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ABSTRACT: Heusler compounds form a diverse group of intermetallic materials encompassing many compositions and structures
derived from cubic prototypes, and exhibiting complicated types of disorder phenomena. In particular, preparing solid solutions
between half-Heusler ABC and full-Heusler compounds AB2C offers a means to control physical properties. However, as is typical in
materials discovery, they represent only a small fraction of possible intermetallic compounds. To address this problem of unbalanced
data sets, a machine-learning model was developed using an ensemble approach involving the synthetic minority oversampling
technique to predict new compounds likely to adopt half-Heusler structures. The training set was based on experimental crystal
structures, including those of nonstoichiometric compounds. The model achieved an accuracy of 98% on the validation set and gave
excellent performance in terms of balanced statistical measures. A subset of compounds predicted to adopt half-Heusler structures
having existing full-Heusler counterparts was then targeted for preparation. Six of seven of these candidates were successfully
synthesized and confirmed to be half-Heusler compounds.

■ INTRODUCTION

The large family of ternary and quaternary intermetallic
compounds collectively known as Heusler compounds are
important for many applications,1,2 including thermoelectric
materials,3−5 ferromagnets,6,7 magnetocaloric materials,8 topo-
logical insulators and superconductors,9,10 shape memory
alloys,11 and, most recently, catalysts.12 The remarkable
versatility can be traced to the compositional and structural
richness of these compounds, which span at least four cubic
structure types termed (full)-Heusler (Cu2MnAl-type),13 half-
Heusler (MgAgAs-type), inverse Heusler (Li2AgSb-type,
sometimes also called Hg2CuTi-type), and quaternary Heusler
(LiMgPdSn-type). Half-Heusler structures are adopted by
ternary compounds with a composition of 1:1:1, full and
inverse Heusler structures are adopted by ternary compounds
with a composition of 2:1:1 (or 1:2:1, depending on the
sequence of elements written in a formula), and quaternary
Heusler structures are adopted by quaternary compounds with
a composition of 1:1:1:1. Compounds having a tetragonal
Heusler (VRh2Sn-type) structure can also result from the
distortion of the cubic prototypes, and they are of interest for
spintronic applications.14,15 If all metallic elements are
considered, the possible combinations of elements are so
numerous (>105 for ternary and >106 for quaternary

compounds) that exploratory synthesis to discover new
intermetallic compounds is a herculean task. Empirical
observation suggests that not all combinations are permitted.
Restricting to combinations of an early d-block metal, a late d-
block metal, and a p-block metal or metalloid, which constitute
most known ternary Heusler compounds, reduces the number
of possibilities, but the frequent occurrence of site disorder and
vacancy defects complicates matters. Currently, Pearson’s
Crystal Data reports 1371 ternary Heusler compounds
(Cu2MnAl-, MgAgAs-, and Li2AgSb-type), of which 637
(46%) have undergone structure determination and 78 (5%)
have been analyzed by single-crystal X-ray diffraction (XRD).16

Most of the structural characterization has been limited to
powder X-ray diffraction, which can be inconclusive when the
intensities of diagnostic peaks are very weak or nearly
indistinguishable for different structural models. Discovering
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new Heusler compounds or characterizing existing ones would
thus benefit from additional guidance.
The structures presented above represent idealizations:

Heusler compounds actually exhibit many types of disorder
phenomena, expanding the compositional possibilities even
further (e.g., by introducing deviations from the ideal 1:1:1,
1:2:1, or 1:1:1:1 compositions). The most frequent type is
substitutional disorder, which occurs when a site is occupied
by more than one type of atom. For ternary Heusler
compounds, these possibilities have been enumerated,17 but
experimental confirmation lags far behind, because the
chemical space to explore is so huge. Although disorder
could be viewed as a nuisance, it offers a powerful tool to
control physical properties, because small amounts of disorder
can have profound effects on the electronic structure and on
the performance of magnetic, magnetocaloric, or thermo-
electric materials. For example, substituting Ti for Nb in
TixNb1−xCoSn causes transitions from a nonmagnetic semi-
conductor to a ferromagnetic metal,18 and self-doping with Ni
in ZrNiSn improves thermoelectric properties by reducing
thermal conductivity by over 60%.19 Another type of disorder,
though less commonly reported, arises from vacancy defects.
For example, as vacancies are gradually introduced in
MnNi2−xSb (x = 0−1), the structure transforms from full- to
half-Heusler, and the magnetocaloric response is modified.20,21

