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In this paper, we give lower bounds for the homology of the 
fibers of a map to a manifold. Using new sheaf theoretic 
methods, we show that these lower bounds persist over whole 
open sets of the manifold and that they are stable under 
perturbations of the map. This generalizes certain ideas of 
persistent homology to higher dimensions.
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1. Introduction

In this paper, we consider a continuous mapping f : X → M of a topological space X
to a manifold M. We think of f as a family of fibers f−1p ⊆ X parameterized by points 
p in M. We are interested in topological properties of these fibers that are stable under 
small perturbations of the map f. Besides being of mathematical interest in its own 
right, this stability requirement is important for applications, where f may be subject to 
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perturbations from measurement noise or computational error. Stability is particularly 
appealing for data analysis as data is inherently noisy.

We study the homology groups of the fibers Hj(f
−1p) and their dimensions, the Betti 

numbers βj(f
−1p). We are mainly interested in lower bounds on the Betti numbers 

that continue to hold for small perturbations of f. Lower bounds are important because 
linearly independent elements of Hj(f

−1p) that remain linearly independent under small 
perturbations are regarded as interesting features of the family. The stability requirement 
is a serious one: even when βj(f

−1p) is large, there can exist perturbations f̃ arbitrarily 
close to f such that βj(f̃

−1p) = 0.

Conventions In this introduction, we fix a map f : X → M, where M is a manifold, a 
metric d on M, and an orientation of M. All homology groups are with field coefficients 
and of fixed degree j and all open sets are path-connected.

Persistent dimension The simplest statement of the type of result in this paper is the 
following. For every open set U ⊆ M, we will associate, in a few paragraphs below, a 
nonnegative integer P(U) called the persistent dimension of U which has the following 
properties:

1. Betti number lower bound: βj(f
−1p) � P(U) for all p ∈ U. That is, P(U) is a lower 

bound for the Betti numbers of all the fibers over U.
2. Stability: For all sufficiently small ε � 0 and for all perturbed f̃ that is ε-close to f, 

we have βj(f̃
−1p) � P(U) for all p ∈ U that is at least ε away from the boundary of 

U. In other words, P(U) is still a lower bound for the Betti numbers of the fibers if 
U is shrunk by ε.

The metric in which we ask f̃ to be ε-close to f is supx∈X d(fx, f̃x). By the second 
property, it follows that for all p ∈ U, there is an ε so that for all f̃ that is ε close to f, 
βj(f̃

−1p) � P(U). In other words, the lower bounds on Betti numbers provided by P(U)

are meaningful in the presence of small enough error in the determination of f.
We would like to say that the P(U)-dimension part of Hj(f

−1p) guaranteed by the 
first property forms a family over U. To do that, we need to recall the idea of a local 
system.

Local systems A local system L over a space U, also called a locally constant sheaf over 
U, is a “family” of vector spaces parameterized by points in U. It may be defined as the 
following data:

1. a vector space Lp for every point p ∈ U called the stalk of L at p, and
2. an isomorphism Lγ : Lp → Lq for every homotopy class γ of paths from p to q

called the monodromy along γ.
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Local systems over U form a category: morphisms L → L ′ are sets of linear maps 
Lp → L ′

p for each p ∈ U that commute with the monodromy maps. The isomorphisms 
Lγ are required to be compatible with composition of paths. In other words, a local 
system is a functor from the fundamental groupoid of U to the category of vector spaces, 
and a morphism of local systems is a natural transformation of functors. If U ′ is a subset 
of U, a local system L over U restricts to a local system L|U′ over U ′ by throwing away 
all the data that does not lie in U ′. If U is path-connected, the vector spaces Lp all have 
the same dimension and if further U is simply connected, then they may all be identified 
with a single vector space V so that all the maps Lγ are the identity on V.

