J. NIy (F) such that y; = 2 — y,, or equivalently,
T = Y+ Yr )
2
Observe that, in particular, this implies that |z — y;| = |z — y, | = £(J).

Let k € M; be such that y; € HH(%B,;) and h € M, such that y,. €
HH(%B,;) By construction, there are points yli € %B,f and yF € %Bf such
that

Uy(y, ) =u(y) =y and Hp(y ) =uy") = y-
We claim that the circumference centered at g(z) (observe that g(x) € F C
S N supp po) with radius |z — y;| intersects the four balls B,f and B}jl[. To see
this, notice that

llg(a) = yi"| = |z = wil] < (1 = cosa™) () S (o) £(]),
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A PROOF OF CARLESON’S ¢2-CONJECTURE 131

where ot is the slope of the line passing through g(z) and yli, which satisfies
ot < ¢(J) (taking into account that |z —y;| = |z —y.| ~ £(J) and the quadratic
behavior of g close to xp = 0). Thus,

lg(x) =y | = lo — wil| S £(J)° < £(J)? = r(B).
Analogously,
lg(@) =y | — |z —wil| = [l9(z) =y | = & — el | S £(I) < £(T)? = r(By).

Hence the aforementioned circumference passes through the balls B3, B}jf.
Let z = g(x) and ' = |x — y|. It is easy to check that there is an arc
contained in the circumference dB(z, 1) satisfying the required properties in
the claim. To see this, let H, the open half-plane whose boundary equals the
tangent to S at z and containing S \ {z}. It is easy to check that the four
balls B,f, B,f are contained in H,, taking into account that ¢”(§) ~ ¢”(0)
in the whole interval J and choosing the constant c¢; above small enough if
necessary. U

It would appear that Lemma 8.5 is the most we can extract out of the
assumptions stated there and, in particular, using only the existence of comple-
mentary pairs. To say more, we need to use the full strength of the admissible
pairs property, which has a memory of the limiting sequence Qj of Jordan
domains.

Our goal will be to prove the following result.

LEMMA 8.7. Suppose that Qj s a sequence of Jordan domains such that
there are closed sets GT, G~ and Go such that, with Qj_ :RQ\Qj and I'; =08,

lim ]i =G%, and lim T; = Gy locally as j — oo.
j—oo Jj—oo

Suppose g is a measure supported in Go with Cy-linear growth, and By is a
ball satisfying

(1) there is a line L C Go with po(Bo N L) > 0; and

(2) given any subsequence {ij i, and for every x € supp(po) and r € (0, 3ry),

there exists a pair (S1,S2) that is admissible for the sequence of domains®

{ij}k that is centered at x with radius r > 0.

3To be clear, that (S1,52) is an admissible pair for the given sequence {Q;rk}k of domains
means that we can find a further subsequence {j¢}¢ of {jr}r such that there exists circular

arcs I;; - (?B(:cjz,rjé)ﬂﬂ;-‘:, with z;, € I';,, such that I]'-:, I;, converge to S1, Sz in Hausdorff

distance, respectively.
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Then GoN By C L, and if Hy, Ho are the two open half planes whose boundary
is L, we have that either

HlﬂB()CGJr\GO and HQﬂBOCGi\GO

or

HlﬂBoCG_\GQ and HQDBOCG+\GO.

Observe that if a sequence of Jordan domains Qj satisfies the assumptions
of Lemma 8.7, then so does any subsequence of the domains.

Now we need to introduce some additional notation. Given a pair of
complementary semicircumferences (S1, S2), we say that the two common end-
points of Si, Sy are the end-points of the pair (S7,.53) and we denote the set
of these end-points by (S1,.52)ep-

LEMMA 8.8. Under the notation and assumptions of Lemma 8.7, fix x €
supp po N By, and y € dB(xz,r) N Gq for some r € (0,2r(By)). Fix ¢y > 0.
Suppose that, for sufficiently large k, and given any subsequence of the domains,
we can find sequences of pairs (S y41/k, S2p41/k) and (S1y—1/k, S2r—1/k) that
are admissible for the subsequence of domains, that are centered at x and have
radii r + 1/k and r — 1/k respectively, and such that

likn_lg.}f dist(y, (S1,r+1/k+ S2,r41/k)ep) = Lo

and
hkrgggf dist(y, (S1,r—1/k S2,0—1/k)ep) = Lo

Then, there exists a subsequence of arcs v;, C I'j, that converge in Hausdorff
distance to an arc I C OB(x,r) such that y is one of its end-points and H'(I) >

4y /5.
Proof. Consider the sequence of radii s, = 7(1— ) and tj, = 7(1+ ). By
assumption, we can find admissible pairs (5] s, , 2,5, ) centered at x with radii

sk satisfying

(8.4) lim inf dist(y, (S1,s;, 52,5, )Jep) = Lo

k—o0

Consequently, with €; a decreasing sequence chosen much smaller than 1/k,
there is a subsequence j;, and there are arcs I ;i C jSk NOB(yj,, sk) such that

(8.5) |z — yj| <er, |k — Sk| < eg, and \Hl(Igi) — 7msg| < eg.

Also, insofar as y € Gy, we may choose the subsequence ji to ensure that there
exists

(8.6) wj, € I'j, with ly — wjk| < er/k.
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A PROOF OF CARLESON’S ¢2-CONJECTURE 133

Figure 4. The figure depicts the solid black lined tubular neigh-
borhood Uy and the red dashed neighborhood Uy.

Now, by assumption, we can find admissible pairs (S14,,S52,4,) (for the
sequence {2, },) centered at  with radius ¢ satisfying

(8.7) likm inf dist(y, (Sl,tkﬂ SQ,tk>ep) > 60.
—00

Thus, by taking a further subsequence, relabelled again by {jx}x (which pre-
serves all the properties in (8.5)) and (8.6), we find Itj; C Qi N dB(z,, tr)
satisfying

]x - ij‘ S Ek, |tk —Zk‘ S Ek, and |’H1(Ii) —7Ttk| S Ek-

For k big enough and ¢; small enough, the end-points of I, ;i and Itj; are
far from y. Say, any end-point zj of these intervals will satisfy |y — zx| > 0.9¢p.

Assuming e, < 1/k, the arcs I ;i are essentially some perturbation of
some arcs contained in dB(z, sy), while the arcs Itﬂ; are also another small
perturbation of other arcs from 0B(x,t;). In fact, there is a thin tubular
neighborhood U}, containing y that satisfies the following:

o Up = A(x, sk + 2k, tp —2e) NV, where V is the sector of B(x,2r) with axis
equal to line passing through x and y and such that its angle of aperture is
ly/4r, say;

e associated with the arc Js, := 0B(x, si + 2¢;) NV C 09Uy, there is a close
arc I, contained either in I or I such that disty (Js,, I}, ) < cepr;

e associated with the arc J;, := 0B(x,t; — 2e;) NV C OUy, there is a close
arc I{, contained either in I, or I, such that distz (Jy,, If,) < cegr.

