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The rapidly growing interest in machine learning (ML) for materials dis-

covery has resulted in a large body of published work. However, only a
small fraction of these publications includes confirmation of ML predic-
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y tions, either via experiment or via physics-based simulations. In this review,
All rights reserved

we first identify the core components common to materials informatics dis-
covery pipelines, such as training data, choice of ML algorithm, and mea-
surement of model performance. Then we discuss some prominent examples
of validated ML-driven materials discovery across a wide variety of materi-
als classes, with special attention to methodological considerations and ad-
vances. Across these case studies, we identify several common themes, such
as the use of domain knowledge to inform ML models.
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1. INTRODUCTION

Opver the past decade, machine learning (ML) has emerged as a powerful tool to accelerate materi-
als development (1-5). Academic, government, and commercial entities are broadly deploying ML
in service of materials discovery. Publication activity in ML for materials is growing exponentially
even as a fraction of all materials research (Figure 1). Despite an increasing body of literature on
data-driven materials research, which we refer to as materials informatics, only a fraction of pub-
lished studies culminate in predictions that are subsequently validated by an experiment, either in
the laboratory or as a “virtual” experiment via physics-based simulation. A trained ML model is
merely a means to an end, and the utility of materials informatics is fully realized only when ML
predictions are confirmed. In this review, we (#) describe the key components of a materials infor-
matics discovery pipeline; (b) highlight recent works that describe validation of materials infor-
matics predictions, as summarized in Table 1; and (¢) note some materials discovery—specific con-
siderations for ML. We begin by describing a typical materials informatics pipeline in more detail.

2. THE MATERIALS INFORMATICS DISCOVERY PIPELINE

In this section, we discuss critical components of a materials informatics pipeline common to val-
idated ML studies. These standard steps are summarized in the generalized pipeline of Figure 2.
The pipeline begins with establishing a materials data set for training, as well as a set of materials
descriptors to extend the data with available physical information. This data set is then used to
train an ML model, which is used to make a prediction of novel materials for validation.

2.1. Training Data

Data of sufficient quality and quantity are an essential prerequisite for the successful application of
ML methods to materials problems. Large companies in the technology industry, such as Google,
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Figure 1

Share of materials and chemistry publications referencing machine learning (ML) as a function of time. The
data are normalized to account for the overall exponential growth (6) in scientific publications over time,
illustrating the relative growth of ML-related work.
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Facebook, and Amazon, are able to train ML models on up to 10! examples (8). However, data are
far more scarce in materials science, and data sets for materials discovery typically include 10!-10*
training examples, as seen in Table 1.

Training data quality is associated with reliability and consistency. Reliability issues can result
from unreported sources of variance (e.g., poorly calibrated or aged instruments) or human factors
(e.g., typos that arise during manual data entry). Data consistency is related to the method that
was used to generate the data. Inconsistency can be experimental (for example, thermal conductiv-
ity can be measured with different techniques, giving slightly different results) or computational
(different simulation input choices can give different results).

2.1.1. Challenges in training data aggregation. The source of training data for each materials
problem must be considered on a case-by-case basis due to the lack of a centralized, homogeneous
database of all materials measurements. Such authoritative databases are more common in the bio-
logical and pharmaceutical sciences; examples include the Cambridge Crystal Structure Database
(9), ChemBank (10), GenBank (11), and PubChem (12). The materials science community has
fewer data resources, although the Materials Data Facility (13), the Novel Materials Discovery
(NOMAD) Repository (14), and Open Citrination (15) have emerged to provide free-of-charge
materials data services to the research community. However, for most materials problems, relevant
experimental data are scattered across publications in the literature (16), requiring researchers to
manually extract and structure training data sets (17-22). While manually constructed data sets
are highly time and resource intensive to build, they benefit from expert curation, which can be
essential to providing the context needed for successful ML models.
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2.1.2. Density functional theory as a source of training data. Among successful materials
informatics use cases, density functional theory (DFT) (23, 24) is a widely used source of train-
ing data and descriptors. DFT] as a means of generating large-scale materials data, has become
more accessible over time (25, 26) as computational power has increased and the software has im-
proved. The construction of high-throughput DFT (HT-DFT) databases (27-29) has been a key
contributor to many early informatics successes (30). Advancing beyond relatively simple calcu-
lations of thermodynamic stability, more computationally costly HT-DFT data sets are enabling
data-driven solutions to materials problems, such as DFT-calculated elastic tensors to predict su-
perhard materials (31) and discovery of novel phosphors for solid-state lighting (32).