This transformation could also be described in the reverse way
as the occupation of interstitial sites on progressing from the
half- to full-Heusler structure in MnNi1+xSb (x = 0−1). An
exciting recent development is the application of this disorder
phenomenon to improve the performance of thermoelectric
devices by “nanostructuring,” in which interfaces are
constructed between full- and half-Heusler structures.22−26

A Ba  rnighausen tree27 illustrates the group-subgroup
relationships between the most common structure types

adopted by Heusler compounds, including those that are
disordered; essentially, they are all superstructures of body-
centered cubic (bcc) packing (Figure 1). Within any one of
these structures, disorder arises when a given set of
crystallographic sites (identified by a Wyckoff letter)
accommodates a mixture of two or more atoms (or vacancies).
For example, the W-type structure represents the extreme
situation of complete disorder, when all elemental components
are randomly distributed in the sites, with no preference. Upon
close examination of the relationships illustrated here, the
transformation from half- to full-Heusler structures can be
realized through multiple pathways. As additional atoms are
introduced into the half-Heusler structure (space group
F43m), they could preferentially enter the vacant 4d sites
exclusively, thus preserving the space group symmetry, or both
the 4c and 4d sites could be partially occupied equally, thus
merging into the symmetry-equivalent Wyckoff set 8c found in
the full-Heusler structure (space group Fm3m). The more
general problem is understanding how any of the structures
that could be adopted by compounds with a composition of
1:1:1 (e.g., MgAgAs-, CaF2-type) transform on the path to
those structures adopted by compounds with a composition of
2:1:1 (e.g., Cu2MnAl-, Li2AgSb-, LiMgPdSn-type).
Several approaches have been applied to rationalize the

formation of Heusler compounds and to predict their
structures and properties. Through empirical observations,
various rules have been formulated based on simple concepts
such as electron counting and electronegativity differences.1

However, these rules are fallible, with exceptions being treated
by devising new rules pertaining to special situations (such as
preferred site occupation by specific elements). First-principles
calculations generally proceed by comparing total energies to
assess the stability of competing phases.15,28−32 When
implemented with high-throughput methods, large numbers

Figure 1. Ba  rnighausen tree showing group-subgroup relationships of structures adopted by Heusler compounds, including those that exhibit
disorder.
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of models can be analyzed very rapidly.25,33−38 However, as
Legrain et al. have shown, inconsistent results can be obtained
by separate practitioners to predict new half-Heusler
compounds, suggesting that other factors (such as configura-
tional entropies) are important to consider.39 Further,
although computational predictions should ideally be tested
through experimental validation, it is disconcerting that this is
rarely carried out; worse, when such predictions are proven
wrong, they are forgotten.40 As an alternative approach,
machine-learning models based on training through empirical
data have been developed to predict new Heusler compounds
and their site preferences.39,41,42 The success of these machine-
learning models depends on the availability of abundant and
reliable experimental data. Regardless of the specific approach,
most of these studies have tended to focus on Heusler
compounds with ordered structures being assumed. Treatment
of disorder by first-principles methods remains a challenging
problem.
As part of a broad effort to apply machine-learning methods

to discover new intermetallic compounds,43 including Heusler
compounds, we present here an investigation motivated by
several aims. First, within the context of method development,
we wish to evaluate how combining an ensemble approach
with the synthetic minority oversampling technique
(SMOTE)44 can help address the problems of unbalanced
data sets and overfitting, which are typical when applying
machine-learning methods in materials discovery.45,46 This
ensemble approach is applied to the problem of predicting new
half-Heusler compounds, and its performance is compared
with that of a random-forest model previously developed by
Legrain et al.39 Second, among the candidates predicted to
adopt half-Heusler structures, a subset of these are sought that
are likely to exhibit a continuous solid solution between half-
and full-Heusler structures. In other words, this aim could be
rephrased as the question, “Can a hypothetical half-Heusler
compound ABC be identified that also has an existing full-
Heusler compound counterpart AB2C consisting of the same
three elements?” Third, we attempt to synthesize some of these
predicted compounds and characterize them with X-ray
diffraction.