Now we consider the tubular neighborhood ﬁk whose boundary is formed by
the arcs Iék, I{k and two small segments /1, E% that join the closest respective

end-points of I] and I} , so that dist g (Uy, Uy) S exr. See Figure 4.
We distinguish two cases:

(1) In the first case, I}, C I, and Ij, C I, , or alternatively I}, C I and Ij, C

) Sk
I;}: . In both situations, by connectivity there is a curve «;, C 8@;; N Uy
that joins E,lg to «%.
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(2) In the second case, I}, C I} and Ij, C I", or alternatively I}, C I, and
Ij, C I, . By construction, the point wj, € T';, satisfies |wj, —y| < ex/k,
so we have wj, € Ui and the distance of wj, to any of the small segments

0%, Ez from QU is at least £y/2, say. Then, by the connectivity of BQ;-:,

there is a curve v;, C 89}: N Uy, that joins wj, either to £} or £3. So its
diameter is at least £y/5.

It is easy to check that the sequence of curves v;, satisfy the properties asserted
in the lemma. (]

LEMMA 8.9. Under the assumptions and notation of Lemma 8.7, let x €
L Nsupp po N By, and let y € 0B(x,r) N Gq for some r € (0,2r(By)). Set
o= inf dist(y, (51,5 )
0 (51.55) (Y, (S1,52) ep)
where the infimum is taken over all admissible pairs centered at x with radius .
The infimum is attained by an admissible pair centered at x with radius T,
and if by > 0, then there exists a subsequence of arcs v;, C I'j, which converge

in Hausdorff distance to an arc I C 0B(x,r) such that y is one of its end-points
and H*(I) > {o/5.

Proof. The fact that the infimum is attained by an admissible pair (S, S2)
centered at x with radius r > 0 is an immediate consequence of the closedness
of admissible pairs (and Lemma 5.5). Now suppose ¢y = dist(y, (51, 52)ep) > 0.

Consider the sequence of radii s, = r(1 — 7) and t; = r(1 + 4). Let
(S1,5,552,5,) and (S14,,S2¢,) be sequences of admissible pairs centered at z
with radii s; and t; respectively. By taking a subsequence, we may assume that
these admissible pairs converge in Hausdorff metric to admissible pairs with
center x and radius 7, say (S;,S; ) and (S;", S5 ). By the minimal property
of (S1,S2) we must have that dist(y, (ST, S5 )ep) > dist(y, (S1, S2)ep)- By the
closedness property of the set of admissible pairs, we infer that

h/fn inf dist(y, (51,55 52,5, Jep) = dist(y, (51, 52)ep)
—00

and
h]};gg.}f dlSt(y7 (Sl,tka SQ,tk>ep> 2 dlSt(% (Sla SQ)ep)-

Consequently, we may apply Lemma 8.8 with ¢y = dist(y, (S1, 52)ep)- O

LEMMA 8.10. Under the assumptions and notation of Lemma 8.7, let x €
LNsupp po N By, and let r € (0,2r(By)). Then there exists an admissible pair
of semicircumferences centered at x with radius r whose end-points belong to L.

Proof. Let © € LN supppo N By and let r € (0,2r(Byp)). Suppose that
there does not exist an admissible pair of semicircumferences centered at x
with radius r whose end-points belong to L. Let y € LN OB(z,r) . Then, by
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Lemma 8.9,

fo = inf dist S1,52)e 0,
0 (;II}SQ) ist(y, (S1,52)ep) >

where the infimum is taken over all admissible pairs centered at x with radius r.
Consequently, Lemma 8.9 ensures that there exists a subsequence of arcs v;, C
I';, that converge in Hausdorff distance to an arc I C 0B(x,r) such that y is
one of its end-points and I has length at least £y /5.

By the closedness property of the admissibility property of pairs, for any
small § € (0,r/2), there exists another radius r5 € (r — d,7) close enough to
r such that, denoting by ys the point in L N dB(x,rs) that is closest to y,
any admissible pair (S, S9) of semicircumferences contained in dB(z,r;) sat-
isfies dist(ys, (S9,59)ep) > £o/2. Observe that ys € Go and then, by applying
Lemma 8.9 to the subsequence of domains Q;: (observe that the sets G,
G, Gy associated with the subsequence are the same as the ones associated
with the original sequence {€2;};), we infer that there is a subsequence of arcs
Y54, C FJ';Q that converge in Hausdorff distance to an arc Is C 0B(x,rs) such
that ys is one of its end-points and Is has length at least ¢y/10. By renaming
the subsequence, we can assume that {j; }, coincides with {j}.

By iterating the preceding argument, we still find another r° € (r,r +0)
close enough to r for which, after renaming the subsequence and denoting by
y° the point in LNOB(z, %) that is closest to y, there is a family arcs vfk cIy,
that converge in Hausdorff distance to an arc I° C dB(x,r°) such that 70 is
one of its end-points and has length at least £y/10.

Let ' € L Nsupp po with 2’ # x. Suppose that =’ and y are in the same
half-line contained in L with end-point equal to z (i.e., ' and y are at the same
side of z in L). Otherwise, in the arguments above we interchange y with the
other point from 0B(z,r) N L. It is easy to check that any circumference
OB(z",r"), with § small enough and z” close enough to z’, intersects at least
two of the arcs I,Is,I% for all #/ in some interval H of width bounded from
below depending on the relative position of z,2’,y,vs,3y°. In fact, the same
phenomenon happens replacing the arcs I, 15, I° by the curves 7jk7757jk"7}5k7
assuming k big enough. From this fact, one deduces easily that there exists
some 1’ € H such that there is no admissible pair of semicircumferences with
center 2’ and radius 7’ (associated to the sequence of domains {€;, }1), which
is in contradiction with the hypothesis (2) in Lemma 8.7. O

LEMMA 8.11. Under the assumptions of Lemma 8.7, let x € L N supp Ko
N By, and let v € (0,2r(Byp)). Assume that L coincides with the horizontal
azis, and suppose that OB(z,r) N Go N R # @ (recall that we assume R2 to
be open), and let y € OB(x,r)NGoNR2. Then there exists a sequence of arcs
Vi C T'j, that converge in Hausdorff distance to an arc I C 0B(x,r) such that
y is one of its end-points and has length at least dist(y, L)/5.
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Proof. Fix a subsequence €2, of the domains €2;. This subsequence €},
again satisfies the assumptions of Lemma 8.7 (with the same choices of sets G,
G~ and Gp). By Lemma 8.10, for every § € (0,7/2), there are admissible pairs
(S15,52,6) for Qj, centered at  with respective radii equal to any number
s € (r— 9,7+ 9) such that their end-points belong all to L. Consequently,
for sufficiently large k, we may certainly find sequences of admissible pairs
(S1r41/k> S2,p+1/x) and (S1,_1/k, S2,—1/k) centered at z with radii r + 1/k
and r — 1/k respectively, and with end points on H (and so at a distance
dist(y, L) from y). Thus, we may apply Lemma 8.8 with ¢y = dist(y, L), which
completes the proof. O

We are now in a position to complete the proof of Lemma 8.7, which is
an immediate consequence of the following statement.

LEMMA 8.12. Under the assumptions of Lemma 8.7, let x € L N supp po
N By, and let r € (0,2r(By). Then OB(x,r) NGy NR% = @ (assuming L to be
the horizontal axis).

Proof. Suppose that y € dB(x,r) N Gy N R%. By Lemma 8.11, there
exists a sequence of arcs «y;, C I'j, that converge in Hausdorff distance to an
arc I C 0B(x,r) such that y is one of its end-points and has length at least
dist(y, L) /5.