HT-DFT databases offer an attractive supplement to experimental databases for use in infor-
matics as they can be resource efficient to build, comprehensive across chemistries, well structured,
and internally consistent. For instance, identifying the DFT-calculable Debye temperature as a re-
liable indicator for the complex materials property of photoluminescent quantum yield enabled
the use of an HT-DFT elastic tensor data set to predict novel light-emitting diode (LED) materi-
als (32). DFT, when coupled with active learning, can also be a rapid engine for exploring a design
space and optimizing properties (33).

2.2. Descriptor Representation

Any successful application of ML to materials discovery relies on a suitable choice of represen-
tation (34). Representation refers to how a material is encoded in a machine-readable format,
typically as a fixed-length vector of descriptors (also referred to as features or input variables). For
instance, Ni3Al could be represented as simply the combination of character strings in the com-
position, the atomic coordinates of Ni and Al in the L1, crystal structure, or a scanning electron
micrograph of the microstructure. Representation is an opportunity to inject known physical in-
formation into an ML prediction problem. For example, that Ni crystallizes in the face-centered
cubic structure and has a melting point of 1,455°C can be directly exploited in differentiating Ni
from other elements when training ML models. The choice of representation can have a large ef-
fect on ML model performance, as observed by Askerka et al. (35) for the thermodynamic stability
of double perovskites (Figure 3).

In the majority of case studies in Table 1, researchers used simple empirical descriptors as-
sociated with the elemental compositions of materials under investigation. The magpie (40) and
matminer (37) packages are widely used sources of these chemical features, which include phys-
ical concepts such as atomic size, electronegativity, and electron configuration. The selection
of a high-quality representation is likely to be important for success in using ML for materials
discovery.

Across many materials problems, the optimal choice of representation is nonobvious. For ex-
ample, recent research (41, 42) has developed representations for the concept of a grain boundary,
which may be intuitively clear to a human scientist but is not straightforwardly captured as a vector
or matrix object suitable for linear algebra operations. Likewise, new atomic-scale representations
for small molecules (43, 44), periodic systems (e.g., crystal structures) (39, 45), and combinations
thereof (34, 46) are being actively developed.

Including as many descriptors as possible is one way to ensure that no known physics is left
out of a modeling exercise. On the other hand, many ML algorithms are susceptible to degraded
performance in the presence of correlated and/or meaningless descriptors (47). The processes
of dimensionality reduction [e.g., principal component analysis (48)] and feature selection aim to
identify a reduced set of maximally informative and ideally uncorrelated descriptors for input to an
ML model. For example, a metric called cluster resolution (49), which uses the relative positions
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Figure 3

Askerka et al. (35) investigated the representation dependence of machine learning model predictions for
double perovskite thermodynamic stability. Their learning-in-templates (LiT) approach assumes nominal
atomic positions, which they compared to using optimized atomic positions. They benchmarked several
crystal structure representations from the literature: radial distribution functions (RDF) and partial radial
distribution functions (PRDF) (36), density features and bond fractions (37), the orbital field matrix (38), and
Voronoi tessellations (39). Figure adapted with permission from Reference 35. Copyright 2019, American
Chemical Society.

and geometries of clusters present in data sets to quantify the preservation of differences between
various types of materials, was used to perform feature selection in several case studies listed in
Table 1.

2.3. Design Space and Cross-Validation

Cross-validation (CV), which quantifies the performance of ML models, can be customized to a
desired design space in order to obtain realistic estimates of model performance for the discovery
application at hand. The concept of design space refers to the chemistries, experimental condi-
tions, and processing routes one is interested in searching for new materials. A critical question
is the relationship between the training data and the design space; generally speaking, the more
different these two regimes are, the more challenging ML-driven discovery will be.