Persistent local systems For every path-connected open set U ⊆ M, we will construct 
(see Example 5.3 followed by Example 7.2) a local system L(U) over U called the per-
sistent local system over U with the following properties:

1. Relation to homology of fibers: For every point p ∈ U, the stalk L(U)p of L(U)

at p is naturally a subquotient of Hj(f
−1p), the j-th homology of the fiber over p; 

see Example 7.2. Recall a subquotient of Hj(f
−1p) is a quotient B

A
where A ⊆ B ⊆

Hj(f
−1p) are subgroups.

2. Stability: For every perturbed f̃ that is ε close to f, L(U)|Uε is naturally a subquotient 
of L̃(Uε) where Uε is the interior of the subset of U consisting of points that are 
at least a distance ε from the boundary of U, L(U)|Uε is the restriction of L(U) to 
Uε, and L̃(Uε) is the persistent local system over Uε constructed from f̃; see the 
discussion after Corollary 9.2.

We define P(U), the persistent dimension of U, to be the dimension of the stalks of L(U). 
The two properties of the persistent dimension above follow from the two properties of a 
persistent local system since the dimension of any vector space V is bounded from below 
by the dimension any subquotient of V.

Sheaves and cosheaves It is not surprising that sheaf theory is a useful tool to study 
these questions. It was introduced by Leray 75 years ago precisely to study the homology 
of the fibers of a map. We develop the sheaf theory we need (constructible sheaves and 
cosheaves) in Sections 3 and 4. Local systems are equivalent to certain types of sheaves 
(see Definition 3.2) and cosheaves (see Definition 4.2).

The j-th Leray homology cosheaf of a map f : X → M (see Example 4.4) is a cosheaf 
Fj under M that contains the information of the j-th homology of the fibers Hj(f

−1p), 
for all points p ∈ M, all woven together into one algebraic object. In the cellular setting, 
it is amenable to computation [15]. The j-th Leray relative homology sheaf of f (see 
Example 3.3) is a similar dual object Fj over M.

The case M = R and persistent homology If the manifold M is the space of real num-
bers, then there is a remarkably simple construction of the persistent local systems L(U). 
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Let F be the Leray cosheaf of f and F|U be its restriction to U. Then L(U) can be char-
acterized as the largest local system contained in F|U as a direct summand. If F is the 
Leray sheaf, L(U) can also be characterized as the largest local system contained in F|U
as a direct summand.

So L(U) constructed in this way satisfies the two properties Relation to homology of the 
fibers and Stability. This construction and these properties of it were already known to the 
persistent homology community [3,1]. Since U is path-connected and simply connected, 
the stalks of the local system L(U) are all identified with a single vector space V.

Most of the persistent homology literature focuses on a special case of our situation. 
There is a space Y with a function h : Y → R and we are interested in the homology 
of the sublevel sets h−1(−∞, r] as a function of r. For every pair r � s, the image of 
the homomorphism Hj

(
h−1(−∞, r]

)
→ Hj

(
h−1(−∞, s]

)
is called the persistent vector 

space associated to the interval (r, s) [7]. The collection of all dimensions of persistent 
vector spaces, called the rank function of h, uniquely defines what is called the barcode
or the persistence diagram of h [5,4,14]. This special case translates into a case of ours 
by concocting a function f : X → R such that the sublevel sets of h are the fibers of 
f. Take X =

{
(y, r) ∈ Y × R 

∣∣ h(y) � r
}

and f(y, r) = r. The persistent vector space 
of h for an interval (r, s) is the persistent local system of f over (r, s). In this way, the 
persistent local system behaves very much like the well known rank function in persistent 
homology.

There is work on the persistent homology of circle valued functions f : Y → S1 [2]. We 
believe the persistent local systems of f are closely related to their invariant.

This paper This paper was motivated by our desire to generalize this very beautiful 
theory of persistent vector spaces to functions with values in any manifold. One might 
ask, why not just do the same thing – The construction of the persistent local system 
L(U), for the case M = R above, makes sense for any manifold M. However, it does 
not work. The result does not satisfy the stability condition. This is the first indication 
of many aspects of the problem that are much more complicated for higher dimensional 
manifolds than for R. In fact, one can show that there can be no construction of persistent 
local systems L(U) that depends only on F, gives the “right” answer for fibrations, and 
satisfies stability (see Example 10.2); the situation is similar for F (see Example 10.1).

