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Nonplanar graphs in boundaries of CAT (0) groups

Kevin Schreve and Emily Stark

Abstract. Croke and Kleiner constructed two homeomorphic locally CAT(0) complexes
whose universal covers have visual boundaries that are not homeomorphic. We construct two
homeomorphic locally CAT(0) complexes so that the visual boundary of one universal cover
contains a nonplanar graph, while the visual boundary of the other does not. In contrast, we
prove for any two locally CAT(0) metrics on the Croke—Kleiner complex, if a finite graph
embeds in the visual boundary of one universal cover, then the graph embeds in the visual
boundary of the other.
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1. Introduction

If X is a Gromov hyperbolic space, there is a naturally defined boundary at
infinity 0 X, and any quasi-isometry of X induces a self-homeomorphism of
dooX . Moreover, if G is a word-hyperbolic group, then any two boundaries of
G are G-equivariantly homeomorphic. Croke and Kleiner [7] showed the same
phenomena does not occur for CAT(0) groups; i.e. there is a group which acts
geometrically (properly and cocompactly by isometries) on two CAT(0) complexes
with non-homeomorphic visual boundaries. Later, Wilson [18] showed that the
Croke—Kleiner examples admit uncountably many non-homeomorphic boundaries;
see also [3, 8, 17].

One can still ask what properties of the visual boundary are well-defined
invariants of a CAT(0) group. For example, the topological dimension of a CAT(0)-
group is a quasi-isometry invariant [2, 9]. In a different direction, Guilbault
and Mooney [10] proved that all boundaries of the Croke—Kleiner examples are
G-equivariantly cell-like equivalent.

In this paper, we show that the existence of a nonplanar graph in a CAT(0)
boundary is not a well-defined invariant for a CAT(0) group.



2 K. Schreve and E. Stark

Theorem 1.1. There exist two homeomorphic locally CAT(0) complexes X and
X' so that the visual boundary of X contains a nonplanar graph and the visual
boundary of X' does not.

On the other hand, we prove that the homeomorphism type of the boundaries for
the Croke—Kleiner examples cannot be detected by finite graphs. These complexes,
denoted Xck, are constructed by gluing two flat tori 77 and 75 onto a third flat
torus Ty along simple closed curves which generate 71 (7).

Theorem 1.2. Suppose X and X, are locally CAT(0) complexes homeomorphic
to Xck. If T is a finite graph contained in 3o X1, then there is an embedding of
the graph T into 000 X5.

Our interest in (non)-planarity of the visual boundary is motivated by the
following two questions, neither of which we can answer.

Question 1.3. Suppose a group G acts geometrically on a CAT(0) space X so
that 000 X is planar. Does G have a finite-index subgroup which is a 3-manifold
group’!

Question 1.4. Can a group G act geometrically on two CAT(0) spaces X and X'
5o that 000X is planar and 0.0 X’ is nonplanar?

Question 1.3 was asked by Haissinsky for hyperbolic groups. A positive answer
implies the Cannon Conjecture [4, Conjecture 11.34]. Haissinsky proved that the
answer to Question 1.3 is positive if G is hyperbolic and cubulated [11]. It is also
necessary to ask for a finite-index subgroup, as there are torsion-free hyperbolic
and CAT(0) groups with planar boundary which are not 3-manifold groups but
have 3-manifold groups as finite-index subgroups [13, 12].

Regarding Question 1.4, Papasoglu and Swenson [16] showed that the boundary
of a one-ended CAT(0) group has no global cut points. In this case, if the boundary
is also locally connected, the existence of an embedded nonplanar graph in the
boundary is equivalent to nonplanarity of the boundary by a theorem of Claytor [5].
Our groups are torsion-free, but the boundaries in Theorem 1.1 that we construct
are not locally connected, and we prove in Theorem 4.1 the boundaries that do not
contain nonplanar graphs are also nonplanar.

One relation between planarity of the boundary and 3-manifold groups comes
from a paper of Bestvina, Kapovich, and Kleiner [1]. A very special case of their
main theorem implies that if G acts geometrically on a CAT(0) space X and doc X
contains a nonplanar graph, then G is not even quasi-isometric to a 3-manifold
group. It follows that our examples are not quasi-isometric to 3-manifold groups.