2.3.1. Measuring model performance via cross-validation. CV is the gold standard approach
for quantifying the performance of ML models. In CV, models are trained on a subset of all avail-
able data and then used to predict values (for regression-type problems) or labels (for classification-
type problems) for a held-out set of data for which the ground truth is known. Conceptually, CV
is intended to probe an ML model’s ability to generalize to unseen examples and embodies the
idea that models should not be evaluated on data to which they were fit.

The most widely used form of CV is random k-fold, in which the available training data are
randomly divided into k partitions (i.e., folds). Over # iterations, the ML model is trained on
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k — 1 partitions and used to predict the held-out partition. Performance metrics such as root
mean square error (RMSE) or Pearson 72 may be computed across all held-out partitions. Among
the case studies in Table 1, random k-fold CV is almost universally employed to compute these
model accuracy statistics.

Interestingly, while random £-fold CV is widely used in both the ML research and materials
informatics communities, materials discovery may pose challenges for traditional CV methods. In
particular, because (#) materials data sets typically exhibit strong clustering and (#) materials dis-
covery may involve extrapolation, random k-fold CV has a tendency to overestimate the perfor-
mance of ML models (50). CV techniques such as leave-one-cluster-out (LOCO) (50) and leave-
out-group (LOG) (51) have emerged to simulate materials discovery use cases. Drug discovery
researchers have made similar observations (52, 53), and appropriately matching CV techniques
to the problem at hand remains an essential step in scientific applications of ML (54).

2.3.2. Extrapolative design spaces. Supervised ML approaches generally assume thatall train-
ing data, along with unseen examples we wish to predict, are independent of one another and drawn
from the same underlying distribution; this is the so-called independent and identically distributed
(i.1.d.) assumption (55). However, real-world materials discovery applications often strain the i.i.d.
conditions. As mentioned in the preceding section, experiments may be clustered due to sam-
pling bias. In particular, scientists tend to measure many small changes to a few successful parent
materials and to heavily underreport failed materials. Further, we may be interested in design-
ing materials with structures, chemistries, or properties very different from those reflected in our
training data. We refer to these latter situations as extrapolation.

Based on this definition, extrapolative materials discovery may or may not actually violate the
i.i.d. assumption. The key question is whether the physics associated with as-yet-undiscovered
materials of interest is satisfactorily sampled in the training data. To take superconductors as an
example, a training set of Bardeen—-Cooper-Schrieffer materials does not at all sample the anoma-
lous physics of the cuprates, and the 1.i.d. assumption is catastrophically violated. Thus, as we
would intuitively expect, an ML model trained on Bardeen-Cooper-Schrieffer superconductors
has no predictive power whatsoever for the cuprates (50, 56). In this vein, none of the case studies in
Table 1 describe the discovery of entirely new physical regimes with ML, although ML-optimized
sampling of chemical space can accelerate such discoveries beyond the pace of a purely random
search (57).

To illustrate an alternative scenario, imagine that we focus specifically on the discovery of ma-
terials with exceptional (i.e., extreme) values of certain properties. In this case, ML may be able
to extrapolate beyond the property ranges present in the training data, if the necessary physics
is present in the training data. However, this type of prediction problem is difficult. As shown
in Figure 4, an ML model for bulk modulus (B) based on the Materials Project elastic property
database (58) shows good performance over a range of B from 0 to 400 GPa when standard 4-fold
CV is applied. However, when an ML model is trained only with compounds with B < 300 GPa,
the model’s accuracy under extrapolation to greater values of B suffers.

2.4. Machine Learning Algorithms

The choice of algorithm underlying trained models in materials informatics is one that is largely
driven by the specific materials problem being addressed, i.e., the nature of the model inputs and
the desired outputs. As seen in Table 1, various algorithms have been successfully employed for
various problems. The popular random forest (RF) (59, 60) and (deep) neural network (NN) (61,
62) algorithms are illustrated conceptually in Figure 5.

Saal o Oliynyk « Meredig



Annu. Rev. Mater. Res. 2020.50:49-69. Downloaded from www.annualreviews.org
Access provided by Manhattan College on 09/01/21. For personal use only.

400 . . .
A A
/5 L]
® Standard CV model AN
4 Extrapolation >300 GPa e .