Our construction of persistent local systems uses both the cosheaf F and the sheaf F
plus a map between them F : F → F (see Example 5.3) constructed from the orientation 
class of M. We call this data a bisheaf. In terms of computability, a bisheaf is not much 
more complicated than a sheaf or a cosheaf. However, since the map F mixes objects 
from different categories, the theory of bisheaves is complicated. For example, bisheaves 
form an interesting category (see Definition 5.2), but unlike sheaves and cosheaves, it is 
not an abelian category (e.g. no zero object).

Given the bisheaf F : F → F, the construction of the persistent local system L(U)

proceeds in four steps. Here is an outline:
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1. Restrict the bisheaf to U, F|U : F|U → F|U.
2. Construct a canonical subsheaf Epi(F|U) ↪→ F|U; see Definition 3.6.
3. Construct a canonical quotient cosheaf F|U � Mono(F|U); see Definition 4.8.
4. Then L(U) is the image of the composition Epi(F|U) ↪→ F|U → F|U � Mono(F|U); 

see Proposition 5.6.

We would have liked the persistent local systems L(U) to satisfy a stacky functoriality 
in U as in [17]. What is true is a rather weaker statement: if U ′ is a subset of U, 
then L(U)|U′ is naturally a subquotient of L(U ′). The solution we found to this is the 
isobisheaf stack (see Definition 7.1) which has all the functorial properties we need. We 
believe that the category of bisheaves, the Epi and Mono constructions, and isobisheaf 
stacks are interesting new tools of sheaf theory. We hope they will be useful in other 
contexts.

Acknowledgments The second author thanks Vidit Nanda and Oliver Vipond for care-
fully reading the first versions of this paper. The second author also thanks Justin Curry 
for helpful comments on Appendices A and B. Finally, we thank our anonymous review-
ers.

2. Constructible maps

We start by defining the class of spaces and maps we will be working with. The class 
we consider is chosen to be general enough to include all the maps that generally come 
up in geometry and applied mathematics, but controlled enough to allow the powerful 
technology of constructible sheaf theory.

Definition 2.1. [13] A Thom-Mather space is a triple (X, S, J) satisfying the following 
nine axioms:

1. X is a Hausdorff, locally compact, and second-countable topological space.
2. S is a set of path-connected, locally closed subsets of X such that X is the disjoint 

union of the elements of S.
The elements of S are called the strata of X. We call S the stratification of the 
Thom-Mather space.

3. Each stratum of X is a topological manifold (in the induced topology) provided with 
a C∞ smoothness structure.

4. The set S is locally finite. That is, each point x ∈ X has an open neighborhood that 
intersects finitely many strata.

5. The set S satisfies the condition of the frontier : if R, S ∈ S and S has a non-empty 
intersection with the closure of R, then S is a subset of the closure of R. In this case, 
we say S is on the frontier of R.
The axiom of the frontier makes S a poset with S � R iff S is on the frontier of R.
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6. J is a triple 
{
(TS), (πS), (ρS)

}
, where for each S ∈ S, TS is an open neighborhood 

of S in X, πS : TS → S is a continuous retraction onto S, and ρS : TS → [0, ∞) is a 
continuous function.
The open set TS ⊆ X is called the tubular neighborhood of S in X, πS is called the 
local retraction of TS onto S, and ρS is called the tubular function of S. We call J the 
control data of the Thom-Mather space.

7. For each stratum S ∈ S, S = {x ∈ TS | ρS(x) = 0}.
For two strata R, S ∈ S, let TR,S = TR ∩ S, πR,S = πR|TR,S : TR,S → R, and ρR,S =

ρR|TR,S : TR,S → [0, ∞). It is possible that TR,S is empty, in which case these maps 
are the empty mappings.

8. For any strata R, S ∈ S, the mapping

(πR,S, ρR,S) : TR,S → R× (0,∞)

is a smooth submersion.
9. For any strata Q, R, S ∈ S, the following diagrams commute:

TQ,S ∩ TR,S ∩ π−1
R,S(TQ,R)

πQ,S

πR,S
TQ,R

πQ,R

TR,S
πR,S

ρQ,S

TR

ρQ,R

TQ,S [0,∞).