■ EXPERIMENTAL SECTION
Machine-Learning Pipeline. A model to predict the occurrence

of half-Heusler structures ABC was developed by applying machine-
learning algorithms to detect patterns in a training set of
crystallographic data on the basis of chemical descriptors. The data
consisted of all entries found within the latest release of Pearson’s
Crystal Data16 that have the chemical formula ABC, including those
deviating from the ideal equiatomic composition by up to 20%, that
contain elements up to Bi (Z = 83), as well as U or Th, but not
hydrogen or noble gases. In total, there were 2818 such compounds,
of which 180 adopt the MgAgAs-type structure. Descriptors were
derived from 55 atomic properties of each element (Table S1 in the
Supporting Information); these properties were then combined
through 21 types of arithmetic operations (Table S2 in the Supporting
Information), giving a total of 1155 descriptors to be considered at
the outset of building the machine-learning model. The machine-
learning pipeline was built using the PLS_Toolbox software (version
8.0.1)47 within the MATLAB (2018a release) environment.48 Two-
thirds of the data were assigned to a training set, and one-third was
assigned to a validation set. The data were preprocessed by
autoscaling (mean-centering of columns and dividing by standard
deviations to obtain unit variance) and normalization (dividing by
sum of absolute values of each row).

The prediction probabilities obtained from three different
algorithms available in PLS_Toolbox (k-nearest neighbors (KNN),
support vector machine (SVM), and partial least-squares discriminant
analysis (PLS-DA)) were combined by soft-voting, using scripts
written in MATLAB. Two types of procedures to select descriptors
(cluster-resolution feature selection (CR-FS) and genetic algorithm
(GA))49,50 were used to generate six models in total (Figure 2a). In

CR-FS, the features were selected by initially ranking them according
to their Fisher ratio scores and then retaining those in a backward
elimination step and adding those in a forward selection step by
evaluating how a feature affects model quality based on a metric called
cluster resolution.49 Three iterations with 100 rounds of CR-FS were
performed, giving 300 sets of descriptors; among these sets, the one
that performed best in terms of validation accuracy contained 230
descriptors having the highest survival rate. One iteration of GA was
run, using a population size of 256, which corresponds to the largest
population setting to increase the number of possibilities to perform
crossover and to improve accuracy. The maximum number of
generations was set to 200, sufficient for the algorithm to converge on
a solution. The mutation rate was set to 0.005 to address under- or
overrepresentation of descriptors in the populations, with double
crossover used as the breeding strategy. Partial least-squares was used
as the regression method to evaluate chromosomes in the population,

Figure 2. (a) Machine-learning workflow: Combining 55 atomic
properties through 21 mathematical expressions generated 1155
descriptors, of which subsets were selected through a cluster-
resolution feature selection or genetic algorithm to be used in
conjunction with three types of algorithms. (b) SMOTE technique:
Within an unbalanced data set containing minority (★) and majority
(◆) samples, synthetic samples (S) are generated between pairs of
minority samples. Synthetic samples are kept if most of the nearest
neighbors are also minority samples but removed if not. (c) Example
of soft-voting procedure among an ensemble of models: The
probabilities of a given candidate ABC to be a half-Heusler compound
as evaluated by different machine-learning models are averaged to
arrive at a decision about the classification.
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with 25 latent variables and 10-fold-split random cross validation. The
fittest model contained 225 descriptors. Algorithms in PLS_Toolbox
were optimized according to their analysis flowcharts. The KNN
algorithms used an optimal k-value determined iteratively to be 4,
based on cross-validation accuracy. The SVM algorithms used a
Gaussian radial basis function as the kernel. The PLS-DA algorithms
gave the best performance using 20 latent space variables.
Because the number of known half-Heusler compounds constitutes

only a small fraction of the much larger set of ABC compounds, the
data set is highly imbalanced and biased against the minority class
(half-Heusler compounds) in this classification problem. To correct
this imbalance, the data set was augmented through SMOTE,44 which
acts to improve the representation of samples in the minority class
(Figure 2b).
First, the k-nearest neighbors around a given sample in the minority