= 1:1 ideal fit €&
a 300 4
u .
: A
S
E A
T
g
< 200 .
=
2
-]
(]
g
S
T
& 100 -

0 " Il " Il " Il L

0 100 200 300 400

Measured bulk modulus (GPa)

Figure 4

Example illustrating the effects of property extrapolation on ML model performance, using DFT-calculated

mechanical property data from the Materials Project (31, 58). Blue circles show the results of typical CV

across the entire data set, whereas orange triangles demonstrate the degradation in model performance that
occurs when only materials with B < 300 GPa are used to train, and the remaining higher-B compounds are

predicted. Abbreviations: CV, cross-validation; DFT, density functional theory; ML, machine learning.

A NN consists of an interconnected set of logical gates, called neurons, to transform a series of

input data into an output decision. NN models lend themselves to pattern matching when training

data sets are substantial and complex. In the informatics use cases reviewed here, such training data

sets consist of data generated from high-throughput physics-based simulations (63, 64). The series
of logical decisions made by the NN enable reproduction of complex abrupt changes in output

Input
(materials
descriptors)

Input
(materials
descriptors)

Weights

Ensemble of

decision trees
Hidden layer O (decision and leaf
nodes shown)
Band gap
(tree 1)
Weights

(Outtp_ult Band ( Outpucti
materials average
properties) et across forest)

Figure 5
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Schematic representation of (#) neural network and () random forest machine learning algorithms. In this hypothetical example, the
models predict the band gap of an AB compound based on three features: the electronegativity difference between A and B (x4 — xB),
the atomic radius ratio between A and B (14 /7B), and the valence electron concentration (VEC) of the AB compound.
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space given inputs, such as how a minor change in a simplified molecular-input line-entry system
(SMILES) string can radically alter the rate constant (64).

The RF algorithm trains multiple decision tree models on randomized bootstrapped subsets of
the training data. Model predictions are then made based on the collected predictions of the deci-
sion trees. This results in a model robust to overfitting, which works well for the smaller data set
sizes common in materials science, such as the ~2,000 Heusler structures used to predict stability
(65) and the ~6,800 compositions used to predict glass formability (7). Two of the main advantages
of the RF algorithm are robustness to sparse data and ease of performing feature selection.

Comparison of performance between these and other algorithms is a subject of study in the ma-
terial informatics literature (66) and is an important consideration when selecting one for a design
problem. For instance, Gémez-Bombarelli et al. (64) found that the NN algorithm dramatically
outperformed linear regression for prediction of molecular organic light-emitting diode (OLED)
performance when the training data set size grew large, which is expected for molecular design
spaces. However, for continuous composition-dependent design spaces (such as inorganic solids)
and smaller training data sets, algorithm choice becomes less significant for model performance.
Iwasaki et al. (67) and Wen etal. (22) observed little change in RMSE between NN and RF models
for inorganic solid property prediction. Xue et al. (68) report similar prediction errors between
various regression techniques, with polynomial regression being lower. However, in the context
of discovery and design of experiments, RMSE and other simple error metrics are not necessarily
the ideal performance criteria. Ultimately, trained models are a means to an end, and measuring
the ability of a model to predict high-performance candidates is preferred. Gémez-Bombarelli
et al. (64), for instance, quantify this as the fraction of molecules in the test set correctly ranked in
the top 5% of all molecules.

3. CONFIRMED PREDICTIONS WITH METHODOLOGICAL
HIGHLIGHTS

Table 1 presents a selection of 23 applications of ML to materials discovery wherein the pre-
dictions from ML were subsequently confirmed by experiment or simulation. In the following
subsections, we highlight some of the key aspects of these case studies that are likely to have con-
tributed to verifiable success.

3.1. Augmenting Domain Expertise with Machine Learning

After his defeat by IBM’s Deep Blue in 1997, chess champion Garry Kasparov concluded that great
complementarity exists between human and computer intelligence. In 1998, Kasparov created
advanced chess, a format in which humans play with the aid of a chess computer (69). An analogous
pairing of domain expertise and ML has led to several successes in materials design.

