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A proof of Carleson’s ε2-conjecture

By Benjamin Jaye, Xavier Tolsa, and Michele Villa

Abstract

In this paper we provide a proof of the Carleson ε2-conjecture. This

result yields a characterization (up to exceptional sets of zero length) of the

tangent points of a Jordan curve in terms of the finiteness of the associated

Carleson ε2-square function.
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98 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

1. Introduction

Over the last thirty years, beginning with the work of Jones [Jon90] and

David-Semmes [DS91], there has been a great deal of activity concerning the

study of geometric square functions that measure the regularity of sets through

a multi-scale analysis. Usually, the motivation for the study of such geometric

square functions stems from the wish to solve different problems in complex

analysis, harmonic analysis, or PDEs that depend on (variants of) quantita-

tive rectifiability. For example, in the solution of the Vitushkin’s conjecture

for sets of finite length by David [Dav98], Melnikov’s curvature of measures

and its connection with Jones’ β-numbers play an essential role; see Léger

[L9́9]. Analogously, the solution of the David-Semmes problem concerning

the L2-boundedness of the codimension 1 Riesz transform by Nazarov, Tolsa,

and Volberg [NTV14] uses the so-called BAUP criterion for uniform rectifia-

bility found by David and Semmes; see [DS93, p. 139]. More recently, Naber

and Valtorta [NV17] have extended the use of related techniques involving an

L2-variant of the Jones’ β-numbers to solve different questions in the area of

free boundary problems, and more precisely, on the singularities of minimizing

harmonic maps.

In this paper we solve a longstanding conjecture of Lennart Carleson con-

cerning another geometric square function. To formulate the problem we need

to introduce some notation. Let Ω+ be a proper open set in R2, and set

Γ = ∂Ω+ and Ω− = R2 \ Ω+. For x ∈ R2 and r > 0, denote by I+(x, r) and

I−(x, r) the longest open arcs of the circumference ∂B(x, r) contained in Ω+

and Ω−, respectively. (They may be empty.) Then we define

ε(x, r) =
1

r
max

(∣∣πr −H1(I+(x, r))
∣∣, ∣∣πr −H1(I−(x, r))

∣∣).
Here H1 denotes the one-dimensional Hausdorff measure. The Carleson ε2-

square function is given by

(1.1) E(x)2 :=

ˆ 1

0
ε(x, r)2 dr

r
.

If Γ is a line, then E(x) = 0 for all x ∈ Γ. Carleson conjectured that (1.1)

encodes some regularity properties of Γ.

Conjecture 1.1 (Carleson’s ε2-conjecture). Suppose Γ is a Jordan curve.

Except for a set of zero H1-measure, Γ has a tangent at x ∈ Γ if and only if

E(x) <∞.

See Section 2.6 below for the precise definition of a tangent. This conjec-

ture may be found in Bishop [Bis92, Conj. 3], Bishop-Jones [BJ94], Garnett-

Marshall [GM05, p. 220], and David-Semmes [DS91, §21], for example.
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A PROOF OF CARLESON’S ε2-CONJECTURE 99

The “only if” direction of Conjecture 1.1 is a well-known result: When

Γ is a Jordan curve, it follows from the Ahlfors distortion theorem and an

argument of Beurling that

E(x) <∞ for H1-a.e. tangent point of Γ.

See [BJ94, p. 79], for example. Therefore, the content of Conjecture 1.1 is that

the converse statement should also hold true.

In this paper we prove Conjecture 1.1. We also show that an analogue

of this result also holds for two-sided corkscrew open sets, which have a scale

invariant topological assumption but are not necessarily connected; see Sec-

tion 2.5 below for the definition. Our precise result is the following theorem.

Theorem 1.2. Let Ω+ ⊂ R2 be either a Jordan domain or a two-sided

corkscrew open set, let Γ = ∂Ω+, and let E be the associated square function

defined in (1.1). Then the set G = {x ∈ Γ : E(x) < ∞} is rectifiable and at

H1-a.e. point of G there exists a tangent to Γ.

Recall here that a set E ⊂ R2 is called rectifiable if there are Lipschitz

maps fi : R→ R2, i ∈ N, such that

(1.2) H1
(
E \⋃∞i=1 fi(R)

)
= 0.

As a corollary, we get

Corollary 1.3. Let Γ ⊂ R2 be a Jordan curve or a two-sided corkscrew

open set, and let E be the associated square function defined in (1.1). Then, the

set of tangent points of Γ coincides with the points x ∈ Γ such that E(x) <∞,

up to a set of zero measure H1.

One should compare Theorem 1.2 to an influential theorem of Bishop-

Jones [BJ94], who obtained an analogue of the ε2-conjecture for the β-numbers

introduced by Jones [Jon90]. Define

(1.3) β∞,Γ(B(x, r)) =
1

r
inf

L a line
L∩B(x,r)6=∅

sup
y∈Γ∩B(x,r)

dist(y, L).

In other words, β∞,Γ(B(x, r)) is the infimum over β > 0 so that Γ ∩B(x, r) is

contained in a strip of width rβ. Certainly then we have that

(1.4) ε(x, r′) . β∞,Γ(B(x, r)) whenever r/2 < r′ < r,

whenever x is a tangent point of Γ and that r is small enough. Bishop-Jones

(Theorem 2 in [BJ94]) proved that, up to a set of H1-measure zero, a Jordan

curve Γ has a tangent at x ∈ Γ if and only if

(1.5)

ˆ 1

0
β∞,Γ(B(x, r))2dr

r
< +∞.

The arguments used in [BJ94] to show that (1.5) holds for the tangent

points x∈Γ are also valid for two-sided corkscrew open sets. Consequently, in

view of (1.4), this result completes the proof of Corollary 1.3. (In the case of
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100 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

Jordan domains, one can alternatively appeal to the aforementioned argument

based on the Ahlfors distortion theorem.) In the opposite direction, while the

Bishop-Jones theorem is weaker than Theorem 1.2, it has a beautifully concise

proof.

In the monograph [DS91], David and Semmes develop a quantitative ana-

logue of rectifiability for Ahlfors regular sets, and prove characterizations of it

in terms of square functions involving modifications of the β-numbers. When

Conjecture 1.1 is discussed on page 141 of [DS91], it is described how the co-

efficients ε(x, r) are not sufficiently stable to apply the methods developed in

[DS91], even if one only wishes to show the rectifiability of an Ahlfors regular

subset of {x ∈ Γ : E(x) <∞}.
With this in mind, one can point to Main Lemma 4.1 below as one of the

main technical innovations of this paper, which roughly speaking provides some

control of the numbers β∞,Γ(B(x, r)) at points where E(x) <∞. This amount

of control on the β-numbers is nowhere near strong enough to directly obtain

(1.5), but it is sufficient to be able to adapt a scheme originating in the work

of David and Semmes [DS91] and adapted to the non-homogeneous setting by

Léger [L9́9], which enables us to prove Theorem 1.2; see Main Lemma 4.2.

Crucial to the proofs of both of the main lemmas changed to lower case

here is the introduction of several smoother square functions (see Section 3).

While being controlled by the Carleson square function, these smoother square

functions behave in a considerably more stable manner in compactness argu-

ments, and this additional stability enables us to obtain some basic geometric

information about natural limit situations (namely, that the limiting “curve”

should contain an analytic variety; see property (1) of Lemma 6.3). This ba-

sic information is then considerably refined by employing the admissible pairs

property (Definition 6.2), which is obtained as a consequence of the finiteness

of the Carleson square function itself; see, for instance, Lemmas 7.3 and 8.5.

Additionally, of central importance to the proof of Main Lemma 4.2 is the fact

that the smoother square functions control the Lipschitz constant of a com-

pactly supported Lipshitz graph (see Section 9), and it is this property that

provides the main mechanism required to adapt Léger’s scheme.

Of course, as a consequence of Theorem 1.2 and Theorem 2 of [BJ94], we

have that, up to a set of H1-measure zero, E(x) <∞ if and only if (1.5) holds

at x ∈ Γ.

Acknowlegement. This work began at the workshop Harmonic Analysis in

Nonhomogeneous Settings and Applications at the University of Birmingham

in June 2019. Special thanks go to Maŕıa Carmen Reguera for organizing this

workshop and inviting the authors. We also thank Jonas Azzam for stimulating

conversations about the project in its early stages.
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A PROOF OF CARLESON’S ε2-CONJECTURE 101

2. Preliminaries

2.1. Constants. We will denote by C, c > 0 absolute constants that may

change from line to line. We will often use the symbol A . B to mean that

A ≤ CB. The symbol A & B is just another way of writing B . A. The

symbol A ≈ B means that both A . B and B . A. If a constant is allowed

to depend on a given parameter, the parameter dependence will be described

in parenthesis or a subscript; for example, Cε,κ and C(ε,κ) both denote a

constant that may depend on parameters ε and κ. Then A .ε,κ B means that

A ≤ C(ε,κ)B.

We shall write A� B to mean that “A is much smaller than B,” namely,

that A ≤ cB for a sufficiently small absolute constant c > 0.

2.2. Balls, annuli, and neighborhoods. Balls B(x, r) are assumed to be

open. Also, when we say that a set B ⊂ R2 is a ball, we mean an open ball,

unless otherwise stated. We denote by r(B) its radius.

The notation A(x, r,R) stands for an open annulus centered at x with

inner radius r and outer radius R.

For a set E and r > 0, the notation Ur(E) denotes the open r neighbor-

hood of E.

2.3. Jordan domains. A domain is a connected open set. We call a domain

Ω+ a Jordan domain if its boundary Γ = ∂Ω+ is a Jordan curve. In this case

(by the Jordan curve theorem), Ω− = R2\Ω+ is also a Jordan domain.

2.4. Measures. Throughout the paper, by a measure we shall mean a non-

negative locally finite Borel measure.

For C0 > 0, a measure µ has C0-linear growth if

µ(B(x, r)) ≤ C0r for all x ∈ R2 and r > 0.

For a ball B ⊂ R2, we write

Θµ(B) =
µ(B)

r(B)
.

This should be understood as a kind of one-dimensional density of µ over B.

2.5. Two-sided corkscrew open sets. Let Ω ⊂ R2 be an open set. We say

that Ω satisfies the c-corkscrew condition (or just the corkscrew condition) if

there exists some c > 0 such that for all x ∈ ∂Ω and all 0 < r < diam(Ω),

there exists some ball B ⊂ Ω ∩B(x, r) with r(B) ≥ cr.
We say that Ω satisfies the two-sided (c-)corkscrew condition if both Ω

and R2 \ Ω satisfy the (c-)corkscrew condition.

We say that Ω ⊂ R2 is a two-sided corkscrew open set (or domain) if it is

an open set (or domain) that satisfies the two-sided corkscrew condition.
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102 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

For example, quasicircles are two-sided corkscrew domains. Indeed, qua-

sicircles are simply connected two-sided corkscrew domains that satisfy a Har-

nack chain condition, according to Peter Jones (see Theorem 2.7 in [JK82]),

or in other words, they are the same as planar simply connected NTA do-

mains. On the other hand, it is easy to check that there are simply connected

two-sided corkscrew domains that are not quaiscircles.

2.6. Cones and tangents. For a point x ∈ R2, a unit vector u, and an

aperture parameter a ∈ (0, 1) we consider the two-sided cone with axis in the

direction of u defined by

Xa(x, u) =
{
y ∈ R2 : |(y − x) · u| > a|y − x|

}
.

Given an open set Ω+ ⊂ R2 and x ∈ ∂Ω+, we say that ∂Ω+ has a tangent

at x, and that x is a tangent point for ∂Ω+ if there exists a unit vector u such

that, for all a ∈ (0, 1), there exists some r > 0 such that

∂Ω+ ∩Xa(x, u) ∩B(x, r) = ∅,

and moreover, one component of Xa(x, u)∩B(x, r) is contained in Ω+ and the

other in Ω− = R2\Ω+. The line L orthogonal to u through x is called a tangent

line at x. Notice that this notion of tangent is associated with the domain Ω+,

and it would be more appropriate to say that L is a tangent for Ω+.

3. Smoother square functions

Several smoother versions of the Carleson square function play an impor-

tant role in our analysis, as one can see by the statements of Main Lemmas 4.1

and 4.2 in the next section. In this section we show that these smoother square

functions are controlled by the Carleson square function (with the addition of

an absolute constant).

Suppose that Ω+ ⊂ R2 is an open set, Γ = ∂Ω+ and Ω− = R2\Ω+.

First denote

α+(x, r) =

∣∣∣∣π2 − 1

r2

ˆ
Ω+

e−|y−x|
2/r2

dy

∣∣∣∣,
and set

A(x)2 =

ˆ 1

0
α+(x, r)2 dr

r
.

More generally, for a non-negative smooth function ϕ : R → [0,∞) satis-

fying ˆ ∞
0

ϕ(t)t
»

log(e+ t)dt <∞,

set ψ(x) = ϕ(|x|). Consider

aψ(x, r) =
∣∣∣cψ − 1

r2

ˆ
Ω+

ψ
(x− y

r

)
dy
∣∣∣, where cψ =

ˆ
R2

+

ψ
(y
r

)
dy,
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A PROOF OF CARLESON’S ε2-CONJECTURE 103

and define

A1
ψ(x)2 =

ˆ 1

0
aψ(x, r)2dr

r
.

Lemma 3.1. There is a constant C1,ψ such that for every x ∈ R2, every

R > 0, and M ≥ 1, we haveˆ R

0
aψ(x, r)2dr

r
≤ C1,ψ

ˆ MR

0
ε(x, r)2dr

r
+ 2

ˆ ∞
M

ϕ(t) t
(

log+ t

M

)1/2
dt.

Proof. Observe that, by integrating polar coordinates centered at x,

aψ(x, r) =

∣∣∣∣cψ − 1

r2

ˆ ∞
0

ϕ
(s
r

)
H1(∂B(x, s) ∩ Ω+) ds

∣∣∣∣(3.1)

=
1

r2

∣∣∣∣ˆ ∞
0

ϕ
(s
r

)(
πs−H1(∂B(x, s) ∩ Ω+)

)
ds

∣∣∣∣ .
Next recall that I±(x, s) are the longest arcs in Ω± ∩ ∂B(x, s), so

I+(x, s) ⊂ ∂B(x, s) ∩ Ω+ ⊂ ∂B(x, s) \ I−(x, s),

and consequently

H1(I+(x, s)) ≤ H1(∂B(x, s) ∩ Ω+) ≤ 2πs−H1(I−(x, s)).

Subtracting πs from this inequality easily yields that∣∣πs−H1(∂B(x, s) ∩ Ω+)
∣∣ ≤ s ε(x, s),

which when plugged into (3.1) yields

(3.2) aψ(x, r) ≤ 1

r2

ˆ ∞
0

ϕ
(s
r

)
ε(x, s) s ds.

Squaring both sides of (3.2) and integrating over r ∈ (0, R) yieldsÇˆ R

0
aψ(x, r)2dr

r

å1/2

≤
Çˆ R

0

Å
1

r2

ˆ ∞
0

ϕ
(s
r

)
ε(x, s) s ds

ã2 dr

r

å1/2

=

Çˆ R

0

Åˆ ∞
0

ϕ(t)ε(x, tr) t dt

ã2 dr

r

å1/2

Minkowski’s inequality
≤

ˆ ∞
0

Çˆ R

0
ε(x, tr)2 dr

r

å1/2

ϕ(t) t dt

=

ˆ ∞
0

Çˆ tR

0
ε(x, u)2 du

u

å1/2

ϕ(t) t dt.

For t ≥ 1 and some M > 1, we splitˆ tR

0
ε(x, u)2 du

u
≤
ˆ MR

0
ε(x, u)2 du

u
+

ˆ tR

MR

du

u
=

ˆ MR

0
ε(x, u)2 du

u
+ log+ t

M
.
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104 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

This bound certainly also holds for t ∈ (0, 1), so we get

ˆ ∞
0

Çˆ tR

0
ε(x, u)2 du

u

å1/2

ϕ(t) t dt ≤
Çˆ MR

0
ε(x, u)2 du

u

å1/2 ˆ ∞
0

ϕ(t) t dt

+

ˆ ∞
M

ϕ(t) t
(

log+ t

M

)1/2
dt,

and the lemma follows. �

4. The two main lemmas and the proof of the main theorem

Having introduced an array of square functions, we may now state the pri-

mary two gtechnical results of this paper. The paper splits into two essentially

disjoint parts, which use very different techniques.

Part I. The first part of the paper concerns the use of compactness ar-

guments to show, roughly speaking, that the curve Γ must be quite flat near

points where the Carleson square function is finite.

Main Lemma 4.1. Let Ω+ ⊂ R2 be either a Jordan domain or a two-

sided corkscrew open set, let Γ = ∂Ω+, and let µ be a measure with 1-linear

growth supported on Γ. Let B be a ball centered at Γ such that

µ(B) ≥ θr(B)

for some θ ∈ (0, 1). Given any ε > 0, there exists δ ∈ (0, 1), depending on θ

and ε (and the two-sided corkscrew parameter in that case), such that ifˆ
7B

ˆ 7r(B)

0
[ε(x, r)2 + α+(x, r)2]

dr

r
dµ(x) ≤ δ µ(7B),

then

β∞,Γ(B) ≤ ε.
Observe that, roughly speaking, this lemma ensures that β∞,Γ(B) is as as

small as wished if a suitable square function involving the coefficients ε(x, r)

and α+(x, r) is small enough on suppµ ∩ 7B, assuming also that µ has linear

growth and that µ(B) is not too small. It is important to remark that the

lemma yields an estimate of the flatness of Γ∩B, not only of suppµ∩B. This

will be crucial later for the proof of Theorem 1.2.

The proof of Main Lemma 4.1 is considerably easier in the case of two-

sided corkscrew open sets, since these sets are rather stable under natural limit

operations (see Lemma 7.2). Jordan domains do not have similar stability

properties and so the analysis is much more delicate. However, the case of the

two-sided corkscrew open set is nevertheless very instructive, as a key part of

our analysis is that, if Ω+ is a Jordan domain, then at points and scales where

µ has a lot of mass, and the Carleson square function is small, one can find

This content downloaded from 
108.215.24.170 on Wed, 01 Sep 2021 22:04:13 UTC 

All use subject to https://about.jstor.org/terms



A PROOF OF CARLESON’S ε2-CONJECTURE 105

corkscrew balls (Lemma 8.2). This property, which is much weaker than the

two-sided corkscrew condition insofar as it tells us nothing about Γ at points

where µ has little mass, is still sufficient for us to prove Main Lemma 4.1 with

a considerable amount of additional work.

Part II. The second part of this paper is concerned with improving the

local flatness that is provided by Main Lemma 4.1 into a rectifiability property.

For this we work with the general scheme introduced by David and Semmes

[DS91] and extended to the non-homogeneous context by Léger [L9́9]. In fact

we will not require the full strength of the Carleson square function, but rather

a smoother square function.

Main Lemma 4.2. Let Ω+ ⊂ R2 be an open set, and let Γ = ∂Ω+. Fix

c0 ∈ (0, 1), θ > 0 and ε > 0. Let B0 be a ball centered at Γ and let µ be

a measure with 1-linear growth supported on Γ ∩ B0 satisfying the following

conditions :

• µ(B0) ≥ c0r(B0);

• β∞,Γ(B) ≤ ε for any ball B centered at Γ such that µ(B) ≥ θ r(B);

• for a radial function ψ ∈ C∞(R2) with 1B(0,1) ≤ ψ ≤ 1B(0,1.1), it holds that

ˆ r(B0)/ε

0
aψ(x, r)2dr

r
≤ ε for every x ∈ supp(µ).

If θ is small enough in terms of c0, and ε is small enough in terms of θ and c0,

then there exists a Lipschitz graph Λ with slope at most 1/10 such that

µ(Λ) ≥ 1

2
µ(B0).

The key property of the square function generated by the coefficients aψ
that enables a Léger type construction are the Fourier estimates carried out in

Section 9; see, in particular, Lemma 9.1. Subsequently, we carry out the con-

struction itself, which has several subtleties due to the nature of our particular

square function.