Let 2’ € supp po N L, with 2’ # x, let ¢/ be the middle point of the arc I
(we may assume that y' ¢ L), and let ' = |2’ — /|, so that 9B(2/,7’) intersects
I in the middle point. By connectivity arguments, the existence of the curves
7. given by Lemma 8.11 implies that, for the subsequence of domains €2;, ,
there does not exist an admissible pair of semicircumferences centered at xz’
with radius 7’ whose end-points belong to L. This fact contradicts Lemma 8.10.

O

With Lemma 8.7 proved, we are now in a position to complete the proof
of Lemma 8.1.

Proof of Lemma 8.1. By renormalizing it suffices to prove the lemma for
the ball By := B(0,1). We argue by contradiction: We suppose that there
exists an € > 0 such that for all j € N, there exists a Jordan domain Qj with
Ly := 8Qj containing 0 supporting a measure u; with Cp-linear growth with
;i (Bo) > co, so that we have

B dr 1
[ [ ot +af @n?) T dus(e) <5 (7o)
7Bo J0 r J

and

Boo,r;(Bo) > €.
Here we denote by ¢;(z,r) and aj the coefficients £(z,r) and a™ associated
with Qj‘
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We first apply Lemma 8.3 to pass to a subsequence of the domains such
that, with Q = R*\Q,

QO — G* and T — Go

locally as j — oo. By passing to a further subsequence if necessary, we may
assume that p; converge weakly to a measure ;o with Cp-linear growth sat-
isfying u(Bo) > co. Applying Lemma 8.4, we infer that the assumptions of
Lemma 8.5 are satisfied with By replaced by the ball 2By, so there is a line
L C Gy with ,LLQ(L N 230) > 0.

Observe now that we can also apply Lemma 8.4 to any subsequence of
the domains. In particular, from the conclusion (2) of Lemma 8.4 applied
to a given subsequence, we infer that the assumption (2) of Lemma 8.7 also
holds, again with the ball 2By playing the role of By in Lemma 8.7. Therefore,
applying Lemma 8.7 to the ball 2By that satisfies po(L N 2By) > 0, we have
that Go N 2By C L. Consequently, I'; N By converges in Hausdorff distance to
a subset of L, which contradicts 8. ,(Bo) > € for sufficiently large j. O

Part II: From local flatness to rectifiability
9. The smooth square function on Lipschitz graphs

Recall that, given an integrable C™ function 1 : R? — R, an open set
QT C R? and z € R?, r > 0, we denote
- = dy|.
w0 Q+ v r y‘

co = / W) dy,  ayler) =
yERi

We also set
oo
d
Ay (z)? —/ a¢(x,r)2—r.

0 T

Remark that we allow 1 to be non-radial.
We fix an even C* function ¢ : R — R such that 1;_1; <9 < 1_1 4,19,

and we denote

1 /x
or(z) = ;go(;) forz e R, r > 0.

Our objective in this section is to prove the following.

LEMMA 9.1. Consider a Lipschitz function f : R — R with compact sup-
port and let T C R? be its Lipschitz graph. Let QT = {(z,y) € R? : y > f(x)}
and Q™ = {(z,y) € R? : y < f(x)}. Let ¢ be a function as above, and let

Y(x) =¢(|z]), forz € R
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Let Ay and ay be the associated coefficients defined above. There exists some
ap > 0 such that if || f'||ec < o, then

/F Ay (@) dHY @) = 1 o

We will prove this result by using the Fourier transform. This will play
an essential role in the proof of Main Lemma 4.2. We need first some auxiliary
results.

LEMMA 9.2. Let f : R — R be a Lipschitz function with compact support.
Then we have

/ /°° ‘f * or(x) — c(p) f (=)
RJO r

where c¢(p) = [z @dr and ¢ > 0.

2
dr
T

dz = o] 12 m).

Proof. By Plancherel, we have

[ Lot a,
RJO T T
~ ~ 2
:// (©e(ré) — f(§)@(0) @dg
R Jo r r

. 2 dr
= [1#©F [ 1o6¢) - 200 5 d.
R 0 r
By the change of variable r|¢| = t, we get
9 dr

PRV T A ECRET

where 0 < &(p) < 0o, since P(t) — $(0) = O(t?) as t — 0 (because ¢ is an even
function in the Schwartz class). Hence,

oo * ) — ¢ x 2 r iy
// 'f = )7" M Cidwzam)/!£f<£>12d£=c|f’||%2<m .
RJO R

LEMMA 9.3. Let f : R — R be a Lipschitz function with compact support.
Then we have

odt
& = a)lel,

(9.1)
/°° [/ (@) o @)y —2) + f(2) — f)|” dy , dr
0 JRJyeR:|ly—z|<r r r r

= c|l 72w

Proof. Replacing ¢ by c(¢) !y if necessary, we may assume [pdz =1.
This is due to the fact that, as we shall see below, the assumption that 1;_; ;) <
¢ < 1{_1.1,1.1) Is not necessary for the validity of this lemma.

This content downloaded from
108.215.24.170 on Wed, 01 Sep 2021 01 Jan 1976 12:34:56 UTC
All use subject to https://about.jstor.org/terms



A PROOF OF CARLESON’S ¢2-CONJECTURE 139

Appealing to the change of variable z = y — x and Fubini’s theorem, the
left-hand side of (9.1) (with ¢(¢) = 1) equals

/00/ / (o * ()2 + f(@) — flx+2) | odedr
0 z€R:|z|<r Jz€R T ror
Plancharel [ 2mitz 3(r) F1€) + [(©) - > F©) [ dz
prm— had d “r
/O /ZER:Z|§1" /{eR r r é-

Using Fubini’s theorem to interchange the inner two integrals, and the changes
of variable w = £z, s = [{|r, we infer from the fact that ¢ (and so @) is even
that the last triple integral equals

[ ] 2w 3(s) F(€) + 7€)~ F@)[ IeP 5w de
EeR JO  JweR:|w|<s

- /EE]R € f(g)P “ /ooo/we]R:w<s

Hence, to prove the lemma it suffices to show that the last double integral

0o
I::/ /
0 JweR:|w|<s

is absolutely convergent and positive. That this is positive is immediate. To

d
dw—s.

2miw @(s) + 1 — 2™ 34

d
dw—s

2miw P(s) + 1 — 2™V 7

show that this is absolutely convergent, we split it as follows:

o0 o0
0 J|w|<min(s,1) 1 J1<w|<s
First we estimate Iy:
> 2 ds
IQ,S/ / (1+}wg0(s)})dw—4
1<\w\<s s
ds d
/ // |dw<1+/ Ot
<|w|<s
Concerning [, we have
00 2
L ,S/ / ’27riw—|—1—e2mw
0 J|w|<min(s,1)

o) N d
+/ / 2miw (3(s) — 1)|? dw—s
0 J|w|<min(s,1)

ds
dw 874

(9.2)
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140 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

The first term on the right-hand side satisfies

oo
, d
/ / ‘2m’w +1- 627”“’ dw —i
0 J|w|<min(s,1) S
2.d
/ / ’2mw +1— 2w —j dw
lw]<1 Js>|w] s
2
N/ ‘2mw—|— 1 — e2miw dw3 <1,
lw|<1 w|

taking into account that 2miw + 1 — e*™ = O(w?) as w — 0. Finally we turn
our attention to the second term on the right-hand side of (9.2):

o0 o0
// 2miw (3(s) — 1)[? duw dfw/ w|2dw/ Bs) 1P %
0 Jjw|<min(s,1) jw|<1
o0 ds
< /0 B(s) 112 5

Since ¢ € C*° is even, and $(0) = 1, we have @(s) — 1 = 0(32) as s — 0,
and so the last integral is finite. So Is < oo and the proof of the lemma is
concluded. (|

LEMMA 9.4. Let f: R — R be a Lipschitz function with compact support
with || f'l|eo < 1/10. For x = (x1,22) € R2, denote
p(x) = p(z1) p(22).