This concept of combining existing expert knowledge with ML to exploit complementarity can
be powerful. While an unaided domain expert may simply miss an underlying trend in a large data
set, ML can readily surface these patterns. Conversely, while an ML model is capable of generating
massive numbers of candidate materials, a domain expert can sensibly prioritize materials for syn-
thesis from the suggested list, taking into account, e.g., compatibility with laboratory equipment
and economic factors that may be difficult to formally incorporate into ML models. Feedback
from domain experts regarding predictive failures can also drive the subsequent refinement of
ML models.

In an early example of the application of ML to materials discovery, Meredig et al. (70) demon-
strated that models trained on DFT calculations could very accurately predict the thermodynamic
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Summary of the machine learning (ML)—driven discovery results of Oliynyk et al. (65). Out of 14
ML-predicted high-probability Heusler compounds, 12 were experimentally confirmed; 7 predicted
negatives were also verified in the laboratory. Adapted with permission from Reference 65. Copyright 2016,
American Chemical Society.

stability of new compounds. Interestingly, they found that a model that combined pure ML with a
domain knowledge—derived heuristic outperformed either ML or the heuristic individually. The
ML model used only chemical composition as input; the heuristic used information from binary
phase diagrams to predict the stability of ternary phases. With ML and the heuristic together,
Meredig et al. identified nine materials as candidates for discovery, and confirmed using DFT cal-
culations that eight of these compounds were more energetically stable than any combinations of
known materials (70).

The work of Oliynyk et al. (65) offers another instance of extending domain knowledge with
ML. A common question that arises when ML is applied to materials discovery is whether the
predictions from ML are “nonobvious,” and in this paper, Oliynyk et al. directly compare a pure
electron-counting heuristic [akin to the 18-electron rule for half-Heuslers (71)] to the results of
using electron counts p/us many other descriptors in an ML model. Oliynyk et al. selected for
synthesis several compounds whose likelihood of Heusler formation was predicted to be low by
electron counting but high according to the ML model. The compounds TiRu,Ga, VRu,Ga,
CrRu; Ga, RuTi; Ga, RuV;Ga, RuCr; Ga, and RuMn, Ga were experimentally confirmed to crys-
tallize in the Heusler structure (65), in spite of very low predicted probabilities from the electron
count-only approach. Figure 6 summarizes the discovery results of Oliynyk et al. This exam-
ple illustrates how heuristics often used to identify “usual suspect” materials may miss interesting
candidates that a more elaborate ML approach can successfully identify.

3.2. Combining Machine Learning with Physics-Based Simulations

Widely used physics-based simulations, such as DFT and molecular dynamics, are natural com-
plements to ML for three primary reasons. First, as ML (especially in materials) is often starved for
precious training data, physical simulations can generate realistic training examples in abundance.
Second, ML algorithms have no innate knowledge of physics, and concurrent use of simulations
can guard against unphysical or pathological behavior in ML models. Third, ML in the context
of transfer learning (i.e., using an ML model trained on a larger data set to assist in a related
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prediction problem that has fewer training data available) can build predictive connections be-
tween simulation and laboratory experimentation (72).

Work by Mansouri Tehrani et al. (31) illustrates these points. In their effort to discover new
earth-abundant superhard materials, these researchers trained ML models on approximately 2,500
DFT-calculated bulk (B) and shear (G) moduli (73) in the Materials Project, generated consistently
in a high-throughput fashion. Over 100,000 candidates were then screened for very large values of
these elastic moduli. The training data were limited mainly to binary compounds due to the com-
putational cost of DFT mechanical property calculations on more complex unit cells. Despite this
restriction, the employed ML model successfully extrapolated into ternary and quaternary sys-
tems. Mansouri Tehrani et al.’s approach was informed by the fact that DFT mechanical property
data are much more abundant than experimental data and by the observation that Vickers hard-
ness (Hy) values tend to correlate with B and G (74). This ML-driven screening process surfaced
Mo oW 1BC and Regs W, 5C as promising candidates, the highest predicted bulk modulus val-
ues of quaternary and ternary phases, respectively. Subsequent experiments confirmed that both
materials exhibited superhard behavior (taken to be Hy > 40 GPa) at low load (31).