This paper is organized as follows. In Section 2 we introduce and illustrate
our main example; see Figure 1. Our example is formed by gluing tori to the
torus boundary components of a 3-manifold that is the product of a surface with
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boundary and a circle. In Section 3 we determine the local path components of
the visual boundary; we prove these depend on the locally CAT(0) metric on the
complex. In Section 4 we show for any locally CAT(0) metric on the complex, the
visual boundary is non-planar. In Section 5 we show the existence of nonplanar
graphs depends on the locally CAT(0) metric. In Section 6 we analyze the finite
subgraphs of the Croke—Kleiner boundaries.
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were supported by a Faculty Allies for Diversity in Graduate Education grant,
which helped finance the second author’s trip to the University of Michigan. The
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Figure 1. The main example X and a subset of the boundary of X. The space X is right-
angled if the tori To and 7> are glued to geodesics in a boundary torus of ¥ x S that meet
at a right angle. On the right X is right-angled, and on the left X is not. The suspension
of the Cantor set in black is the boundary of a sub-block which covers ¥ x S!. The red
and green paths are subsets of the visual boundary 7;. On the right these paths yield an
embedded circle in doc X, and on the left they do not. Using this embedded circle, it is
simple to find a K3 3 subgraph of the right-angled boundary; the vertex sets are {a, b, c}
and {x, y, z}. Most of the work in this paper is to show that there are no K3 3 subgraphs of
the non right-angled boundary.
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2. Main example

Let X be a genus one surface with two boundary components. Let g and o1 denote
the boundary curves of . Form the product ¥ x S!. Let b; € X be a point on the
boundary curve o; fori € {0, 1}, and let B; = b; x S!.

Form the space X by gluing three tori, Ty, 77, and T3, onto the curves «g, o1,
and By, respectively. Note that after gluing on any two of these tori, the resulting
space is homotopy equivalent to a 3-manifold.

Notation. Let M = (X x S') Ug, Ta, let W; = a; x B; fori = 0,1, and let
Yi = Wi Uy, T;. Thus 3(Z x S1) = Wy U Wy.

Lemma 2.1. We collect a few easy facts about w1 (X).
o The subgroups w1 (M) and 71(Y;) are isomorphic to the direct product of a
free group with Z.
e 111(X) has cohomological dimension 2, and hence 05, X is 1-dimensional
by [2].
o 11(X) splits as an amalgamated product over each of the w1 (o;).

o The subgroup m1(Yo Ug, T3) is isomorphic to the Croke—Kleiner group.

We define the angle between «g and Sy to be the minimal distance in the Tits
metric between the endpoints of their lifts in do, Wp.

Theorem 2.2. Given any § € (0, 7], there is a locally CAT(0) metric on ¥ x S !
so that the angle between oy and By is 6.

Proof. Choose generators a, b, ¢ for 71 (X) so that ¢ represents «g, and let d be
the generator of 771(S'). Assume that ¥ has a hyperbolic metric; so, there is an
discrete and faithful representation v : 1 (X) — Isom™ (H?).

Let T be a nontrivial homomorphism from Z — R, and skew the standard
product action of 771 (X) x Z on H? x R by

a:(x,y) — (Y (a)x, y),
b:(x,y) — (Y (b)x, y),
ci(x,y) — (Y (e)x,T(c) + y),
d:(x,y)— (x,y +1).

Since we can choose any homomorphism 7', the quotient of H? x R by this
skewed action defines a locally CAT(0) metric with a desired angle. O

If the angle between B and «g is 7/2 (so that 7 = 0), then we say that X is
right-angled. We will always choose simple closed curves on the 7; and flat metrics

so that the 7; are glued onto ¥ x S! by isometries. The resulting complex is then
locally CAT(0).
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Remark. We were originally motivated by an example of Kapovich and Kleiner [13,
Section 9]. Roughly speaking, their example is obtained by gluing together two
graph manifolds with boundary along simple closed curves in the interior. They use
coarse Alexander duality to show that their examples are not virtually 3-manifold
groups. Their examples also have visual boundaries which are nonplanar, and the
existence of nonplanar graphs depends on how the Seifert-fibered pieces are glued
together.

Having two boundary components in our example is a little artificial; there are
similar constructions formed by starting with the product of a circle and a genus
one surface with one boundary component, and then gluing on two tori along the
boundary torus. The difference here is that one cannot skew the metric in the
same way; any locally CAT(0) metric on this space restricts to the right-angled
flat metric on the boundary torus. Therefore, to obtain different boundaries one
has to vary the fundamental groups of these examples by gluing tori onto different
simple closed curves on the boundary tori. One can show using work of Kapovich—
Leeb [14, Proposition 2.2] that all these groups are quasi-isometric. We wanted
an example where this phenomena occurs for the same group, hence used two
boundary components.