Let (X, S, J) be a Thom-Mather space. Choose a stratum S ∈ S and a topological ball 
B ⊆ S open in S. For a value r ∈ (0, ∞), let

Br = {x ∈ TS | ρS(x) < r and πS(x) ∈ B} .

We call Br a basic open of (X, S, J) associated to the stratum S. Let Basic(X, S, J) be the 
poset of all basic opens over all strata S ∈ S and over all r ∈ (0, ∞) ordered by inclusion. 
The union of the open sets in Basic(X, S, J) is X. For any two U, V ∈ Basic(X, S, J) with 
x ∈ U ∩V, there is a set W ∈ Basic(X, S, J) such that x ∈ W and W ⊆ U ∩V. This makes 
Basic(X, S, J) a basis for the topology on X.

Definition 2.2. Let X and Y be Hausdorff, locally compact, and second countable topolog-
ical spaces. A continuous map f : Y → X is (S, J)-constructible if there is a Thom-Mather 
space (X, S, J) such that for every pair V ⊆ U in Basic(X, S, J) associated to a common 
stratum, the inclusions

(
Y, Y − f−1(U)

)
↪→

(
Y, Y − f−1(V)

)
f−1(V) ↪→ f−1(U)

are homotopy equivalences. A continuous map f : Y → X is constructible if it is (S, J)-
constructible for some Thom-Mather space (X, S, J).



R. MacPherson, A. Patel / Advances in Mathematics 386 (2021) 107795 7
Example 2.3. The following classes of maps are all constructible: (a) Real algebraic maps, 
(b) real analytic maps that are “controlled at infinity,” (c) piecewise linear maps that 
are “controlled at infinity,” and (d) an open dense set of proper smooth maps.

Here “controlled at infinity” means that the map Y → X factorizes in the category 
of analytic (resp. PL spaces) as follows: Y ⊂ Z → X where Y ⊂ Z is an inclusion of an 
open set, Z − Y is analytic (resp. PL) subspace of Z, and Z → X is proper. Proper maps 
are automatically controlled at infinity: set Z = Y. Algebraic maps are always similarly 
controlled at infinity.

In all four cases, the proof has three steps:

1. Construct a Whitney stratified structure on the map Y → X in which Y is a union 
of strata, using [16] in cases (a), (b), and (c) and [8] in case (d).

2. Choose the Thom-Mather data on X to be the one obtained from the Whitney 
stratification of X in [13].

3. Use moving the wall from [10, Chapter 4 page 70] to show the required homotopy 
equivalences.

Remark 2.4. We expect almost any map defined by a finite process to be constructible. 
Non-constructible examples, like the inclusion of a Cantor set into a manifold, come from 
infinite or iterative processes.

We will not require the smooth structure of a Thom-Mather space until Section 8. For 
the next few sections, all we require is a topological stratified space. Recall the open cone 

C(X) on a topological space X is the quotient space 
X× [0,∞)

X× {0} . Its cone point, denoted 

• ∈ C(X), is the point X× {0}
X× {0} .

Definition 2.5. [9] An n-dimensional (topological) stratified space X is an n-step filtration

∅ = X−1 ⊆ · · · ⊆ Xn = X

of a second countable, locally compact, Hausdorff space where for each d and each point 
p ∈ Xd − Xd−1, there is a compact (n − d − 1)-dimensional stratified space L and a 
filtration preserving homeomorphism

h : Rd × C(L) → U

such that U is an open neighborhood of p and h(0, •) = p. Here Rd is interpreted as 
a filtered space with just one step and • is the cone point of C(L). We call h a local 
parameterization of the stratified space. Each path-connected component of Xd − Xd−1
is a d-stratum. It will be convenient to write a stratified space as a tuple (X, S) where S

is its set of strata.