Then we have

or * f(x1) — () f(1)

T

d
[ Ao span = [ [ [Fretn ol 2

where (@) = [ @ dx.

for all x€R? in the graph of f and all r>0

ap(z,7)=

7d.’IJ1,
r

Proof. Observe that

1 y—x
pr/#( )
—x —x
_ / / (yl 1)@(3/2 2)dygdy1
y1€R Jy2> f(x1) r r
—/ / <y1—x1>¢(yz )dyzdyl
y1ER Jy2>f(y1)

(y1)

=/ or (11 —frl)/ or(y2 — 12) dyady;.
y1ER (

f(z1)
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A PROOF OF CARLESON’S ¢2-CONJECTURE 141

Observe also that, if ¢, (y1 — 1) # 0, then because || f|lcc < 1/10,

orlys = w2) == for o € [F(), Flun)]

As a consequence,

= 7“% o+ p<y ; x) W = /yleR erlyn = xl)f(yl);f(ml)dyl

_ e f@n) = (@) fwr)

,
Hence,
o d 0o . B 2 d
Ag(z)? Z/ a(p(x,r)Q—r :/ ‘90 * f(21) — clep) fz1) dr
0 r 0 , "
Integrating with respect to 1 in R, the lemma follows. 0

LEMMA 9.5. Let f : R—R be a Lipschitz function with compact support
with || f'|co <1/10, and let T CR? be its Lipschitz graph. For x=(z1,x2) €R?,
denote

p(x) = o(z1) p(x2) and P(z) = p(|z|).

Then we have
/F A (@) = Ap(@) 2 dH (@) S 1714 15 1 -

Proof. For r > 0, z € R?, we denote

@) = 5o(2), @ =5e(E), erla) = o).

r r

Then we have

93)  aple.r) — ap(@. )] < |(or * Lar — ) = (o % Igs — ).

For x € I', r > 0, we denote by L, , the line passing through x with slope
equal to c(p) (¢ * ) (1), and we let Hf,, H, . be two complementary half
planes whose common boundary is L, ,, so that H;r , is above L, , and H; , 1s
below L ;..

Observe that, by the radial symmetry of v,
cwz/ Y(y)dy =, * 1y, (z) for all z € R? and r > 0.
yeR? '

We claim that the same identity holds replacing ¢ by p. To check this, suppose
that z = 0 for ease of notation, and let y» = by; be the equation of the line Lg .
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142 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

Then, by the evenness of ¢ we have

pr# Lz (0) = / or (1) / or(2) dyo dy
y2>by1

1
5 [ [ e dman
y2>by1

1
t3 / or(y1) / ©r(y2) dy2 dy
y2>—byr
1
=5 / or(y1) / ©r(y2) dy2 di
y2>byr

1
+2/g0r(y1)/ ©r(y2) dy2 dy:
y2<by1
1
= 2/pr(y) dy:/ pr(y) dy = cp,
R2

+

which proves the claim.
From the above identities and (9.3), for z € I', we obtain

04) Jay(a,r) — ap(@,r)| < |pr* (Lgs — Ly )(@) — v # (Lgs — Ly )(@)|
= [(pr — ) * (Ao — Ly )(@)]

S/ lor(y — ) — b (y — )| dy.
QtAHT,

But now observe that, if |z—y| < 3r, then using the fact that || f||c < 1/10, we
have ¢, (y2 — x2) = L for all z € T and y € QTAH,. Thus, by the definition
of p and 1,

pr(y — o) = Pr(y — 2) = or(yr — 21)@r(y2 — 22) — %%(Iy — )
1
-
Still for x € T'and y € QTAH ., notice that if |z —y| < r/2, then p,(y1 —z1) =

x,r)

¢r(ly—2|) = 1 and thus p,(y — z) — ¢, (y — ) = 0; while if [z —y| > r/2, then

(or(y1 — 1) — @r(Jy — ).

ly2 — xo?

el =) = ey = D] < 1) oo 1 = 20) Iy — 1] 5 2

Since supp p, Usupp ¢, C B(0,3r), in any case we get

(i P 2
~ 7,.4 7«2

lor(y — ) — U (y — )|
Plugging this estimate into (9.4), we obtain
1113

r2

forz e and y € QTAHS .

lap(z,7) — ay(z,r)| < ’HZ((QJFAHZT) N B(z,3r)).
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A PROOF OF CARLESON’S ¢2-CONJECTURE 143

Next, using the fact that the equation of the line L, , is

y2 = (o) (o * ) (@) (11 — 21) + f(21),

we get

H2(QTAHS,) N B(z,3r))

= /| gy O D)) =) + S ) = Sl dn

1/2
< i/ </| e le(@) ™ (or + ) (1) (g1 — 21) + fl1) — f(y1)|2dy1) -

Hence,
]ap(:c, r) — ay(z, r)‘

1112 1/2
< I ( [ e e e —x1)+f(w1)—f(y1)\2dy1) .

Therefore,

[Ap () = Ay ()|

([ ) ([ )

= </Ooo|ap($,r)_aw<x )2 Cf;r)lm

0o . 1/2
S (/ e e P ) + ) — S dyld) .

Squaring and integrating on x and applying Lemma 9.3, we get

[ 14pta) =A@ i# (@) ~ [ 14,(0) = Agla) P oy
S /R /O e e e )

dr
+ f(z1) = fly)Pdy 3 Ao
2 1F 50 11172 ry- .
Proof of Lemma 9.1. By Lemmas 9.2 and 9.4, we have

[ Autw) 4! @) 117 e

On the other hand, by Lemma 9.5,

/ (@) — Ap (@) dH @) S 112 1S 12w
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Hence,
/ Ay (@) dH () < 2 / A ()2 dH ()
I I

1 /F Ap() — Ap(@) 2 dH (=) S 1 2.

In the converse direction, we have
1
[ AR an @) = 5 [ Al ant@) - [ Au@? o
r r r

> el f 1 72@y = C I N5 1122wy
So if || f'||4, < ¢1/2C, the lemma follows. O

10. Construction of an approximate Lipschitz graph

This and the remaining sections of the paper are devoted to the proof of
the Main Lemma 4.2. To this end, we need to construct a Lipschitz graph that
covers a fairly big proportion of the measure p. We will achieve this through
a construction stemming from works of David and Semmes in [DS91] and of
Léger in [L99]. Given the form of Main Lemma 4.2, it is convenient for us to
follow the presentation given in the monograph [Toll4, Ch. 7].

Fix e > 0 and 6 > 0. We assume that the assumptions of Main Lemma 4.2
are satisfied with these choices of parameters € and 6. We shall also introduce
a > 0, a < 1. Here a will regulate the slope of a Lipschitz graph that will
well approximate the support of p. We will eventually determine 6, then we
will pick a depending on §, and finally € can be chosen to depend on both 6
and a.

