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Nonplanar graphs in boundaries of CAT.0/ groups
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Abstract. Croke and Kleiner constructed two homeomorphic locally CAT.0/ complexes
whose universal covers have visual boundaries that are not homeomorphic. We construct two
homeomorphic locally CAT.0/ complexes so that the visual boundary of one universal cover
contains a nonplanar graph, while the visual boundary of the other does not. In contrast, we
prove for any two locally CAT.0/ metrics on the Croke–Kleiner complex, if a �nite graph
embeds in the visual boundary of one universal cover, then the graph embeds in the visual
boundary of the other.
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1. Introduction

If X is a Gromov hyperbolic space, there is a naturally de�ned boundary at
in�nity @1X , and any quasi-isometry of X induces a self-homeomorphism of
@1X . Moreover, if G is a word-hyperbolic group, then any two boundaries of
G are G-equivariantly homeomorphic. Croke and Kleiner [7] showed the same
phenomena does not occur for CAT.0/ groups; i.e. there is a group which acts
geometrically (properly and cocompactly by isometries) on two CAT.0/ complexes
with non-homeomorphic visual boundaries. Later, Wilson [18] showed that the
Croke–Kleiner examples admit uncountably many non-homeomorphic boundaries;
see also [3, 8, 17].

One can still ask what properties of the visual boundary are well-de�ned
invariants of a CAT.0/ group. For example, the topological dimension of a CAT.0/-
group is a quasi-isometry invariant [2, 9]. In a di�erent direction, Guilbault
and Mooney [10] proved that all boundaries of the Croke–Kleiner examples are
G-equivariantly cell-like equivalent.

In this paper, we show that the existence of a nonplanar graph in a CAT.0/
boundary is not a well-de�ned invariant for a CAT.0/ group.
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Theorem 1.1. There exist two homeomorphic locally CAT.0/ complexes X and
X

0 so that the visual boundary of zX contains a nonplanar graph and the visual
boundary of zX 0 does not.

On the other hand, we prove that the homeomorphism type of the boundaries for
the Croke–Kleiner examples cannot be detected by �nite graphs. These complexes,
denoted XCK, are constructed by gluing two �at tori T1 and T2 onto a third �at
torus T0 along simple closed curves which generate ⇡1.T0/.

Theorem 1.2. Suppose X1 and X2 are locally CAT.0/ complexes homeomorphic
to XCK. If Ä is a �nite graph contained in @1 zX1, then there is an embedding of
the graph Ä into @1 zX2.

Our interest in (non)-planarity of the visual boundary is motivated by the
following two questions, neither of which we can answer.

Question 1.3. Suppose a group G acts geometrically on a CAT.0/ space X so
that @1X is planar. Does G have a �nite-index subgroup which is a 3-manifold
group�

Question 1.4. Can a group G act geometrically on two CAT.0/ spaces X and X 0

so that @1X is planar and @1X 0 is nonplanar�

Question 1.3 was asked by Haïssinsky for hyperbolic groups. A positive answer
implies the Cannon Conjecture [4, Conjecture 11.34]. Haïssinsky proved that the
answer to Question 1.3 is positive if G is hyperbolic and cubulated [11]. It is also
necessary to ask for a �nite-index subgroup, as there are torsion-free hyperbolic
and CAT.0/ groups with planar boundary which are not 3-manifold groups but
have 3-manifold groups as �nite-index subgroups [13, 12].

Regarding Question 1.4, Papasoglu and Swenson [16] showed that the boundary
of a one-ended CAT.0/ group has no global cut points. In this case, if the boundary
is also locally connected, the existence of an embedded nonplanar graph in the
boundary is equivalent to nonplanarity of the boundary by a theorem of Claytor [5].
Our groups are torsion-free, but the boundaries in Theorem 1.1 that we construct
are not locally connected, and we prove in Theorem 4.1 the boundaries that do not
contain nonplanar graphs are also nonplanar.

One relation between planarity of the boundary and 3-manifold groups comes
from a paper of Bestvina, Kapovich, and Kleiner [1]. A very special case of their
main theorem implies that if G acts geometrically on a CAT.0/ space X and @1X
contains a nonplanar graph, then G is not even quasi-isometric to a 3-manifold
group. It follows that our examples are not quasi-isometric to 3-manifold groups.