8 R. MacPherson, A. Patel / Advances in Mathematics 386 (2021) 107795
Let (X, S) be an n-dimensional stratified space. The local parameterizations imply 
that each d-stratum is a topological d-manifold and that the condition of the frontier is 
satisfied. This makes S a poset. We call an open set U ⊆ X an S-basic open if it is the 
image of a local parameterization h : Rd×C(L) → X. An S-basic open is associated to the 
unique stratum in S containing the topological ball h(Rd×•). Let Basic(X, S) ⊆ Open(X)
be the poset of S-basic opens ordered by inclusion. The set Basic(X, S) is a basis for the 
topology on X. Note that every finite dimensional Thom-Mather space (X, S, J) is a 
stratified space (X, S) and Basic(X, S, J) ⊆ Basic(X, S). However, not every open set in 
Basic(X, S) belongs to Basic(X, S, J).

For the purpose of proving stability (see Theorem 9.1), it will be convenient to work 
with a triangulation of a Thom-Mather space as opposed to working directly with a 
Thom-Mather space. Recall a pair (K, K0) of simplicial complexes is a simplicial complex 
K and a subcomplex K0 ⊆ K. The geometric realization |K −K0| of the pair is the geometric 
realization |K| take-away the subspace |K0| ⊆ |K|.

Definition 2.6. A stratified space (X, K) is a triangulation if there is a simplicial pair 
(K, K0) and a homeomorphism φ : |K −K0| → X such that each stratum of K is the image 
of a simplex in K −K0. A stratified space (X, S) is triangulable if there is a triangulation 
(X, K) such that for each stratum σ ∈ K there is a stratum S ∈ S where σ ⊆ S.

We use σ and τ to denote strata of a triangulation (X, K). The open star of a stratum 
σ ∈ K is the subposet st σ :=

{
τ ∈ K | σ � τ

}
⊆ K. Note that every open star st σ is a 

K-basic open associated to the stratum σ.

Proposition 2.7 ([11]). Every Thom-Mather space (X, S, J) is triangulable.

Throughout this paper, M will denote a topological m-manifold without boundary. 
A topological manifold is a locally Euclidean, second-countable, and Hausdorff space.

3. Sheaves

In this section, we develop the theory of constructible sheaves. We introduce the 
notions of an episheaf and epification which we will use to study the fibers of a con-
structible map. On a technical level, the main new device is the use of basic open sets.

For a topological space X, let Open(X) be its poset of open sets ordered by inclu-
sion V ⊆ U. An open cover of an open set U ⊆ X is a subposet U ⊆ Open(X) of open 
sets whose union is U and for every Ui, Uj ∈ U, Ui ∩Uj is a union of elements in U. Let 
Ab be the category of abelian groups.

Definition 3.1. A sheaf (of abelian groups) over X is a contravariant functor

F : Open(X) → Ab
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satisfying the following property. For every open set U ⊆ X and for every open cover U
of U, the universal map F(U) → lim F|U is an isomorphism. A sheaf map is a natural 
transformation of functors α : F → G.

Definition 3.2. Let (X, S) be a stratified space. A sheaf F over X is S-constructible if for 
every pair of S-basic opens V ⊆ U associated to a common stratum, the map

F(V ⊆ U) : F(U) → F(V)

is an isomorphism. If F(V ⊆ U) is an isomorphism for every pair of S-basic opens V ⊆ U, 
then F is a local system. A sheaf F over X is constructible if there is a stratified space 
(X, S) for which F is S-constructible. Let Sh(X, S) be the category of S-constructible 
sheaves over X and sheaf maps. Let Sh(X) be the category of constructible sheaves over 
X and sheaf maps.