Set E = supp(u). Put By = B(xg, R) to be the ball given in Lemma 4.2.
Then E C By. By replacing the ball By by a ball with at most double radius,
and replacing c¢g by ¢p/2, if necessary, we may assume that a line Ly that
minimizes foo r(Bo) passes through zg. Furthermore, we may assume zg = 0
and Ly is the horizontal axis R x {0}.

For a ball B, Lp denotes a best approximating line for S r(B).

Let x € E and 0 < r < 50R. We call the ball B = B(x,r) good, and we
write B € G if
(a) ©,(B) >0, and
(b) Z(Lp,Lp,) < a.

Therefore, by the assumptions of Lemma 4.2,
(10.1) Boo,r(B) < € whenever B € G.

We say that B = B(x,r) is very good, and write B € VG, if B(z,s) € G
for every r < s < 50R.
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A PROOF OF CARLESON’S ¢2-CONJECTURE 145

Since § < ¢y, we have that any ball B centered on E that contains By
with r(B) < 50R is very good. In particular, although By is not very good (we
have arranged it to be centered at a point of Ly, which we cannot guarantee
belongs to E), we still have that S r(20By) < € so, in particular,

dist(x, Lg) S eR for all x € I' N 20By.
For x € F, we then set
h(z) =inf{r:0 < r < 50R, B(z,r) € VG}.

Observe that h(z) < 2R, as B(x,2R) D By.
Notice that, if x € E and r € (h(z),50R), then, from (10.1),

@u(B(LL’,T‘)) > 97ﬁoo,F(B(x’T)) <e¢, and A(LB(x,r)aLO) < a.

Put
Z =En{h=0}.
We now set
LD = {z € E\Z : ©,(B(z,h(x))) < 0},
and
BA = FE\(LDU 2),
so that

E=Z7ULDUBA.

Since for x € BA, ©,(B(x,h(z)) > ¢, we must have that Lg, n(z)) has a
big angle with Ly, moreover

LEMMA 10.1 ([Toll4, Lemma 7.13]). Provided that € is sufficiently small
in terms of 6 and «, if x € BA, then

Z(LB(a2n()) Lo) >

for any approximating line Ly on(x))-

[\l o)

We now introduce a regularized version of the function h. Denote by II
the orthogonal projection onto Ly and II* the orthogonal projection onto the
orthogonal complement of Ly.

For z € R?, set

d(x) = inf — .
@) = gyl =71+ 7]

(Recall here that in order for B(z,7) € VG, we must have that z € E.)
Now define, for p € Lo,

D(p)= inf d(z).
(p) L (z)

As infimums over 1-Lipschitz functions, we see that d and then D are both
1-Lipschitz functions.
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146 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

Observe that d(z) < h(z) whenever z € E, so the closed set
Zy = {rx € R?: d(z) = 0}
contains Z.
LEMMA 10.2 ([Toll4, Lemma 7.19]). For all x,y € R?, we have
[T (&) — I (y)] < 6alIL(x) — [1(y)| + 4d(x) + 4d(y).
As a consequence of this lemma, we have that if z,y € Zj, then
T (2) — T ()] < 6alTT(x) — TI(y)|.
In particular, the map Il : Zy — Lg is injective and the function
A:T1(Zy) - R, A(Il(z)) = I+ (x) for z € Zo

is Lipschitz with norm at most 6a. To extend the definition of A to Lg, we
appeal to a Whitney decomposition.

10.1. Whitney decomposition. Let Dr,, be the collection of dyadic intervals
in Lo.
For I € Dy,

D(I) = ;IégD(p). (Here D(p) = xeli[rif;(p) d(x)).

Set
W := {I maximal in Dz, : £(I) < 20~ D(I)}.

We index W as {R;}icr,- The basic properties of the cubes in W are
summarized in the following lemma. The proof of this result is standard, and
can be found as Lemma 7.20 in [Toll4].

LEMMA 10.3. The intervals R;, i € Iy, have disjoint interiors in Ly and
satisfy the following properties:

(a) if x € 15R;, then 5¢(R;) < D(z) < 50¢(R;);
(b) there exists an absolute constant C' > 1 such that if I5R; N15R; # @, then

(c) for each i€ Iy, there are at most N intervals R; such that 15R;N15R; # @,
where N is some absolute constant;

(d) Lo \ H(ZO) = UiEIW R; = UiEIW 15R;.
Now set
Io:={i € Iy : RiNB(0,10R) # &}.
LEMMA 10.4 ([Toll4, Lemma 7.21]). The following two statements hold:
e ifi € Iy, then {(R;) < R and 3R; C LoN12By = (—12R, 12R);
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A PROOF OF CARLESON’S ¢2-CONJECTURE 147

o ifi ¢ Iy, then
((R;) =~ dist(0, R;) =~ |p| = R for all p € R;.

LEMMA 10.5 ([Toll4, Lemma 7.22]). Leti € ly; there exists a ball B; € VG
such that

(10.3) U(R;) Sr(Bi) S U(R;)
and
(10.4) diSt(Ri, H(Bl)) 5 E(Rl)

For i € Iy, denote by A; the affine function Ly — Lé‘ whose graph is the
line Lp,. Insofar as B; € VG, Z(Lp,, Lp,) < a, so A; is Lipschitz with constant
tana < a.

On the other hand, for ¢ € Iy \ Iy, we put A; = 0. We are now in a
position to be able to define A on L.

10.2. Eztending A to Lg. Consider a smooth partition of unity {¢;}icr,
subordinate to {3R;}icr,, i-€., ¢; € Ci°(3R;) with >°, ¢; = 1 on Ly = R, which
moreover satisfies that for every i € Iy,

Iilloc < €(R:)™ and [[¢][loo < €(R:)7.

~

(See [Toll4, p. 250] for an explicit construction.)
Now, if p € Lo\II(Zy), we set
Alp) =D 0 Ailp) = D di(p)Ai(p).
i€y i€lp
We require the following lemma, which combines Lemmas 7.24 and 7.27

from [Toll4].

LEMMA 10.6. The function A : Ly — Lg is supported in [—12R, 12R]
and is Lipschitz with slope < a. Moreover, if i € Iy, then for any x € 15R;,

A/l < € .
4@ S0 g
We will denote the graph of A by G4, that is,
(10.5) Ga:={(z,A(x)) |z € Lo}.

10.3. The Lipschitz graph G4 and E = supp u are close to each other.
The next four results, concerning the relationship between G4 and E, are
central to our analysis.

LEMMA 10.7 ([Toll4, Lemma 7.28]). Every x € B(0,10R) satisfies
dist(z,Ga) < d(x).
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148 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA
LEMMA 10.8 ([Toll4, Lemma 7.29]). For B € VG and x € G4 N 3B, it
holds that
(10.6) dist(z, L) <g er(B).
LEMMA 10.9 ([Toll4, Lemma 7.30]). We have
dist(z, Ga) Sp ed(x) for every x € E.
Lemmas 10.9 and 10.8 combine to yield the following statement.

COROLLARY 10.10. Suppose that B € VG. As long as € is small enough
in terms of 0,

(10.7) dist(x,Ga) S er(B) for allx € Lp N 2B.