4.1. The proof of Theorem 1.2. Before beginning the proof we recall some

basic facts about densities: For a set E ⊂ R2, we set

Θ1,∗(x,E) = lim sup
r→0

H1(E ∩B(x, r))

2r
, Θ1

∗(x,E) = lim inf
r→0

H1(E ∩B(x, r))

2r
.

For the proof of the following simple lemma see, for example, [Mat95, Th. 6.1].

Lemma 4.3. If E ⊂ R2 satisfies H1(E) ∈ (0,∞), then

1

2
≤ Θ1,∗(x,E) ≤ 1 for H1-a.e. x ∈ E.
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106 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

We will also require two simple properties of Lipschitz graphs. Suppose

that Λ is a Lipschitz graph in R2, and F ⊂ Λ, then for H1-a.e. x ∈ F ,

• Λ has a tangent at x, and

• Θ1
∗(x, F ) = Θ1,∗(x, F ) = 1.

Both properties follow easily from Lebesgue’s theorem on the almost every-

where differentiability of absolutely continuous functions on the real line.

Proof of Theorem 1.2 using the Main Lemmas 4.1 and 4.2. We have to

show that the set G= {x ∈ Γ : E(x)<∞} is rectifiable and that for H1-a.e.

x ∈ G, there exists a tangent to Γ.

Standard arguments (see, for instance, [Mat95, Lemma 15.13]) yield the

rectifiability of the set G from the existence of tangents to Γ ⊃ G at H1-a.e.

point of G. Therefore our goal is to prove the statement about the existence

of tangents.

For the sake of contradiction, suppose that the (Borel) subset F0 ⊂ G of

those points x ∈ G which are not tangent points for Γ has positive H1 measure.

Consider a subset F ⊂ F0 such that 0 < H1(F ) < ∞. (The existence of F is

a non-trivial statement; see [Mat95, Th. 8.13].)

Since the Carleson square function E(x)2 <∞ for H1-a.e. x ∈ F , we have

from Lemma 3.1 thatˆ 1

0
[ε(x, r)2 + α+(x, r)2 + aψ(x, r)2]

dr

r
<∞ for H1-a.e. x ∈ F,

where ψ is the function from Main Lemma 4.2.

By replacing F by a subset with positive H1 measure if necessary, we may

assume that

(4.1) lim
s→0

ˆ s

0

(
ε(x, r)2 + α+(x, r)2 + aψ(x, r)2

) dr
r

= 0 uniformly in F

and

(4.2) H1(B(x, r) ∩ F ) ≤ 3r for all x ∈ R2 and r > 0.

(This second inequality is a consequence of the fact that Θ1,∗(x, F ) ≤ 1 for

H1-a.e. x ∈ F .1)

For the choice c0 = 1/9, pick θ > 0 and then ε ∈ (0, θ) small enough pos-

itive numbers so that Main Lemma 4.2 is applicable. Then choose δ > 0 small

enough so that Main Lemma 4.1 is applicable with the choice c0 replaced by θ.

1More precisely, we may choose r? > 0 sufficiently small to ensure that there is a ball B? =

B(x?, r?) such that the set F ? := {x ∈ F ∩B? : H1(F ∩B(x, r)) ≤ 3
2
r for every r ∈ (0, 2r?]}

has positive measure (so H1(F ?) > 0). For any x ∈ R2 and r > 0 with B(x, r)∩F ? 6= ∅, there

exists x′ ∈ F ? such that B(x′, 2 min(r?, r)) ⊃ B(x, r)∩F ?, and therefore H1(B(x, r)∩F ?) ≤
3
2
· 2 min(r?, r) ≤ 3r. Replacing F with F ? yields the desired statement (4.2).
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A PROOF OF CARLESON’S ε2-CONJECTURE 107

Let R be small enough so that

(4.3)

ˆ 7R/ε

0

(
ε(x, r)2 + α+(x, r)2 + aψ(x, r)2

) dr
r
≤ min(δ, ε)

for all x ∈ F .

Denote µ = 1
3H1|F . Then µ has 1-linear growth. Recalling that Θ1,∗(x, F )

≥ 1/2 forH1-a.e. x ∈ F , we can find a ball B0 centered at F with radius smaller

than R such that µ(B0) ≥ r(B0)/9 = c0r(B0).

We look to apply Main Lemma 4.2 with the measure ν = µ|B0 (which

satisfies ν(B0) ≥ c0r(B0)). Notice that if B is a ball with ν(B) ≥ θr(B), then

certainly B ∩ B0 6= ∅, and r(B) ≤ r(B0)/θ ≤ r(B0)/ε. Consequently, from

(4.3) we infer that
ˆ

7B

ˆ 7r(B)

0
[ε(x, r)2 + α+(x, r)2] dµ(x)

dr

r
≤ δ µ(7B).

But trivially we have µ(B) ≥ θr(B), and so Main Lemma 4.1 yields that

β∞,Γ(B) ≤ ε.
On the other hand, it is also immediate from (4.3) that

ˆ r(B0)/ε

0
aψ(x, r)2dr

r
dν(x) ≤ ε on supp(ν).

Consequently, we may apply Main Lemma 4.2 to find a Lipschitz graph Λ such

that the set F1 = F ∩ Λ satisfies H1(F1) > 0.

As a consequence, for H1-a.e. x ∈ F1, we have

(4.4) Θ1
∗(x, F1) = 1 and Λ has a tangent at x.

We claim that every x ∈ F1 satisfying (4.4) the tangent line for Λ at x is also

a tangent to Γ.

To verify the claim, we will appeal to Main Lemma 4.1. Fix x ∈ F1 satis-

fying (4.4). Observe that (4.1) along with the condition Θ1
∗(x, F1) = 1 ensure

that for any ε > 0, we can find r0 > 0 such that for every r < r0, we can

apply Main Lemma 4.1 with the measure µ and the ball B0 = B(x, r) (with

the constant c0 equal to, say, 1/4). Therefore,

(4.5) lim
r→0

β∞,Γ(B(x, r)) = 0.

Now, let u be a unit vector orthogonal to the tangent line L at x to Λ.

Insofar as Θ1
∗(x, F1) = 1 and F1 ⊂ Λ ⊂ Γ, (4.5) ensures that

lim
r→0

sup
y∈Γ∩B(x,r)

dist(y, L)

r
= 0.

Therefore, for every a ∈ (0, 1), Γ∩Xa(x, u)∩A(x, r/2, r) = ∅ for all sufficiently

small r > 0.
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But the condition Γ ∩Xa(x, u) ∩ A(x, r/2, r) = ∅ for all r small enough

clearly implies that Γ∩Xa(x, u)∩B(x, r) = ∅ for all r small enough. Further, it

is immediate that the condition (4.1) implies that one component of Xa(x, u)∩
B(x, r) is contained in Ω+ and the other in Ω−, and so Γ has a tangent at x.

Therefore our claim follows, and this in turn clearly contradicts the fact that

the points in F0, and thus the ones in F1, are not tangent points for Γ. �

Part I: Flatness via compactness arguments

5. Basic compactness properties

5.1. Weak convergence of measures. We say that a sequence of (Borel)

measures µj converges weakly to a measure µ if

lim
j→∞

ˆ
R2

f dµj =

ˆ
R2

f dµ for every f ∈ C0(R2),

where C0(R2) denotes the continuous functions with compact support. We re-

call the following basic compactness result; see, for instance [Mat95, Th. 1.23].

Lemma 5.1. If µj is a sequence of measures in R2 such that, for all R > 0,

supj µj(B(0, R)) <∞, then µj has a weakly convergent subsequence.

It is not difficult (see [Mat95, Th. 1.24]) to see that weak limits are lower-

semicontinuous on open sets and upper-semicontinuous on compact sets. Com-

bined with Lemma 5.1, we arrive at the following result.

Lemma 5.2. Fix C0, c0 ∈ (0,∞). Fix a ball B0 ⊂ R2. Suppose that µj is

a sequence of measures with C0-linear growth such that µj(B0) ≥ c0r(B0) for

every j. Then there is a subsequence µjk of the measures that converges weakly

to a measure µ with C0-linear growth satisfying µ(B0) ≥ c0r(B0).

We next establish some basic facts about convergence of sets.

5.2. Convergence of sets. For B ⊂ R2 and x ∈ R2, set

dist(x,B) = d(x,B) = inf
b∈B
|x− b|.

For non-empty sets A and B, we define the excess of A over B to be the

quantity

excess(A,B) = sup
x∈A

d(x,B),

and we put excess(∅, B) = 0 while excess(A,∅) is left undefined.

Observe that excess(A,B) < ε means that the open ε-neighborhood of B

contains A.

The Hausdorff distance between A and B is given by

distH(A,B) = max{excess(A,B), excess(B,A)}.
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A PROOF OF CARLESON’S ε2-CONJECTURE 109

For compactness arguments, we will require a notion of local convergence.

To this end, we follow [BL15] and introduce the relative Walkup-Wets distance.

For non-empty sets A,B, we define, for R > 1,

dR(A,B) = max
{

excess(A ∩B(0, R), B), excess(B ∩B(0, R), A)}.

(The reader should not be concerned that the quantity dR need not satisfy the

triangle inequality.)

Observe that

(5.1) dR1(A,B) ≤ dR2(A,B) ≤ distH(A,B) if R2 ≥ R1.

Definition 5.3 (Local Convergence). A sequence of non-empty sets Ej con-

verge locally to a non-empty set E (written Ej → E locally) if, for every R > 0,

lim
j→∞

dR(Ej , E) = 0.

We refer the reader to Section 2 of [BL15] for a more thorough introduction

to this notion of convergence. In variational analysis, this notion of convergence

is called convergence in the Attouch-Wets topology.

Lemma 5.4. If Ej are non-empty closed sets that converge locally to a

non-empty closed set E, then

(1) a compact set K satisfies K ∩E = ∅ if and only if there is a neighborhood

of K that has empty intersection with Ej for all sufficiently large j; and

(2) if the sets Ej are contained in a fixed compact set, then Ej converge locally

to E if and only if Ej converges to E in the Hausdorff distance.

Proof. Both properties are straightforward consequences of the local con-

vergence, so we shall only verify the “if” direction of (1). If K ∩E = ∅, there

exists r > 0 such that Kδ, the δ-neighborhood of K, satisfies

inf
x∈Kδ , y∈E

|x− y| > δ.

But then there exists R > 0 such that K2δ ⊂ B(0, R). But then

d2R(Ej , E) < δ for sufficiently large j,

so the open δ-neighborhood of E contains Ej ∩B(0, 2R) for sufficiently large j.

Consequently, Kδ ∩ Ej = Kδ ∩ Ej ∩B(0, 2R) = ∅ for sufficiently large j. �

We next state a basic compactness result.

Lemma 5.5. Suppose that Ej is a sequence of closed sets in R2 that inter-

sect B(0, 1). Then there is a subsequence Ejk that converges locally to a closed

set E ⊂ R2 (satisfying E ∩B(0, 1) 6= ∅).
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This statement can be proved by modifying the usual proof of the rela-

tive compactness of a sequence of closed subsets of a compact metric in the

Hausdorff topology; see also Theorem 2.5 of [BL15] and references therein.

Let us now fix open sets Ω+
j ⊂ R2 with boundary Γj = ∂Ω+

j . We write

Ω−j = R2\Ω+
j . Throughout this paper, we will always be working in situations

where also

(5.2) Γj = ∂Ω−j .

Lemma 5.6. Let {Ω+
j }j be a sequence of open sets in the plane. Set

Ω−j = R2 \ Ω+
j , and suppose that Γj = ∂Ω+

j satisfies (5.2). Suppose there are

closed sets G+, G−, G0 satisfying

Ω±j → G± and Γj → G0 locally.

Then

(1) The limit sets G+, G−, G0 satisfy

G+ ∪G− = R2, G+ ∩G− = G0.

In particular, G+ \G0 and G− \G0 are open.

(2) There are functions g+, g− ∈ L∞(R2) such that for a subsequence Ω±jk ,

1Ω±jk
→ g± weakly ∗ in L∞(R2),

where

g+ = 1 in G+ \G0 and g+ = 0 in G− \G0.

Proof. For property (1), the fact that G+ ∪ G− = R2 is obvious. Since

Γj = ∂Ω+
j = ∂Ω−j ⊂ Ω+

j ∩ Ω−j , it is clear that G0 ⊂ G+ ∩ G−. On the other

hand, if x ∈ G+ ∩ G−, then for any ε > 0, there exists j0 ∈ N such that for

j ≥ j0,

dist
(
x,Ω+

j

)
≤ ε and dist

(
x,Ω−j

)
≤ ε.

That is, there exist y±j ∈ Ω±j such that |x−y±j | ≤ ε. There exists some z ∈ Γj in

the segment [y+
j , y

−
j ], and thus |x− z| ≤ ε and dist(x,Γj) ≤ ε. Since this holds

for all j big enough, we deduce that x belongs to the limit in the Attouch-Wets

topology of {Γj}k, that is, to G0.

To see the openness of G+\G0, note that R2 = (G+\G0)∪G− is a disjoint

union. Thus G+ \G0 = R2 \G− is open. Analogously, G− \G0 = R2 \G+ is

open.

We now turn our attention to verifying (2). The existence of g± ∈ L∞(R2)

such that, for a subsequence Ωjk , 1Ω±jk
→ g± weakly ∗ in L∞(R2) is a stan-

dard consequence of the Banach-Alouglu theorem. Now consider a continuous

function ϕ compactly supported on G+ \G0. Recall that G+ \G0 is open and
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G+ \ G0 = R2 \ G−. Consequently, property (1) of Lemma 5.4 ensures that

there exists some ε > 0 such that, for all k big enough,

dist
(

suppϕ, Ω−jk

)
≥ ε.

In particular, suppϕ ⊂ Ω+
jk

for all k big enough, which implies that
ˆ
R2

1Ω+
jk

ϕdx =

ˆ
R2

ϕdx for all k big enough

and proves that g+, the weak ∗ limit of 1Ω+
jk

, equals 1 in G+ \G0. The proof

that g+ = 0 in G− \G0 is completely analogous. �

6. General compactness results

involving the Carleson square function

Throughout this section, fix a sequence of sets Ω+
j with Ω−j = R2\Ω+

j ,

such that Γj = ∂Ω+
j = ∂Ω−j (i.e., (5.2) holds). Assume that Ω±j → G± and

Γj → G0 locally as j →∞. Consequently, the sets G+, G− and G0 will satisfy

the properties of Lemma 5.6.

6.1. Complementary semicircumferences and admissible pairs. It will be

convenient to introduce the following definitions, which will be central to our

analysis.

Definition 6.1 (Complementary semicircumferences). We say that two

closed semicircumferences are complementary if they are contained in the same

circumference and their intersection consists just of their end-points.

Definition 6.2 (Admissible pairs). We say that a pair of two complemen-

tary closed semicircumferences (S1, S2) is admissible (for the sequence of sets

{Ω+
j }j) if there exists a subsequence of circular arcs I±jk ⊂ ∂B(xjk , rjk) ∩ Ω±jk ,

with xjk ∈ Γjk , such that I+
jk

, I−jk converge to S1, S2 in Hausdorff distance,

respectively.

It is immediate to check that, if (S1, S2) is an admissible pair, then

S1 ⊂ G+, S2 ⊂ G− and that the common center of S1 and S2 belongs to G0.

Consequently, we will also say that S1 and S2 are admissible for G+ and G−,

respectively. We call the common center and radius of S1, S2 the center and

radius of the pair, respectively.

Observe that, for a given x ∈ G0, r > 0, there may exist more than one

admissible pair of semicircumferences centered at x with radius r.

Especially when dealing with Jordan domains, we will use the fact that the

set of admissible pairs is closed in the topology of Hausdorff distance ; that is,

if {(S1,i, S2,i)} is a sequence of admissible pairs (possibly with different centers

This content downloaded from 
108.215.24.170 on Wed, 01 Sep 2021 22:04:13 UTC 

All use subject to https://about.jstor.org/terms



112 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

and radii) such that S1,i, S2,i converge respectively to S1, S2, then (S1, S2) is

an admissible pair.

To check this fact, just take for each i a pair of arcs I+
i , I−i contained in

∂B(xji , rji) ∩ Ω±ji , with xi ∈ ∂Ω±ji , for a suitable ji such that

distH(I±i , S1,i) ≤
1

i
.

It is clear that the arcs I+
i , I−i converge respectively to S1, S2 in Hausdorff

distance, and thus (S1, S2) is an admissible pair.

6.2. A general convergence result. We set εj(x, r) and α+
j (x, r) to be the

coefficients ε(x, r) and α+(x, r) associated with Ω+
j .

Lemma 6.3. Fix C0, c0 > 0. Let {µj}j be a sequence of measures with

C0-linear growth supported on Γj converging weakly to a measure µ0 (so µ0

is supported in G0, and has C0-linear growth ). Suppose B0 is a ball with

µ0(B0) ≥ c0r. Further assume that, for each j, both

ˆ
7B0

ˆ 7r(B0)

0
α+
j (x, r)2 dr

r
dµj(x) ≤ 1

j
µj(7B0)(6.1)

and

ˆ
7B0

ˆ 7r(B0)

0
εj(x, r)

2 dr

r
dµj(x) ≤ 1

j
µj(7B0).(6.2)

Then

(1) there is an analytic variety Z such that supp(µ0) ∩ 7B0 ⊂ Z ⊂ G0;

(2) for all x ∈ 7B0 ∩ suppµ0 and all r ∈ (0, 7r(B0)), there is a pair of admis-

sible semicircumferences that are contained in ∂B(x, r).

Proof. We may assume by scaling that B0 = B(0, 1). The property (6.1)

is responsible for the first conclusion, while (6.2) is responsible for the second

conclusion.

Proof of (1). Recall from Lemma 5.6 that there is a subsequence of the

open sets Ω±jk whose characteristic functions converge weak-∗ in L∞ to func-

tions g± with g+ ≡ 1 on G+\G0 and g+ ≡ 0 on G−\G0.

Claim 1. One has α+
0 (x, r) = 0 for all x ∈ 7B0 ∩ suppµ0 and all r ∈

(0, 7r(B0)), where

(6.3) α+
0 (x, r) =

∣∣∣∣π2 − 1

r2

ˆ
g+(y) e−|y−x|

2/r2
dy

∣∣∣∣.
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Proof of Claim 1. For any r > 0, the mapping x 7→ α+
0 (x, r) is continuous

on R2, so (6.3) will follow once we show that

(6.4)

ˆ
7B0

ˆ 7

0
α+

0 (x, r)2r3 dr dµ0(x) = 0.

Note that (6.1) implies that
ˆ

7B0

ˆ 7

0
α+
jk

(x, r)2r3 dr dµk(x) ≤ µjk(7B0)

jk
≤ C

k
.(6.5)

Consider arbitrary non-negative smooth functions 1̃7B0(x), 1̃(0,7)(r) compactly

supported in 7B0 and (0, 7), respectively. Define

fk(x, r) := 1̃7B0(x)1̃[0,7](r) r
3

Å
1

r2
e−| ·r |

2

∗ 1Ω+
jk

− π

2

ã2

.

Since 1Ω+
jk

converges weakly ∗ in L∞(R2) to g+, then we have that

fk(x, r)→ f(x, r) pointwise,

where

f(x, r) = 1̃7B0(x)1̃(0,7)(r) r
3

Å
1

r2
e−| ·r |

2

∗ g+ − π

2

ã2

.

Clearly, fk is a uniformly bounded sequence on 7B0 × [0, 7] with uniformly

bounded derivative. (It is to ensure this condition that we introduce the factor

r3 in (6.5), but a factor of r would be sufficient.) Thus by the Arzelà-Ascoli

Theorem, we deduce that fk converges uniformly on compacts subsets to f ,

up to a subsequence that we relabel.