2.1. Structure of the universal cover of X. Let 7: X — X denote the universal
covering. A block is a connected component of 7~ (M) or 71 (Y;). Each block
is convex in X. A sub-block is a connected component of 77 1(Z x S1). A wall is
a connected component of 7~ (W;). Note that each wall is contained in exactly
two blocks, and two blocks either intersect in a wall or are disjoint. In the first case
we say that the blocks are adjacent.

Each block and sub-block is quasi-isometric to the product of a tree with R, so
the boundary of each block and sub-block is homeomorphic to the suspension of
a Cantor set. There is a natural homeomorphism from the boundary of & to the
Cantor set that maps the endpoints of copies of the universal cover of the curves
a; inside  to endpoints of removed intervals. A pole of a block boundary is one
of the suspension points. A longitude is an embedded arc in the block boundary
connecting the two poles. If the longitude of a sub-block covering ¥ x S! contains
a pole of an adjacent block in its interior, we say it is a boundary longitude, and if
a pair of such longitudes contains the two poles of an adjacent block, we say the
longitudes form a boundary pair. The boundary pairs are precisely the pairs of
longitudes which contain the endpoints of lifts of the curves «; .

We will also need the notion of an itinerary for a geodesic ray in X. Choose a
basepoint p € X not contained in any wall. For a point ¥ in dex X, the p-itinerary
of ¥, denoted Itin, (), is the ordered sequence of blocks {B;}2,, where the
geodesic ray py intersects B; in a point not contained in a wall. A boundary
point has finite itinerary (for any basepoint p) if and only if it is contained in the
boundary of some block.
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3. Paths in the boundary

In this section, we study the local path components of points in ., X and show that
they depend on whether X is right-angled. In the next sections, we will show that
this changes what possible finite graphs embed into 9., X. The main difference
between the cases comes from studying paths between points on different longitudes
of oo SB C 900X, where SB is a sub-block covering = x S!. If X is right-angled,
it turns out that there is a path between points on any two longitudes that misses
the two poles of 0SB (see Lemma 3.1). If not, these paths only exist between
points on boundary pairs. See Figure 1.

3.1. Horizontal paths in doo X

Lemma 3.1. Suppose that X is right-angled, and SB is a sub-block of X. Then
there is a circle inside 800)? containing aooi C 00oSB that avoids the poles
{V4,¥_} of 000 SB. In particular, if x and y are two points in 0.0 SB, then x and
y are in the same path component of dso X — {Y4, Y_).

Proof. Choose a basepoint p in the interior of 3, for some lift £ of ¥ in SB, and
choose a circle in the tangent space T, (E) C T,(SB). We will define an embedding
from this circle to 9o, X . For a vector v € T, (E) if the horizontal geodesic p in the
direction of v stays in SB for all time, then map v to the endpoint of that geodesic.
Otherwise, suppose that p hits a wall W between SB and a block Y in a geodesic
line £, where n(Y) = Y; fori € {0, 1}. The line £ is a lift of a closed curve in the
torus 7;, and hence £ bounds two half-flats meeting W in £. Given £, choose one
of the two half-flats; this choice determines a way to extend p to a geodesic ray p’
contained in Y. Map the vector v to the endpoint of p’. O

We call such a circle in 9o X a horizontal circle for the sub-block boundary
dooSB. Note that a path connecting two points on d,SB which lies on this
horizontal circle will have infinite Tits length unless x and y are on the same
longitude, or are on longitudes that form a boundary pair.

3.2. Local path components in d0oX if X is not right-angled

Theorem 3.2. Suppose X is not right-angled. Suppose that  is a point on a block
boundary 0. B that is not a pole of any other block. Then, there is a neighborhood
Qofyin doo X so that the path component of ¥ in 2 is contained in the block
boundary 0 B. Furthermore, this path component is contained in the set of
longitudes of 0 B that  lies on.