Besides the DFT-based approach exemplified by Mansouri Tehrani et al. (31), other physics-
based or mechanistic models can be used as critical components in an informatics pipeline. Menon
et al. (75) utilize a suite of physicochemical models to transform an initially simple molecular
candidate space, based on mixtures of only seven commercial polymers, into a complex space
of physical parameters which determine how these mixtures plasticize cement. In this way, do-
main expertise and prior knowledge are encoded in these physical models, enabling a predictive
model [in this case, least absolute shrinkage and selection operator (LASSO) (76)] from a more
limited data set. Another example by Bucior et al. (77) generates 3D H, adsorption energy pro-
files for known metal-organic framework (MOF) structures using grand canonical Monte Carlo
and Lennard-Jones plus Coulombic potentials. These 3D profiles were transformed into 1D his-
tograms of adsorption energy, with the histogram bin heights used as the MOF descriptors for
LASSO training. Interestingly, ignoring spatial dimensions of adsorption behavior did not dimin-
ish the model’s ability to predict MOF performance.

3.3. Active Learning and Iterative Discovery

As is often the case in materials informatics problems, one starts with a limited quantity of training
data on which to build a model in search of new materials in a large design space. Consequently,
the initial model will likely be inadequate to describe the entirety of the design space. In such
instances, iterative active learning approaches are useful to efficiently sample the design space
for additional training data to collect. Active learning involves the use of a model’s prediction
uncertainties to identify the ideal candidate experiments to achieve a goal, either to broaden the
model’s applicability in the design space and improve accuracy (exploration) or to identify the
highest-performing candidates (exploitation)—or some combination thereof. Upon execution of
these suggested experiments, the resulting data are used to retrain and enhance the underlying
ML model, such that the candidates in the next iteration are likelier to represent improvements.
Active learning, when applied to materials data sets, has been shown to significantly reduce the
number of experiments needed to identify the highest-performing material when compared to
random guessing (57).

Such an iterative approach was used by Ren et al. (7) to efficiently develop a model for bulk
metallic glass (BMG) formability in ternary metal systems and identify novel BMG-forming sys-
tems. The authors started with a training data set of 6,780 experimental reports, covering 293
ternary systems. The authors noted that most of these data come from only 38 ternary systems
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Receiver operating characteristic (ROC) curves illustrate a model’s trade-off between true positives and false
positives, where greater area under the ROC (AUROC) curve indicates superior performance. Ren et al. (7)
iteratively improved their machine learning (ML) models of bulk metallic glass (BMG) formability. The
first-generation model contained only BMG data derived from the Landolt-Bornstein handbook (79). The
second and third generations introduced experimental data obtained in testing ML predictions. Adapted
from Reference 7. Copyright The Authors, some rights reserved; exclusive licensee American Association for
the Advancement of Science. Distributed under a Creative Commons (CC BY-NC) license.

and are biased toward systems with known BMGs (i.e., a bias toward positive results). A classi-
fier model for whether a ternary composition will form a BMG was trained on these data (first
generation; Figure 7). The Co-V-Zr system was identified as a ternary with many novel BMG-
forming compositions and experimentally validated by a combinatorial thin-film synthesis ap-
proach, which revealed a large glass region. These results were added to the training data, and
the resulting model (second generation) has significantly superior performance to the first, as
shown by the receiver operating characteristic curve in Figure 7. Importantly, the authors at-
tribute this fact to the considerable number of negative training data added, improving the data
set quality for learning. Raccuglia et al. (78) made a similar observation. For this reason, in the
second round of model-selected experiments, a system predicted to not form BMGs (Fe-Ti-Nb)
was synthesized alongside two that do (Co-Ti-Zr and Co-Fe-Zr), and the results agreed well with
the second-generation model. Adding these new systems to the training data, a third-generation
model exhibited further improvement over the second, particularly at low false-positive rate (i.e.,
true prediction of glass-forming systems).

3.4. Identifying Materials Exhibiting Property Extrema

Because ML is often used in pattern-matching applications, it is particularly challenging to sur-
face materials with property values that lie outside the range of any initially known training ma-
terials. However, in an example of successful property value extrapolation, Xue et al. (68) found
that a simple polynomial containing up to quadratic terms in three features (valence electron
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count, atomic radius, and electronegativity) could successfully extrapolate to much higher values of
shape-memory alloy transition temperatures 7}, than were present in the training data. The train-
ing data generated by the researchers contained 7}, values no greater than approximately 100°C,
but the model accurately predicted values extracted from the published literature that ranged up to
nearly 300°C. Further, an experiment on a material whose predicted 7}, was 189.56°C was found
experimentally to have a transformation temperature of 182.89°C.