class are identified. A k-value of n − 1, where n is the number of
samples in the minority class, was selected to generate the maximum
number of neighbors for each sample. Then, between each neighbor, a
synthetic sample is placed, which is intended to be as similar as
possible to the minority samples. These synthetic samples are added
to the data set. The KNN procedure is performed again on the whole
data set to find the nearest neighbors of each synthetic sample. If 60%
of the nearest neighbors of the synthetic samples belong to the
minority class, they are kept in the data set; otherwise, they are
discarded. Starting from a value of 3, k was adjusted to ascertain how
it affects the number of synthetic samples generated. The k-value that
resulted in the largest number of synthetic samples was accepted for
each feature set (k = 10 for GA and k = 11 for CR-FS). Within the
training set, a total of 52 synthetic samples were generated for the
models using GA, and 625 were generated for the models using CR-
FS. The models were then considered together as an ensemble
(Figure 2c). The votes from each model were combined through soft
voting, which examines the average of the prediction probabilities; if
the average probability exceeds 50%, then a given sample is labeled as
half-Heusler. The best combination of SMOTE models was then
selected based on the performance measures (sensitivity, specificity,
and accuracy), resulting in an ensemble consisting of five models
(with PLSDA-CR being excluded).
Synthesis and Characterization. Reactions were performed in

attempts to prepare some of the top-ranked candidates ABC to adopt
half-Heusler structures as predicted from the machine-learning model,
in particular, those that also have an existing counterpart AB2C having
a full-Heusler structure and composed of the same set of elements.
The following details pertain to the attempted preparation of
MnRhPb, MnPdSn, MnRhSn, MnPdIn, MnNiSn, MnRuSb, and
VRhSn. The starting materials were Mn powder (99.95%, Alfa-Aesar),
fresh filings from V rod (99.5%, Alfa-Aesar), Ru sponge (99.95%,
Alfa), Rh powder (99.95%, Alfa), Ni powder (99.9%, Cerac), Pd
powder (99.95%, Alfa), In powder (99.9%, Alfa), Sn powder (99.8%,
Cerac), Pb powder (>99%, Sargent), and Sb powder (99.6%, Fisher).
The elements were combined in equimolar ratios with a total mass of
0.3 g, and, where necessary, an excess of any of the more volatile
components (e.g., Mn, Sb, Pb) was added. The mixtures were pressed
into pellets, which were arc-melted three times (the pellets being
flipped each time) under an argon atmosphere in an Edmund Bu hler
MAM-1 arc melter. The arc-melted ingots were placed in fused-silica
tubes, which were evacuated, sealed, and heated at 800 °C for three
weeks followed by quenching in cold water. Synthesis through direct
reactions, without arc-melting, was also attempted by heating
equimolar mixtures of the elements, pressed into pellets, at 800 °C
(VRhSn, MnNiSn, MnRuSb) or 1000 °C (VRhSn, MnRuSb,
MnPdIn, MnRhSn) for one week, followed by cooling to room
temperature over 48 h.
Reactions were also performed to target candidates with low

probabilities (<50%) of adopting half-Heusler structures: CrGaSn,
CrMoNi, CuRuNb, MoHfNi, NiAgNb, VHfAg, and ZrRuNb. These
candidates were chosen such that at least one of the elemental
components is shared in common with the compositions of the high-
probability counterparts above. The starting materials were Zr sponge
(99.5%, Alfa), Hf powder (>99%, Onyx), fresh filings from V rod

(99.5%, Alfa-Aesar), Nb powder (>99%, Onyx), Cr powder (99%,
Alfa-Aesar), Mo powder (>99%, Mackay), Ru powder (>99%, Onyx),
Ni powder (99.9%, Cerac), Cu powder (99%, Alfa), Ag powder
(>99%, Alfa), Ga ingot (99.99%, Cerac), and Sn powder (99.8%,
Cerac). Equimolar mixtures of the elements were subjected to three
types of treatments: (i) arc-melting; (ii) heating pressed pellets at
1100 °C for 5 d, cooling to 650 °C over 1 d, and holding there for 36
h, followed by quenching in cold water; (iii) heating pressed pellets at
1000 °C for 6 d, followed by cooling to room temperature over 24 h.

The ground products were analyzed by powder X-ray diffraction on
a Rigaku Ultima IV diffractometer equipped with a D/teX Ultra
detector and a Co Kα radiation source operated at 38 kV and 38 mA.
The compositions of any crystals extracted from the products were
determined by energy-dispersive X-ray (EDX) analysis on a Zeiss
Sigma 300 VP field-emission scanning electron microscope.