To prove (6.4), we write¨
f dr dµ0(x) =

¨
f dr d(µ0 − µjk) +

¨
(f − fk) dr dµjk +

¨
fk dr dµjk .

The first integral tends to 0 as k →∞, since clearly dr dµjk converges weakly

to dr dµ0. Similarly, the second integral converges to 0 as k → ∞, by the

uniform convergence on compact subsets of fk to f . As for the third integral,

we see that ∣∣∣∣¨ fk dr dµjk

∣∣∣∣ ≤ ˆ
7B0

ˆ 7

0
α+
jk

(x, r)2r3 dr dµjk(x) ≤ C

k
,

by (6.5). This immediately gives that¨
f dr dµ0 = 0,

and since 1̃7B0(x), 1̃(0,7)(r) are arbitrary non-negative smooth functions com-

pactly supported in 7B0 and (0, 7) respectively, (6.4) follows. �
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Claim 2. For any x ∈ R2, if there exists a sequence rk → 0 such that

α+
0 (x, rk) = 0 for all k, then x ∈ G0.

Proof of Claim 2. Recall that g+ = 1 in G+ \G0 and g+ = 0 in G− \G0.

So, if x ∈ G+ \G0, then it is immediate to check that

lim
r→0

1

r2

ˆ
g+(y) e−|y−x|

2/r2
dy =

ˆ
e−y

2
dy = π,

taking also into account that G+ \G0 is open. Thus α+
0 (x, r) is bounded away

from 0 for all r > 0 small enough.

Similarly, if x ∈ G− \ G0, then limr→0
1
r2

´
R2 g

−(y)e−|y−x|
2/r2

dy = 0, so

α+
0 (x, r) is bounded away from 0 if r is sufficiently small. �

We now complete the proof of property (1). Set

Z =
⋂
k≥0

{x ∈ R2 : α+
0 (x, 2−k) = 0},

where α+
0 is defined in (6.3). By Claims 1 and 2,

7B0 ∩ suppµ0 ⊂ Z ⊂ G0.

To see that Z is a real analytic variety, consider

F :=
∑
k≥0

2−kα+
0 (·, 2−k)2 =

∑
k≥0

2−k
Ç

1

r2
k

g+ ∗ e−|·|222k − π

2

å2

.

Then F is a real analytic function and Z = F−1(0).

Proof of property (2). Denote

Ek =
{
x ∈ Γk ∩ 7B0 :

´ 7
0 εk(x, r)

2 dr
r ≤ 1√

k

}
.

By Chebyshev’s inequality, we have

µk(7B0 \ Ek) ≤
√
k

ˆ
7B0

ˆ 7

0
εk(x, r)

2 dr

r
dµk(x) ≤

√
k

k
µ(7B0) =

1√
k
µk(7B0).

Set τk = 1− k−1/4. For each x ∈ Ek and 0 < r < 7, we have

1√
k
≥
ˆ 7

0
εk(x, s)

2 ds

s
≥
ˆ r

τkr
εk(x, s)

2 ds

s

≥ inf
s∈[τkr,r]

εk(x, s)
2 log

1

τk
≈ inf

s∈[τkr,r]
εk(x, s)

2 1

k1/4
.

Hence, for all r ∈ (0, 7), there exists some sr ∈ [τkr, r] such that

εk(x, sr) .
1

k1/8
.
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In particular, this implies that for each x ∈ Ek and 0 < r < 7, there exist

disjoint arcs I+
k (x, sr), I

−
k (x, sr) ⊂ ∂B(x, sr) satisfying

(6.6) H1(I±k (x, sr)) ≥
(
π − k−1/8

)
r and I±k (x, sr) ⊂ Ω±k .

Let ‹Ek ⊂ Ek be a compact set such that

µk(‹Ek) ≥ k − 1

k
µk(Ek) ≥

k − 1

k

Å
1− 1√

k

ã
µk(7B0).

Taking a subsequence if necessary, we can assume that µk|‹Ek converges weakly

∗ to some measure σ and that ‹Ek converges in the Hausdorff metric to some

compact set F ⊂ R2. In fact, since ‹Ek ⊂ Γk, we have F ⊂ G0. Further, it

is easy to check that supp σ ⊂ F , and by (6.6) it follows that for all x ∈ F
and all r ∈ (0, 7), there exists an admissible pair with radius r and center

x. It just remains to notice that σ|7B0 = µ0|7B0 , since for f ∈ C0(7B0),∣∣∣´‹Ek fdµk − ´7B0
fdµk

∣∣∣≤ ‖f‖∞µ(7B0)√
k

. �

7. The case when Ω+ is a two-sided corkscrew open set

The objective of this section is to prove Main Lemma 4.1 in the case of a

two-sided corkscrew open set.

Lemma 7.1. Let Ω+ ⊂ R2 be a two-sided c-corkscrew open set, let Γ =

∂Ω+, and let µ be a measure with C0-linear growth supported on Γ. Let B be

a ball centered at Γ such that

µ(B) ≥ c0r(B)

for some 0 < c0 ≤ C0. Given any ε > 0, there exists δ > 0 (depending on

C0, c0, c, ε) such that if
ˆ

7B

ˆ 7r(B)

0

(
ε(x, r)2 + α+(x, r)2

) dr
r
dµ(x) ≤ δ µ(7B),

then

β∞,Γ(B) ≤ ε.
The next lemma shows that two-sided corkscrew open sets enjoy nice

limiting properties under Hausdorff limits.

Lemma 7.2. Let {Ω+
j }j be a sequence of c-corkscrew planar open sets such

that 0 ∈ ∂Ω+
j and infj diam(Ω+

j ) > 0. Let Ω−j = R2 \Ω+
j and Γj = ∂Ω+

j . Then

the following holds :

(1) there is a subsequence jk so that

Ω±jk → Ω±∞ and Γjk → Γ∞ locally ;
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(2) the limit sets Ω±∞ are two-sided corkscrew open sets such that Ω−∞ = R2\Ω+
∞

and Γ∞ = ∂Ω+
∞;

(3) Ω±∞ satisfy the following : for any ball B such that B ⊂ Ω±∞, then a neigh-

borhood of B is contained in Ω±jk for k sufficiently large.

Proof. This result is essentially known. See, for example Theorem 4.1

in [KT03]. However, we are not working under precisely the assumptions

in [KT03], so we provide a proof for the reader following Lemma 5.6. First,

Lemma 5.5 provides us with closed sets G± and G0 and a subsequence such that

Ω±jk → G± and Γjk → G0 locally as k → ∞. Taking the subsequence jk and

the sets G± and G0 provided in that lemma, we set Γ∞ = G0, Ω+
∞ = G+\G−

and Ω−∞ = G−\G+.

Fix r∈ (0, diam(Ω∞)). Observe that r< lim infk→∞ diam(Ωjk). If x∈Γ∞,

then there is a sequence xjk ∈ Γjk with limk→∞ xjk = x. Since Ωjk is a

two-sided c-corkscrew domain, and r < diam(Ωjk) for sufficiently large k,

then there are x±jk ∈ Ω±j with |xjk − x±jk | ≤ r and B(x±jk , c0r) ⊂ Ω±jk for k

large enough. Passing to a further subsequence if necessary, we may assume

limk→∞ x
±
jk

= x±. But then B(x±, c0r) ⊂ G± (for instance, any element of

either of these balls can be obtain as a the limit of a sequence belonging to the

respective sequences balls B(x±jk , c0r)), and therefore B(x±, c0r) ⊂ Ω±∞. Also

notice that |x± − x| ≤ r.
On the other hand, property (1) from Lemma 5.6 ensures that R2 =

Ω+
∞ ∪ Γ∞ ∪ Ω−∞ and the union is disjoint, and so

Γ∞ = ∂Ω+
∞ = ∂Ω−∞.

Combining our observations yields that Ω+
∞ is a two-sided corkscrew open

set, and additionally, Ω±jk → Ω±∞ locally as k → ∞. Therefore property (1)

of the lemma is proved. Now property (3) follows from property (1) from

Lemma 5.4, since Γ∞ = ∂Ω+
∞ = ∂Ω−∞. �

We next analyze what we can say about the natural limit situation given by

the conclusions of Lemma 6.3, taking into account that the limit set G0 = Γ∞
is the boundary of a two-sided corkscrew open set.

Lemma 7.3. Let Ω+ ⊂ R2 be a non-empty open set, and let Ω− = R2 \Ω+

and Γ = ∂Ω+. Suppose that ∂Ω− = Γ too. Let µ be a measure with C0-linear

growth supported on Γ, and let B be a ball centered in suppµ. Suppose that

• there is an analytic variety Z with supp(µ0) ∩B ⊂ Z ⊂ Γ; and

• for each x ∈ B ∩ suppµ and all r ∈ (0, 3r(B)), there exist two complemen-

tary half-circumferences C+(x, r), C−(x, r) with radius r and center x such

that
C+(x, r) ⊂ Ω+ and C−(x, r) ⊂ Ω−.

Then Γ ∩B is a segment.
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We remark that the last property regarding the existence complementary

half-circumferences C+(x, r), C−(x, r) is a consequence of the existence of

admissible pairs.

Proof. Since µ is non-zero and has linear growth, we have that H1(Z) ≥
H1(suppµ) > 0. Together with the fact that Z 6= R2 (Ω+ is non-empty), this

implies that there exists an analytic curve S such that µ(S ∩ 1
4B) > 0 (which

implies that H1(S ∩ suppµ ∩ 1
4B) > 0, because of the linear growth of µ).

We claim that S is a segment. To prove this, it suffices to show that S

has vanishing curvature at any point of supp µ ∩ S. Indeed, since this set has

positive length and the curvature of a real analytic arc is locally a real analytic

function (with respect the arc-length parametrization from an interval), this

implies that the curvature vanishes on the whole arc S, and thereby proves

that S is a segment.

To show that the curvature of S vanishes at suppµ ∩ S, we will use the

following property, which we will call the

Key Property. Given x ∈ B ∩ suppµ and r ∈ (0, 3r(B)), let I ⊂
∂B(x, r) be an arc such that H1(I) < πr whose end-points belong both to Ω+.

Then I ⊂ C+(x, r), and thus I ⊂ Ω+. The analogous statement holds replacing

Ω+ by Ω− and C+(x, r) by C−(x, r).

To verify that the key property holds, note that if I is an arc as above, then

its end-points x1, x2 do not belong to Ω− (because they belong to Ω+). This

implies that x1, x2 ∈ C+(x, r), and thus either I or ∂B(x, r) \ I is contained in

C+(x, r). The latter cannot hold since H1(∂B(x, r) \ I) > πr = H1(C+(x, r)),

and so we have I ⊂ C+(x, r).

We are ready now to show that the curvature of S vanishes at every

x ∈ suppµ∩S. Without loss of generality we assume that x = 0, and that the

tangent to S at 0 is the horizontal axis.

Seeking for a contradiction, suppose that S is strictly convex at 0 (i.e., if S

equals the graph of the real analytic function g : (−δ, δ)→ R in a neighborhood

of 0, then g′′(0) > 0).

Let z1, z2 be the two end-points of S, and let

d0 =
1

2
min
i=1,2

dist(x, zi).

Let r ∈ (0, d0/2) be small enough so that B(x, r) ∩ S \ {x} ⊂ R2
+, where R2

+

is the open upper half plane. We also assume that, moreover, the distance

of any point from S ∩ B(x, r) to the horizontal axis is at most r/1000. Let

y1 ∈ S∩∂B(x, r/2). Since Γ = ∂Ω+, there exists some ball B1 ⊂ Ω+ satisfying

dist(y1, B1) + r(B1) ≤ 1

10
dist(y1,R2

−).
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y2 y3

B3

B1

B2

C3

Figure 1. The figure depicts the first case, where B1 is below

the red curve S. (The ratio of the radii of the balls B1, B2, B3

is not to scale; the reader should think of r(B1) � r(B2) �
r(B3).)

Let C1 be the circumference centered at x and passing through the center

of B1, and let y2 be the point belonging to S ∩ C1 that is closest to y1. (If r

is small enough, the set S ∩C1 consist of two points by strict convexity.) Now

using that Γ = ∂Ω−, there exists some ball B2 ⊂ Ω− satisfying

dist(y2, B2) + r(B2) ≤ 1

10
min

(
dist(y2,R2

−), r(B1)
)
.

Now let C2 be the circumference centered at x and passing through the center

of B2, and let y3 the point belonging to S ∩C2 that is farther from y2. (If r is

small enough, the set S ∩ C2 consists of two points.)

We distinguish now two cases. In the first one we suppose that B2 is

above B1 (this happens if B1 is below S); see Figure 1.2 Then, using again

that Γ = ∂Ω+, there exists some ball B3 ⊂ Ω+ satisfying

(7.1) dist(y3, B3) + r(B3) ≤ 1

10
min

(
dist(y3,R2

−), r(B2)
)
.

In the case that B2 is below B1 (which happens if B1 is above S), using that

Γ = ∂Ω−, we can choose the ball B3 so that B3 ⊂ Ω− also satisfies (7.1).

In any case, let C3 be the circumference centered at x passing through the

center of B3. Then it follows that C3 intersects B1, B2, B3. Observe that, in

either case, B1, B2, B3 ⊂ R2
+.

In the first case, there is an arc in C3 whose end-points belong respectively

to B1, B3 (which are contained in Ω+), passes through B2, and its length is

smaller than H1(C3)/2, due to the fact that its end-points belong to R2
+. By

the Key Property, this arc is contained in Ω+, which is a contradiction because

2All colored figures are viewable in the online version of the article:

https://doi.org/10.4007/annals.2021.194.1.2
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B2 ⊂ Ω−. In the second case we deduce that there is an arc in C3 that joins B2

and B3 (which are contained in Ω−) and passes through B1, with length smaller

than H1(C3)/2. By the Key Property, the arc is contained in Ω−. This is again

a contradiction, because B1 ⊂ Ω+. Hence, the curvature of S at x is zero.

We now appeal to the following simple fact.

Lemma 7.4. If a real analytic variety Z ⊂ R2 contains a segment S, then

it also contains the line L that supports the segment.

Proof of Lemma 7.4. By a suitable translation and rotation we can as-

sume that the line L supporting S coincides with the horizontal axis of R2.

Let Φ : R2 → R be a real analytic function such that Z = Φ−1(0). Then,

the function defined by φ(x1, x2) = Φ(x1, 0) is real analytic, and it vanishes in

the interior of the set S × R and thus it vanishes identically in R2. That is,

Φ(x1, 0) = 0 for all x1 ∈ R or, in other words, L ⊂ Φ−1(0) = Z. �

Returning to the proof of Lemma 7.3, Lemma 7.4 shows that Γ contains

a line L such that µ(L ∩ 1
4B) > 0.

Our next objective consists of showing that Γ ∩ B ⊂ L ∩ B, which will

complete the proof of the lemma. Again, without loss of generality, suppose

that L is the horizontal axis.

Suppose that B∩R2
+∩Ω+ 6= ∅. We intend to show that then B∩R2

+ ⊂ Ω+.

For x ∈ L, consider the semicircular extension of Ω+ ∩ B(x, 3r(B)) ∩ R2
+

with respect to the center x defined by

(7.2) U+
x =

⋃
r∈(0,3r(B)):∂B(x,r)∩Ω+∩R2

+ 6=∅

(
∂B(x, r) ∩ R2

+

)
.

Observe that U+
x is also an open set.

Claim 3. If x ∈ supp(µ) ∩B(x, 3r(B)) ∩ R2
+, then

Ω+ ∩B(x, 3r(B)) = U+
x .

Proof of Claim 3. The arguments we use are similar to those required to

show that the curve S had vanishing curvature. We need to show that U+
x ⊂ Ω+

(recall L ⊂ ∂Ω+). Assuming otherwise, there exists some point y ∈ U+
x ∩ Ω−.

By connectivity, then we deduce that there exists some r ∈ (0, 3r(B)) such that

∂B(x, r) ∩ Ω+ ∩ R2
+ 6= ∅ and ∂B(x, r) ∩ Γ ∩ R2

+ 6= ∅.

Because of the existence of some point y′ ∈ ∂B(x, r) ∩ Γ ∩ R2
+, the fact that

Γ = ∂Ω−, and the openness of U+
x , we deduce that there exists some ball

B′1 ⊂ U+
x ∩ Ω−. Let C ′1 be the circumference centered at x passing through

the center of B′1. Choose one of the two points z ∈ C ′1 ∩L so that the shortest

arc in C ′1 that joins z to B′1 intersects Ω+; see Figure 2.
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B′
1 ⊂ Ω−

z

B′
2 ⊂ Ω−

Ω+

I ′

Figure 2. This figure depicts the geometric setup in the proof

of Claim 3. In particular, observe the arc I ′ with end-points

belonging to Ω− that intersects Ω+.

Again by the fact that Γ = ∂Ω−, there exists some ball B′2 ⊂ Ω− such that

r(B′2) + dist(z,B′2) ≤ 1

100
min

(
r(B′1), dist(B′1, L)

)
.

Let C ′2 be the circumference centered at x passing through the center of B′2. It

is easy to check that there is an arc I ′ ⊂ C ′2 whose end-points belong respec-

tively to B′1 and B′2, such that it intersects Ω+, and moreover has length smaller

than 1
2H1(C ′2). Since B′1 and B′2 are contained in Ω−, the whole I ′ is contained

in Ω− by the Key Property, which contradicts the fact that I ′ ∩ Ω+ 6= ∅. �

Recall that we are assuming that B ∩R2
+ ∩Ω+ 6= ∅ and we want to show

that then B∩R2
+ ⊂ Ω+. Suppose that this not the case. Of course, this implies

that if xB ∈ supp(µ)∩L is the center of B, then B(xB, 2r(B))∩R2
+ 6⊂ Ω+. Let

V be a connected component of Ω+ ∩ B(xB, 2r(B)) ∩ R2
+. Since, by Claim 3,

V coincides with its semicircular extension centered at xB, it is of the form

V = A(xB, s1, s2) ∩ R2
+ or V = B(xB, s1) ∩ R2

+,

with s1 < 2r(B) in any case (because V 6= B(xB, 2r(B))∩R2
+ by assumption).

Let x′ ∈ 1
10B ∩ L ∩ suppµ, x′ 6= xB. (The existence of x′ is an immediate

consequence of the linear growth of µ.) By Claim 3, the semicircular extension

Ux′ centered at x′ is also contained in Ω+, but then

Ω+ ⊃ Ux′ ⊃
⋃

r∈(0,3r(B)):∂B(x′,r)∩R2
+∩V 6=∅

(
∂B(x′, r) ∩ R2

+

)
⊃ ∂B(xB, s1) ∩ R2

+,

which contradicts the definition of V as a connected component of Ω+.
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We have now verified that if B ∩ R2
+ ∩ Ω+ 6= ∅, then B ∩ R2

+ ⊂ Ω+. But

by completely analogous arguments, we see that if B ∩ R2
+ ∩ Ω− 6= ∅, then

B ∩ R2
+ ⊂ Ω−, and one can interchange the upper half plane with the lower

half plane. We therefore conclude that B ∩ ∂Ω+ ⊂ L, and the proof of the

Lemma 7.3 is complete. �

Proof of Lemma 7.1. By renormalizing it suffices to prove the lemma for

the ball B0 := B(0, 1). We argue by contradiction: then there exists an ε > 0

such that for all k ∈ N, there exists a two-sided c-corkscrew open set Ω+
k with

Γk := ∂Ω+
k containing 0 supporting a measure µk with C0-linear growth with

µk(B0) > c0, so that we have

ˆ
7B0

ˆ 7

0

(
εk(x, r)

2 + α+
k (x, r)2

) dr
r
dµk(x) ≤ 1

k
µk(70)(7.3)

and

β∞,Γk(B0) > ε.

Here we denote by εk(x, r) and α+
k (x, r) the coefficients ε(x, r) and α+(x, r)

associated with Ω+
k .