Proof. Our argument is the same as in [7, Lemma 4], though we have to additionally
argue that the horizontal paths constructed in Lemma 3.1 cannot exist when X is
not right-angled.
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Case 1: ¢ is a pole of doo B where B covers M. Choose a basepoint p in B
that is not contained in a wall, and suppose the minimum Tits angle based at p
between v and the poles of adjacent blocks is equal to € > 0. Let

Q= {y' € 00X | Lp(¥, V) < €/2}.

For i = 0 or 1, choose a lift @; of ; in B, and let Qg denote the geodesics in 2
that exit from this lift. We claim that these sets are open and closed in €2.

Open. If ¥ in Qg , note that any sufficiently close ray ¥ to ' must exit B at
a point close to where ¥’ exits. Since the lifts of ; in B are discrete, " and
must leave from the same lift.

Closed. Let E denote the set of exit points in @; for elements of Qg,. Then E
is bounded, for otherwise we could find a sequence of exit points on ¢; diverging
from p, so we get a limit geodesic originating at p and ending at ¥’ in 0eo@;.
However, this point is a pole of an adjacent block, and hence the Tits angle at p is
> ¢, contradiction. Therefore, the set E is bounded.

Now, suppose we have a sequence y; — ', where ¥, € Qg and ¥’ € Q.
After passing to a subsequence, we can assume the geodesic segments pej converge
to a segment pés,. Therefore, the geodesic py’ exits B through pés, and is
therefore in Qg .

It follows that the path component of ¥ in €2 consists of geodesics which never
leave through lifts of the «;, since any subset C C €2 containing ¥ and intersecting
Qg, for some lift admits a separation into open subsets of C, and any ' € Q—0o B
lies in Qg, for some lift.

Case 2: ¢ is contained in the boundary of a wall W and not a pole. Let ¢
denote the minimum Tits angle based at p between v and the poles of blocks
which contain W, and let 2 be defined as above. A similar argument to the above
shows that a path of geodesics starting at ¢ does not exit the sub-block containing
W through a lift of B or «;. Therefore, the path component in €2 is contained in the
boundary of that sub-block. Since the boundary of this sub-block is homeomorphic
to a suspension of a Cantor set, the path component in €2 is contained in deo W'.

Case 3: ¢ is not in the boundary of an adjacent block. Choose a basepoint p
in B and not contained in a wall. Let H C B be the halfplane in X containing the
ray py and the vertical geodesic through p between the poles of B. For any wall
W, the space W N H is either empty, a vertical geodesic, or a flat strip bounded
by vertical geodesics. See Figure 2. After removing these subsets, we get either
an infinite collection of open strips or a finite collection of strips and an open half
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Figure 2. The proof of Theorem 3.2 analyzes the boundary of the universal cover of M C X,
which is shaded in blue. The universal cover consists of infinitely many copies of sub-blocks

> x S1, shown on the left, and infinitely many copies of W U~30 T>, shown in the middle,
which are glued to each other along walls, drawn in darker blue. The vertical strips in
Case (3) are unions of vertical strips [—1, 1] x R in the above two spaces with boundary
+1 x R vertical lines in the walls.

plane. Note that the second case occurs only if the ray py is eventually contained
in a single sub-block, and hence  is contained in the boundary of that sub-block.

Let € be the minimal Tits angle between ¥ and the poles of B. We may have
that the minimum Tits angle between v and the poles of blocks adjacent to B is
zero. However, since X is not right-angled we can choose ¢’ < ¢/2 so that for each
adjacent block, one of the poles has Tits distance with i greater than &’.

First suppose there is no half-plane. If S is such an open strip in H, then let
Qs be the points in 300X Whose representative rays originating at p nontrivially
intersect S. Again, this set is closed and open in €2. Therefore, since py intersects
all strips, each point in a path starting at p must intersect them all as well. Therefore,
the path is contained in oo H .

Now, suppose there is a half-plane. Let SB be the sub-block covering ¥ x S'!
which contains this half plane, and let p be a path starting at ¥. For each geodesic
ray py’ for ¥/ in p, project its intersection with SB to the horizontal subsurface <.
See Figure 3. If this projection is a single geodesic in ¥ we are done. If not, this
path contains geodesic rays arbitrarily close to pys whose endpoints are contained
in the boundaries of walls and are not poles of adjacent blocks (note that this fails
if X is right-angled and v lies in 0%, as ¥ is contained in a horizontal path from
Lemma 3.1). This leads to a contradiction, since by Case 2, the path components of
these points in €2 are contained on a single longitude. Therefore, such a path would
have to continue on this longitude until it hits a pole of adjacent block, which by
assumption makes the path leave 2.
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Figure 3. On the left is a geodesic ray py that is contained in a block isometric to & x R.
For each geodesic ray py’ representing a point in a path in the boundary starting at v/, the
projection to S of the intersection of p¥’ with the block $ x R is drawn in green.