■ RESULTS AND DISCUSSION

Machine-Learning Model. To work toward the eventual
goals of finding nonstoichiometric compounds between the
ideal half-Heusler (ABC) and full-Heusler (AB2C) structures,
we first developed a machine-learning model to identify
promising candidates ABC that are likely to adopt half-Heusler
structures. Similar to many other classification problems in
materials science, the desired half-Heusler candidates form
only a small proportion of known ternary equiatomic
compounds, and it is of interest to apply techniques in
machine learning that address this class imbalance in the data
set.46

Machine-learning models were trained on a data set of 2818
ternary compounds extracted from Pearson’s Crystal Data
having an exact equiatomic composition ABC (“daltonides”)
and those that deviate from the ideal composition by up to
20% (“berthollides”). The data were classified into compounds
that have half-Heusler structures (180) and those that do not
(2638). The data were sorted in a similar way as described
previously for determining site occupancies in half-Heusler
structures (e.g., CBA to ABC) to reflect the most probable site
occupancies, because the way that descriptors are defined is
not order-invariant.42 Descriptors were derived from elemental
properties such as radii and electronegativities (Table S1 in the
Supporting Information), which were combined through
various arithmetic operations (Table S2 in the Supporting
Information) and are assumed to be potential factors that
control structure, similar to the empirical rules previously
developed for half-Heusler structures.1 Including compounds
having nonstoichiometric compositions, with their features
weighted according to elemental content, helps to increase the
data set to improve the machine-learning model; however, for
the purpose of making predictions of new candidates, we
restrict ourselves to stoichiometric compounds.
An ensemble approach combined with SMOTE was used to

overcome the reliance on a single model, to cover chemical
space more broadly, and to rectify the imbalance of data. The
idea is to avoid misclassifications that could occur by
overfitting in an individual model and to improve prediction
probabilities, on the premise that multiple models can describe
complementary areas of chemical space more effectively and
that the majority decision is better than an individual one. For
example, if one model assigns a probability of 90% that a
candidate compound ABC has a half-Heusler structure, but
two other models assign lower probabilities of 25%, the
average probability becomes 47%, which would swing the
decision about the prediction.
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The results indicate that the ensemble approach is generally
better than the use of a single model (Table 1), with an
improved performance in the validation set. The machine-
learning model was also improved by applying a feature
selection (to avoid overfitting data) and SMOTE (to provide
the model with more minority samples from which to learn), as
shown by the increased sensitivity and accuracy. By applying
two different feature selection methods, the number of models
was increased from 3 to 6, and the number of features was
reduced from 1155 to 225 (using GA) or 230 (using CR-FS).
The number of synthetic samples introduced by SMOTE to
the training sets is 52 (using GA) or 625 (using CR-FS), the
large difference being attributed to how well these procedures
cluster classes into homogeneous neighborhoods. Because we
are interested in predicting new compounds with half-Heusler
structures, the sensitivity (rate of true positives) is an especially
important metric: the ensemble method applied together with
SMOTE outperforms the best single-model method (SMOTE
SVM CR-FS) by 6% in this regard.
In a previous assessment of first-principles versus machine-

learning methods to discovery of half-Heusler compounds,
Legrain et al. also developed a machine-learning model using a
random forest algorithm (with 1000 trees).39 A key difference
is that Legrain’s model was trained on ternary half-Heusler
compounds with the ideal composition (1:1:1), whereas our
model allowed deviations from the ideal composition by up to
20%. Legrain’s model had a precision of 0.90, a sensitivity of
0.52, and a Matthew’s correlation coefficient (MCC) of 0.68;
in comparison, our model had a precision of 0.77, a sensitivity
of 0.88, and an MCC of 0.82. Our model performs better in
terms of balanced statistical measures and significantly fewer
false negatives (higher MCC and sensitivity), but suffers in
terms of more false positives (lower precision). In other words,
our model is a bit overzealous in predicting compounds with
new half-Heusler structures but overall exhibits better
performance. Candidates having probabilities exceeding 90%
of exhibiting half-Heusler structures are listed in Table S3 in
the Supporting Information, and the top-ranked candidates are
listed in Table 2. Among these, seven candidates (BiPrPt,
BiSmPt, BiLuAu, BiYbNi, NbSbPt, MgBiPt, and ZrBiPt)
overlap with predictions made by Legrain et al. with a milder
threshold (>50% probability) of exhibiting half-Heusler
structures.39 Conversely, LaNiBi was predicted by Carrete et
al. to be unstable in the half-Heusler structure,34 in
disagreement with the Open Quantum Materials Database.51