When defining an S-constructible sheaf over X, it is enough to specify a well behaved 
contravariant functor on a subposet of Open(X). Let A ⊆ Basic(X, S) be any subposet 
that is a basis for the topology on X. For example, if (X, S, J) is a Thom-Mather space, 
then we may let A be Basic(X, S, J). Let F : A → Ab be a contravariant functor such that 
for every pair J ⊆ I associated to a common stratum, the map F(J ⊆ I) is an isomorphism. 
Then F uniquely generates (up to an isomorphism) an S-constructible sheaf F as follows. 
For an arbitrary open set U ⊆ X, let A(U) ⊆ A be the subposet consisting of all open 
sets contained in U. Let F(U) := lim F|A(U). Note that if U ∈ A, then F(U) is canonically 
isomorphic to F(U). For an arbitrary pair of open sets V ⊆ U ⊆ X, let F(V ⊆ U) be the 
universal morphism between the two limits. See Appendix A for a check that F is indeed 
an S-constructible sheaf.

Given a sheaf map α : F → G between two S-constructible sheaves, its image im α is 
an S-constructible sheaf equipped with a canonical inclusion im α ↪→ G as follows. Let 
H : Basic(X, S) → Ab be the contravariant functor that assigns to each S-basic open U the 
group H(U) := im α(U). For V ⊆ U, the map H(V ⊆ U) is the map G(V ⊆ U) restricted 
to im α(U). If both V ⊆ U are associated to a common stratum, then H(V ⊆ U) is 
an isomorphism. Extend H to a sheaf H over X using the procedure in the previous 
paragraph. For any open set U ⊆ X, the universal morphism H(U) → G(U) is injective. 
The coimage, kernel, and cokernel of α are defined similarly.

Example 3.3. Let f : Y → X be an (S, J)-constructible map. Define F∗ as the S-
constructible sheaf generated by assigning to each U ∈ Basic(X, S, J) the relative singular 
homology group

F∗(U) := H∗
(
Y, Y − f−1(U);Z

)
.

For two (S, J)-basic opens V ⊆ U associated to a common stratum, the map
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F∗(V ⊆ U) : F∗(U) → F∗(V)

is, by definition of an (S, J)-constructible map, an isomorphism. Thus F∗ is an S-
constructible sheaf.

Definition 3.4. An S-constructible sheaf F over X is an episheaf if for every pair of S-basic 
opens V ⊆ U, the map F(V ⊆ U) : F(U) → F(V) is surjective.

Proposition 3.5. Consider a sheaf map α : E → F in Sh(X, S). If E is an episheaf, then 
im α is an S-constructible episheaf.

Proof. By construction of im α, we need only look at the following commutative diagram 
for any pair of S-basic opens V ⊆ U:

E(U)

α(U)

E(V⊆U)

E(V)

α(V)

F(U)
F(V⊆U)

F(V).

The restriction of F(V ⊆ U) to the image of α(U) is a surjection onto the image of α(V). 
Thus im α is an episheaf. �

Let F be an S-constructible sheaf over X. A sub-episheaf of F is an inclusion E ↪→ F
of an S-constructible episheaf E. The zero sheaf 0 ↪→ F is the smallest sub-episheaf of 
F. For any two sub-episheaves E1, E2 ↪→ F, their internal sum E1 � E2, which assigns to 
each open set U the smallest subgroup of F(U) containing both E1(U) and E2(U), is also 
a sub-episheaf. Let P be the poset of sub-episheaves of F ordered by inclusion. For any 
chain

E1 E2 E3 · · ·

F

in P, the sub-episheaf 
⊎

Ei contains them all. By Zorn’s Lemma, P has a maximal element 
and therefore F has a maximal sub-episheaf. Consider a sheaf map α : F → G in Sh(X, S). 
Suppose D ↪→ F and E ↪→ G are maximal sub-episheaves. By Proposition 3.5, the image 
of the composition

D F α G



R. MacPherson, A. Patel / Advances in Mathematics 386 (2021) 107795 11
is a sub-episheaf of G. My maximality of E, this image is contained in E thus inducing a 
map D → E that makes the following diagram commute:

D E

F α G.

Thus the assignment to each S-constructible sheaf its maximal sub-episheaf is functorial.

Definition 3.6. The epification of S-constructible sheaves over X is the functor

Epi : Sh(X, S) → Sh(X, S)

that sends each sheaf to its maximal sub-episheaf. Let η : Epi ⇒ idSh(X,S) be the inclusion 
natural transformation.