Case 4: ¢ is a pole of 0o Y where Y covers Y;. Choose a basepoint p in a lift
a; of a;, so that ¥ is one of the endpoints of &;. The argument in Case 1 above
shows that the geodesics in any path starting at ¥ cannot exit ¥ through a lift of .
The argument in the second half of Case 3 rules out geodesics in this path exiting
Y into an adjacent sub-block through a wall. Therefore, the local path component
around ¥ is contained in dooY . O

We now use the analysis of local path components in the non right-angled case
to work out the path components of 0o X — {4, ¥_}, where ¥4 and {_ are poles
of a block boundary.

Lemma 3.3. Suppose that X is not right-angled and suppose that Y is a block
which covers Yy or Y1. Let 4 and y_ be the poles of 0o0Y , and suppose that x and
y are points in 0o Y — {4, ¥_}. Then x and y are in the same path component of
dooX — {W4., V_) if and only if they lie on the boundary of an adjacent sub-block
SB or are contained in the same longitude.

Proof. Suppose that x,y € dooY are not contained in a single longitude or the
boundary of an adjacent block. Suppose an arc p starts at x and ends at y. We must
show that p intersects ¥4 or ¥_. If x or y is not contained in the boundary of a
wall, then the longitude containing x or y has no poles on it, which by Theorem 3.2
implies the path p intersects ¥4 or ¥_. Therefore, we can assume that x and y are
contained in two different sub-block boundaries SB; and SB,. The group G splits
as w1 (M) * g,y T;, and the two sub-blocks SB; and SB, correspond to subgroups
in different conjugates of 71 (M). The SB; are separated by a lift of «; in ¥, which
implies that there is no path connecting x and y which misses ¥4 or ¥_. O
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Lemma 3.4. Suppose that X is not right-angled and suppose that {{,¥_} are
the poles of a block B which covers M. Suppose x and y are two points in
0ooB — {4, ¥_}. Then x and y are in different path components of the space
Do X — {V+,¥_} if and only if they do not lie on longitudes which form a boundary
pair or are contained in the same longitude.

Proof. Suppose L; and L, are longitudes that do not form a boundary pair, and
that there is an arc p which starts at x € L; and ends at y € L,. We must show
that p intersects ¥4 or y—_. This is certainly true if neither of the L; are boundary
longitudes by Theorem 3.2, as there are no poles of adjacent blocks on these
longitudes. So, we can assume that both of the points lie on boundary longitudes
for different lifts of the «;.

If p does not intersect ¥ or ¥, then p must intersect a pole ¥/, of an adjacent
block boundary d. Y covering Y; fori € {0, 1}. If p continues in 0, B, it intersects
Y4+ or ¥_, so we assume the path continues into do Y. If ¥ is the other pole of
dooY , then {¥/, , ¥ } is a cut pair for dooX as in Lemma 3.3. Since p exits do B,
it enters a different path component of doo X — {y! .y} by Lemma 3.3. Hence,
p intersects ¥’ , since x and y are in the same component of doo X — Wi v}
Now, p must continue in do, B, since otherwise by repeating this argument p would
intersect v and not be an embedded path. However, then p intersects one of the
poles of doo B by Theorem 3.2. d

4. Non-planarity

Theorem 4.1. For any locally CAT(0) metric on X, the visual boundary doo X is
nonplanar.

Proof. Suppose that h: 9,0X — S2 is an embedding. Let SB be a sub-block
covering £ x S!, and let {1, ¥_} be the poles of 3., SB. Let P be the collection
of poles of adjacent blocks to SB. For each pair of poles in P, the longitudes from
this pair to ¥4+ and ¥_ give an embedded circle inside 0 SB.

We first claim that the images of each of these circles under the embedding £
must bound a disc inside S? — 1(doSB) if h extends to an embedding of doo X .
To see this, let {y/,, ¥ } be a pair of poles in P such that the corresponding circle
C does not bound a disc in S? — h(d,SB). This implies there are longitudes £,
and ¢, in 0SB which connect ¥ to ¥_ and map to different components of
$2 — C. In 9. X, we can connect ¥l to ¥’ with a longitude of an adjacent block.
The image of this longitude under /& must intersect one of the /(¢;), which is a
contradiction.