Half-Heusler Compounds with Full-Heusler Counter-
parts. For reasons as described in the introduction, it would
be particularly interesting to discover new half-Heusler

compounds that have full-Heusler counterparts in hopes of
forming a solid solution as a means of controlling physical
properties. Currently, only 27 of these cases have been
reported, of the hundreds of half-Heusler structures known
(Table 3). The suspicion is that this should be a much more

common phenomenon, but the chemical space has not yet
been extensively explored, and the structures of intermediate
members may not be straightforward to determine. Inspecting
the frequency of occurrence of elements in reported half-
Heusler compounds reveals that more than half of the cases
involve group 10 elements (Ni, Pd, Pt); in fact, ∼40% of all
half-Heusler compounds contain Ni (Figure S1a in the
Supporting Information). The 18-electron rule has often
been proposed as a condition for the formation of half-
Heusler compounds.32 For example, this rule can be satisfied
by combining Ni (10 e−) with rare-earth metals (3 e−) and a

Table 1. Comparison of Model Performancea

training set validation set

model sensitivity specificity accuracy sensitivity specificity accuracy

before CR-FS/GA (ensemble) 0.857 0.937 0.969 0.733 0.971 0.964
after CR-FS (best individual) 0.800 0.996 0.922 0.650 0.985 0.817
after CR-FS/GA (ensemble) 0.900 0.989 0.978 0.867 0.983 0.975
after SMOTE (SVM CR-FS) 0.916 0.992 0.987 0.833 0.983 0.973
after SMOTE (KNN CR-FS) 0.733 0.977 0.961 0.666 0.981 0.961
after SMOTE (SVM GA) 0.833 0.993 0.983 0.733 0.985 0.969
after SMOTE (PLSDA GA) 0.933 0.959 0.957 0.883 0.957 0.953
after SMOTE (KNN GA) 0.525 0.990 0.961 0.666 0.994 0.973
after SMOTE (ensemble) 0.933 0.987 0.983 0.883 0.982 0.976

aThe performance is evaluated for compounds having half-Heusler (HH) structures.

Table 2. Top 25 Candidates of Adopting Half-Heusler
Structures

sample probability sample probability

BiLaNi 0.991 HfBiAu 0.953
PdCdBi 0.990 BiCeAu 0.952
BiLaAu 0.984 BiTbZn 0.951
BiLuAu 0.980 BiLaPb 0.951
SbTaNi 0.979 NiCdBi 0.949
BiPrPt 0.978 MgBiPt 0.947
BiLuHg 0.978 PdCdPb 0.946
BiLaHg 0.975 ZnPdBi 0.945
BiDyPd 0.972 ZnAgBi 0.944
BiLaZn 0.970 CdPtBi 0.944
BiCeHg 0.964 ZnRhBi 0.943
BiYbNi 0.964 ZnPdPb 0.942
BiSmPt 0.959

Table 3. Known Half-Heusler Compounds having Full-
Heusler Counterparts

AlGeLi GaMnPt MnPdSb
BiLiMg GaMnRu MnPtSn
CoNbSn HfNiSn NiSbTi
CoSbTi HfPdSn NiSnTi
CoSnTa LiMgSb NiSnU
CoSnTi LiPZn NiSnZr
CuMnSb MgNiSb PdSbY
FeSnTi MgPdSb PdSnZr
GaIrMn MnNiSb PtScSn
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group 15 element such as Sb (5 e−), which is the most
frequently encountered element occurring in 46% of all half-
Heusler compounds. Another common combination of
elements is Ni (10 e−), group 4 elements (4 e−), and Sn (4
e−), which also satisfies the 18-electron rule. However, an
objective appraisal shows that the 18-electron rule is violated
for nearly half of all reported half-Heusler compounds, raising
doubts about the universal validity of this rule. In comparison
to these known compounds, the machine-learning model
suggests that many candidates predicted to adopt half-Heusler
structures contain either Sb or Bi (Figure S1b in the
Supporting Information).
From the machine-learning model developed above, a subset