The case studies in Table 1 contain several additional examples of using ML to design mate-
rials with property values outside the range of the initially available training data. In rare cases,
these discoveries can be accomplished in a single shot, as was done by Xue et al. (68). In many
cases, an iterative active learning strategy must be employed. Rickman et al. (17) and Wen et al.
(22) designed high-entropy alloys with measured hardness values greater than the alloys in their
respective training sets. Sakurai et al. (80) used Bayesian optimization to develop a layered meta-
material thermal radiator with a Q-factor higher than previously observed. Thus, with appropriate
training data, and often also with the aid of active learning, ML can enable discovery of materials
with extreme property values.

3.5. Designing for Multiple Properties

Materials discovery applications often do not involve optimizing only a single property of in-
terest. Rather, real-world problems are inherently multiobjective, which is more complex than
single-variable optimization. Most works take one of two approaches to this challenge: (#) passing
materials candidates through a number of property screens, with the hope that a tractable list of
candidates satisfies all of the screening criteria, or (b) applying scalarizing functions to transform a
multiobjective design into a surrogate single-objective problem. The first approach assumes one
can satisfactorily evaluate all properties for a preenumerated list of candidate materials; the sec-
ond approach involves iteratively evaluating individual candidates or batches, and retraining ML
models at each iteration.

The Li-ion battery electrolyte screening work of Sendek et al. (81), which led to a case study
(82) in Table 1, illustrates the screening strategy. Sendek et al. trained an ML model on experi-
mental ionic conductivity values for Li-ion conductors and screened a DFT-derived database (28)
of candidate materials using this ML model along with a number of other criteria, as shown in
Figure 8. This multiproperty screening approach, which involved tabulated elemental properties,
heuristics, and DFT calculations in addition to ML, reduced 12,831 candidate electrolytes to 12.
Subsequent DFT calculations confirmed materials in the Li-B-S system to have extraordinarily
high ionic conductivity values (82).

Scalarizing functions are a second approach for multiproperty materials design, where multiple
property requirements are combined into a single function. This strategy maps a multiobjective
problem to a single-objective problem, which can then be solved with any standard optimization
approach. For example, Hise et al. (83) developed Chimera, which takes as user input a prioritized
list of all materials properties under consideration (e.g., a user could specify that thermodynamic
stability matters more than high ionic conductivity) and outputs a single-objective function suit-
able for optimization. In measuring the success of scalarizing functions, studies tend to focus on the
Pareto optimality of surfaced candidates (83, 84). A candidate is Pareto optimal (or, equivalently,
lies on the Pareto frontier) if there exists no other candidate that is superior across every prop-
erty dimension. Thus, the candidates on the Pareto frontier each offer a unique set of trade-offs
across properties of interest. For instance, two superconducting materials could be Pareto opti-
mal if one offers a high critical temperature 7. but subpar ductility (important for making wires
of the material), while the other possesses superior ductility but a lower 7. As it is impossible,
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Multiproperty Li-ion battery electrolyte screening strategy of Sendek et al. (81). A combination of
physics-based simulation, economic and practicality arguments, and machine learning modeling reduced a
list of 12,831 candidate materials to 12. Abbreviation: DFT, density functional theory. Figure adapted with
permission from the Royal Society of Chemistry, from “Holistic computational structure screening of more
than 12000 candidates for solid lithium-ion conductor materials,” Sendek et al., Energy Environ. Sci. 10(1)
2017 (81); permission conveyed through Copyright Clearance Center, Inc.

without user input, to declare a winner among Pareto-optimal materials, the ability to efficiently
surface as many materials on the Pareto frontier as possible is a sensible benchmark for scalarizing
functions.