This paper is organized as follows. In Section 2 we introduce and illustrate
our main example; see Figure 1. Our example is formed by gluing tori to the
torus boundary components of a 3-manifold that is the product of a surface with
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boundary and a circle. In Section 3 we determine the local path components of
the visual boundary; we prove these depend on the locally CAT.0/ metric on the
complex. In Section 4 we show for any locally CAT.0/ metric on the complex, the
visual boundary is non-planar. In Section 5 we show the existence of nonplanar
graphs depends on the locally CAT.0/ metric. In Section 6 we analyze the �nite
subgraphs of the Croke–Kleiner boundaries.
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Ric Ancel, Radhika Gupta, Chris Hruska, and Genevieve Walsh. The authors
were supported by a Faculty Allies for Diversity in Graduate Education grant,
which helped �nance the second author’s trip to the University of Michigan. The
second author was partially supported at the Technion by a Zuckermann STEM
Leadership Postdoctoral Fellowship. This material is based upon work supported
by the National Science Foundation under Award No. 1704364.
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Figure 1. The main example X and a subset of the boundary of zX . The space X is right-
angled if the tori T0 and T2 are glued to geodesics in a boundary torus of † ⇥ S1 that meet
at a right angle. On the right X is right-angled, and on the left X is not. The suspension
of the Cantor set in black is the boundary of a sub-block which covers † ⇥ S1. The red
and green paths are subsets of the visual boundary zTi . On the right these paths yield an
embedded circle in @1X , and on the left they do not. Using this embedded circle, it is
simple to �nd a K3;3 subgraph of the right-angled boundary; the vertex sets are πa; b; cº
and πx; y; zº. Most of the work in this paper is to show that there are no K3;3 subgraphs of
the non right-angled boundary.
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2. Main example

Let† be a genus one surface with two boundary components. Let ˛0 and ˛1 denote
the boundary curves of †. Form the product † ⇥ S1. Let bi 2 † be a point on the
boundary curve ˛i for i 2 π0; 1º, and let ˇi D bi ⇥ S1.

Form the space X by gluing three tori, T0; T1, and T2, onto the curves ˛0; ˛1,
and ˇ0, respectively. Note that after gluing on any two of these tori, the resulting
space is homotopy equivalent to a 3-manifold.

Notation. Let M D .† ⇥ S
1
/ [ˇ0

T2, let Wi D ˛i ⇥ ˇi for i D 0; 1, and let
Yi D Wi [˛i

Ti . Thus @.† ⇥ S1
/ D W0 [W1.

Lemma 2.1. We collect a few easy facts about ⇡1.X/.
✏ The subgroups ⇡1.M/ and ⇡1.Yi / are isomorphic to the direct product of a

free group with Z.
✏ ⇡1.X/ has cohomological dimension 2, and hence @1X is 1-dimensional

by [2].
✏ ⇡1.X/ splits as an amalgamated product over each of the ⇡1.˛i /.
✏ The subgroup ⇡1.Y0 [ˇ0

T2/ is isomorphic to the Croke–Kleiner group.

We de�ne the angle between ˛0 and ˇ0 to be the minimal distance in the Tits
metric between the endpoints of their lifts in @1 zW0.

Theorem 2.2. Given any ı 2 .0; ⇡
2 ç, there is a locally CAT.0/ metric on † ⇥ S1

so that the angle between ˛0 and ˇ0 is ı.

Proof. Choose generators a; b; c for ⇡1.†/ so that c represents ˛0, and let d be
the generator of ⇡1.S

1
/. Assume that † has a hyperbolic metric; so, there is an

discrete and faithful representation  W⇡1.†/ ! IsomC
.H

2
/.

Let T be a nontrivial homomorphism from Z ! R, and skew the standard
product action of ⇡1.†/ ⇥ Z on H2 ⇥R by

aW .x; y/ 7�! . .a/x; y/;

bW .x; y/ 7�! . .b/x; y/;

cW .x; y/ 7�! . .c/x; T .c/C y/;

d W .x; y/ 7�! .x; y C 1/:

Since we can choose any homomorphism T , the quotient of H2 ⇥ R by this
skewed action de�nes a locally CAT.0/ metric with a desired angle. ⇤

If the angle between ˇ and ˛0 is ⇡=2 (so that T D 0), then we say that X is
right-angled. We will always choose simple closed curves on the Ti and �at metrics
so that the Ti are glued onto † ⇥ S1 by isometries. The resulting complex is then
locally CAT.0/.
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Remark. We were originally motivated by an example of Kapovich and Kleiner [13,
Section 9]. Roughly speaking, their example is obtained by gluing together two
graph manifolds with boundary along simple closed curves in the interior. They use
coarse Alexander duality to show that their examples are not virtually 3-manifold
groups. Their examples also have visual boundaries which are nonplanar, and the
existence of nonplanar graphs depends on how the Seifert-�bered pieces are glued
together.