of 58 candidates having greater than 50% probabilities of
adopting half-Heusler structures not previously reported in
Pearson’s Crystal Data were suggested that have an existing
full-Heusler counterpart (Table 4). The crucial next step is to
validate some of these predictions through experiment.
Initially, a few candidates were selected with varying
probabilities of adopting half-Heusler structures: MnNiSn
(88%), MnRuSb (72%), and VRhSn (56%). Although it has a
lower probability of forming a half-Heusler structure, VRhSn
was an interesting candidate to examine, because VRh2Sn is
known to exist as two polymorphs (room-temperature
tetragonal structure and high-temperature full-Heusler struc-
ture).52 Attempts were made to prepare MnNiSn, MnRuSb,
and VRhSn by reaction of the elements in equimolar ratios
through arc-melting followed by annealing at 800 °C. Small
crystals extracted from the samples were examined by scanning
electron microscopy, and EDX analysis indicated compositions
of Mn1.0Ni1.5Sn1.0, Mn1.0Ru1.8Sb1.0, and V1.5Rh1.5Sn1.0. In
retrospect, these nonequiatomic compositions are under-
standable because of losses occurring during arc-melting (Mn
and Sb are easily volatilized, and Sn has a low melting point).
Although the desired half-Heusler compounds having strictly
equiatomic compositions were not obtained, the nonstoichio-

metric formulas suggest the occurrence of solid solutions
subject to vacancy defects (MnNi2−xSn, MnRu2−xSb) or
substitutional disorder ((V1−xRhx)3Sn).
This outcome illustrates the important point that theoretical

predictions for the structure of a compound (let alone its
existence), whether made by first-principles or machine-
learning methods, should not be confused with the
synthesizability of a compound, which is a different matter.53

The experimental chemist has practical considerations to make
and different challenges to overcome in synthesis and
characterization. Nevertheless, the predictions can help guide
the choice of ternary systems to examine. Subsequently, several
of the top-ranked candidates together with the previous three
(MnRhPb, MnPdSn, MnRhSn, MnPdIn, MnNiSn, MnRuSb,
VRhSn) were targeted for preparation by a similar arc-melting
and annealing procedure as before, except that an excess of the
volatile components (e.g., Mn, Sb) was added to compensate
for losses during arc-melting. Except for the MnRhPb sample,
which was found to contain a mixture of binary phases, the
powder XRD patterns reveal that the desired ternary
compounds were formed (Figure 3). Note that most samples
contain other secondary phases, because the syntheses have
not yet been optimized (but the MnPdIn sample appears to be
relatively pure). EDX analyses indicated average compositions
of Mn0.36Pd0.38Sn0.27, Mn0.36Rh0.33Sn0.31, Mn0.29Pd0.33In0.38,
Mn0.34Ni0.35Sn0.31, Mn0.28Ru0.39Sb0.34, and V0.32Rh0.33Sn0.35, in
reasonable agreement with expectations. The cell parameters
for these half-Heusler compounds are generally smaller than
those reported for the full-Heusler counterparts (Table S4 in
the Supporting Information). MnPdIn and VRhSn appear to
violate this trend, having cell parameters identical to or even
slightly greater than the full-Heusler counterparts, although it
should be noted that, in many other instances of pairs of half-
and full-Heusler structures, the differences in cell parameters
can be nearly negligible. In these cases, it would be worthwhile
to reinvestigate the previously reported full-Heusler structures.

Table 4. Candidates with Probabilities of Greater than 50% of Adopting Half-Heusler Structures having Existing Full-Heusler
Counterparts