3.6. Generating Novel Materials

For some materials development challenges, particularly those involving organic small-molecule
design, the design space is so massive that it cannot be exhaustively enumerated. In such cases, if
novel molecules are desired, the design space will be populated by either (#) candidates generated
de novo via ML without any prior structural input, perhaps using variational autoencoders (85),
as illustrated in Figure 9 (86), or generative adversarial networks (87); or (/) candidates generated
from known constituent building blocks and filtered by rules or heuristics based on domain ex-
pertise. Of course, a third common route involves using a preexisting library of candidates, e.g.,
PubChem entries, but this strategy by definition will not yield any chemical novelty; it can only
predict unknown properties of previously observed materials.
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Goémez-Bombarelli et al. (86) utilized a variational autoencoder to encode molecular structures, as represented by SMILES strings, into
a latent space that allows for continuous optimization of properties. A decoder then enables recovery of feasible molecules with
human-interpretable SMILES representations. Abbreviation: SMILES, simplified molecular-input line-entry system. Adapted with
permission from the American Chemical Society (ACS) from Reference 86 (https://pubs.acs.org/doi/10.1021/acscentsci.7b00572);
further permissions related to the material excerpted should be directed to the ACS.

Chemical generation approaches were utilized in a pair of studies on OLED design. In
the work of Gémez-Bombarelli et al. (64), 222 moieties and several design rules based on
electronic structure and synthesizability were used to generate 1.6 million candidate molecules.
The SMILES representations for these molecules were converted into the fixed-length vector
extended-connectivity fingerprint (ECFP) representation and used as input into a NN trained on
krapr, a2 ime-dependent DFT-derived OLED performance metric. The NN predicted krapr for
all candidate molecules, the resulting list was ranked, and DFT was performed on the top-ranked
candidates to validate the prediction and add to the training data. After each iteration, the im-
proved NN was used to identify top candidates, which were further downselected for experiment.

Kim etal. (63) dynamically generated candidate OLED structures through a pair of NNs. For
their inverse design pipeline, they trained a deep NN on the DF T-predicted electronic properties
of 50,000 randomly selected structures from the PubChem database. This deep NN then pre-
dicted the electronic properties of randomly generated ECFP vectors. For the top-performing
candidates, a recurrent NN converted the ECFP vector into a SMILES string. If the SMILES
string corresponded to a chemically valid structure, Kim et al. ran DFT on the structure, and
recommended those structures exceeding performance targets for subsequent experimental inves-
tigation. The authors ran this pipeline until they had identified 1,500 molecules satisfying their
design constraints. Approximately 10% existed in PubChem but were not present in the training
set, suggesting that the pipeline is capable of reproducing molecules found by traditional chem-
istry expertise.
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4. CONCLUSION

ML is beginning to exert a major impact on materials discovery. In Table 1, we highlighted a num-
ber of ML discovery case studies across a wide variety of materials applications. In areas ranging
from small molecules to metal alloys, ML predictions have subsequently been confirmed by lab-
oratory experiment or, in some cases, validated via physics-based simulations. In this review, we
identified some strategies that have lent themselves to success in ML-aided materials discovery,
such as explicitly combining domain knowledge with ML modeling. We also discussed the under-
lying components of a typical materials informatics discovery pipeline, such as high-quality input
data and carefully selected materials representations.

Looking ahead, we anticipate important work in several areas of materials informatics. First,
we must confront the issue of profound data scarcity in materials science; here, autonomous ma-
terials research (88), wherein ML-driven robotic synthesis and characterization apparatuses run
in closed-loop fashion, could play a major role. Autonomy is particularly interesting because the
time required for experimentation (i.e., data generation) is a severe bottleneck in the materials de-
velopment process. Second, ML model interpretability, which enables researchers to gain greater
physical insight from using ML models, will broaden the appeal and applicability of ML as a scien-
tific tool. ML models are often considered black boxes (89) because the process by which inputs are
transformed into outputs is opaque for many ML algorithms, but greater interpretability would
ameliorate this limitation. Finally, we should be able to quantify the behavior of ML models dur-
ing extrapolative materials discovery. In particular, design space optimization could maximize the
likelihood that ML will find nonobvious, high-performing materials. If we can optimize where we
are searching for discoveries, accelerate our rate of data generation, and enhance the transparency
of ML models for scientific users, ML will be transformative for our ability to discover and design
groundbreaking new materials.
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