Having two boundary components in our example is a little arti�cial; there are
similar constructions formed by starting with the product of a circle and a genus
one surface with one boundary component, and then gluing on two tori along the
boundary torus. The di�erence here is that one cannot skew the metric in the
same way; any locally CAT.0/ metric on this space restricts to the right-angled
�at metric on the boundary torus. Therefore, to obtain di�erent boundaries one
has to vary the fundamental groups of these examples by gluing tori onto di�erent
simple closed curves on the boundary tori. One can show using work of Kapovich–
Leeb [14, Proposition 2.2] that all these groups are quasi-isometric. We wanted
an example where this phenomena occurs for the same group, hence used two
boundary components.

2.1. Structure of the universal cover ofX . Let ⇡ W zX ! X denote the universal
covering. A block is a connected component of ⇡�1

.M/ or ⇡�1
.Yi /. Each block

is convex in zX . A sub-block is a connected component of ⇡�1
.† ⇥ S1

/. A wall is
a connected component of ⇡�1

.Wi /. Note that each wall is contained in exactly
two blocks, and two blocks either intersect in a wall or are disjoint. In the �rst case
we say that the blocks are adjacent.

Each block and sub-block is quasi-isometric to the product of a tree with R, so
the boundary of each block and sub-block is homeomorphic to the suspension of
a Cantor set. There is a natural homeomorphism from the boundary of z† to the
Cantor set that maps the endpoints of copies of the universal cover of the curves
˛i inside z† to endpoints of removed intervals. A pole of a block boundary is one
of the suspension points. A longitude is an embedded arc in the block boundary
connecting the two poles. If the longitude of a sub-block covering †⇥S1 contains
a pole of an adjacent block in its interior, we say it is a boundary longitude, and if
a pair of such longitudes contains the two poles of an adjacent block, we say the
longitudes form a boundary pair. The boundary pairs are precisely the pairs of
longitudes which contain the endpoints of lifts of the curves ˛i .

We will also need the notion of an itinerary for a geodesic ray in X . Choose a
basepoint p 2 zX not contained in any wall. For a point  in @1 zX , the p-itinerary
of  , denoted Itinp. /, is the ordered sequence of blocks πBiº1

iD1, where the
geodesic ray p intersects Bi in a point not contained in a wall. A boundary
point has �nite itinerary (for any basepoint p) if and only if it is contained in the
boundary of some block.



6 K. Schreve and E. Stark

3. Paths in the boundary

In this section, we study the local path components of points in @1 zX and show that
they depend on whether X is right-angled. In the next sections, we will show that
this changes what possible �nite graphs embed into @1 zX . The main di�erence
between the cases comes from studying paths between points on di�erent longitudes
of @1SB ⇢ @1 zX , where SB is a sub-block covering †⇥ S1. If X is right-angled,
it turns out that there is a path between points on any two longitudes that misses
the two poles of @1SB (see Lemma 3.1). If not, these paths only exist between
points on boundary pairs. See Figure 1.

3.1. Horizontal paths in @1 zX

Lemma 3.1. Suppose that X is right-angled, and SB is a sub-block of zX . Then
there is a circle inside @1 zX containing @1 z† ⇢ @1SB that avoids the poles
π C;  �º of @1SB . In particular, if x and y are two points in @1SB , then x and
y are in the same path component of @1 zX � π C;  �º.

Proof. Choose a basepoint p in the interior of z†, for some lift z† of † in SB , and
choose a circle in the tangent space Tp.

z†/ ⇢ Tp.SB/. We will de�ne an embedding
from this circle to @1 zX . For a vector v 2 Tp.

z†/, if the horizontal geodesic ⇢ in the
direction of v stays in SB for all time, then map v to the endpoint of that geodesic.
Otherwise, suppose that ⇢ hits a wall W between SB and a block Y in a geodesic
line `, where ⇡.Y / D Yi for i 2 π0; 1º. The line ` is a lift of a closed curve in the
torus Ti , and hence ` bounds two half-�ats meeting W in `. Given `, choose one
of the two half-�ats; this choice determines a way to extend ⇢ to a geodesic ray ⇢0

contained in Y . Map the vector v to the endpoint of ⇢0. ⇤

We call such a circle in @1 zX a horizontal circle for the sub-block boundary
@1SB . Note that a path connecting two points on @1SB which lies on this
horizontal circle will have in�nite Tits length unless x and y are on the same
longitude, or are on longitudes that form a boundary pair.

3.2. Local path components in @1 zX if X is not right-angled

Theorem 3.2. Suppose X is not right-angled. Suppose that  is a point on a block
boundary @1B that is not a pole of any other block. Then, there is a neighborhood
� of  in @1 zX so that the path component of  in � is contained in the block
boundary @1B . Furthermore, this path component is contained in the set of
longitudes of @1B that  lies on.