Observe that the condition µk(B0) ≈ 1 and the linear growth of µk imply

that diam(Ω+
k ) ≥ diam(Γk) ≥ diam(B0∩ suppµk) & 1. Therefore, passing to a

subsequence (which we relabel) if necessary, we may apply Lemma 7.2 to find

a two-sided c-corkscrew open set Ω+ such that Γ = ∂Ω+, Ω− = R2 \ Ω+, and

lim
k→∞

Ω±k = Ω± and lim
k→∞

Γk = Γ locally as k →∞.

This implies that β∞,Γ(B0) ≥ ε.
Next, Lemma 5.2 ensures that, by passing to a further subsequence if nec-

essary, we may assume that the measures µk converge weakly to a measure µ,

supported on Γ, with C0-linear growth and µ(B0) ≥ c0.

We now apply Lemma 6.3. Therefore, there is an analytic variety Z such

that 7B0 ∩ supp(µ) ⊂ Z ⊂ Γ, and for every x ∈ 7B0 ∩ supp(µ) and r ∈ (0, 7),

(7.4)
there are complementary semicircumferences (C+, C−)

centered at x with radius r satisfying C± ⊂ Ω±

Since µ(B0) ≥ c0, we can now find a ball B′ centered on supp(µ) ∩ B0 such

that 7B0 ⊃ B′ ⊃ B0 such that supp(µ) ∩ B′ ⊂ Z and (7.4) holds for every

x ∈ supp(µ) ∩B′ and r ∈ (0, 3r(B′)). We now apply Lemma 7.3 with the ball

B′ to conclude that Γ∞ ∩ B′ (and so Γ ∩ B0) is a segment. This, however,

contradicts the fact that β∞,Γ(B0) ≥ ε. �
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8. The case of Jordan domains

In this section we shall prove Main Lemma 4.1 in the case of a Jordan

domain, which we restate for the benefit of the reader.

Lemma 8.1. Let Ω+ ⊂ R2 be a Jordan domain, let Γ = ∂Ω+, and let µ

be a measure with C0-linear growth supported on Γ. Let B be a ball centered

at Γ such that

µ(B) ≥ c0r(B)

for some c0 ∈ (0, C0). Given any ε > 0, there exists δ > 0 (depending on

C0, c0, ε) such that if

ˆ
7B

ˆ 7r(B)

0

(
ε(x, r)2 + α+(x, r)2

) dr
r
dµ(x) ≤ δ µ(7B),

then

β∞,Γ(B) ≤ ε.
The first auxiliary result we need is the following, which states that, at

points where the Carleson square function is sufficiently small, we may find

corkscrew balls.

Lemma 8.2. Let Ω+ ⊂ R2 be a Jordan domain. Let x ∈ Γ = ∂Ω+, r > 0,

and x′ ∈ Γ ∩ ∂B(x, r). Suppose that

ˆ 2r

0

(
ε(x, t)2 + ε(x′, t)2

) dt
t
≤ δ

for some δ > 0. If δ is small enough, then there are two balls B± ⊂ B(x, r)∩Ω±

such that r(B+) ≈ r(B−) ≈ r, where the implicit constants are absolute.

Proof. Without loss of generality, we may assume that x = 0, r = 1, and

x′ lies on the horizontal axis. It will be convenient to work with rectangles in

polar coordinates. For intervals I ⊂ (0,∞) and P ⊂ [−π, π], define

X(I, P ) = {seiθ : s ∈ I, θ ∈ P}.

We call such a set a polar rectangle.

Put m2 to be the two-dimensional Lebesgue measure. We begin with a

claim:

Claim 4. There is an absolute constant c > 0 such that the following

holds : For intervals I ⊂ [1/2, 1] and P ⊂ [π/4, 3π/4] ∪ [−3π/4,−π/4], if δ

is sufficiently small (depending on `(I) and `(P )), then there exists a polar

rectangle X′ ⊂ X(I, P ) such that m2(X′) ≥ cm2(X) and either X′ ⊂ Ω+ or

X′ ⊂ Ω−.

This content downloaded from 
108.215.24.170 on Wed, 01 Sep 2021 22:04:13 UTC 

All use subject to https://about.jstor.org/terms



A PROOF OF CARLESON’S ε2-CONJECTURE 123

Let us first show how to prove the lemma using Claim 4. First, take I =

[1/2, 1] and P = [π/4, 3π/4]. Then we get a polar rectangle X′ = X(I ′, P ′) ⊂
X(I, P ) with m2(X ′) & 1, and such that X′ ⊂ Ω±, provided δ is small enough.

For definiteness let us assume that X′ ⊂ Ω+. We then apply the claim again

with I replaced by I ′ and P replaced by −(1
3P
′) = {−θ : θ ∈ 1

3P
′}. (Here for

an interval P , aP is the concentric interval of sidelength a`(P ).) As long as

δ is small enough, there is a polar rectangle X′′ = X(I ′′, P ′′) ⊂ X(I ′,−(1
3P
′))

with X′′ ⊂ Ω±, and m2(X′′) & 1. We need to verify that X′′ ⊂ Ω−.

However, if X′′ ⊂ Ω+, then we would have that every circumference

C(0, s), with s ∈ I ′′, has its intersection with X′′ or X′ contained in Ω+.

But C(0, s)\(X′ ∪X′′) is comprised of two arcs with length at most equal to

(π− `(P ′′))s. Thus ε(0, s) & 1 for all s ∈ I ′′, whence
´ 1

0 ε(0, s)
ds
s & 1. We have

therefore arrived at a contradiction if δ is sufficiently small.

Finally, since X′ and X′′ have Lebesgue measure & 1, we can inscribe in

them balls of radius ≈ 1, and this completes the proof of the lemma. �

We now return to verify the claim.

Proof of Claim 4. We may assume that X = X(I, P ) ⊂ R2
+, the upper

half-plane (i.e., P ⊂ [π/4, 3π/4]). First split X(I, P ) into 1000 polar rectangles

Xj = X(I, Pj) with `(Pj) = 1
1000`(P ). Write I = [r1, r2]. Fix κ > 0, and

consider the circumferences

Cs = ∂B(0, s) for s ∈ ((1− κ)r2 + κr1, r2).

If δ is sufficiently small, 99% of these circumferences intersect Γ in at most

four of the polar rectangles Xj . In this case, we call Cs good.

Next, for each polar rectangle Xj , consider

mj = H1
(
{s ∈ [(1− κ)r2 + κr1, r2] : Cs is good and Cs ∩Xj ∩Γ 6= ∅}

)
.

Fubini’s theorem yields ∑
j

mj ≤ 4κ(r2 − r1),

and so there exists j0 with mj0 ≤ 4κ
1000(r2 − r1).

Consequently,

H1
(
{s ∈ [(1− κ)r2 + κr1, r2] : Cs ∩Xj0 ∩Γ 6= ∅}

)
≤ mj0 +H1({s ∈ ((1− κ)r2 + κr1, r2) : Cs is not good})

≤ 4κ
1000

(r2 − r1) +
1

100
κ(r2 − r1) ≤ 1

50
κ(r2 − r1),

and we conclude that at most only 2% of the circumferences Cs, s ∈ ((1−κ)r2

+ κr1, r2), intersect Γ in Xj0 = X(I, Pj0).

Using the pigeonhole principle, we infer that we can find three pairwise

disjoint intervals I1, I2 and I3 in [(1− κ)r2 + κr1, r2], such that
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Γ

Γ

C(x′, s)

Figure 3. This figure depicts a circumference C(x′, s) crossing

Xj0,k1 to the right of X̃j0,k1 and crossing Xj0,k2 to the right of

X̃j0,k2 .

• `(Ik) & κ(r2 − r1);

• dist(Ij , Ik) & κ(r2 − r1) if j 6= k; and

• C(0, s) ∩Xj0,k ∩Γ = ∅ whenever s ∈ ∂Ik for k = 1, 2, 3.

Consider the three polar rectangles Xj0,k = X(Ik, Pj0), which certainly

contain X̃j0,k = X(Ik, ‹Pj0) with ‹Pj0 = 1
10Pj0 . We will show that one of the

rectangles X̃j0,k, for some k = 1, 2, 3, does not intersect Γ.

Let us write Γ=γ([0, 1]) with γ(0)=0=γ(1). First suppose Γ∩ X̃j0,k 6= ∅
for some k ∈ {1, 2, 3}. If we consider u0 such that γ(u0) ∈ X̃j0,k and u1 =

max{u : γ([u0, u]) ⊂ Xj0,k}, then since C(0, s) ∩Xj0,k ∩Γ = ∅ for s ∈ ∂Ik, and

0 = γ(0) = γ(1) /∈ Xj0,k, we must have that γ(u1) ∈ {seiθ : s ∈ Ik, θ ∈ ∂Pj0}.
We say that Γ goes to the right (left resp.) if γ(u1) lies on the right (left)

side boundary of Xj0,k. Assuming that X̃j0,k ∩ Γ 6= ∅ for every k = 1, 2, 3, we

therefore see that Γ must go to one direction (either left or right) in two of

the rectangles, say Xj0,k1 and Xj0,k2 . For definiteness let us say the direction

is right; analogues arguments handle the other case.

If we fix κ = 10−6`(Pj), say, then there is an interval J with `(J) & κ`(I)

so that for every s ∈ J , the circumference C(x′, s) crosses Xj0,k1 to the right

of X̃j0,k1 and also crosses Xj0,k2 to the right of X̃j0,k2 . Therefore, insofar as

Γ goes to the right in both Xj0,k1 and Xj0,k2 , a circumference C(x′, s) with

s ∈ J intersects Γ in the well-separated polar rectangles Xj0,k1 and Xj0,k2 (see

Figure 3), and so ε(x′, s) &κ,`(I) 1. But then
´ 2

0 ε(x
′, s)2 ds

s &κ,`(I) 1. If δ is

small enough, then we have reached a contradiction. �

This content downloaded from 
108.215.24.170 on Wed, 01 Sep 2021 22:04:13 UTC 

All use subject to https://about.jstor.org/terms



A PROOF OF CARLESON’S ε2-CONJECTURE 125

We begin by reviewing Lemma 5.6 in the context of a sequences of Jordan

domains.

Lemma 8.3. Let {Ω+
j }j be a sequence of Jordan domains in the plane

such that 0 ∈ ∂Ω+
j . Let Ω−j = R2 \ Ω+

j and Γj = ∂Ω+
j . Then the following

holds :

(1) There is a subsequence of domains Ω±jk , and there are closed sets G+, G−, G0

such that

Ω±jk → G± and Γjk → G0 locally.

(2) The limit sets G+, G−, G0 satisfy

G+ ∪G− = R2, G+ ∩G− = G0.

In particular, G+ \G0 and G− \G0 are open.

Proof. The existence of the locally convergent subsequences follows from

Lemma 5.5. Property (2) is then a consequence of Lemma 5.6. �

We remark that, in the above situation, G0 need not coincide with ∂G+ or

∂G−. Further, G0 may have non-empty interior, and G± \G0 may be empty.

Our next lemma reviews the basic convergence result Lemma 6.3, also

taking into account Lemma 8.2.

Lemma 8.4. Let {Ω+
j }j be a sequence of Jordan domains in the plane that

intersect some ball B0. Let Ω−j = R2 \ Ω+
j and Γj = ∂Ω+

j . Suppose G± and

G0 are closed sets with

Ω±j → G± and Γj → G0 locally as j →∞.

Suppose µj are measures supported on Γj with C0-linear growth that converge

weakly to a measure µ0 satisfying µ0(B0) ≥ c0r(B0). Suppose (6.1) holds, i.e.,

ˆ
7B0

ˆ 7r(B0)

0
α+
j (x, r)2 dr

r
dµj(x) ≤ 1

j
µj(7B0),

where α+
j are the coefficients α+ associated with Ω+

j , and (6.2) holds, i.e.,

ˆ
7B0

ˆ 7r(B0)

0
εj(x, r)

2 dr

r
dµj(x) ≤ 1

j
µj(7B0),

where εj(·, ·) are the coefficients ε(·, ·) associated with Ω+
j . Then

(1) there is an analytic variety Z with 7B0 ∩ supp(µ0) ⊂ Z ⊂ G0;

(2) for all x ∈ 7B0 ∩ suppµ0 and all r ∈ (0, 7r(B0)), there is a pair of admis-

sible semicircumferences that are contained in ∂B(x, r);
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(3) for every M > 0, there exists a constant c(M) > 0 such that whenever

x ∈ B0 ∩ supp(µ0) and r ∈ (0, r(B0)) are such that µ0(B(x, r)) ≥ r/M ,

then there are two balls B± ⊂ B(x, 2r) ∩G± \G0 with r(B±) ≥ c(M)r.

Proof. The first two statements are shown in Lemma 6.3. The third as-

sertion is proved by passing to the limit in the result in Lemma 8.2. Indeed,

fix r′ = r
3MC0

. Then for sufficiently large j, µj(B(x, r)\B(x, r′)) ≥ r
2M . Since

x ∈ supp(µ), for any s ∈ (0, r
′

2 ), we have lim infj→∞ µj(B(x, s)) > 0, whence

1

µj(B(0, s))

ˆ
B(x,s)

ˆ 7r

0
ε+
j (y, r)2 dr

r
dµj(y)

≤ 1

jµj(B(0, s))
µj(7B0)→ 0 as j →∞.

Consequently, for δ > 0 as in Lemma 8.2 and for sufficiently large j, we can

find zj ∈ B(x, s) ∩ supp(µj) with
´ 7r

0 ε+
j (zj , r)

2 dr
r < δ. But now, as j →∞,

1

µj(B(x, r)\B(x, r′))

ˆ
B(x,r)\B(x,r′)

ˆ 7r

0
ε+
j (y, r)2 dr

r
dµj(y) ≤ 2M

jr
µj(7B0)→ 0,

so for large j we can find z′j ∈ supp(µj)∩B(x, r)\B(x, r′) with
´ 7r

0 ε+
j (z′j , r)

2 dr
r

< δ. Notice that z′j ∈ ∂B(zj , tj) with tj ∈ (r′/2, 3
2r). We apply Lemma 8.2

with the points zj and z′j and radius tj (note that 2tj ≤ 7r) to find balls B±j ∈
Ω±j ∩ B(zj ,

3
2r) such that r(B±j ) & r

M . If s is small enough, B±j ⊂ B(x, 3r/2)

and we may pass to a subsequence B±jk that converge in Hausdorff distance

to balls B± ⊂ G± with B± ⊂ B(x, 2r). But then if y ∈ B± (say y ∈ B+

for definiteness), then a neighborhood of y is contained in B+
jk

for sufficiently

large k, and so lim infk dist(x,Γjk) > 0, which ensures that y ∈ G+\G0. Thus

B± ⊂ G±\G0. �

Our next result is an analogue of Lemma 7.3. The reader should notice

that the conclusion is weaker. This is due to the fact that we only can infer

anything about the structure of the boundary set G0 at points where µ has

lots of mass (via property (3) of Lemma 8.4).

Lemma 8.5. Suppose G+, G− and G0 are three closed sets satisfying G+∪
G− = R2 and G+ ∩ G− = G0. Suppose that µ0 is a measure with C0-linear

growth and that there is a real analytic variety Z with supp(µ0) ⊂ Z ⊂ G0.

Let B0 ⊂ R2 be some ball such that µ(B0) > 0 and

(1) for every M > 0, there exists a constant c(M) > 0 such that whenever

x ∈ B0 ∩ supp(µ0) and r ∈ (0, r(B0)) are such that µ0(B(x, r)) ≥ r/M ,

then there are two balls B± ⊂ B(x, 2r) ∩G± \G0 with r(B±) ≥ c(M)r;

(2) for every x ∈ 2B0 and r ∈ (0, 2r(B0)) there exist two complementary

semicircumferences C+(x, r), C−(x, r) with radius r and center x such
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A PROOF OF CARLESON’S ε2-CONJECTURE 127

that

C+(x, r) ⊂ G+ and C−(x, r) ⊂ G−.

Then there is some line L such that

L ⊂ G0 and µ0(B0 ∩ L) > 0.

There is some natural repetition in the proof of Lemmas 8.5 and 7.3, but

since the proofs are also quite substantially different, and some readers may

want to only consider the case of Jordan domains, we repeat all the relevant

details here.

Proof. Since µ0 is non-zero and has linear growth, it is clear that H1(Z) ≥
H1(suppµ0) > 0. Together with the fact that Z 6= R2 (which follows from

property (1), since µ(B0) > 0), this implies that there exists some analytic

arc S such that µ0(S ∩B0) > 0 (which implies that H1(S ∩ suppµ ∩B0) > 0,

because of the linear growth of µ0).

We claim that S is a segment. To prove this it suffices to show that S

has vanishing curvature in a set positive measure µ0. Indeed, since this set has

positive length and the curvature of a real analytic arc is locally a real analytic

function (with respect the arc-length parametrization from an interval), this

implies that the curvature vanishes on the whole arc S. Thus S is a segment.

To show that the curvature of S vanishes in some set of positive measure µ0,

we will again use the

Key Property. Given x ∈ B ∩ suppµ0 and r ∈ (0, 3r(B0)), let I ⊂
∂B(x, r) be an arc such that H1(I) < πr whose end-points belong both to

G+ \G0. Then I ⊂ G+. The analogous statement holds replacing G+ by G−.

We verify the Key Property as follows: if I is an arc as above, then its end-

points x1, x2 do not belong to G− (because they belong to G+ \ G0). Hence,

if (C+, C−) is a pair of complementary semicircumferences at x with radius r

satisfying C± ⊂ G±, we have that x1, x2 ∈ C+, and thus either I or ∂B(x, r)\I
is contained in C+. The latter cannot happen since H1(∂B(x, r) \ I) > πr =

H1(C+), and so we have I ⊂ C+ ⊂ G+.

We are ready now to show that the curvature of S vanishes at some set of

positive measure µ0. We consider some set F ⊂ S such that H1(F ) > 0 and

µ0|F = hH1|F for some function h ≈ 1 (with the implicit constant possibly

depending on S, F , and other parameters). Without loss of generality we

assume that x0 = 0 is a density point of F and that the tangent to S at x0

is the horizontal axis. Aiming for a contradiction, suppose that S is strictly

convex at x0. (That is, if S equals the graph of the real analytic function

g : (−δ, δ)→ R in a neighborhood of x0, then g′′(0) > 0.)
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Let z1, z2 be the two end-points of S, and let

d0 =
1

2
min
i=1,2

dist(x0, zi).

Let r ∈ (0, d0/2) be small enough so that g′′(ΠH(x)) is comparable to

g′′(ΠH(x0)) in B(x0, r) ∩ S, where ΠH is the orthogonal projection on the

horizontal axis. We will prove the following.

Claim 5. There exist some z ∈ B(x0, r/10) ∩ S ∩ suppµ0 and some r′ ∈
(0, r/10) and an arc I ⊂ ∂B(z, r′) with H1(I) < πr′ such that either its end-

points belong to G+ \G0 and I intersects G− \G0, or its end-points belong to

G− \G0 and I intersects G+ \G0.

The preceding claim asserts that the strict convexity of g at x0 implies

that the Key Property is violated. Hence S is a segment. Lemma 7.4 then

ensures that Z also contains the line L that supports the segment, thereby

completing the proof of the lemma (up to verification of the claim). �

Proof of Claim 5. Since x0 is a density point of F in S, we can take some

t ∈ (0, r/10) such that H1(F ∩ B(x0, t)) ≥ (1 − τ)H1(S ∩ B(x0, t)), where

τ ∈ (0, 10−3) is some small parameter to be fixed below.

Denote by LH the horizontal axis, and let J = (−t/2, t/2) ⊂ LH , so that

S ∩B(x0, t) ⊃ g(J).

We will appeal to the following simple lemma.

Lemma 8.6. Fix κ > τ , and suppose that F is a finite family of pairwise

disjoint intervals contained in (−t/2, t/2) satisfying∑
T∈F
H1(g(T )) ≥ 3κH1(S ∩B(x0, t)).