We now claim there is no embedding of

dooSB UYL
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into S? such that each embedded circle as above bounds a disc, where ¢ is a
longitude of the block B containing S B and not contained in d, S B. Note that under
the usual identification of 9., % with the Cantor set, the pairs in P are identified
with endpoints of deleted intervals. If there was such an embedding /, then by
attaching discs to the domain along these circles we could extend / to an embedding
S2 U ¢ — S?, which is a contradiction. O

If X is right-angled, we can do better and find a nonplanar graph inside of 90 X .

Theorem 4.2. If X is right-angled, then there is an embedded K3 3 graph inside
doo X.

Proof. An illustration of the K3 3 subgraph on vertex sets {a, b, c} and {x, y, z}
appears in Figure 1. Choose any block covering M, and let b, y, ¢, z be points that
lie, in this order, on the horizontal circle containing a copy of doo 2 guaranteed
by Lemma 3.1. Let @ and x be the suspension points of doo M. Then, there are

longitudes in 90 (X x S1) connecting a to y and z, and longitudes connecting x
to b and c. Furthermore, the horizontal circle gives paths from b to y and z and
from ¢ to y and z. Finally, in 9., M, there is a longitude connecting a and x that
does not intersect the horizontal circle. Thus, d,, X contains an embedded copy
of K 3,3- O

5. No nonplanar graphs if X is not right-angled

In this section, we use our analysis in Section 3 of the paths in oo X to show the
following theorem.

Theorem 5.1. If X is not right-angled, then there is no embedded nonplanar graph
inside 000 X .

In order to deal with the points in 9., X that are not contained in a block
boundary, we need the following lemma, which is a slightly refined version of [7,
Lemma 7].

Lemma 5.2. Choose a basepoint p in X as above and  a point in 000 X with
infinite p-itinerary (Boy, By, Ba,...). Let p:[0, 1] = 0o X be a path in 0o X with
p(0) = V¥ so that there exists points in p with different p-itinerary than . Then
there is N € N so that for each n > N, there is a point in p with finite p-itinerary
(Bo, B1, ... By). In particular, these points in p are contained in 0., By,.

Proof. Since all of the points in the path p do not have the same p-itinerary, there is
ablock By € Itin, () so that By is not in the itinerary of p(¢) for some ¢ € [0, 1].
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Now, change p to a basepoint p” which lies on py and is contained in By_;. Then
the p’-itinerary of v is the same as the p-itinerary, but starting at By_;. Suppose
By is in the p’-itinerary of p(¢) for all . Choose ' € p(t) so that By is not in
the p-itinerary of . The rays py’ and p’y’ are bounded Hausdorff distance, and
at some point are separated by the wall between By_; and By. Therefore, the
rays are both bounded Hausdoff distance from this wall, which implies v is in the
boundary of this wall, and we are done.

Therefore, we can assume By is not in the p’-itinerary of p(¢) for some . Now,
let

to = inf{z | By ¢ Itin, (p(7))}.

The proof of [7, Lemma 7] goes through to show that the p’-itinerary of p(zo) just
consists of the block B,_;. Therefore, we have found a point in deo B,—1. We can
repeat this argument for any block B,, for n > N, since all of these blocks are not
contained in p for all 7. O

Proof of Theorem 5.1. A graph H is a topological minor of a graph G if G contains
a subdivision of H as a subgraph. Kuratowski’s theorem [15] states that a finite
graph is nonplanar if and only if it does not have K3 3 or a K5 as a minor, so we
have to rule out these two graphs. We give the proof for K3 3; the proof for K5 is
similar.

First assume that a vertex of K3 3 is mapped into a block boundary. In this case,
the vertex is mapped to a pole of a block by Theorem 3.2.