Proof. Our argument is the same as in [7, Lemma 4], though we have to additionally
argue that the horizontal paths constructed in Lemma 3.1 cannot exist when X is
not right-angled.
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Case 1:  is a pole of @1B where B covers M . Choose a basepoint p in B
that is not contained in a wall, and suppose the minimum Tits angle based at p
between  and the poles of adjacent blocks is equal to ✏ > 0. Let

� D π 0 2 @1 zX j †p. ;  
0
/ < ✏=2º:

For i D 0 or 1, choose a lift Q̨ i of ˛i in B , and let � Q̨i
denote the geodesics in �

that exit from this lift. We claim that these sets are open and closed in �.

Open. If  0 in � Q̨i
, note that any su�ciently close ray  00 to  0 must exit B at

a point close to where  0 exits. Since the lifts of ˛i in B are discrete,  00 and  
must leave from the same lift.

Closed. Let E denote the set of exit points in Q̨ i for elements of � Q̨i
. Then E

is bounded, for otherwise we could �nd a sequence of exit points on Q̨ i diverging
from p, so we get a limit geodesic originating at p and ending at  0 in @1 Q̨ i .
However, this point is a pole of an adjacent block, and hence the Tits angle at p is
� ✏, contradiction. Therefore, the set E is bounded.

Now, suppose we have a sequence  0
k !  

0, where  0
k 2 � Q̨i

and  0 2 �.
After passing to a subsequence, we can assume the geodesic segments Npek converge
to a segment Npe1. Therefore, the geodesic p 0 exits B through Npe1, and is
therefore in � Q̨i

.
It follows that the path component of  in � consists of geodesics which never

leave through lifts of the ˛i , since any subset C ⇢ � containing  and intersecting
� Q̨i

for some lift admits a separation into open subsets ofC , and any 0 2 ��@1B
lies in � Q̨i

for some lift.

Case 2:  is contained in the boundary of a wall W and not a pole. Let "
denote the minimum Tits angle based at p between  and the poles of blocks
which contain W , and let � be de�ned as above. A similar argument to the above
shows that a path of geodesics starting at  does not exit the sub-block containing
W through a lift of ˇ or ˛i . Therefore, the path component in� is contained in the
boundary of that sub-block. Since the boundary of this sub-block is homeomorphic
to a suspension of a Cantor set, the path component in � is contained in @1W .

Case 3:  is not in the boundary of an adjacent block. Choose a basepoint p
in B and not contained in a wall. Let H ⇢ B be the halfplane in zX containing the
ray p and the vertical geodesic through p between the poles of B . For any wall
W , the space W \H is either empty, a vertical geodesic, or a �at strip bounded
by vertical geodesics. See Figure 2. After removing these subsets, we get either
an in�nite collection of open strips or a �nite collection of strips and an open half
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Figure 2. The proof of Theorem 3.2 analyzes the boundary of the universal cover ofM ⇢ X ,
which is shaded in blue. The universal cover consists of in�nitely many copies of sub-blocks

z
† ⇥ S1, shown on the left, and in�nitely many copies of zW0 [ˇ0

T2, shown in the middle,
which are glued to each other along walls, drawn in darker blue. The vertical strips in
Case (3) are unions of vertical strips Œ�1; 1ç ⇥ R in the above two spaces with boundary
˙1 ⇥R vertical lines in the walls.

plane. Note that the second case occurs only if the ray p is eventually contained
in a single sub-block, and hence  is contained in the boundary of that sub-block.

Let ✏ be the minimal Tits angle between  and the poles of B . We may have
that the minimum Tits angle between  and the poles of blocks adjacent to B is
zero. However, since X is not right-angled we can choose "0

< "=2 so that for each
adjacent block, one of the poles has Tits distance with  greater than "0.

First suppose there is no half-plane. If S is such an open strip in H , then let
�S be the points in @1 zX whose representative rays originating at p nontrivially
intersect S . Again, this set is closed and open in �. Therefore, since p intersects
all strips, each point in a path starting at p must intersect them all as well. Therefore,
the path is contained in @1H .

Now, suppose there is a half-plane. Let SB be the sub-block covering † ⇥ S1

which contains this half plane, and let ⇢ be a path starting at  . For each geodesic
ray p 0 for  0 in ⇢, project its intersection with SB to the horizontal subsurface z†.
See Figure 3. If this projection is a single geodesic in z† we are done. If not, this
path contains geodesic rays arbitrarily close to p whose endpoints are contained
in the boundaries of walls and are not poles of adjacent blocks (note that this fails
if X is right-angled and  lies in @†, as  is contained in a horizontal path from
Lemma 3.1). This leads to a contradiction, since by Case 2, the path components of
these points in� are contained on a single longitude. Therefore, such a path would
have to continue on this longitude until it hits a pole of adjacent block, which by
assumption makes the path leave �.
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z† ⇥R z†

 

p

Figure 3. On the left is a geodesic ray p that is contained in a block isometric to z† ⇥R.
For each geodesic ray p 0 representing a point in a path in the boundary starting at  , the
projection to z† of the intersection of p 0 with the block z† ⇥R is drawn in green.