If F ′ denotes the subfamily of intervals T ∈ F satisfying H1(g(T ) ∩ F ) ≥
κH1(g(T )), then ∑

T∈F ′
H1(g(T )) ∩ F ) ≥ κH1(S ∩B(x0, t)).

Proof. Suppose the conclusion fails. Then insofar as F are pairwise dis-

joint intervals, and H1(g(T ) ∩ F ) < κH1(g(T )) for T ∈ F\F ′, we have∑
T∈F
H1(g(T ) ∩ F ) ≤ 2κH1(S ∩B(x0, t)).

But then

H1(B(x0, t) ∩ F ) ≤ 2κH1(S ∩B(x0, t)) +H1
(
S\

⋃
T∈F

g(T )
)

≤ (1− κ)H1(S ∩B(x0, t)).
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A PROOF OF CARLESON’S ε2-CONJECTURE 129

The right-hand side is strictly smaller than (1 − τ)H1(S ∩ B(x0, t)), which is

our desired contradiction. �

We split J into three intervals Jl, Jc, Jr (where l, c, r, stand for left, center,

right) with disjoint interiors such that H1(Jl) = H1(Jc) = H1(Jr) = H1(J)/3.

Next we split Jl into N intervals with disjoint interiors of the same length, and

we take N = c1H1(J)−1, with c1 ∈ (0, 1) to be chosen below (depending on

g′′(0)). We denote by J1
l , . . . , J

N
l this family of intervals. By standard argu-

ments, we find a subfamily {Jkl }k∈Kl of {J1
l , . . . , J

N
l } such that the intervals

{10Jkl }k∈Kl are pairwise disjoint and moreover∑
k∈Kl

H1(g(Jkl )) & H1(g(Jl)) & H1(S ∩B(x0, t)).

We may therefore apply Lemma 8.6, with κ some absolute constant (provided

τ is small enough), to find a subfamily {Jkl }k∈Hl ⊂ {Jkl }k∈Kl of the intervals

Jkl such that

(8.1) H1(F ∩ g(Jkl )) ≈ H1(g(Jkl ))

and

(8.2)
∑
k∈Hl

H1(F ∩ g(Jkl )) & H1(S ∩B(x0, t)).

Next, note that condition (8.1) ensures that we can apply property (1) for each

k ∈ Hl to find a ball B+
k satisfying

B+
k ⊂ U`(Jkl )(g(Jkl )) ∩ Ω+, with r(B+

k ) ≈ H1(Jkl ),

where U`(A) stands for the `-neighborhood of A. Observe that, by the strict

convexity of S, we have dist(g(Jkl ), LH) ≈ `(J)2. On the other hand,

dist(B+
k , g(Jkl )) ≤ `(Jkl ) ≤ `(J)

N
= c1`(J)2.

So if we choose c1 small enough, then the balls B+
k are contained in R2

+ and

far from LH .

Next, let Ik, k ∈ Hl, be the projection of the balls B+
k , k ∈ Hl, on the

axis LH . The intervals Ik, k ∈ Hl, are disjoint, and moreover,∑
k∈Hl

H1(g( 1
10Ij)) &

∑
k∈Hl

H1(g(Ij))
(8.2)

& H1(S ∩B(x0, t)).

Therefore, appealing to Lemma 8.6 once again, with κ some absolute constant,

we find a family of indices Ml ⊂ Hl such that

(8.3) H1(F ∩ g( 1
10Ik)) ≈ H1(g( 1

10Ik)) ≈ `(Ik) for every k ∈Ml
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and ∑
k∈Ml

H1(F ∩ g( 1
10Ik)) ≈ H1(S ∩B(x0, t)).

Since (8.3) holds, we may apply property (1) for each k ∈Ml to find some

ball B−k satisfying

B−k ⊂ U 1
10 `(Ik)

(g( 1
10Ik)) ∩ Ω+, r(B−k ) ≈ H1(Ik).

Again, by the strict convexity of S, the balls B−k are contained in R2
+ and far

away from LH . Further, by construction the projection ΠH(B−k ) is contained

deep inside ΠH(B+
k ) for each k ∈ Ml. In fact, by shrinking the balls B−k if

necessary, we can assume that

ΠH(B−k ) ⊂ ΠH(1
2B

+
k ) for each k ∈Ml.

Now we denote

Wl =
⋃
k∈Ml

ΠH(1
2B
−
k ).

By the disjointness of the intervals 10Jkl , k ∈ Ml, the intervals ΠH(1
2B
−
k ) are

disjoint and we deduce that H1(Wl) ≈ H1(J) ≈ t.
Next we define an analogous family of balls {B±k }k∈Mr and a set Wr,

replacing the left interval Jl by the right one Jr.

We claim that there is some x ∈ Jc ∩ΠH(F ) such that

Wl ∩ (2x−Wr) 6= ∅.

In fact, for an arbitrary point yr ∈Wr, the set {2x−yr : x ∈ Jc∩ΠH(F )} is of

the form I \X, where I is an interval of length 2`(Jc) that contains Jl and X

is an exceptional set with length at most 2H1(J \ΠH(F )) ≤ cH1(g(J) \ F ) ≤
cτ`(J). So for τ small enough, {2x− yr : x ∈ Jc ∩ΠH(F )} intersects Wl, since

H1(Wl) ≈ `(J)� cτ`(J).

The preceding argument shows that there exist yl ∈ Wl, yr ∈ Wr, and

x ∈ Jc ∩ΠH(F ) such that yl = 2x− yr, or equivalently,

x =
yl + yr

2
.

Observe that, in particular, this implies that |x− yl| = |x− yr| ≈ `(J).

Let k ∈ Ml be such that yl ∈ ΠH(1
2B
−
k ) and h ∈ Mr such that yr ∈

ΠH(1
2B
−
h ). By construction, there are points y±l ∈ 1

2B
±
k and y±r ∈ 1

2B
±
h such

that

ΠH(y−l ) = ΠH(y+
l ) = yl and ΠH(y−r ) = ΠH(y+

r ) = yr.

We claim that the circumference centered at g(x) (observe that g(x) ∈ F ⊂
S ∩ suppµ0) with radius |x− yl| intersects the four balls B±k and B±h . To see

this, notice that∣∣|g(x)− y±l | − |x− yl|
∣∣ ≤ (1− cosα±) `(J) . (α±)2 `(J),
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where α± is the slope of the line passing through g(x) and y±l , which satisfies

α± . `(J) (taking into account that |x−yl| = |x−yr| ≈ `(J) and the quadratic

behavior of g close to x0 = 0). Thus,∣∣|g(x)− y±l | − |x− yl|
∣∣ . `(J)3 � `(J)2 ≈ r(B±k ).

Analogously,∣∣|g(x)− y±r | − |x− yl|
∣∣ =

∣∣|g(x)− y±r | − |x− yr|
∣∣ . `(J)3 � `(J)2 ≈ r(B±h ).

Hence the aforementioned circumference passes through the balls B±k , B±h .

Let z = g(x) and r′ = |x − yl|. It is easy to check that there is an arc

contained in the circumference ∂B(z, r′) satisfying the required properties in

the claim. To see this, let Hz the open half-plane whose boundary equals the

tangent to S at z and containing S \ {z}. It is easy to check that the four

balls B±k , B±h are contained in Hz, taking into account that g′′(ξ) ≈ g′′(0)

in the whole interval J and choosing the constant c1 above small enough if

necessary. �

It would appear that Lemma 8.5 is the most we can extract out of the

assumptions stated there and, in particular, using only the existence of comple-

mentary pairs. To say more, we need to use the full strength of the admissible

pairs property, which has a memory of the limiting sequence Ω+
j of Jordan

domains.

Our goal will be to prove the following result.

Lemma 8.7. Suppose that Ω+
j is a sequence of Jordan domains such that

there are closed sets G+, G− and G0 such that, with Ω−j =R2\Ω+
j and Γj =∂Ωj ,

lim
j→∞

Ω±j = G±, and lim
j→∞

Γj = G0 locally as j →∞.

Suppose µ0 is a measure supported in G0 with C0-linear growth, and B0 is a

ball satisfying

(1) there is a line L ⊂ G0 with µ0(B0 ∩ L) > 0; and

(2) given any subsequence {Ω+
jk
}k, and for every x ∈ supp(µ0) and r ∈ (0, 3r0),

there exists a pair (S1, S2) that is admissible for the sequence of domains3

{Ω+
jk
}k that is centered at x with radius r > 0.

3To be clear, that (S1, S2) is an admissible pair for the given sequence {Ω+
jk
}k of domains

means that we can find a further subsequence {j`}` of {jk}k such that there exists circular

arcs I±j` ⊂ ∂B(xj` , rj`)∩Ω±j` , with xj` ∈ Γj` , such that I+
j`

, I−j` converge to S1, S2 in Hausdorff

distance, respectively.
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Then G0∩B0 ⊂ L, and if H1, H2 are the two open half planes whose boundary

is L, we have that either

H1 ∩B0 ⊂ G+ \G0 and H2 ∩B0 ⊂ G− \G0

or

H1 ∩B0 ⊂ G− \G0 and H2 ∩B0 ⊂ G+ \G0.

Observe that if a sequence of Jordan domains Ω+
j satisfies the assumptions

of Lemma 8.7, then so does any subsequence of the domains.

Now we need to introduce some additional notation. Given a pair of

complementary semicircumferences (S1, S2), we say that the two common end-

points of S1, S2 are the end-points of the pair (S1, S2) and we denote the set

of these end-points by (S1, S2)ep.

Lemma 8.8. Under the notation and assumptions of Lemma 8.7, fix x ∈
suppµ0 ∩ B0, and y ∈ ∂B(x, r) ∩ G0 for some r ∈ (0, 2r(B0)). Fix `0 > 0.

Suppose that, for sufficiently large k, and given any subsequence of the domains,

we can find sequences of pairs (S1,r+1/k, S2,r+1/k) and (S1,r−1/k, S2,r−1/k) that

are admissible for the subsequence of domains, that are centered at x and have

radii r + 1/k and r − 1/k respectively, and such that

lim inf
k→∞

dist(y, (S1,r+1/k, S2,r+1/k)ep) ≥ `0

and

lim inf
k→∞

dist(y, (S1,r−1/k, S2,r−1/k)ep) ≥ `0.

Then, there exists a subsequence of arcs γjk ⊂ Γjk that converge in Hausdorff

distance to an arc I ⊂ ∂B(x, r) such that y is one of its end-points and H1(I) ≥
`0/5.

Proof. Consider the sequence of radii sk = r(1− 1
k ) and tk = r(1 + 1

k ). By

assumption, we can find admissible pairs (S1,sk , S2,sk) centered at x with radii

sk satisfying

(8.4) lim inf
k→∞

dist(y, (S1,sk , S2,sk)ep) ≥ `0.

Consequently, with εk a decreasing sequence chosen much smaller than 1/k,

there is a subsequence jk, and there are arcs I±sk ⊂ Ω±jk ∩ ∂B(yjk , s̃k) such that

(8.5) |x− yjk | ≤ εk, |sk − s̃k| ≤ εk, and |H1(I±sk)− πsk| ≤ εk.

Also, insofar as y ∈ G0, we may choose the subsequence jk to ensure that there

exists

(8.6) ωjk ∈ Γjk with |y − ωjk | < εk/k.
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ωjk
I ′sk

I ′tk

ℓ1k

ℓ2k

Figure 4. The figure depicts the solid black lined tubular neigh-

borhood ‹Uk and the red dashed neighborhood Uk.

Now, by assumption, we can find admissible pairs (S1,tk , S2,tk) (for the

sequence {Ωjk}k) centered at x with radius tk satisfying

(8.7) lim inf
k→∞

dist(y, (S1,tk , S2,tk)ep) ≥ `0.

Thus, by taking a further subsequence, relabelled again by {jk}k (which pre-

serves all the properties in (8.5)) and (8.6), we find I±tk ⊂ Ω±jk ∩ ∂B(zjk , t̃k)

satisfying

|x− zjk | ≤ εk, |tk − t̃k| ≤ εk, and |H1(I±tk)− πtk| ≤ εk.

For k big enough and εk small enough, the end-points of I±sk and I±tk are

far from y. Say, any end-point zk of these intervals will satisfy |y− zk| ≥ 0.9`0.

Assuming εk � 1/k, the arcs I±sk are essentially some perturbation of

some arcs contained in ∂B(x, sk), while the arcs I±tk are also another small

perturbation of other arcs from ∂B(x, tk). In fact, there is a thin tubular

neighborhood Uk containing y that satisfies the following:

• Uk = A(x, sk+2εk, tk−2εk)∩V , where V is the sector of B(x, 2r) with axis

equal to line passing through x and y and such that its angle of aperture is

`0/4r, say;

• associated with the arc Jsk := ∂B(x, sk + 2εk) ∩ V ⊂ ∂Uk there is a close

arc I ′sk contained either in I+
sk

or I−sk such that distH(Jsk , I
′
sk

) ≤ cεkr;
• associated with the arc Jtk := ∂B(x, tk − 2εk) ∩ V ⊂ ∂Uk there is a close

arc I ′tk contained either in I+
tk

or I−tk such that distH(Jtk , I
′
tk

) ≤ cεkr.
Now we consider the tubular neighborhood ‹Uk whose boundary is formed by

the arcs I ′sk , I ′tk and two small segments `1k, `
2
k that join the closest respective

end-points of I ′sk and I ′tk , so that distH(Uk,‹Uk) . εkr. See Figure 4.

We distinguish two cases:

(1) In the first case, I ′sk ⊂ I+
sk

and I ′tk ⊂ I
−
tk

, or alternatively I ′sk ⊂ I−sk and I ′tk ⊂
I+
tk

. In both situations, by connectivity there is a curve γjk ⊂ ∂Ω+
jk
∩ ‹Uk

that joins `1k to `2k.
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(2) In the second case, I ′sk ⊂ I+
sk

and I ′tk ⊂ I+
tk

, or alternatively I ′sk ⊂ I−sk and

I ′tk ⊂ I−tk . By construction, the point ωjk ∈ Γjk satisfies |ωjk − y| < εk/k,

so we have ωjk ∈ ‹Uk and the distance of ωjk to any of the small segments

`1k, `
2
k from ∂‹Uk is at least `0/2, say. Then, by the connectivity of ∂Ω+

jk
,

there is a curve γjk ⊂ ∂Ω+
jk
∩ ‹Uk that joins ωjk either to `1k or `2k. So its

diameter is at least `0/5.

It is easy to check that the sequence of curves γjk satisfy the properties asserted

in the lemma. �

Lemma 8.9. Under the assumptions and notation of Lemma 8.7, let x ∈
L ∩ suppµ0 ∩B0, and let y ∈ ∂B(x, r) ∩G0 for some r ∈ (0, 2r(B0)). Set

`0 = inf
(S1,S2)

dist(y, (S1, S2)ep),

where the infimum is taken over all admissible pairs centered at x with radius r.

The infimum is attained by an admissible pair centered at x with radius r,

and if `0 > 0, then there exists a subsequence of arcs γjk ⊂ Γjk which converge

in Hausdorff distance to an arc I ⊂ ∂B(x, r) such that y is one of its end-points

and H1(I) ≥ `0/5.

Proof. The fact that the infimum is attained by an admissible pair (S1, S2)

centered at x with radius r > 0 is an immediate consequence of the closedness

of admissible pairs (and Lemma 5.5). Now suppose `0 = dist(y, (S1, S2)ep) > 0.

Consider the sequence of radii sk = r(1 − 1
k ) and tk = r(1 + 1

k ). Let

(S1,sk , S2,sk) and (S1,tk , S2,tk) be sequences of admissible pairs centered at x

with radii sk and tk respectively. By taking a subsequence, we may assume that

these admissible pairs converge in Hausdorff metric to admissible pairs with

center x and radius r, say (S−1 , S
−
2 ) and (S+

1 , S
+
2 ). By the minimal property

of (S1, S2) we must have that dist(y, (S±1 , S
±
2 )ep) ≥ dist(y, (S1, S2)ep). By the

closedness property of the set of admissible pairs, we infer that

lim inf
k→∞

dist(y, (S1,sk , S2,sk)ep) ≥ dist(y, (S1, S2)ep)

and

lim inf
k→∞

dist(y, (S1,tk , S2,tk)ep) ≥ dist(y, (S1, S2)ep).

Consequently, we may apply Lemma 8.8 with `0 = dist(y, (S1, S2)ep). �

Lemma 8.10. Under the assumptions and notation of Lemma 8.7, let x ∈
L∩ suppµ0 ∩B0, and let r ∈ (0, 2r(B0)). Then there exists an admissible pair

of semicircumferences centered at x with radius r whose end-points belong to L.

Proof. Let x ∈ L ∩ suppµ0 ∩ B0 and let r ∈ (0, 2r(B0)). Suppose that

there does not exist an admissible pair of semicircumferences centered at x

with radius r whose end-points belong to L. Let y ∈ L ∩ ∂B(x, r) . Then, by
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Lemma 8.9,

`0 = inf
(S1,S2)

dist(y, (S1, S2)ep) > 0,

where the infimum is taken over all admissible pairs centered at x with radius r.

Consequently, Lemma 8.9 ensures that there exists a subsequence of arcs γjk ⊂
Γjk that converge in Hausdorff distance to an arc I ⊂ ∂B(x, r) such that y is

one of its end-points and I has length at least `0/5.

By the closedness property of the admissibility property of pairs, for any

small δ ∈ (0, r/2), there exists another radius rδ ∈ (r − δ, r) close enough to

r such that, denoting by yδ the point in L ∩ ∂B(x, rδ) that is closest to y,

any admissible pair (Sδ1 , S
δ
2) of semicircumferences contained in ∂B(x, rδ) sat-

isfies dist(yδ, (S
δ
1 , S

δ
2)ep) ≥ `0/2. Observe that yδ ∈ G0 and then, by applying

Lemma 8.9 to the subsequence of domains Ω+
jk

(observe that the sets G+,

G−, G0 associated with the subsequence are the same as the ones associated

with the original sequence {Ωj}j), we infer that there is a subsequence of arcs

γδ,j′k ⊂ Γj′k that converge in Hausdorff distance to an arc Iδ ⊂ ∂B(x, rδ) such

that yδ is one of its end-points and Iδ has length at least `0/10. By renaming

the subsequence, we can assume that {j′k}k coincides with {jk}k.
By iterating the preceding argument, we still find another rδ ∈ (r, r + δ)

close enough to r for which, after renaming the subsequence and denoting by

yδ the point in L∩∂B(x, rδ) that is closest to y, there is a family arcs γδjk ⊂ Γjk
that converge in Hausdorff distance to an arc Iδ ⊂ ∂B(x, rδ) such that yδ is

one of its end-points and has length at least `0/10.

Let x′ ∈ L ∩ suppµ0 with x′ 6= x. Suppose that x′ and y are in the same

half-line contained in L with end-point equal to x (i.e., x′ and y are at the same

side of x in L). Otherwise, in the arguments above we interchange y with the

other point from ∂B(x, r) ∩ L. It is easy to check that any circumference

∂B(x′′, r′), with δ small enough and x′′ close enough to x′, intersects at least

two of the arcs I, Iδ, I
δ for all r′ in some interval H of width bounded from

below depending on the relative position of x, x′, y, yδ, y
δ. In fact, the same

phenomenon happens replacing the arcs I, Iδ, I
δ by the curves γjk , γδ,jk , γ

δ
jk

,

assuming k big enough. From this fact, one deduces easily that there exists

some r′ ∈ H such that there is no admissible pair of semicircumferences with

center x′ and radius r′ (associated to the sequence of domains {Ωjk}k), which

is in contradiction with the hypothesis (2) in Lemma 8.7. �

Lemma 8.11. Under the assumptions of Lemma 8.7, let x ∈ L ∩ suppµ0

∩ B0, and let r ∈ (0, 2r(B0)). Assume that L coincides with the horizontal

axis, and suppose that ∂B(x, r) ∩ G0 ∩ R2
+ 6= ∅ (recall that we assume R2

+ to

be open), and let y ∈ ∂B(x, r)∩G0 ∩R2
+. Then there exists a sequence of arcs

γjk ⊂ Γjk that converge in Hausdorff distance to an arc I ⊂ ∂B(x, r) such that

y is one of its end-points and has length at least dist(y, L)/5.
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Proof. Fix a subsequence Ωjk of the domains Ωj . This subsequence Ωjk

again satisfies the assumptions of Lemma 8.7 (with the same choices of sets G+,

G− and G0). By Lemma 8.10, for every δ ∈ (0, r/2), there are admissible pairs

(S1,δ, S2,δ) for Ωjk centered at x with respective radii equal to any number

s ∈ (r − δ, r + δ) such that their end-points belong all to L. Consequently,

for sufficiently large k, we may certainly find sequences of admissible pairs

(S1,r+1/k, S2,r+1/k) and (S1,r−1/k, S2,r−1/k) centered at x with radii r + 1/k

and r − 1/k respectively, and with end points on H (and so at a distance

dist(y, L) from y). Thus, we may apply Lemma 8.8 with `0 = dist(y, L), which

completes the proof. �

We are now in a position to complete the proof of Lemma 8.7, which is

an immediate consequence of the following statement.