Proof. If B = B(z,7) € VG, then z € E and so by Lemma 10.9, dist(z, G 4)
<p er,so G4 (as well as Lp) passes close to z. On the other hand, Lemma 10.8
ensures that if B € VG, then G4 N 3B C Ug(g)er(p)(Lp). Since both G4 and
Lp are connected, we readily deduce the conclusion. ([

LEMMA 10.11 ([Toll4, Lemma 7.32]). We have
dist(z, L) <¢ € R

for all x € G4.

11. Small measure of LD and BA

11.1. LD has small measure. The following lemma shows that LD has
small measure. The reason for this is that LD can be covered by balls of small
density that are closely aligned to the Lipschitz graph G 4.

LEMMA 11.1 ([Toll4, Lemma 7.33]). If 0 is sufficiently small, and £ > 0
is sufficiently small in terms of 0, then

1
u(LD) < mﬂ(30)~

This lemma determines our choice of 6.

11.2. BA has small measure. Our main objective in this section is to prove
the following.

LEMMA 11.2. If «a is chosen sufficiently small, and € is chosen sufficiently
small, with respect to o and 6, then

(11.1) H(BA) S £2u(By).

Recall our assumption that the line Ly coincides with the horizontal axis
of R2, and so Lé is the vertical axis. We denote by ar ,, and Ar 4 the respective
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A PROOF OF CARLESON’S ¢2-CONJECTURE 149

square functions a, and Ay associated with the open set Qif = OF, whose
boundary is I'. The analogous square functions associated with the domain

QEA = {z e R? : TI*(z) > A(TI(z))}
are denoted by ag, » and Ag, -

LEMMA 11.3. For every B € G, one of the components of B\Us..(p)(LB)
belongs to QT while the other belongs to Q™.

Proof. For B € G, we have that S r(B) < €. In particular, this implies
that if Lp minimizes o r(B), then

B \ UQET(B)(L) C Q+ uQT.

By connectivity, it is clear that each component of B\ User( B)(L) is contained
either in Q" or in Q™. Also, since z5 € E, we have that f:((BB))/2 ay (2B, 7“)2% <e,
which easily implies that one of those components must be contained in QF
and the other in Q7. ([

Applying this lemma to a ball B’ € G containing 158, interchanging the
upper half plane by the lower half plane if necessary, we find a constant C' > 0
such that
(11.2)

158y N R\ Ucer(po)(Lo) C QT and 158y VR \ Upep(y)(Lo) C Q.

To prove Lemma 11.2 we will show that if BA has noticeable measure,
then ||A’||3 is (relatively) large, and that this in turn contradicts the smallness
assumption of the smoothed square function in Main Lemma 4.2. The proof
is split into several lemmas. The first one is Lemma 7.35 of [Tol14], which is a
consequence of Lemmas 10.1 and 10.9.

LEMMA 11.4 ([Toll4, Lemma 7.35]). Provided that € is small enough in
terms of a,

(11.3) u(BA) < a2 A3

Assume that « is small enough to apply Lemma 9.1. Then
(114 | Acustar i) ~ 415,
A

where Ag , 4 stands for the square function Ay, associated with the graph G 4.
From this and Lemma 11.4 we infer that

(11.5) n(BA) Sa? | Ag,p(x)?dH! ().

Our next objective is to compare [ A, (z)? dH (z) with [ Ar 4 (2)? du(z).
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We denote
1

l(x) = %D(m) 50

Lemma 10.3 ensures that if x € 151, I € W, then

- D(II(x)).

%#u)ge@)geuy

We set
R

Ac ()’ ;:/ G4 o)
o(z) r
It will be convenient to denote L*(G4) = L*(H!|c,).
LEMMA 11.5. We have
1Acsw = Acawllizgy S COER+ o A3

Proof. To prove the lemma we need to bound the integrals

£(x) d
I = / / aGAﬂ/,(x,r)Q —r d?-[l(a:),
Gy JO

o0 dr
I ::/ / ag . (x,r) 2 dH (z).
GaJR

To do so, we consider the square function ag, ,, introduced in Section 9. We
write

(11.6)

@(x) 2 dr 1
LS la (@, 1) = agy oz, 7)|* — dH! ()
Gy JO T

t(z) dr
+/ / ag, p(z,7)? d?—[ () =:I11+ 2.
GaJO

The first term I ; can be estimated as in the proof of Lemma 9.5, to obtain
4 4
Iy SHANSNA 2y S @ 1A3-

Let us look at the term Iy 2. First, recall from Lemma 9.4 that

D(p)/50 dr
Lo~ / / aGA,p (p, A(p)), )2 p
(G a)

:/H(GA)/OD(p)/m /qeR‘Pr(q_p)(A(Q);A(p)> dq2

where ¢, (-) = 2p(2). We write the last integral as

(18) Z/R /OD(p)/5O /qERSOT(q_p) (A(q);A(p)) dqQ

(11.7)
d

ldp.
T
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A PROOF OF CARLESON’S ¢2-CONJECTURE 151

Observe that for p € R, e W, 0<r < D(p)/50 <4(R;), and ¢q € supp ¢, (-—p) C
B(p,1.17), we have ¢ € 4R;. Since supp A C 12By (Lemma 10.6), we can
restrict the sum in (11.8) to the intervals R; such that 4R; N 12By # ©.
Appealing to Lemma 10.4, we infer that these cubes are contained in C By for
some absolute constant C' > 1.

To estimate each of the summands in (11.8), let p€ R; and ¢ € supp ¢, (-—p).

Taylor’s theorem gives, with £, ;, on the line segment between ¢ and p,

Alq) = A(p) + A'(p)(qg —p) + Anfq’p)(q —p)>.

Thus we can write the interior most integral in the right-hand side of (11.7) as

1
r

/wr(q —p)A'(p)(p — q)dq + % / or(q —p)A" (&4p) P — al* dg.

By symmetry we immediately see that the first integral vanishes. Concerning
the second integral, for p € R; € W, 0 < r < D(p)/50 < 4(R;), and ¢ €
B(p,1.1r), we have &;, € 15R;, and then from Lemma 10.6 we see that

1 re
~ sup |A(©)]r 5

1
(p — A// . 2d ‘ < .
‘21" / or(p — Q) A" (§pg) (@ —p)°dg| S S ST

Using again that D(p)/50 < ¢(R;), we deduce that
re

D(p)/50
ha Z /1/0 U(R;)

R;CCBy R;CCBy

Next we have to estimate the integral o in (11.6). Given x € G4 and
r > R, let L, be a line passing through z and parallel to the line minimizing
Boo,4(B(x,1.17)), and let H, , be the half plane whose boundary is L, , lying
above L, . From the definition of ag, 4(x,7), it follows that

1
(11.9)  Jag,p(z,7)| S pl(QEAAHx,r) N B(z,1.17)| S Boo,ca (B, 2r)).

Taking into account that supp A C 12By and that dist(z, Ly) g €R for every
x € G4, by Lemma 10.11, it follows easily that

eR

forallz € G dr > R.
max (r, dist(z, By)) oren e ABRET =

Poo.ca(B(2,2r)) S
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So we deduce that

2
o0 eR dr
I < = dH?
20 /GA/R (max (7‘ dist(m Bo))) r H (@)

> dr
< = d 1 / / = d 1
~0 /GAQQBO / (E H GA\QBO dlSt 1,‘ BO 3/2 1/2 T H (x)

dr * dr
< 2R2/ Rz/ d / dr
~0 & R 7‘3 te GA\230 dlSt(l‘, B0)3/2 H ( ) R ’1“3/2

59 62 R.