Case 4:  is a pole of @1Y where Y covers Yi . Choose a basepoint p in a lift
Q̨ i of ˛i , so that  is one of the endpoints of Q̨ i . The argument in Case 1 above
shows that the geodesics in any path starting at  cannot exit Y through a lift of ˇ.
The argument in the second half of Case 3 rules out geodesics in this path exiting
Y into an adjacent sub-block through a wall. Therefore, the local path component
around  is contained in @1Y . ⇤

We now use the analysis of local path components in the non right-angled case
to work out the path components of @1 zX � π C;  �º, where  C and  � are poles
of a block boundary.

Lemma 3.3. Suppose that X is not right-angled and suppose that Y is a block
which covers Y0 or Y1. Let C and � be the poles of @1Y , and suppose that x and
y are points in @1Y � π C;  �º. Then x and y are in the same path component of
@1 zX � π C;  �º if and only if they lie on the boundary of an adjacent sub-block
SB or are contained in the same longitude.

Proof. Suppose that x; y 2 @1 zY are not contained in a single longitude or the
boundary of an adjacent block. Suppose an arc ⇢ starts at x and ends at y. We must
show that ⇢ intersects  C or  �. If x or y is not contained in the boundary of a
wall, then the longitude containing x or y has no poles on it, which by Theorem 3.2
implies the path ⇢ intersects  C or  �. Therefore, we can assume that x and y are
contained in two di�erent sub-block boundaries SB1 and SB2. The group G splits
as ⇡1.M/ ⇤h˛i i Ti , and the two sub-blocks SB1 and SB2 correspond to subgroups
in di�erent conjugates of ⇡1.M/. The SB i are separated by a lift of ˛i in Y , which
implies that there is no path connecting x and y which misses  C or  �. ⇤
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Lemma 3.4. Suppose that X is not right-angled and suppose that π C;  �º are
the poles of a block B which covers M . Suppose x and y are two points in
@1B � π C;  �º. Then x and y are in di�erent path components of the space
@1 zX�π C;  �º if and only if they do not lie on longitudes which form a boundary
pair or are contained in the same longitude.

Proof. Suppose L1 and L2 are longitudes that do not form a boundary pair, and
that there is an arc ⇢ which starts at x 2 L1 and ends at y 2 L2. We must show
that ⇢ intersects  C or  �. This is certainly true if neither of the Li are boundary
longitudes by Theorem 3.2, as there are no poles of adjacent blocks on these
longitudes. So, we can assume that both of the points lie on boundary longitudes
for di�erent lifts of the ˛i .

If ⇢ does not intersect  C or  �, then ⇢ must intersect a pole  0
C of an adjacent

block boundary @1Y covering Yi for i 2 π0; 1º. If ⇢ continues in @1B , it intersects
 C or  �, so we assume the path continues into @1Y . If  0

� is the other pole of
@1Y , then π 0

C;  
0
�º is a cut pair for @1 zX as in Lemma 3.3. Since ⇢ exits @1B ,

it enters a di�erent path component of @1 zX � π 0
C;  

0
�º by Lemma 3.3. Hence,

⇢ intersects  0
�, since x and y are in the same component of @1 zX � π 0

C;  
0
�º.

Now, ⇢ must continue in @1B , since otherwise by repeating this argument ⇢ would
intersect  0

C and not be an embedded path. However, then ⇢ intersects one of the
poles of @1B by Theorem 3.2. ⇤

4. Non-planarity

Theorem 4.1. For any locally CAT.0/ metric on X , the visual boundary @1 zX is
nonplanar.

Proof. Suppose that hW @1 zX ! S
2 is an embedding. Let SB be a sub-block

covering † ⇥ S1, and let π C;  �º be the poles of @1SB . Let P be the collection
of poles of adjacent blocks to SB . For each pair of poles in P, the longitudes from
this pair to  C and  � give an embedded circle inside @1SB .

We �rst claim that the images of each of these circles under the embedding h
must bound a disc inside S2 � h.@1SB/ if h extends to an embedding of @1 zX .
To see this, let π 0

C;  
0
�º be a pair of poles in P such that the corresponding circle

C does not bound a disc in S2 � h.@1SB/. This implies there are longitudes `1

and `2 in @1SB which connect  C to  � and map to di�erent components of
S

2 � C . In @1 zX , we can connect  0
C to  0

� with a longitude of an adjacent block.
The image of this longitude under h must intersect one of the h.`i /, which is a
contradiction.