Lemma 8.12. Under the assumptions of Lemma 8.7, let x ∈ L ∩ suppµ0

∩B0, and let r ∈ (0, 2r(B0). Then ∂B(x, r)∩G0 ∩R2
+ = ∅ (assuming L to be

the horizontal axis ).

Proof. Suppose that y ∈ ∂B(x, r) ∩ G0 ∩ R2
+. By Lemma 8.11, there

exists a sequence of arcs γjk ⊂ Γjk that converge in Hausdorff distance to an

arc I ⊂ ∂B(x, r) such that y is one of its end-points and has length at least

dist(y, L)/5.

Let x′ ∈ suppµ0 ∩ L, with x′ 6= x, let y′ be the middle point of the arc I

(we may assume that y′ 6∈ L), and let r′ = |x′−y′|, so that ∂B(x′, r′) intersects

I in the middle point. By connectivity arguments, the existence of the curves

γjk given by Lemma 8.11 implies that, for the subsequence of domains Ωjk ,

there does not exist an admissible pair of semicircumferences centered at x′

with radius r′ whose end-points belong to L. This fact contradicts Lemma 8.10.

�

With Lemma 8.7 proved, we are now in a position to complete the proof

of Lemma 8.1.

Proof of Lemma 8.1. By renormalizing it suffices to prove the lemma for

the ball B0 := B(0, 1). We argue by contradiction: We suppose that there

exists an ε > 0 such that for all j ∈ N, there exists a Jordan domain Ω+
j with

Γj := ∂Ω+
j containing 0 supporting a measure µj with C0-linear growth with

µj(B0) > c0, so that we haveˆ
7B0

ˆ 7

0

(
εj(x, r)

2 + α+
j (x, r)2

) dr
r
dµj(x) ≤ 1

j
µj(70)

and
β∞,Γj (B0) > ε.

Here we denote by εj(x, r) and α+
j the coefficients ε(x, r) and α+ associated

with Ω+
j .
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We first apply Lemma 8.3 to pass to a subsequence of the domains such

that, with Ω−j = R2\Ω+
j ,

Ω±j → G± and Γj → G0

locally as j → ∞. By passing to a further subsequence if necessary, we may

assume that µj converge weakly to a measure µ0 with C0-linear growth sat-

isfying µ(B0) ≥ c0. Applying Lemma 8.4, we infer that the assumptions of

Lemma 8.5 are satisfied with B0 replaced by the ball 2B0, so there is a line

L ⊂ G0 with µ0(L ∩ 2B0) > 0.

Observe now that we can also apply Lemma 8.4 to any subsequence of

the domains. In particular, from the conclusion (2) of Lemma 8.4 applied

to a given subsequence, we infer that the assumption (2) of Lemma 8.7 also

holds, again with the ball 2B0 playing the role of B0 in Lemma 8.7. Therefore,

applying Lemma 8.7 to the ball 2B0 that satisfies µ0(L ∩ 2B0) > 0, we have

that G0 ∩ 2B0 ⊂ L. Consequently, Γj ∩B0 converges in Hausdorff distance to

a subset of L, which contradicts β∞,Γj (B0) > ε for sufficiently large j. �

Part II: From local flatness to rectifiability

9. The smooth square function on Lipschitz graphs

Recall that, given an integrable C∞ function ψ : R2 → R, an open set

Ω+ ⊂ R2 and x ∈ R2, r > 0, we denote

cψ =

ˆ
y∈R2

+

ψ(y) dy, aψ(x, r) =

∣∣∣∣cψ − 1

r2

ˆ
Ω+

ψ

Å
y − x
r

ã
dy

∣∣∣∣.
We also set

Aψ(x)2 =

ˆ ∞
0

aψ(x, r)2 dr

r
.

Remark that we allow ψ to be non-radial.

We fix an even C∞ function ϕ : R→ R such that 1[−1,1] ≤ ϕ ≤ 1[−1.1,1.1],

and we denote

ϕr(x) =
1

r
ϕ
(x
r

)
for x ∈ R, r > 0.

Our objective in this section is to prove the following.

Lemma 9.1. Consider a Lipschitz function f : R→ R with compact sup-

port and let Γ ⊂ R2 be its Lipschitz graph. Let Ω+ = {(x, y) ∈ R2 : y > f(x)}
and Ω− = {(x, y) ∈ R2 : y < f(x)}. Let ϕ be a function as above, and let

ψ(x) = ϕ(|x|), for x ∈ R2.
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Let Aψ and aψ be the associated coefficients defined above. There exists some

α0 > 0 such that if ‖f ′‖∞ ≤ α0, thenˆ
Γ
Aψ(x)2 dH1(x) ≈ ‖f ′‖2L2(R).

We will prove this result by using the Fourier transform. This will play

an essential role in the proof of Main Lemma 4.2. We need first some auxiliary

results.

Lemma 9.2. Let f : R→ R be a Lipschitz function with compact support.

Then we haveˆ
R

ˆ ∞
0

∣∣∣∣f ∗ ϕr(x)− c(ϕ)f(x)

r

∣∣∣∣2 dr

r
dx = c ‖f ′‖2L2(R),

where c(ϕ) =
´
R ϕdx and c > 0.

Proof. By Plancherel, we haveˆ
R

ˆ ∞
0

∣∣∣∣f ∗ ϕr(x)− c(ϕ)f(x)

r

∣∣∣∣2 dr

r
dx

=

ˆ
R

ˆ ∞
0

∣∣∣∣∣ f̂(ξ)ϕ̂(rξ)− f̂(ξ)ϕ̂(0)

r

∣∣∣∣∣
2
dr

r
dξ

=

ˆ
R
|f(ξ)|2

ˆ ∞
0

∣∣ϕ̂(rξ)− ϕ̂(0)
∣∣2 dr
r3
dξ.

By the change of variable r|ξ| = t, we getˆ ∞
0

∣∣ϕ̂(rξ)− ϕ̂(0)
∣∣2 dr
r3

= |ξ|2
ˆ ∞

0

∣∣ϕ̂(t)− ϕ̂(0)
∣∣2 dt
t3

=: c̃(ϕ)|ξ|2,

where 0 < c̃(ϕ) <∞, since ϕ̂(t)− ϕ̂(0) = O(t2) as t→ 0 (because ϕ is an even

function in the Schwartz class). Hence,
ˆ
R

ˆ ∞
0

∣∣∣∣f ∗ ϕr(x)− c(ϕ)f(x)

r

∣∣∣∣2 dr

r
dx = c̃(ϕ)

ˆ
R
|ξf̂(ξ)|2 dξ = c ‖f ′‖2L2(R). �

Lemma 9.3. Let f : R→ R be a Lipschitz function with compact support.

Then we have

ˆ ∞
0

ˆ
R

ˆ
y∈R:|y−x|≤r

∣∣∣∣c(ϕ)−1(ϕr ∗ f ′)(x)(y − x) + f(x)− f(y)

r

∣∣∣∣2 dy

r
dx

dr

r

= c ‖f ′‖2L2(R).

(9.1)

Proof. Replacing ϕ by c(ϕ)−1ϕ if necessary, we may assume
´
ϕdx = 1.

This is due to the fact that, as we shall see below, the assumption that 1[−1,1] ≤
ϕ ≤ 1[−1.1,1.1] is not necessary for the validity of this lemma.
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Appealing to the change of variable z = y − x and Fubini’s theorem, the

left-hand side of (9.1) (with c(ϕ) = 1) equals

ˆ ∞
0

ˆ
z∈R:|z|≤r

ˆ
x∈R

∣∣∣∣(ϕr ∗ f ′)(x)z + f(x)− f(x+ z)

r

∣∣∣∣2 dx dzr dr

r

Plancharel
=

ˆ ∞
0

ˆ
z∈R:|z|≤r

ˆ
ξ∈R

∣∣∣∣∣2πiξz ϕ̂(rξ) f̂(ξ) + f̂(ξ)− e2πiξz f̂(ξ)

r

∣∣∣∣∣
2
dz

r
dξ
dr

r
.

Using Fubini’s theorem to interchange the inner two integrals, and the changes

of variable w = ξz, s = |ξ|r, we infer from the fact that ϕ (and so ϕ̂) is even

that the last triple integral equals

ˆ
ξ∈R

ˆ ∞
0

ˆ
w∈R:|w|≤s

∣∣∣2πiw ϕ̂(s) f̂(ξ) + f̂(ξ)− e2πiwf̂(ξ)
∣∣∣2 |ξ|2 ds

s4
dw dξ

=

ˆ
ξ∈R

∣∣ξ f̂(ξ)|2 dξ
ˆ ∞

0

ˆ
w∈R:|w|≤s

∣∣∣2πiw ϕ̂(s) + 1− e2πiw
∣∣∣2 dw ds

s4
.

Hence, to prove the lemma it suffices to show that the last double integral

I :=

ˆ ∞
0

ˆ
w∈R:|w|≤s

∣∣∣2πiw ϕ̂(s) + 1− e2πiw
∣∣∣2 dw ds

s4

is absolutely convergent and positive. That this is positive is immediate. To

show that this is absolutely convergent, we split it as follows:

I =

ˆ ∞
0

ˆ
|w|≤min(s,1)

· · · +

ˆ ∞
1

ˆ
1≤|w|≤s

· · · =: I1 + I2.

First we estimate I2:

I2 .
ˆ ∞

1

ˆ
1≤|w|≤s

(
1 +

∣∣w ϕ̂(s)
∣∣2) dw ds

s4

.
ˆ ∞

1

ds

s3
+

ˆ ∞
1

ˆ
1≤|w|≤s

∣∣s ϕ̂(s)
∣∣2 dw ds

s4
. 1 +

ˆ ∞
1

∣∣ϕ̂(s)
∣∣2 ds

s
. 1.

Concerning I1, we have

I1 .
ˆ ∞

0

ˆ
|w|≤min(s,1)

∣∣∣2πiw + 1− e2πiw
∣∣∣2 dw ds

s4

+

ˆ ∞
0

ˆ
|w|≤min(s,1)

|2πiw (ϕ̂(s)− 1)|2 dw ds

s4
.

(9.2)

This content downloaded from 
108.215.24.170 on Wed, 01 Sep 2021 22:04:13 UTC 

All use subject to https://about.jstor.org/terms



140 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

The first term on the right-hand side satisfiesˆ ∞
0

ˆ
|w|≤min(s,1)

∣∣∣2πiw + 1− e2πiw
∣∣∣2 dw ds

s4

≤
ˆ
|w|≤1

ˆ
s≥|w|

∣∣∣2πiw + 1− e2πiw
∣∣∣2 ds

s4
dw

.
ˆ
|w|≤1

∣∣∣2πiw + 1− e2πiw
∣∣∣2 dw

|w|3 . 1,

taking into account that 2πiw+ 1− e2πiw = O(w2) as w → 0. Finally we turn

our attention to the second term on the right-hand side of (9.2):ˆ ∞
0

ˆ
|w|≤min(s,1)

|2πiw (ϕ̂(s)− 1)|2 dw ds

s4
.
ˆ
|w|≤1

|w|2 dw
ˆ ∞

0
|ϕ̂(s)− 1|2 ds

s4

.
ˆ ∞

0
|ϕ̂(s)− 1|2 ds

s4
.

Since ϕ ∈ C∞ is even, and ϕ̂(0) = 1, we have ϕ̂(s) − 1 = O(s2) as s → 0,

and so the last integral is finite. So I2 < ∞ and the proof of the lemma is

concluded. �

Lemma 9.4. Let f : R→ R be a Lipschitz function with compact support

with ‖f ′‖∞ ≤ 1/10. For x = (x1, x2) ∈ R2, denote

ρ(x) = ϕ(x1)ϕ(x2).

Then we have

aρ(x, r)=
ϕr ∗ f(x1)− c(ϕ) f(x1)

r
for all x∈R2 in the graph of f and all r>0

and ˆ
R
Aρ((x1, f(x1)))2 dx1 =

ˆ
R

ˆ ∞
0

∣∣∣∣f ∗ ϕr(x1)− c(ϕ)f(x1)

r

∣∣∣∣2 dr

r
dx1,

where c(ϕ) =
´
R ϕdx.

Proof. Observe that

cρ −
1

r2

ˆ
Ω+

ρ

Å
y − x
r

ã
dy

=
1

r2

ˆ
y1∈R

ˆ
y2>f(x1)

ϕ

Å
y1 − x1

r

ã
ϕ

Å
y2 − x2

r

ã
dy2 dy1

− 1

r2

ˆ
y1∈R

ˆ
y2>f(y1)

ϕ

Å
y1 − x1

r

ã
ϕ

Å
y2 − x2

r

ã
dy2dy1

=

ˆ
y1∈R

ϕr(y1 − x1)

ˆ f(y1)

f(x1)
ϕr(y2 − x2) dy2dy1.
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A PROOF OF CARLESON’S ε2-CONJECTURE 141

Observe also that, if ϕr(y1 − x1) 6= 0, then because ‖f ′‖∞ ≤ 1/10,

ϕr(y2 − x2) =
1

r
for y2 ∈ [f(x1), f(y1)].

As a consequence,

cρ −
1

r2

ˆ
Ω+

ρ

Å
y − x
r

ã
dy =

ˆ
y1∈R

ϕr(y1 − x1)
f(y1)− f(x1)

r
dy1

=
ϕr ∗ f(x1)− c(ϕ) f(x1)

r
.

Hence,

Aϕ(x)2 =

ˆ ∞
0

aϕ(x, r)2 dr

r
=

ˆ ∞
0

∣∣∣∣ϕr ∗ f(x1)− c(ϕ) f(x1)

r

∣∣∣∣2 dr

r
.

Integrating with respect to x1 in R, the lemma follows. �

Lemma 9.5. Let f : R→R be a Lipschitz function with compact support

with ‖f ′‖∞≤1/10, and let Γ⊂R2 be its Lipschitz graph. For x=(x1, x2)∈R2,

denote

ρ(x) = ϕ(x1)ϕ(x2) and ψ(x) = ϕ(|x|).
Then we have ˆ

Γ
|Aρ(x)−Aψ(x)|2 dH1(x) . ‖f ′‖4∞ ‖f ′‖2L2(R).

Proof. For r > 0, x ∈ R2, we denote

ρr(x) =
1

r2
ρ
(x
r

)
, ψr(x) =

1

r2
ψ
(x
r

)
, ϕr(x1) =

1

r
ϕ
(x1

r

)
.

Then we have

(9.3)
∣∣aρ(x, r)− aψ(x, r)

∣∣ ≤ ∣∣(ρr ∗ 1Ω+ − cρ)− (ψr ∗ 1Ω+ − cψ)
∣∣.

For x ∈ Γ, r > 0, we denote by Lx,r the line passing through x with slope

equal to c(ϕ)−1(ϕr ∗ f ′)(x1), and we let H+
x,r, H

−
x,r be two complementary half

planes whose common boundary is Lx,r, so that H+
x,r is above Lx,r and H−x,r is

below Lx,r.

Observe that, by the radial symmetry of ψ,

cψ =

ˆ
y∈R2

+

ψ(y) dy = ψr ∗ 1Hx,r(x) for all x ∈ R2 and r > 0.

We claim that the same identity holds replacing ψ by ρ. To check this, suppose

that x = 0 for ease of notation, and let y2 = b y1 be the equation of the line L0,r.
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Then, by the evenness of ϕ we have

ρr ∗ 1H0,r(0) =

ˆ
ϕr(y1)

ˆ
y2>by1

ϕr(y2) dy2 dy1

=
1

2

ˆ
ϕr(y1)

ˆ
y2>by1

ϕr(y2) dy2 dy1

+
1

2

ˆ
ϕr(y1)

ˆ
y2>−by1

ϕr(y2) dy2 dy1

=
1

2

ˆ
ϕr(y1)

ˆ
y2>by1

ϕr(y2) dy2 dy1

+
1

2

ˆ
ϕr(y1)

ˆ
y2<by1

ϕr(y2) dy2 dy1

=
1

2

ˆ
ρr(y) dy =

ˆ
R2

+

ρr(y) dy = cρ,

which proves the claim.

From the above identities and (9.3), for x ∈ Γ, we obtain∣∣aρ(x, r)− aψ(x, r)
∣∣ ≤ ∣∣ρr ∗ (1Ω+ − 1H+

x,r
)(x)− ψr ∗ (1Ω+ − 1H+

x,r
)(x)

∣∣(9.4)

=
∣∣(ρr − ψr) ∗ (1Ω+ − 1H+

x,r
)(x)

∣∣
≤
ˆ

Ω+∆H+
x,r

|ρr(y − x)− ψr(y − x)| dy.

But now observe that, if |x−y| < 3r, then using the fact that ‖f ′‖∞ < 1/10, we

have ϕr(y2 − x2) = 1
r for all x ∈ Γ and y ∈ Ω+∆H+

x,r. Thus, by the definition

of ρ and ψ,

ρr(y − x)− ψr(y − x) = ϕr(y1 − x1)ϕr(y2 − x2)− 1

r
ϕr(|y − x|)

=
1

r

(
ϕr(y1 − x1)− ϕr(|y − x|)

)
.

Still for x ∈ Γ and y ∈ Ω+∆H+
x,r, notice that if |x−y| ≤ r/2, then ϕr(y1−x1) =

ϕr(|y−x|) = 1
r and thus ρr(y−x)−ψr(y−x) = 0; while if |x− y| ≥ r/2, then∣∣ρr(y − x)− ψr(y − x)

∣∣ ≤ 1

r
‖(ϕr)′‖∞

∣∣(y1 − x1)− |y − x|
∣∣ . |y2 − x2|2

r4
.

Since supp ρr ∪ suppψr ⊂ B(0, 3r), in any case we get∣∣ρr(y − x)− ψr(y − x)
∣∣ . (‖f ′‖∞ r)2

r4
=
‖f ′‖2∞
r2

for x ∈ Γ and y ∈ Ω+∆H+
x,r.

Plugging this estimate into (9.4), we obtain∣∣aρ(x, r)− aψ(x, r)
∣∣ . ‖f ′‖2∞

r2
H2
(
(Ω+∆H+

x,r) ∩B(x, 3r)
)
.
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Next, using the fact that the equation of the line Lx,r is

y2 = c(ϕ)−1(ϕr ∗ f ′)(x1)(y1 − x1) + f(x1),

we get

H2
(
(Ω+∆H+

x,r) ∩B(x, 3r)
)

≤
ˆ
|y1−x1|≤3r

|c(ϕ)−1(ϕr ∗ f ′)(x1)(y1 − x1) + f(x1)− f(y1)| dy1

. r1/2

Çˆ
|y1−x1|≤3r

|c(ϕ)−1(ϕr ∗ f ′)(x1)(y1 − x1) + f(x1)− f(y1)|2 dy1

å1/2

.