Gathering the estimates obtained for Iy 1, 112, and I2, the lemma follows. [

Observe that, from (11.4) and the previous lemma, we have that
1413 S 1 AcawlZaiey) + Maaw — Acawliza,
< eyl 2y + COR + | A3
Hence, for @ small enough, this gives
1413 S G4 ullT2(q,) + CO)ER,
and combining this inequality with (11.5) we obtain
(11.10) W(BA) S a2 A, ullZac,) + CO2a 2 R.

To estimate HZGA#/JH%?(GA)’ we split

R
~ dr
Mo sl = | / 1) O e (o)
Ga Jl(x) r

min(e~14(x),R R
. .y
Ga G 4 Jmin(e~14(z),R)

Next we estimate each of these integrals separately.

(11.11)

LEMMA 11.6. We have
min(e~14(z dr
(11.12) / / aGA,¢(x,r)2 dH () <p €%|loge|R.
Ga

Proof. From Lemma 10.8, it easily follows that S g, (B(z,7)) Sg € for
all z € G4 and r > {(z). Then, arguing as in (11.9), we deduce that

aGAﬂZJ(x: ’f') 59 €.

Thus, for every = € G4,

Lo(x) d e
(11.13) / ag o (w,7)? & <0 52/ U 2| loge|.
L(x) r L(x) r
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A PROOF OF CARLESON’S ¢2-CONJECTURE 153

On the other hand, if || > CR for C' > 1 big enough, then ¢(z) > R and thus

min(e~14(x),R) dr
/ ac . (z, r)? — =0.
() r

Consequently, integrating the pointwise estimate (11.13) over z € G4 with
|z| < CR yields the lemma. O

To estimate the second integral on the right-hand side of (11.11) we need
to introduce some additional notation. We denote by Ilg, the projection
R? — G4 orthogonal to Ly. We let D¢, be the family of “dyadic cubes” on
G 4 of the form

DGA = {HGA(I) I e DLO}-
We define the length of I € Dg, (and write ¢(I)) to be equal to ¢(R), where
R € Dy, satisfies I = I, (R). Then ¢(I) is comparable to H!(I).
Then we set
WGA = {HGA(I) 1 e VV}
Denote by Wq, 0 = {llg,(R;) : i € In}, so I € Wg, o if I =1lg,(R;) for
some R; that intersects B(0, 10R).
LEMMA 11.7. IfI € Wg, 0, x € I, and 0 < r < R, then B(x,2r) C 15B.

Proof. By Lemma 10.11, dist(z, Ly) < R for = € G4, so the claimed
statement follows from Lemma 10.4, which states that I = Ilg,(R) for an
interval R satisfying 3R C [-12R, 12R]. O

We now claim that there is an absolute constant C; such that for each
I € Wg, that intersects 158y, there exists a ball By € VG (centered at z; € E)
such that

(11.14) Cy'r(Br) < (I) < Cyr(By),
(11.15) I C C1By, and HGA(Z]) e C1B;y.

Indeed, if I € Wg, 0, then I = II(R;) for i € Iy, so by Lemma 10.5, there
exists a ball By € VG such that r(By) =~ ¢(I) and

dist(Z,Ilg, (Br)) = dist(Ilg, (R:), g, (II(Br))) < €(1).
But then, by Lemma 10.9,
dist(Br, Ga) < dist(zr,Ga) Sp ed(zp,) Se er(Br),

where z;j is the center of Bj.
Provided that ¢ is small enough in terms of 6, we therefore have

diSt(I, B[) < diSt(I, HGA (B[)) + diSt(B], HGA (B[))
+ diam(Tlg, (Br)) < r(Br) ~ £(I).
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We now can readily deduce that (11.15) holds for C; large enough. (Recall
that G4 is a Lipschitz graph with Lipschitz constant < o < 1.)

On the other hand, if I € Wg,\Wg, 0 and I C 15By, then ¢(I) = R, and
we can set for By a ball centered on E of radius 2R, say.

We need the following auxiliary result, which appears as Lemma 7.41 in
[Tol14] in slightly different notation.

LEMMA 11.8 ([Toll4, Lemma 7.41]). For each I € Wg, o, there exists
some function gy € L>=(u), gr > 0 supported on By such that

(11.16) /gszZ’Hl(I)

and

(11.17) > g S
IeWg , 0

We will also need the next geometric lemma.

LEMMA 11.9. If € is small enough, then there exist constants Cy and
C(0) > 0 such that

(Q5,AQF) N 158, C U B(zy, Col(J)) N Ucg)ee()(Ga).
JEW ,:JN15B#£

Moreover, for each J € Wg, such that J N 15By # @,
(R AQE) N Bz, Col(J)) N15Bo| Sp £ £(J)>.

Proof. Let x € I' N 158y, and let J € W, be such that IIg,(z) € J. Let
Bj = B(zj,r(By)) € VG satisfy the properties (11.14) and (11.15). Then both
IIg, (x) and Ig, (z7) belong to C1 By, where Cy is the constant appearing in
(11.14) and (11.15). Recall here that Ilg, () is the projection of x onto G4
orthogonal to Lyg.

We claim that « € 10C1B;. If = ¢ 10C,Bj, then the majority of the
length of  — z; is in the component orthogonal to Ly. Therefore, since x
and z; belong to I', from the fact that S r(B’) < ¢ whenever B’ = B(zy, s)
and r; < s < 50R, we deduce that such a ball B’ with z € B’\%B’ satisfies
Z(Lpr, Lo) 2 1> «. But this cannot happen, thus yielding the claim.

But since 10C1 By € VG,

dist(z, LiocyB,) Serg S el(J).
We therefore infer that

I N15B, C U B(z7,10C1£(J)) N Uger(ry(L1ocy By)-
JEWGA:JQI5B()75@
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A PROOF OF CARLESON’S ¢2-CONJECTURE 155

On the other hand, from Corollary 10.10, there is a constant C'(6) > 0 such
that for any B € VG,

Lp N B C Ugg)erpy(Ga)-
Consequently,

I'Nn15By C U B(x7,10C14(J)) N Uc(g)ag(J)(GA).
JEWGA:Jﬂlf)Bo#Z

By connectivity arguments, using (11.2), we deduce that

(11.18) QI:L:ﬂ15BO C QgAU U B(zy, 1001€(J))OUC(9)5£(J)(GA),
JEWGA:J015BQ75®

which implies the first part of the lemma with Cy = 10C}.
For the second claim of the lemma, set B = B(z;, C2l(J)). If C24(J) > R,

then we bound
1.2)

_ (1
(4, A N BN15By| < |(Qf, AQL) N15By| <o eR”.
On the other hand, if C2¢(J) < R, then B € VG, so Lemma 10.8 and Corol-
lary 10.10 yield that for any B’ D B with r(B’) < R,

Gan BcC UC(Q)ET(B/)(LB/), and Lp N B’ C UC(Q)ET(B/)(GA).