We now claim there is no embedding of

@1SB [ `
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into S2 such that each embedded circle as above bounds a disc, where ` is a
longitude of the blockB containing SB and not contained in @1SB . Note that under
the usual identi�cation of @1 z† with the Cantor set, the pairs in P are identi�ed
with endpoints of deleted intervals. If there was such an embedding h, then by
attaching discs to the domain along these circles we could extend Nh to an embedding
S

2 [ ` ! S
2, which is a contradiction. ⇤

IfX is right-angled, we can do better and �nd a nonplanar graph inside of @1 zX .

Theorem 4.2. If X is right-angled, then there is an embedded K3;3 graph inside
@1 zX .

Proof. An illustration of the K3;3 subgraph on vertex sets πa; b; cº and πx; y; zº
appears in Figure 1. Choose any block covering M , and let b; y; c; z be points that
lie, in this order, on the horizontal circle containing a copy of @1 z† guaranteed
by Lemma 3.1. Let a and x be the suspension points of @1M . Then, there are
longitudes in @1.B† ⇥ S1

/ connecting a to y and z, and longitudes connecting x
to b and c. Furthermore, the horizontal circle gives paths from b to y and z and
from c to y and z. Finally, in @1 zM , there is a longitude connecting a and x that
does not intersect the horizontal circle. Thus, @1 zX contains an embedded copy
of K3;3. ⇤

5. No nonplanar graphs if X is not right-angled

In this section, we use our analysis in Section 3 of the paths in @1 zX to show the
following theorem.

Theorem 5.1. IfX is not right-angled, then there is no embedded nonplanar graph
inside @1 zX .

In order to deal with the points in @1 zX that are not contained in a block
boundary, we need the following lemma, which is a slightly re�ned version of [7,
Lemma 7].

Lemma 5.2. Choose a basepoint p in X as above and  a point in @1X with
in�nite p-itinerary .B0; B1; B2; : : : /. Let ⇢W Œ0; 1ç ! @1X be a path in @1X with
⇢.0/ D  so that there exists points in ⇢ with di�erent p-itinerary than  . Then
there is N 2 N so that for each n > N , there is a point in ⇢ with �nite p-itinerary
.B0; B1; : : : Bn/. In particular, these points in ⇢ are contained in @1Bn.

Proof. Since all of the points in the path ⇢ do not have the same p-itinerary, there is
a block BN 2 Itinp. / so that BN is not in the itinerary of ⇢.t/ for some t 2 Œ0; 1ç.
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Now, change p to a basepoint p0 which lies on p and is contained in BN �1. Then
the p0-itinerary of  is the same as the p-itinerary, but starting at BN �1. Suppose
BN is in the p0-itinerary of ⇢.t/ for all t . Choose  0 2 ⇢.t/ so that BN is not in
the p-itinerary of  . The rays p 0 and p0

 
0 are bounded Hausdor� distance, and

at some point are separated by the wall between BN �1 and BN . Therefore, the
rays are both bounded Hausdo� distance from this wall, which implies  0 is in the
boundary of this wall, and we are done.

Therefore, we can assume BN is not in the p0-itinerary of ⇢.t/ for some t . Now,
let

t0 D infπt j BN … Itinp.⇢.t//º:
The proof of [7, Lemma 7] goes through to show that the p0-itinerary of ⇢.t0/ just
consists of the block Bn�1. Therefore, we have found a point in @1Bn�1. We can
repeat this argument for any block Bn for n > N , since all of these blocks are not
contained in ⇢ for all t . ⇤

Proof of Theorem 5.1. A graphH is a topological minor of a graphG ifG contains
a subdivision of H as a subgraph. Kuratowski’s theorem [15] states that a �nite
graph is nonplanar if and only if it does not have K3;3 or a K5 as a minor, so we
have to rule out these two graphs. We give the proof for K3;3; the proof for K5 is
similar.

First assume that a vertex ofK3;3 is mapped into a block boundary. In this case,
the vertex is mapped to a pole of a block by Theorem 3.2.

Suppose that a vertex v is mapped to a pole  C in the boundary of a block Y
which covers Yi for some i 2 π0; 1º. Let e1; e2, and e3 denote the edges containing
v in K3;3, and let  � denote the other pole of @1Y . If each ei maps to di�erent
components of @1 zX � π C;  �º, then any loop �ij in K3;3 which contains ei and
ej passes through  �. However, for each pair ei and ej , there is a loop �ij in K3;3

so that �ij connects ei with ej . The total intersection of such �ij is v, which is a
contradiction, see Figure 4.