Suppose that a vertex v is mapped to a pole v+ in the boundary of a block Y
which covers Y; for some i € {0, 1}. Let ey, e, and e3 denote the edges containing
v in K3 3, and let ¥_ denote the other pole of 0 Y . If each e; maps to different
components of doo X — {W4,¥_), then any loop A;; in K3 3 which contains e; and
e; passes through v_. However, for each pair e; and e;, there is a loop A;; in K33
so that A;; connects e; with e;. The total intersection of such A;; is v, which is a
contradiction, see Figure 4.

q /.\ 4

( 3

Figure 4. The red, blue and brown loops are the three loops A;; in the K3 3 graph. Each
connects two of the edges emanating from the upper left vertex, and the total intersection of
all three loops is the upper left vertex.
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Therefore, we can assume e, and e3 are contained in the same component of
doo X — {¥4, ¥_) which, by Lemma 3.3, means that e, and e lie on the boundary
doo B of an adjacent sub-block B. Since e, and e3 emanate from v, they are both
contained in the boundary of a wall. Since e; cannot be contained in the boundary
of this wall as it is disjoint from e, and es, this implies that e; is contained in a
different component of doo X — {¥+,¥_}. As above, the images of the loops A1,
and A3 have to intersect at ¥_, which implies that ¥_ lies on e;. Note that the
images of e, and e3 contain the poles of 0 B.

Assume without loss of generality that the other endpoint w of e; maps to y_.
There are paths in K3 3 connecting w to the endpoints of e, and e3 that are disjoint
from v, which implies by Lemma 3.3 that the other edges of K3 3 containing w
other than e; must map into d, B. The images of these edges must contain the
poles of 0., B, but in K3 3 these edges are disjoint from e, and e3, which is a
contradiction.

Now suppose a vertex v is mapped to a pole ¥ in the boundary of a block B
which covers M. Again, let e, e, and e3 denote the edges leaving v, and /_ the
other pole. In this case, no pair of edges can be mapped to a boundary pair. If
this occurred, there would be two points on these edges that are mapped to the
poles of an adjacent block. This pair {y/ , ¥/ } is a cut pair for doo X — {¥, ¥},
and no pair of points on these edges is a cut pair for K3 3. Therefore, the paths
would have to continue in the same component, which implies by Lemma 3.3 that
they continue on do, B. This implies that they eventually intersect at y_, which is
a contradiction.

Therefore, these paths must map to longitudes that are not boundary pairs.
By Lemma 3.4 these edges lie in different path components of the space doo X —
{¥+,¥_}, so any loop between them has to pass through y_. This again is a
contradiction.

We now suppose that all vertices in K3 3 map to points in oo X that are not
contained in a block boundary, and hence have infinite p-itinerary for some (any)
choice of basepoint p € X.

We first claim that given a point x € 9, X with infinite p-itinerary, there
cannot exist three disjoint paths y; starting at x such that each point in the y;
has the same p-itinerary as x. Suppose that there are, and let Y denote their
union. The union of the geodesics from p to points in ¥ yields a proper map from
Cones(Y) := (Y x[0,00))/(Y x0) — X. Furthermore, there exists > 0 so that

(vxt)N(ex[t,o0) =0

for every pair of disjoint vertex and edge v,e C Y.

Choose a block in the p-itinerary of these points and a lift &; of «; so that all
geodesics in this cone exit the block through &;. We can choose ¢; far enough
away from p so that for each edge e C T, the sector e x [t, 00) intersects ¢; in an
interval containing the exit point for the geodesic px. At least one of the exit points
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of the geodesics pv must be contained in the interior of these intervals, which is a
contradiction.

We now see the itineraries of the vertices of K3 3 are restricted. Suppose x is
a vertex of K3 3 with fixed p-itinerary. The previous paragraphs imply there are
three edges in K3 3 where one vertex of the edge has the same p-itinerary as x
and the edge does not consist entirely of points with the same itinerary p-itinerary
as x. Lemma 5.2 implies there is a block B and a vertex in the interior of each of
these edges mapping to d-, B. The endpoints of these edges are not in o, B, SO
each of these edges must enter and exit do, B, intersecting a pole of B. Since there
are three edges and only two poles, this is a contradiction. O

6. Finite graphs in Croke—Kleiner boundaries

We now prove Theorem 1.2 from the Introduction. We first briefly recall some of
the details of the Croke—Kleiner construction. The 2-complex Xck they consider
is precisely Yo Ug T2. Again, the homeomorphism type of doo XCK depends on the
angle between o and B.

The universal cover Xck again decomposes into blocks meeting along walls
in a similar way. (The blocks are preimages of Yy or Wy Ug T2 and the walls are
preimages of W.)

In 900 XKk, the local path components of any pole are contained in the block
boundary [7, Lemma 4]. (See also [6].) In particular, there are no paths with the
same behavior as our “horizontal circles.” This implies the following lemma.