Since foor(B') < e, we infer that both G4 N B’ and I' N B’ are contained
in a strip of width C(0)er(B’) around Lp/. Since fOR ad,(z(],r)Q% < g, one
of the components of B'\Ug(p)er(p’)(Lp’) must belong to Qf, with the other
belonging to Q. (Lemma 11.3). But now we infer from (11.2) and a con-
tinuity argument that the component of B'\Uc(gyer(py(Lp’) that lies above
Ly belongs to F, while the component that lies below Lp/ belongs to Q.
Therefore QIJEAQEA NB' C Uc(9)er(p)(Lpr)- In the case B = E, we have that

r(B) So U(J), so |QF AQL N B| g el(J)2. O

Now we are ready to deal with the first integral on the right-hand side of
(11.11):

LEMMA 11.10. We have
(11.19)

f 2 dr . 4
aGA,w(a%T) —dH <$)
G 4 Jmin(s~1(z),R) T
2 i o dr
<geR+ ary(z,7) - dp(z).
0

Throughout the proof of Lemma 11.10, we will let the implicit constant
in the symbol < depend on 6 without further mention.
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Proof. By Lemma 10.4, e *(x) > Rfor x € I € Wg, \ Wg , 0, S0 we may
write

(11.20)

dr
/ / ag (2, 7)* = dH! (@)
G 4 Jmin(e~14(z),R)
o dr 1
Z aGAw(:U,r) —dH (x).
min(e~H(z r

IEWGA

Given x € I € W¢, o, we consider an arbitrary point 2’ € Br. Then we
write
|aG (2, 7) = ar (@', r)| < |ag, g (2,7) —ag, y (2, 7)]

(11.21) + |agap(@,r) — ap (e )|

Regarding the first term on the right-hand side, using the fact that r >
e~ Y (x) ~ e~ 1(I) > ¢(I) and taking into account that |z —2'| < dist(I, By) <

¢(I) by (11.15), we get
_ T—y -y
|CLGA7¢($,T)—CIGA’¢($I,T)| <r 2/ 1/’( ) _¢< ) ’dy
QJCFJA T T

z—a
SHVwHOO/B(Q)| 3 ’dyg )

Next we deal with the last term in (11.21):

[, o) [o () o

_2| Q+ AQJr) B(z,2r)|.

-2

}aGA,w(x',r) — Cl[‘ﬂ/,(fl,’/, 7“)} =r

Notice next that, insofar as I € W¢ ,, there is an absolute constant C' > 0 such
that if xy is the center of I, and if J € W¢, satisfies J N B(z,2r) # &, then
J C B(zr,Cr). Also by Lemma 11.7, B(z,2r) C 15B. But then, Lemma 11.9
ensures that

(25, AQF) N B(,2r)| < > (R4, AQ) N B(xg, Cot ()]
JEWG 4 :JNB(z,2r)#2
S > =(J)”
JEWG ,:JNB(z,2r)#2

< > e 0(J)2.

JEWG ,:JCB(z1,Cr)
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From the last estimates we derive

w2 s Wy

2
|ag (@) —ary (@, r)|" < g

JGWGA:JCB(QE],CT)

But since

> (P S > 0J) So v,

JEWG ,:JCB(z1,Cr) JEWG ,:JCB(z1,Cr)

we deduce that

0(I)? 0(J)?
a0, (2,7) = ar (@, r)[* S (rz) + ¢’ > .
JEWG ,:JCB(z1,Cr)

Since this holds for all 2’ € By,

acap (@) So inf ary (@, r)? + =
z'€Br
JEWG ,:JCB(z1,Cr)

forallz € I € Wg, 0.
Plugging this inequality into the right-hand side of (11.20), we estimate
the integral on the left side of (11.19) as follows:

R dr
/ / ac (@, 7)* —= dH ! (@)
G 4 Jmin(e~14(z),R)

Z //m %glarw(x r)? de?—l (x)

IGWG in(ce—14(I),R
( )2 dr
+ ) / / 3 A (x)
min(ce—14(I r
IGWG
0(J)? dr

+ ) /1/ 1 e Y A

TeWg o 7 1 7/ min(ee™ 1401 TEWG ,:

JCB(z;,Cr)
=T+ T+ T;.

First we bound 75 in a straightforward manner by evaluating the double inte-
gral:

S Y, E(I)/Oo E(I)Zdr,SsQ Y U SER

-1
IEWGA,O ce~ (1) IGWGA,O

We now turn our attention to 73. Given I, J € W¢ ,, denote

D(I,J) = £(I) + £(J) + dist(I, J).
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Notice that if J C B(xy,Cr), 7 > ce1(I), then r > D(I,J). Using Fubini’s
theorem, we therefore infer that

TS > z(z)/R ey “;der

IeWG , 0 min(ce—14(I),R) JEWG
JCB(xI,CT)
<2 Y Y z(z)/ dr
JEW , - JCCBy 1€Wg, r>eDI,) T
o(1)
< 22 oJ 2 _ )
- () B0 I
JeEWg ,:JCCBy IeWq ,

Now notice that if D(I,J) =t, then I C B(x;,Ct). Consequently, as D(I,.J) >
¢(J), we control the inner sum on the right-hand side as follows:

on o1
Z (I, J)2 - Z Z D(L J)2

IGWGA k>0 IEWGA:
2k¢(J)<D(I,J)<2Ft1e(T)
1 1 1
< P — < N —.
~ Z 221~cg(J)2 Z i) < Z Qlcg(J) o)

k>0 IeWg - k>0

ICB(z;,C2%4(J))

Combining these two chains of inequalities, we arrive at

Ty<e Y, W) SR
JGWGA:JCCB()

Finally we will estimate the term 77. To this end, we consider the functions
gr constructed in Lemma 11.8. Tt is clear that

R
. dr
T, = Z // inf ar (2, 1) — g1(x) du(x).
1eWg 0 min(ce—1¢(I),R) *'€B1 r
Observe now that, for each x € By,

MO M) o)

inf ap (2, 7) §][ apy (2, r) du(z’) <
x’€Br Br ’

where M, . is the maximal operator defined by

— 1
Vil @) = s o | 191
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Since % < 67! <1, using Fubini and Lemma 11.8, we can write

f v dr
USEDS // Myar, () (@) - g1 () dp(a)
min(ce—14(I),R) r

[EWGA,O

R r
S [ Marstn@? Y atedu)

IEWGA,()

R r T
S’/o /Muar,w('#)(x)Qdu(x)d-

r

Using that M, ., is bounded in L?(u) (see Theorem 9.32 in [Tol14], for example),

we derive
R 9 dr
T S ar,y (2, 7)" dp(z) —-
0

Gathering the estimates obtained for the terms 77, 75, and 713, the lemma
follows. O

Proof of Lemma 11.2. By (11.10) and Lemmas 11.6 and 11.10, we get

u(BA) g o’ R+ a_QHZGAﬂ/}H%Q(G’A)

R
d
<pa 2R+ a2 (52| loge|R +eR + // ar o (z,7)? % d;z(@)
0

R
d
<p a—252| loge| R+ C(0, ) // Clrﬂ/}(l" 'r)2 TT du(zr) < 81/2H(BO)
0

for e = e(a, 0) small enough. This yields the desired conclusion. O

11.3. Proof of the Main Lemma 4.2. By Lemmas 11.1 and 11.2, if 0 is
chosen small enough and then e also small enough (depending on « and 6),
then

—_

u(BAULD) < 3 1(Bo).
But then
1
wZ) = S1(Bo),

and Z C Zy C G4. This completes the proof.
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