Figure 4. The red, blue and brown loops are the three loops �ij in the K3;3 graph. Each
connects two of the edges emanating from the upper left vertex, and the total intersection of
all three loops is the upper left vertex.



Nonplanar graphs in boundaries of CAT.0/ groups 13

Therefore, we can assume e2 and e3 are contained in the same component of
@1 zX � π C;  �º which, by Lemma 3.3, means that e2 and e3 lie on the boundary
@1B of an adjacent sub-block B . Since e2 and e3 emanate from v, they are both
contained in the boundary of a wall. Since e1 cannot be contained in the boundary
of this wall as it is disjoint from e2 and e3, this implies that e1 is contained in a
di�erent component of @1 zX � π C;  �º. As above, the images of the loops �12

and �13 have to intersect at  �, which implies that  � lies on e1. Note that the
images of e2 and e3 contain the poles of @1B .

Assume without loss of generality that the other endpoint w of e1 maps to  �.
There are paths in K3;3 connecting w to the endpoints of e2 and e3 that are disjoint
from v, which implies by Lemma 3.3 that the other edges of K3;3 containing w
other than e1 must map into @1B . The images of these edges must contain the
poles of @1B , but in K3;3 these edges are disjoint from e2 and e3, which is a
contradiction.

Now suppose a vertex v is mapped to a pole  in the boundary of a block B
which covers M . Again, let e1; e2, and e3 denote the edges leaving v, and  � the
other pole. In this case, no pair of edges can be mapped to a boundary pair. If
this occurred, there would be two points on these edges that are mapped to the
poles of an adjacent block. This pair π 0

C;  
0
�º is a cut pair for @1X � π ; �º,

and no pair of points on these edges is a cut pair for K3;3. Therefore, the paths
would have to continue in the same component, which implies by Lemma 3.3 that
they continue on @1B . This implies that they eventually intersect at  �, which is
a contradiction.

Therefore, these paths must map to longitudes that are not boundary pairs.
By Lemma 3.4 these edges lie in di�erent path components of the space @1 zX �
π C;  �º, so any loop between them has to pass through  �. This again is a
contradiction.

We now suppose that all vertices in K3;3 map to points in @1 zX that are not
contained in a block boundary, and hence have in�nite p-itinerary for some (any)
choice of basepoint p 2 zX .

We �rst claim that given a point x 2 @1 zX with in�nite p-itinerary, there
cannot exist three disjoint paths �i starting at x such that each point in the �i

has the same p-itinerary as x. Suppose that there are, and let Y denote their
union. The union of the geodesics from p to points in Y yields a proper map from
Cone1.Y / WD .Y ⇥ Œ0;1//=.Y ⇥ 0/ ! zX . Furthermore, there exists t > 0 so that

.v ⇥ t / \ .e ⇥ Œt;1// D ;

for every pair of disjoint vertex and edge v; e ⇢ Y .
Choose a block in the p-itinerary of these points and a lift Q̨ i of ˛i so that all

geodesics in this cone exit the block through Q̨ i . We can choose Q̨ i far enough
away from p so that for each edge e ⇢ T , the sector e ⇥ Œt;1/ intersects Q̨ i in an
interval containing the exit point for the geodesic px. At least one of the exit points
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of the geodesics pv must be contained in the interior of these intervals, which is a
contradiction.

We now see the itineraries of the vertices of K3;3 are restricted. Suppose x is
a vertex of K3;3 with �xed p-itinerary. The previous paragraphs imply there are
three edges in K3;3 where one vertex of the edge has the same p-itinerary as x
and the edge does not consist entirely of points with the same itinerary p-itinerary
as x. Lemma 5.2 implies there is a block B and a vertex in the interior of each of
these edges mapping to @1B . The endpoints of these edges are not in @1B , so
each of these edges must enter and exit @1B , intersecting a pole of B . Since there
are three edges and only two poles, this is a contradiction. ⇤

6. Finite graphs in Croke–Kleiner boundaries

We now prove Theorem 1.2 from the Introduction. We �rst brie�y recall some of
the details of the Croke–Kleiner construction. The 2-complex XCK they consider
is precisely Y0 [ˇ T

2. Again, the homeomorphism type of @1 zXCK depends on the
angle between ˛0 and ˇ.

The universal cover zXCK again decomposes into blocks meeting along walls
in a similar way. (The blocks are preimages of Y0 or W0 [ˇ T

2 and the walls are
preimages of W0.)

In @1 zXCK, the local path components of any pole are contained in the block
boundary [7, Lemma 4]. (See also [6].) In particular, there are no paths with the
same behavior as our “horizontal circles.” This implies the following lemma.