Hence,∣∣aρ(x, r)− aψ(x, r)
∣∣

.
‖f ′‖2∞
r3/2

Çˆ
|y1−x1|≤3r

|c(ϕ)−1(ϕr ∗ f ′)(x1)(y1 − x1) + f(x1)− f(y1)|2 dy1

å1/2

.

Therefore,

|Aρ(x)−Aψ(x)|

=

∣∣∣∣∣
Åˆ ∞

0

aρ(x, r)
2 dr

r

ã1/2
−
Åˆ ∞

0

aψ(x, r)2
dr

r

ã1/2∣∣∣∣∣
≤
Åˆ ∞

0

|aρ(x, r)− aψ(x, r)|2 dr
r

ã1/2
. ‖f ′‖2∞

Çˆ ∞
0

ˆ
|y1−x1|≤3r

|c(ϕ)−1(ϕr ∗ f ′)(x1)(y1 − x1) + f(x1)− f(y1)|2 dy1
dr

r3

å1/2

.

Squaring and integrating on x and applying Lemma 9.3, we getˆ
Γ
|Aρ(x)−Aψ(x)|2 dH1(x) ≈

ˆ
|Aρ(x)−Aψ(x)|2 dx1

. ‖f ′‖4∞
ˆ
R

ˆ ∞
0

ˆ
|y1−x1|≤3r

|c(ϕ)−1(ϕr ∗ f ′)(x1)(y1 − x1)

+ f(x1)− f(y1)|2 dy1
dr

r3
dx1

≈ ‖f ′‖4∞ ‖f ′‖2L2(R). �

Proof of Lemma 9.1. By Lemmas 9.2 and 9.4, we haveˆ
Γ
Aρ(x)2 dH1(x) ≈ ‖f ′‖2L2(R).

On the other hand, by Lemma 9.5,ˆ
Γ
|Aρ(x)−Aψ(x)|2 dH1(x) . ‖f ′‖4∞ ‖f ′‖2L2(R).
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Hence,ˆ
Γ
Aψ(x)2 dH1(x) ≤ 2

ˆ
Γ
Aρ(x)2 dH1(x)

+ 2

ˆ
Γ
|Aρ(x)−Aψ(x)|2 dH1(x) . ‖f ′‖2L2(R).

In the converse direction, we haveˆ
Γ
Aψ(x)2 dH1(x) ≥ 1

2

ˆ
Γ
Aρ(x)2 dH1(x)−

ˆ
Γ
Aψ(x)2 dH1(x)

≥ c1‖f ′‖2L2(R) − C ‖f ′‖4∞ ‖f ′‖2L2(R).

So if ‖f ′‖4∞ ≤ c1/2C, the lemma follows. �

10. Construction of an approximate Lipschitz graph

This and the remaining sections of the paper are devoted to the proof of

the Main Lemma 4.2. To this end, we need to construct a Lipschitz graph that

covers a fairly big proportion of the measure µ. We will achieve this through

a construction stemming from works of David and Semmes in [DS91] and of

Léger in [L9́9]. Given the form of Main Lemma 4.2, it is convenient for us to

follow the presentation given in the monograph [Tol14, Ch. 7].

Fix ε > 0 and θ > 0. We assume that the assumptions of Main Lemma 4.2

are satisfied with these choices of parameters ε and θ. We shall also introduce

α > 0, α � 1. Here α will regulate the slope of a Lipschitz graph that will

well approximate the support of µ. We will eventually determine θ, then we

will pick α depending on δ, and finally ε can be chosen to depend on both θ

and α.

Set E = supp(µ). Put B0 = B(x0, R) to be the ball given in Lemma 4.2.

Then E ⊂ B0. By replacing the ball B0 by a ball with at most double radius,

and replacing c0 by c0/2, if necessary, we may assume that a line L0 that

minimizes β∞,Γ(B0) passes through x0. Furthermore, we may assume x0 = 0

and L0 is the horizontal axis R× {0}.
For a ball B, LB denotes a best approximating line for β∞,Γ(B).

Let x ∈ E and 0 < r ≤ 50R. We call the ball B = B(x, r) good, and we

write B ∈ G if

(a) Θµ(B) ≥ θ, and

(b) ∠(LB, LB0) ≤ α.
Therefore, by the assumptions of Lemma 4.2,

(10.1) β∞,Γ(B) ≤ ε whenever B ∈ G.

We say that B = B(x, r) is very good, and write B ∈ VG, if B(x, s) ∈ G

for every r ≤ s ≤ 50R.
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A PROOF OF CARLESON’S ε2-CONJECTURE 145

Since θ � c0, we have that any ball B centered on E that contains B0

with r(B) ≤ 50R is very good. In particular, although B0 is not very good (we

have arranged it to be centered at a point of L0, which we cannot guarantee

belongs to E), we still have that β∞,Γ(20B0) ≤ ε so, in particular,

dist(x, L0) . εR for all x ∈ Γ ∩ 20B0.

For x ∈ E, we then set

h(x) = inf{r : 0 < r < 50R, B(x, r) ∈ VG}.
Observe that h(x) ≤ 2R, as B(x, 2R) ⊃ B0.

Notice that, if x ∈ E and r ∈ (h(x), 50R), then, from (10.1),

Θµ(B(x, r)) ≥ θ, β∞,Γ(B(x, r)) ≤ ε, and ∠(LB(x,r), L0) ≤ α.
Put

Z = E ∩ {h = 0}.
We now set

LD = {x ∈ E\Z : Θµ(B(x, h(x))) ≤ θ},
and

BA = E\(LD ∪ Z),

so that

E = Z ∪ LD ∪ BA.

Since for x ∈ BA, Θµ(B(x, h(x)) ≥ θ, we must have that LB(x,h(x)) has a

big angle with L0, moreover

Lemma 10.1 ([Tol14, Lemma 7.13]). Provided that ε is sufficiently small

in terms of δ and α, if x ∈ BA, then

∠(LB(x,2h(x)), L0) ≥ α

2

for any approximating line LB(x,2h(x)).

We now introduce a regularized version of the function h. Denote by Π

the orthogonal projection onto L0 and Π⊥ the orthogonal projection onto the

orthogonal complement of L0.

For x ∈ R2, set

d(x) = inf
B(z,r)∈VG

[
|x− z|+ r

]
.

(Recall here that in order for B(z, r) ∈ VG, we must have that z ∈ E.)

Now define, for p ∈ L0,

D(p) = inf
x∈Π−1(p)

d(x).

As infimums over 1-Lipschitz functions, we see that d and then D are both

1-Lipschitz functions.
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Observe that d(x) ≤ h(x) whenever x ∈ E, so the closed set

Z0 = {x ∈ R2 : d(x) = 0}
contains Z.

Lemma 10.2 ([Tol14, Lemma 7.19]). For all x, y ∈ R2, we have

|Π⊥(x)−Π⊥(y)| ≤ 6α|Π(x)−Π(y)|+ 4d(x) + 4d(y).

As a consequence of this lemma, we have that if x, y ∈ Z0, then

|Π⊥(x)−Π⊥(y)| ≤ 6α|Π(x)−Π(y)|.
In particular, the map Π : Z0 → L0 is injective and the function

A : Π(Z0)→ R, A(Π(x)) = Π⊥(x) for x ∈ Z0

is Lipschitz with norm at most 6α. To extend the definition of A to L0, we

appeal to a Whitney decomposition.

10.1. Whitney decomposition. LetDL0 be the collection of dyadic intervals

in L0.

For I ∈ DL0 ,

D(I) := inf
p∈I

D(p). (Here D(p) = inf
x∈Π−1(p)

d(x)).

Set

W := {I maximal in DL0 : `(I) < 20−1D(I)}.
We index W as {Ri}i∈IW . The basic properties of the cubes in W are

summarized in the following lemma. The proof of this result is standard, and

can be found as Lemma 7.20 in [Tol14].

Lemma 10.3. The intervals Ri, i ∈ IW, have disjoint interiors in L0 and

satisfy the following properties :

(a) if x ∈ 15Ri, then 5`(Ri) ≤ D(x) ≤ 50`(Ri);

(b) there exists an absolute constant C > 1 such that if 15Ri∩15Rj 6= ∅, then

C−1`(Ri) ≤ `(Rj) ≤ C`(Ri);(10.2)

(c) for each i∈IW, there are at most N intervals Rj such that 15Ri∩15Rj 6=∅,

where N is some absolute constant ;

(d) L0 \Π(Z0) =
⋃
i∈IW Ri =

⋃
i∈IW 15Ri.

Now set

I0 := {i ∈ IW : Ri ∩B(0, 10R) 6= ∅}.
Lemma 10.4 ([Tol14, Lemma 7.21]). The following two statements hold :

• if i ∈ I0, then `(Ri) ≤ R and 3Ri ⊂ L0 ∩ 12B0 = (−12R, 12R);
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A PROOF OF CARLESON’S ε2-CONJECTURE 147

• if i /∈ I0, then

`(Ri) ≈ dist(0, Ri) ≈ |p| & R for all p ∈ Ri.
Lemma 10.5 ([Tol14, Lemma 7.22]). Let i ∈ I0; there exists a ball Bi ∈ VG

such that

`(Ri) . r(Bi) . `(Ri)(10.3)

and

dist(Ri,Π(Bi)) . `(Ri).(10.4)

For i ∈ I0, denote by Ai the affine function L0 → L⊥0 whose graph is the

line LBi . Insofar as Bi ∈ VG, ∠(LBi , LB0) ≤ α, so Ai is Lipschitz with constant

tanα . α.

On the other hand, for i ∈ IW \ I0, we put Ai ≡ 0. We are now in a

position to be able to define A on L0.

10.2. Extending A to L0. Consider a smooth partition of unity {φi}i∈IW
subordinate to {3Ri}i∈IW , i.e., φi ∈ C∞0 (3Ri) with

∑
i φi ≡ 1 on L0 = R, which

moreover satisfies that for every i ∈ IW,

‖φ′i‖∞ . `(Ri)−1 and ‖φ′′i ‖∞ . `(Ri)−2.

(See [Tol14, p. 250] for an explicit construction.)

Now, if p ∈ L0\Π(Z0), we set

A(p) :=
∑
i∈IW

φi(p)Ai(p) =
∑
i∈I0

φi(p)Ai(p).

We require the following lemma, which combines Lemmas 7.24 and 7.27

from [Tol14].

Lemma 10.6. The function A : L0 → L⊥0 is supported in [−12R, 12R]

and is Lipschitz with slope . α. Moreover, if i ∈ IW, then for any x ∈ 15Ri,

|A′′(x)| .θ
ε

`(Ri)
.

We will denote the graph of A by GA, that is,

GA := {(x,A(x)) |x ∈ L0}.(10.5)

10.3. The Lipschitz graph GA and E = suppµ are close to each other.

The next four results, concerning the relationship between GA and E, are

central to our analysis.

Lemma 10.7 ([Tol14, Lemma 7.28]). Every x ∈ B(0, 10R) satisfies

dist(x,GA) . d(x).
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148 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

Lemma 10.8 ([Tol14, Lemma 7.29]). For B ∈ VG and x ∈ GA ∩ 3B, it

holds that

dist(x, LB) .θ εr(B).(10.6)

Lemma 10.9 ([Tol14, Lemma 7.30]). We have

dist(x,GA) .θ εd(x) for every x ∈ E.
Lemmas 10.9 and 10.8 combine to yield the following statement.

Corollary 10.10. Suppose that B ∈ VG. As long as ε is small enough

in terms of θ,

dist(x,GA) .θ εr(B) for all x ∈ LB ∩ 2B.(10.7)

Proof. If B = B(z, r) ∈ VG, then z ∈ E and so by Lemma 10.9, dist(z,GA)

.θ εr, so GA (as well as LB) passes close to z. On the other hand, Lemma 10.8

ensures that if B ∈ VG, then GA ∩ 3B ⊂ UC(θ)εr(B)(LB). Since both GA and

LB are connected, we readily deduce the conclusion. �

Lemma 10.11 ([Tol14, Lemma 7.32]). We have

dist(x, L0) .θ εR

for all x ∈ GA.

11. Small measure of LD and BA

11.1. LD has small measure. The following lemma shows that LD has

small measure. The reason for this is that LD can be covered by balls of small

density that are closely aligned to the Lipschitz graph GA.

Lemma 11.1 ([Tol14, Lemma 7.33]). If θ is sufficiently small, and ε > 0

is sufficiently small in terms of θ, then

µ(LD) ≤ 1

1000
µ(B0).

This lemma determines our choice of θ.

11.2. BA has small measure. Our main objective in this section is to prove

the following.

Lemma 11.2. If α is chosen sufficiently small, and ε is chosen sufficiently

small, with respect to α and θ, then

µ(BA) . ε1/2µ(B0).(11.1)

Recall our assumption that the line L0 coincides with the horizontal axis

of R2, and so L⊥0 is the vertical axis. We denote by aΓ,ψ and AΓ,ψ the respective
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A PROOF OF CARLESON’S ε2-CONJECTURE 149

square functions aψ and Aψ associated with the open set Ω+
Γ ≡ Ω+, whose

boundary is Γ. The analogous square functions associated with the domain

Ω+
GA

= {x ∈ R2 : Π⊥(x) > A(Π(x))}
are denoted by aGA,ψ and AGA,ψ.

Lemma 11.3. For every B ∈ G, one of the components of B\U2εr(B)(LB)

belongs to Ω+, while the other belongs to Ω−.

Proof. For B ∈ G, we have that β∞,Γ(B) ≤ ε. In particular, this implies

that if LB minimizes β∞,Γ(B), then

B \ U2εr(B)(L) ⊂ Ω+ ∪ Ω−.

By connectivity, it is clear that each component of B \U2εr(B)(L) is contained

either in Ω+ or in Ω−. Also, since zB∈E, we have that
´ r(B)
r(B)/2 aψ(zB, r)

2 dr
r ≤ε,

which easily implies that one of those components must be contained in Ω+

and the other in Ω−. �

Applying this lemma to a ball B′ ∈ G containing 15B0, interchanging the

upper half plane by the lower half plane if necessary, we find a constant C > 0

such that

(11.2)

15B0 ∩ R2
+ \ UCεr(B0)(L0) ⊂ Ω+ and 15B0 ∩ R2

− \ UCεr(B0)(L0) ⊂ Ω−.

To prove Lemma 11.2 we will show that if BA has noticeable measure,

then ‖A′‖22 is (relatively) large, and that this in turn contradicts the smallness

assumption of the smoothed square function in Main Lemma 4.2. The proof

is split into several lemmas. The first one is Lemma 7.35 of [Tol14], which is a

consequence of Lemmas 10.1 and 10.9.

Lemma 11.4 ([Tol14, Lemma 7.35]). Provided that ε is small enough in

terms of α,

µ(BA) . α−2‖A′‖22.(11.3)

Assume that α is small enough to apply Lemma 9.1. Then

(11.4)

ˆ
GA

AGA,ψ(x)2 dH1(x) ≈ ‖A′‖22,

where AGA,ψ stands for the square function Aψ associated with the graph GA.

From this and Lemma 11.4 we infer that

(11.5) µ(BA) . α−2

ˆ
GA

AGA,ψ(x)2 dH1(x).

Our next objective is to compare
´
GA
AGA,ψ(x)2 dH1(x) with

´
AΓ,ψ(x)2 dµ(x).
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We denote

`(x) :=
1

50
D(x) =

1

50
D(Π(x)).

Lemma 10.3 ensures that if x ∈ 15I, I ∈W, then

1

10
`(I) ≤ `(x) ≤ `(I).

We set ‹AGA,ψ(x)2 :=

ˆ R

`(x)
aGA,ψ(x, r)2 dr

r
.

It will be convenient to denote L2(GA) = L2(H1|GA).

Lemma 11.5. We have

‖AGA,ψ − ‹AGA,ψ‖2L2(GA) . C(θ)ε2R+ α4‖A′‖22.
Proof. To prove the lemma we need to bound the integrals

I1 :=

ˆ
GA

ˆ `(x)

0
aGA,ψ(x, r)2 dr

r
dH1(x),

I2 :=

ˆ
GA

ˆ ∞
R

aGA,ψ(x, r)2 dr

r
dH1(x).

(11.6)

To do so, we consider the square function aGA,ρ, introduced in Section 9. We

write

I1 .
ˆ
GA

ˆ `(x)

0
|aGA,ψ(x, r)− aGA,ρ(x, r)|2

dr

r
dH1(x)

+

ˆ
GA

ˆ `(x)

0
aGA,ρ(x, r)

2 dr

r
dH1(x) =: I1,1 + I1,2.

The first term I1,1 can be estimated as in the proof of Lemma 9.5, to obtain

I1,1 . ‖A′‖4∞‖A′‖2L2(R) . α
4‖A′‖22.

Let us look at the term I1,2. First, recall from Lemma 9.4 that

I1,2 ≈
ˆ

Π(GA)

ˆ D(p)/50

0
aGA,ρ((p,A(p)), r)2 dr

r
dp

=

ˆ
Π(GA)

ˆ D(p)/50

0

∣∣∣∣∣
ˆ
q∈R

ϕr(q − p)
Å
A(q)−A(p)

r

ã
dq

∣∣∣∣∣
2
dr

r
dp.

(11.7)

where ϕr(·) = 1
rϕ
( ·
r

)
. We write the last integral as

(11.8)
∑
i∈IW

ˆ
Ri

ˆ D(p)/50

0

∣∣∣∣∣
ˆ
q∈R

ϕr(q − p)
Å
A(q)−A(p)

r

ã
dq

∣∣∣∣∣
2
dr

r
dp.
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A PROOF OF CARLESON’S ε2-CONJECTURE 151

Observe that for p ∈ Ri ∈W, 0<r≤D(p)/50≤ `(Ri), and q ∈ suppϕr(·−p) ⊂
B̄(p, 1.1r), we have q ∈ 4Ri. Since suppA ⊂ 12B0 (Lemma 10.6), we can

restrict the sum in (11.8) to the intervals Ri such that 4Ri ∩ 12B0 6= ∅.

Appealing to Lemma 10.4, we infer that these cubes are contained in CB0 for

some absolute constant C > 1.

To estimate each of the summands in (11.8), let p∈Ri and q∈suppϕr(·−p).
Taylor’s theorem gives, with ξq,p on the line segment between q and p,

A(q) = A(p) + A′(p)(q − p) +
A′′(ξq,p)

2
(q − p)2.

Thus we can write the interior most integral in the right-hand side of (11.7) as

1

r

ˆ
ϕr(q − p)A′(p)(p− q)dq +

1

2r

ˆ
ϕr(q − p)A′′(ξq,p)|p− q|2 dq.

By symmetry we immediately see that the first integral vanishes. Concerning

the second integral, for p ∈ Ri ∈ W, 0 < r ≤ D(p)/50 ≤ `(Ri), and q ∈
B(p, 1.1r), we have ξq,p ∈ 15Ri, and then from Lemma 10.6 we see that∣∣∣∣ 1

2r

ˆ
ϕr(p− q)A′′(ξp,q)(q − p)2 dq

∣∣∣∣ . 1

r
sup

ξ∈15Ri

|A′′(ξ)| r2 .θ
r ε

`(Ri)
.

Using again that D(p)/50 ≤ `(Ri), we deduce that

I1,2 .θ
∑

Ri⊂CB0

ˆ
Ri

ˆ D(p)/50

0

∣∣∣∣ r ε

`(Ri)

∣∣∣∣2 dr

r
dp .

∑
Ri⊂CB0

ε2 `(Ri) . ε
2R.

Next we have to estimate the integral I2 in (11.6). Given x ∈ GA and

r ≥ R, let Lx,r be a line passing through x and parallel to the line minimizing

β∞,GA(B(x, 1.1r)), and let Hx,r be the half plane whose boundary is Lx,r lying

above Lx,r. From the definition of aGA,ψ(x, r), it follows that

(11.9)
∣∣aGA,ψ(x, r)

∣∣ . 1

r2
|(Ω+

GA
∆Hx,r) ∩B(x, 1.1r)| . β∞,GA(B(x, 2r)).