sample probability sample probability sample probability

MnRhPb 0.935 PdPbLi 0.748 MnSnCo 0.652
SbUPd 0.922 TiBiLi 0.741 MnRhAl 0.636
MnSnPd 0.918 LiZnSn 0.738 LiAlPd 0.631
MnRhSn 0.895 LiMgSi 0.728 LiMgIn 0.627
MnPdIn 0.885 YBiPd 0.727 VSnCo 0.625
MnPdSn 0.883 MgPdIn 0.723 TiPbLi 0.623
MnSnNi 0.879 TiSnLi 0.720 SnPtLi 0.613
LiCdGe 0.869 MnRuSb 0.719 LiMgTl 0.606
MnSnCu 0.866 LiCdSn 0.711 SnIrLi 0.593
MgSnNi 0.863 LiGeNi 0.707 LiMgCd 0.586
ZrSbPt 0.861 MnAuAl 0.703 LiNiSi 0.583
LiMgGe 0.826 NiZnSn 0.702 LiGaRh 0.563
LiMgPb 0.795 MnRuSn 0.698 VSnRh 0.556
LiSbSn 0.785 SbPtZr 0.698 VPbLi 0.553
VSnNi 0.779 SnHfCo 0.695 TiSnIr 0.546
LiHgGe 0.778 VSnFe 0.692 MgInAg 0.538
LiSbCo 0.777 TiSnRu 0.676 LiSbNa 0.535
TiSnPd 0.768 LiGeCo 0.675 LiGeRh 0.533
LiMgSn 0.758 MgInNi 0.675 MgPdGa 0.525
MnPdAl 0.756 LiSbCu 0.664 CrSnRu 0.518
LiMgGa 0.751 LiNiSn 0.659 LiSnRh 0.515
NbSnNi 0.749 LiPdGe 0.652
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Another explanation could be that some degree of disorder
may be taking place if the compositions are slightly off-
stoichiometry. This is not a trivial problem to resolve at this
stage because of the multiple ways that disorder can occur. An
analysis of all reported half-Heusler structures, including those
exhibiting disorder, shows which elements are likely to mix
within each of the three crystallographic sites (Figure 4). Of
course, it is not surprising that chemically similar elements are
the ones that disorder with each other; for example, in
MnNi0.5Pt0.5Sb, the 4c site contains a mixture of Ni and Pt
atoms.54 However, disorder can also occur between apparently
dissimilar elements; for example, in Mn1.5Ni0.75Sb0.75, the 4a
site contains a mixture of Mn and Sb atoms, and the 4b site
contains a mixture of Mn and Ni atoms.55 At the extreme, all
three sites are subject to disorder, as seen in
Hf0.5Zr0.5Co0.5Rh0.5Sn0.01Sb0.99.

56 Finally, varying experimental
conditions may lead to different types and degrees of
disorder.57 Auxiliary machine-learning tools to assist in site
assignments may prove helpful.58

In addition to confirming positive predictions from the
machine-learning model, testing negative predictions is
important to evaluate the degree to which false negative errors
arise. An equal number of “unlikely” candidates (CrGaSn,
CrMoNi, CuRuNb, MoHfNi, NiAgNb, VHfAg, ZrRuNb) were
identified that have low probabilities (<50%) of adopting half-
Heusler structures and that contain at least one component in
common with the high-probability candidates characterized
above. Reactions targeting these compounds were attempted
under similar conditions (arc-melting; direct reactions at 1000
or 1100 °C) as before. The powder XRD patterns of the

samples do not match at all with the simulated patterns
expected for half-Heusler structures (Figure S2 in the
Supporting Information). In other words, the negative
predictions of the machine-learning model are correct for
seven of seven samples, with no false negative results.

■ CONCLUSIONS
The illusion that Heusler compounds are straightforward to
understand is shattered when disorder is introduced. In fact,
the analysis presented here highlights the challenges of
classifying structures into distinct types in the first place, let
alone predicting them by either first-principles or machine-
learning methods. The machine-learning model developed
here includes nonstoichiometric compounds as part of the
training set; it made use of techniques of oversampling
(SMOTE) to correct for unbalanced data sets typical of
materials chemistry problems, and soft voting over an
ensemble of algorithms to improve performance. On the
basis of this model, predictions were made of candidate
compounds that are likely to adopt half-Heusler structures that
have existing full-Heusler counterparts. Of seven arbitrarily

Figure 3. Powder XRD patterns (obtained using Co Kα radiation) of
samples prepared from arc-melting and annealing. Simulated patterns
for half-Heusler structures are shown in blue.

Figure 4. Likelihood of elements to undergo mixing within sites (4a,
4b, 4c) in half-Heusler (MgAgAs-type) structures that exhibit
substitutional disorder. The intensity of the color is proportional to
the frequency that this mixing has occurred within 83 unique cases
(with complete structure determination) as reported in Pearson’s
Crystal Data.
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selected candidates, six were successfully synthesized and were
confirmed experimentally to be half-Heusler compounds. The
next steps are to further characterize these compounds, in
particular, to determine the site occupancies and to ascertain
the nature of disorder, if any, within their structures, and to
prepare members of a solid solution between a pair of related
half- and full-Heusler compounds.
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