Lemma 6.1. Suppose an arc ⇢W Œ0; 1ç ! @1 zXCK has in�nite Tits length and ⇢.0/
is contained in the union of the block boundaries. Then ⇢ contains a point not
contained in the union of the block boundaries.

Proof. Suppose ⇢ ⇢ [B2B@1B , where B is the set of all blocks in zXCK. For
any t 2 Œ0; 1ç there is a neighborhood U of ⇢.t/ and a block B0 2 B such that
⇢\U ⇢ @1B0 by [7, Lemma 4]. These neighborhoods cover ⇢, and taking a �nite
subcover guarantees that ⇢ is contained in a �nite union of block boundaries, and
therefore has �nite length in the Tits metric. ⇤

Theorem 6.2. Suppose X1 and X2 are homeomorphic to the Croke–Kleiner
complex XCK and equipped with locally CAT.0/ metrics. If Ä is a �nite graph
contained in @1 zX1, then there is an embedding of the graph Ä into @1 zX2.

Proof. A theorem of Xie [19, Theorem 6.1] implies that the core of the Tits
boundaries of zX1 and zX2 are homeomorphic, where the core of the Tits boundary
is the union of all topological circles in the boundary. Thus, if the graph Ä ⇢ @1 zX1

is contained in the union of the block boundaries, then the theorem follows.
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We prove that if a graph Ä embeds in @1 zX1, then Ä embeds in the union of
the block boundaries in @1 zX1.

The coning argument in the proof of Theorem 5.1 implies that there are no
circles in the boundary so that each point on the circle has in�nite p-itinerary for
some basepoint p. Moreover, any vertex of the graph Ä of valence greater than two
must be contained in the union of the block boundaries. Thus, we may assume the
graph Ä ⇢ @1 zX1 contains a point contained in the union of the block boundaries.

We show that any edge of Ä of in�nite Tits length can be replaced with a nearby
edge of �nite Tits length. We may assume the edge contains a point contained
in the union of the block boundaries. If the edge has in�nite Tits length, then
the edge must contain a point v with in�nite itinerary by Lemma 6.1. By [17,
Proposition 3.14], there are points arbitrarily close to v with �nite itinerary. The
proof of Lemma 5.2 goes through to show that there is a block B of zX1 so that
each edge of Ä containing v contains points in @1B . Thus, by the same reasoning
as in the proof of Theorem 5.1, v is a vertex of degree  2 in Ä or contained in an
edge of Ä . If the vertex v has degree 1, shorten the edge containing v to an edge
ending at a pole of @1B , where B is a block as above.

If the vertex v has degree 2 or is contained in an edge of Ä , choose a neigh-
borhood U of v in @1 zX1 so that U \ Ä only intersects a neighborhood of v in Ä .
Choose a closed neighborhood of v in Ä homeomorphic to an interval so that the
endpoints of the neighborhood are contained in U and map to poles of the same
block. Replace this path with a longitude in this neighborhood which connects
these poles.

Replace paths in this way for each vertex v with in�nite itinerary in the edge e.
The collection of these points is closed, so these replacements can be made for a
�nite number of points and will cover the edge (or at least the part of the edge which
contains points with in�nite itinerary). Each pair of endpoints of the replacement
paths form a cut pair in @1 zXCK. Thus, if two replacements overlap, then they
contain the same pole and can be combined, see Figure 5. Therefore, these
replacements can be glued together to form a path with �nite Tits length. Since the
path contained a point in the union of the block boundaries, the path is contained
in the union of the block boundaries as desired. ⇤

vv
0

v0 v1 v2

Figure 5. Modifying the path between v and v0 to have �nite Tits length. The dashed lines
represent the new paths constructed between poles of the same block.

Remark 6.3. Note that the above proof works for embedding graphs in the
boundaries of our main example, as long as X is not right-angled. Therefore,
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any two of these non-right-angled boundaries contain the same set of �nite graphs.
We expect that no two of these boundaries are homeomorphic.

Remark 6.4. Once one knows that the �nite graphs inside @1 zXCK can be “pushed”
into the union of block boundaries, it is easy to describe precisely which �nite
graphs live inside @1 zXCK. A concise description is the following: given a graph Ä ,
let D.Ä/ denote the graph obtained by “doubling the vertices,” i.e. replacing each
vertex v 2 Ä with vC and v�, and letting ŒvC=�

; w
C=�

ç be an edge in D.Ä/ if and
only if Œvwç is an edge in Ä . For example, an edge in Ä becomes a 4-cycle inD.Ä/.
If Ä is a tree, then D.Ä/ is planar. The �nite subgraphs of @1 zXCK are precisely
the �nite subgraphs of some subdivision of D.Ä/ for Ä a �nite tree.
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