Taking into account that suppA ⊂ 12B0 and that dist(x, L0) .θ εR for every

x ∈ GA, by Lemma 10.11, it follows easily that

β∞,GA(B(x, 2r)) .
εR

max
(
r, dist(x,B0)

) for all x ∈ GA and r ≥ R.

This content downloaded from 
108.215.24.170 on Wed, 01 Sep 2021 22:04:13 UTC 

All use subject to https://about.jstor.org/terms



152 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

So we deduce that

I2 .θ

ˆ
GA

ˆ ∞
R

Ç
εR

max
(
r, dist(x,B0)

)å2
dr

r
dH1(x)

.θ

ˆ
GA∩2B0

ˆ ∞
R

(
εR
)2 dr
r3
dH1 +

ˆ
GA\2B0

ˆ ∞
R

(
εR
)2

dist(x,B0)3/2 r1/2

dr

r
dH1(x)

.θ ε
2R2

ˆ ∞
R

dr

r3
+ ε2R2

ˆ
GA\2B0

1

dist(x,B0)3/2
dH1(x)

ˆ ∞
R

dr

r3/2

.θ ε
2R.

Gathering the estimates obtained for I1,1, I1,2, and I2, the lemma follows. �

Observe that, from (11.4) and the previous lemma, we have that

‖A′‖22 . ‖‹AGA,ψ‖2L2(GA) + ‖AGA,ψ − ‹AGA,ψ‖2L2(GA)

. ‖‹AGA,ψ‖2L2(GA) + C(θ)ε2R+ α4‖A′‖22.
Hence, for α small enough, this gives

‖A′‖22 . ‖‹AGA,ψ‖2L2(GA) + C(θ)ε2R,

and combining this inequality with (11.5) we obtain

µ(BA) . α−2‖‹AGA,ψ‖2L2(GA) + C(θ)ε2α−2R.(11.10)

To estimate ‖‹AGA,ψ‖2L2(GA), we split

‖‹AGA,ψ‖2L2(GA) =

ˆ
GA

ˆ R

`(x)
aGA,ψ(x, r)2 dr

r
dH1(x)

=

ˆ
GA

ˆ min(ε−1`(x),R)

`(x)
· · ·+

ˆ
GA

ˆ R

min(ε−1`(x),R)
· · · .

(11.11)

Next we estimate each of these integrals separately.

Lemma 11.6. We haveˆ
GA

ˆ min(ε−1`(x),R)

`(x)
aGA,ψ(x, r)2 dr

r
dH1(x) .θ ε

2| log ε|R.(11.12)

Proof. From Lemma 10.8, it easily follows that β∞,GA(B(x, r)) .θ ε for

all x ∈ GA and r > `(x). Then, arguing as in (11.9), we deduce that

aGA,ψ(x, r) .θ ε.

Thus, for every x ∈ GA,

(11.13)

ˆ ε−1`(x)

`(x)
aGA,ψ(x, r)2 dr

r
.θ ε

2

ˆ ε−1`(x)

`(x)

dr

r
≈ ε2| log ε|.
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A PROOF OF CARLESON’S ε2-CONJECTURE 153

On the other hand, if |x| > CR for C > 1 big enough, then `(x) > R and thus
ˆ min(ε−1`(x),R)

`(x)
aGA,ψ(x, r)2 dr

r
= 0.

Consequently, integrating the pointwise estimate (11.13) over x ∈ GA with

|x| ≤ CR yields the lemma. �

To estimate the second integral on the right-hand side of (11.11) we need

to introduce some additional notation. We denote by ΠGA the projection

R2 → GA orthogonal to L0. We let DGA be the family of “dyadic cubes” on

GA of the form

DGA =
{

ΠGA(I) : I ∈ DL0

}
.

We define the length of I ∈ DGA (and write `(I)) to be equal to `(R), where

R ∈ DL0 satisfies I = ΠGA(R). Then `(I) is comparable to H1(I).

Then we set

WGA =
{

ΠGA(I) : I ∈W
}
.

Denote by WGA,0 = {ΠGA(Ri) : i ∈ I0}, so I ∈ WGA,0 if I = ΠGA(Ri) for

some Ri that intersects B(0, 10R).

Lemma 11.7. If I ∈WGA,0, x ∈ I , and 0 < r ≤ R, then B(x, 2r) ⊂ 15B0.

Proof. By Lemma 10.11, dist(x, L0) � R for x ∈ GA, so the claimed

statement follows from Lemma 10.4, which states that I = ΠGA(R) for an

interval R satisfying 3R ⊂ [−12R, 12R]. �

We now claim that there is an absolute constant C1 such that for each

I ∈WGA that intersects 15B0, there exists a ball BI ∈ VG (centered at zI ∈ E)

such that

C−1
1 r(BI) ≤ `(I) ≤ C1r(BI),(11.14)

I ⊂ C1BI , and ΠGA(zI) ∈ C1BI .(11.15)

Indeed, if I ∈ WGA,0, then I = Π(Ri) for i ∈ I0, so by Lemma 10.5, there

exists a ball BI ∈ VG such that r(BI) ≈ `(I) and

dist(I,ΠGA(BI)) = dist(ΠGA(Ri),ΠGA(Π(BI))) . `(I).

But then, by Lemma 10.9,

dist(BI , GA) ≤ dist(zI , GA) .θ εd(zBI ) .θ ε r(BI),

where zI is the center of BI .

Provided that ε is small enough in terms of θ, we therefore have

dist(I,BI) . dist(I,ΠGA(BI)) + dist(BI ,ΠGA(BI))

+ diam(ΠGA(BI)) . r(BI) ≈ `(I).
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154 BENJAMIN JAYE, XAVIER TOLSA, and MICHELE VILLA

We now can readily deduce that (11.15) holds for C1 large enough. (Recall

that GA is a Lipschitz graph with Lipschitz constant . α� 1.)

On the other hand, if I ∈WGA\WGA,0 and I ⊂ 15B0, then `(I) ≈ R, and

we can set for BI a ball centered on E of radius 2R, say.

We need the following auxiliary result, which appears as Lemma 7.41 in

[Tol14] in slightly different notation.

Lemma 11.8 ([Tol14, Lemma 7.41]). For each I ∈ WGA,0, there exists

some function gI ∈ L∞(µ), gI ≥ 0 supported on BI such that

(11.16)

ˆ
gI dµ = H1(I)

and

(11.17)
∑

I∈WGA,0

gI . c(θ).

We will also need the next geometric lemma.

Lemma 11.9. If ε is small enough, then there exist constants C2 and

C(θ) > 0 such that

(Ω+
GA

∆Ω+
Γ ) ∩ 15B0 ⊂

⋃
J∈WGA

:J∩15B0 6=∅
B(xJ , C2`(J)) ∩ UC(θ)ε`(J)(GA).

Moreover, for each J ∈WGA such that J ∩ 15B0 6= ∅,∣∣(Ω+
GA

∆Ω+
Γ ) ∩B(xJ , C2`(J)) ∩ 15B0

∣∣ .θ ε `(J)2.

Proof. Let x ∈ Γ ∩ 15B0, and let J ∈WGA be such that ΠGA(x) ∈ J . Let

BJ = B(zJ , r(BJ)) ∈ VG satisfy the properties (11.14) and (11.15). Then both

ΠGA(x) and ΠGA(zJ) belong to C1BJ , where C1 is the constant appearing in

(11.14) and (11.15). Recall here that ΠGA(x) is the projection of x onto GA
orthogonal to L0.

We claim that x ∈ 10C1BJ . If x /∈ 10C1Bj , then the majority of the

length of x − zJ is in the component orthogonal to L0. Therefore, since x

and zJ belong to Γ, from the fact that β∞,Γ(B′) ≤ ε whenever B′ = B(zJ , s)

and rJ ≤ s ≤ 50R, we deduce that such a ball B′ with x ∈ B′\1
2B
′ satisfies

∠(LB′ , L0) & 1� α. But this cannot happen, thus yielding the claim.

But since 10C1BJ ∈ VG,

dist(x, L10C1BJ ) . εrJ . ε`(J).

We therefore infer that

Γ ∩ 15B0 ⊂
⋃

J∈WGA
:J∩15B0 6=∅

B(xJ , 10C1`(J)) ∩ UCε`(J)(L10C1BJ ).
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A PROOF OF CARLESON’S ε2-CONJECTURE 155

On the other hand, from Corollary 10.10, there is a constant C(θ) > 0 such

that for any B ∈ VG,

LB ∩B ⊂ UC(θ)εr(B)(GA).

Consequently,

Γ ∩ 15B0 ⊂
⋃

J∈WGA
:J∩15B0 6=∅

B(xJ , 10C1`(J)) ∩ UC(θ)ε`(J)(GA).

By connectivity arguments, using (11.2), we deduce that

(11.18) Ω±Γ ∩15B0 ⊂ Ω±GA∪
⋃

J∈WGA
:J∩15B0 6=∅

B(xJ , 10C1`(J))∩UC(θ)ε`(J)(GA),

which implies the first part of the lemma with C2 = 10C1.

For the second claim of the lemma, set ‹B = B(zJ , C2`(J)). If C2`(J) > R,

then we bound∣∣(Ω+
GA

∆Ω+
Γ ) ∩ ‹B ∩ 15B0

∣∣ ≤ ∣∣(Ω+
GA

∆Ω+
Γ ) ∩ 15B0

∣∣ (11.2)

.θ εR2.

On the other hand, if C2`(J) < R, then ‹B ∈ VG, so Lemma 10.8 and Corol-

lary 10.10 yield that for any B′ ⊃ ‹B with r(B′) ≤ R,

GA ∩ ‹B ⊂ UC(θ)εr(B′)(LB′), and LB′ ∩B′ ⊂ UC(θ)εr(B′)(GA).

Since β∞,Γ(B′) ≤ ε, we infer that both GA ∩ B′ and Γ ∩ B′ are contained

in a strip of width C(θ)εr(B′) around LB′ . Since
´ R

0 aψ(zJ , r)
2 dr
r < ε, one

of the components of B′\UC(θ)εr(B′)(LB′) must belong to Ω+
Γ , with the other

belonging to Ω−Γ (Lemma 11.3). But now we infer from (11.2) and a con-

tinuity argument that the component of B′\UC(θ)εr(B′)(LB′) that lies above

LB′ belongs to Ω+
Γ , while the component that lies below LB′ belongs to Ω−Γ .

Therefore Ω+
Γ ∆Ω+

GA
∩B′ ⊂ UC(θ)εr(B′)(LB′). In the case B′ = ‹B, we have that

r(‹B) .θ `(J), so |Ω+
Γ ∆Ω+

GA
∩ ‹B| .θ ε`(J)2. �

Now we are ready to deal with the first integral on the right-hand side of

(11.11):

Lemma 11.10. We have

ˆ
GA

ˆ R

min(ε−1`(x),R)
aGA,ψ(x, r)2 dr

r
dH1(x)

.θ ε
2R+

¨ R

0
aΓ,ψ(x, r)2 dr

r
dµ(x).

(11.19)

Throughout the proof of Lemma 11.10, we will let the implicit constant

in the symbol . depend on θ without further mention.
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Proof. By Lemma 10.4, ε−1`(x) ≥ R for x ∈ I ∈WGA \WGA,0, so we may

write

ˆ
GA

ˆ R

min(ε−1`(x),R)
aGA,ψ(x, r)2 dr

r
dH1(x)

=
∑

I∈WGA,0

ˆ
I

ˆ R

min(ε−1`(x),R)
aGA,ψ(x, r)2 dr

r
dH1(x).

(11.20)

Given x ∈ I ∈ WGA,0, we consider an arbitrary point x′ ∈ BI . Then we

write ∣∣aGA,ψ(x, r)− aΓ,ψ(x′, r)
∣∣ ≤ ∣∣aGA,ψ(x, r)− aGA,ψ(x′, r)

∣∣
+
∣∣aGA,ψ(x′, r)− aΓ,ψ(x′, r)

∣∣ .(11.21)

Regarding the first term on the right-hand side, using the fact that r ≥
ε−1`(x) ≈ ε−1`(I)� `(I) and taking into account that |x−x′| ≤ dist(I,BI) .
`(I) by (11.15), we get

∣∣aGA,ψ(x, r)− aGA,ψ(x′, r)
∣∣ ≤ r−2

ˆ
Ω+
GA

∣∣∣∣ψ (x− yr )
− ψ
Å
x′ − y
r

ã ∣∣∣∣ dy
. ‖∇ψ‖∞

ˆ
B(x,2r)

|x− x′|
r3

dy .
`(I)

r
,

Next we deal with the last term in (11.21):

∣∣aGA,ψ(x′, r)− aΓ,ψ(x′, r)
∣∣ = r−2

∣∣∣∣∣
ˆ

Ω+
GA

ψ

Å
x′ − y
r

ã
dy −

ˆ
Ω+

Γ

ψ

Å
x′ − y
r

ã
dy

∣∣∣∣∣
. r−2

∣∣(Ω+
GA

∆Ω+
Γ ) ∩B(x, 2r)

∣∣.
Notice next that, insofar as I ∈WGA , there is an absolute constant C > 0 such

that if xI is the center of I, and if J ∈ WGA satisfies J ∩ B(x, 2r) 6= ∅, then

J ⊂ B(xI , Cr). Also by Lemma 11.7, B(x, 2r) ⊂ 15B0. But then, Lemma 11.9

ensures that∣∣(Ω+
GA

∆Ω+
Γ ) ∩B(x, 2r)

∣∣ ≤ ∑
J∈WGA

:J∩B(x,2r)6=∅

∣∣(Ω+
GA

∆Ω+
Γ ) ∩B(xJ , C2`(J))

∣∣
.

∑
J∈WGA

:J∩B(x,2r)6=∅

ε`(J)2

.
∑

J∈WGA
:J⊂B(xI ,Cr)

ε `(J)2.
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From the last estimates we derive∣∣aGA,ψ(x, r)− aΓ,ψ(x′, r)
∣∣2 . `(I)2

r2
+ ε2

Å ∑
J∈WGA

:J⊂B(xI ,Cr)

`(J)2

r2

ã2

.

But since ∑
J∈WGA

:J⊂B(xI ,Cr)

`(J)2 . r
∑

J∈WGA
:J⊂B(xI ,Cr)

`(J) .θ r
2,

we deduce that∣∣aGA,ψ(x, r)− aΓ,ψ(x′, r)
∣∣2 .θ `(I)2

r2
+ ε2

∑
J∈WGA

:J⊂B(xI ,Cr)

`(J)2

r2
.

Since this holds for all x′ ∈ BI ,

aGA,ψ(x, r)2 .θ inf
x′∈BI

aΓ,ψ(x′, r)2 +
`(I)2

r2
+ ε2

∑
J∈WGA

:J⊂B(xI ,Cr)

`(J)2

r2

for all x ∈ I ∈WGA,0.

Plugging this inequality into the right-hand side of (11.20), we estimate

the integral on the left side of (11.19) as follows:

ˆ
GA

ˆ R

min(ε−1`(x),R)
aGA,ψ(x, r)2 dr

r
dH1(x)

.θ
∑

I∈WGA,0

ˆ
I

ˆ R

min(cε−1`(I),R)
inf
x′∈BI

aΓ,ψ(x′, r)2 dr

r
dH1(x)

+
∑

I∈WGA,0

ˆ
I

ˆ R

min(cε−1`(I),R)

`(I)2

r2

dr

r
dH1(x)

+
∑

I∈WGA,0

ˆ
I

ˆ R

min(cε−1`(I),R)
ε2

∑
J∈WGA

:

J⊂B(xI ,Cr)

`(J)2

r2

dr

r
dH1(x)

=: T1 + T2 + T3.

First we bound T2 in a straightforward manner by evaluating the double inte-

gral:

T2 .
∑

I∈WGA,0

`(I)

ˆ ∞
cε−1`(I)

`(I)2

r3
dr . ε2

∑
I∈WGA,0

`(I) . ε2R.

We now turn our attention to T3. Given I, J ∈WGA , denote

D(I, J) = `(I) + `(J) + dist(I, J).
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Notice that if J ⊂ B(xI , Cr), r > cε−1`(I), then r & D(I, J). Using Fubini’s

theorem, we therefore infer that

T3 .
∑

I∈WGA,0

`(I)

ˆ R

min(cε−1`(I),R)
ε2

∑
J∈WGA

:

J⊂B(xI ,Cr)

`(J)2

r3
dr

. ε2
∑

J∈WGA
:J⊂CB0

`(J)2
∑

I∈WGA

`(I)

ˆ
r>cD(I,J)

dr

r3

. ε2
∑

J∈WGA
:J⊂CB0

`(J)2
∑

I∈WGA

`(I)

D(I, J)2
.

Now notice that ifD(I, J) = t, then I ⊂ B(xJ , Ct). Consequently, as D(I, J) ≥
`(J), we control the inner sum on the right-hand side as follows:

∑
I∈WGA

`(I)

D(I, J)2
=
∑
k≥0

∑
I∈WGA

:

2k`(J)≤D(I,J)≤2k+1`(J)

`(I)

D(I, J)2

.
∑
k≥0

1

22k`(J)2

∑
I∈WGA

:

I⊂B(xJ ,C2k`(J))

`(I) .
∑
k≥0

1

2k`(J)
≈ 1

`(J)
.

Combining these two chains of inequalities, we arrive at

T3 . ε
2

∑
J∈WGA

:J⊂CB0

`(J) . ε2R.

Finally we will estimate the term T1. To this end, we consider the functions

gI constructed in Lemma 11.8. It is clear that

T1 =
∑

I∈WGA,0

¨ R

min(cε−1`(I),R)
inf
x′∈BI

aΓ,ψ(x′, r)2 dr

r
gI(x) dµ(x).

Observe now that, for each x ∈ BI ,

inf
x′∈BI

aΓ,ψ(x′, r) ≤ −
ˆ
BI

aΓ,ψ(x′, r) dµ(x′) ≤ µ(3BI)

µ(BI)
M̃µaΓ,ψ(·, r)(x),

where M̃µ is the maximal operator defined by

M̃µf(x) = sup
B3x

1

µ(3B)

ˆ
B
|f | dµ.
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Since µ(3BI)
µ(BI) . θ

−1 . 1, using Fubini and Lemma 11.8, we can write

T1 .
∑

I∈WGA,0

¨ R

min(cε−1`(I),R)
M̃µaΓ,ψ(·, r)(x)2 dr

r
gI(x) dµ(x)

.
ˆ R

0

ˆ
M̃µaΓ,ψ(·, r)(x)2

∑
I∈WGA,0

gI(x) dµ(x)
dr

r

.
ˆ R

0

ˆ
M̃µaΓ,ψ(·, r)(x)2 dµ(x)

dr

r
.

Using that M̃µ is bounded in L2(µ) (see Theorem 9.32 in [Tol14], for example),

we derive

T1 .
ˆ R

0

ˆ
aΓ,ψ(x, r)2 dµ(x)

dr

r
.

Gathering the estimates obtained for the terms T1, T2, and T3, the lemma

follows. �

Proof of Lemma 11.2. By (11.10) and Lemmas 11.6 and 11.10, we get

µ(BA) .θ α
−2ε2R+ α−2‖‹AGA,ψ‖2L2(GA)

.θ α
−2ε2R+ α−2

Ç
ε2| log ε|R+ εR+

¨ R

0
aΓ,ψ(x, r)2 dr

r
dµ(x)

å
.θ α

−2ε2| log ε|R+ C(θ, α)

¨ R

0
aΓ,ψ(x, r)2 dr

r
dµ(x) ≤ ε1/2µ(B0)

for ε = ε(α, θ) small enough. This yields the desired conclusion. �

11.3. Proof of the Main Lemma 4.2. By Lemmas 11.1 and 11.2, if θ is

chosen small enough and then ε also small enough (depending on α and θ),

then

µ(BA ∪ LD) ≤ 1

2
µ(B0).

But then

µ(Z) ≥ 1

2
µ(B0),

and Z ⊂ Z0 ⊂ GA. This completes the proof.
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