Lemma 6.1. Suppose an arc p: [0, 1] — doo XCK has infinite Tits length and p(0)
is contained in the union of the block boundaries. Then p contains a point not
contained in the union of the block boundaries.

Proof. Suppose p C UpendooB, where B is the set of all blocks in YCK. For
any ¢ € [0, 1] there is a neighborhood U of p(¢) and a block By € B such that
pNU C 0By by [7, Lemma 4]. These neighborhoods cover p, and taking a finite
subcover guarantees that p is contained in a finite union of block boundaries, and
therefore has finite length in the Tits metric. O

Theorem 6.2. Suppose X; and X, are homeomorphic to the Croke—Kleiner
complex Xck and equipped with locally CAT(0) metrics. If I is a finite graph
contained in 00 X1, then there is an embedding of the graph T into do0 X>.

Proof. A theorem of Xie [19, Theorem 6.1] implies that the core of the Tits
boundaries of X 1 and X » are homeomorphic, where the core of the Tits boundary
is the union of all topological circles in the boundary. Thus, if the graph T’ C 950 X3
is contained in the union of the block boundaries, then the theorem follows.
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We prove that if a graph I" embeds in 900 X1, then T embeds in the union of
the block boundaries in 800)? 1.

The coning argument in the proof of Theorem 5.1 implies that there are no
circles in the boundary so that each point on the circle has infinite p-itinerary for
some basepoint p. Moreover, any vertex of the graph I" of valence greater than two
must be contained in the union of the block boundaries. Thus, we may assume the
graph ' C 90, X contains a point contained in the union of the block boundaries.

We show that any edge of I" of infinite Tits length can be replaced with a nearby
edge of finite Tits length. We may assume the edge contains a point contained
in the union of the block boundaries. If the edge has infinite Tits length, then
the edge must contain a point v with infinite itinerary by Lemma 6.1. By [17,
Proposition 3.14], there are points arbitrarily close to v with finite itinerary. The
proof of Lemma 5.2 goes through to show that there is a block B of X so that
each edge of I" containing v contains points in d, B. Thus, by the same reasoning
as in the proof of Theorem 5.1, v is a vertex of degree < 2 in I" or contained in an
edge of I'. If the vertex v has degree 1, shorten the edge containing v to an edge
ending at a pole of do B, where B is a block as above.

If the vertex v has degree 2 or is contained in an edge of I', choose a neigh-
borhood U of v in 800)7 1 so that U N I" only intersects a neighborhood of v in I'.
Choose a closed neighborhood of v in I' homeomorphic to an interval so that the
endpoints of the neighborhood are contained in U and map to poles of the same
block. Replace this path with a longitude in this neighborhood which connects
these poles.

Replace paths in this way for each vertex v with infinite itinerary in the edge e.
The collection of these points is closed, so these replacements can be made for a
finite number of points and will cover the edge (or at least the part of the edge which
contains points with infinite itinerary). Each pair of endpoints of the replacement
paths form a cut pair in awaK. Thus, if two replacements overlap, then they
contain the same pole and can be combined, see Figure 5. Therefore, these
replacements can be glued together to form a path with finite Tits length. Since the
path contained a point in the union of the block boundaries, the path is contained
in the union of the block boundaries as desired. O

Figure 5. Modifying the path between v and v’ to have finite Tits length. The dashed lines
represent the new paths constructed between poles of the same block.

Remark 6.3. Note that the above proof works for embedding graphs in the
boundaries of our main example, as long as X is not right-angled. Therefore,
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any two of these non-right-angled boundaries contain the same set of finite graphs.
We expect that no two of these boundaries are homeomorphic.

Remark 6.4. Once one knows that the finite graphs inside doo Xck can be “pushed”
into the union of block boundaries, it is easy to describe precisely which finite
graphs live inside doo XCK. A concise description is the following: given a graph I',
let D(I") denote the graph obtained by “doubling the vertices,” i.e. replacing each
vertex v € I' with v+ and v, and letting [v*/~, w*/~] be an edge in D(I") if and
only if [vw] is an edge in I". For example, an edge in I becomes a 4-cycle in D(I").
If I' is a tree, then D(T) is planar. The finite subgraphs of doo XCK are precisely
the finite subgraphs of some subdivision of D(I") for I' a finite tree.
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