4. Cosheaves

Cosheaves are “dual” to their better known cousins, sheaves. In this section, whose 
parallel structure to the last one reflects that “duality,” we develop the theory of con-
structible cosheaves. We introduce the notions of a monocosheaf and monofication.

Definition 4.1. A cosheaf (of abelian groups) under X is a covariant functor

F : Open(X) → Ab

satisfying the following property. For every open set U ⊆ X and for every open cover U of 
U, the universal map colim F|U → F(U) is an isomorphism. A cosheaf map is a natural 
transformation of functors α : F → G.

Definition 4.2. Let (X, S) be a stratified space. A cosheaf F under X is S-constructible if 
for every pair of open sets V ⊆ U in Basic(X, S) associated to a common stratum, the 
map

F(V ⊆ U) : F(V) → F(U)

is an isomorphism. A cosheaf F under X is constructible if it is S-constructible for some 
stratified space (X, S). If F(V ⊆ U) is an isomorphism for every pair of S-basic opens V ⊆
U, then F is a colocal system. Let Cosh(X, S) be the category of S-constructible cosheaves 
under X and cosheaf maps. Let Cosh(X) be the category of constructible cosheaves under 
X and cosheaf maps.
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When defining an S-constructible cosheaf under X, it is enough to specify a well 
behaved covariant functor on a subposet of Open(X). Let A ⊆ Basic(X, S) be any subposet 
that is a basis for the topology on X. For example, if (X, S, J) is a Thom-Mather space, 
then we may let A be Basic(X, S, J). Let F : A → Ab be a covariant functor such that for 
every pair J ⊆ I associated to a common stratum, the map F(J ⊆ I) is an isomorphism. 
Then F uniquely generates (up to an isomorphism) an S-constructible cosheaf F as follows. 
For an arbitrary open set U ⊆ X, let A(U) ⊆ A be the subposet consisting of all open sets 
in U. Let F(U) := colim F|A(U). Note that is U ∈ A, then F(U) is canonically isomorphic 
to F(U). For an arbitrary pair of open sets V ⊆ U ⊆ X, let F(V ⊆ U) be the universal 
morphism between the two colimits. See Appendix B for a check that F is indeed an 
S-constructible cosheaf.

Given a cosheaf map α : F → G between two S-constructible cosheaves, its image im α

is an S-constructible cosheaf equipped with a canonical inclusion im α ↪→ G as follows. 
Let H : Basic(X, S) → Ab be the covariant functor that assigns to each S-basic open U the 
group H(U) := im α(U). For V ⊆ U, the map H(V ⊆ U) is the map G(V ⊆ U) restricted 
to im α(V). If both V ⊆ U are associated to a common stratum, then H(V ⊆ U) is 
an isomorphism. Extend H to a cosheaf H under X using the procedure in the previous 
paragraph. For any open set U ⊆ X, the universal morphism H(U) → G(U) is injective. 
The coimage, kernel, and cokernel of α are defined similarly.

Example 4.3. Let f : Y → X be a (S, J)-constructible map. Define F∗ as the S-constructible 
cosheaf generated by assigning to each U ∈ Basic(X, S, J) the singular relative cohomology 
group

F∗
(U) := H∗(Y, Y − f−1(U);Z

)
.

For two (S, J)-basic opens V ⊆ U associated to a common stratum, the map

F∗
(V ⊆ U) : F∗

(V) → F∗
(U)

is, by definition of an (S, J)-constructible map, an isomorphism. Thus F∗ is an S-
constructible cosheaf.

Example 4.4. Let f : Y → X be a (S, J)-constructible map. Define F∗ as the S-constructible 
cosheaf generated by assigning to each U ∈ Basic(X, S, J) the singular homology group

F∗(U) := H∗
(
f−1(U);Z

)
.

For two (S, J)-basic opens V ⊆ U associated to a common stratum, the map

F∗(V ⊆ U) : F∗(V) → F∗(U)

is, by definition of an (S, J)-constructible map, an isomorphism. Thus F∗ is a S-
constructible cosheaf.
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Example 4.5. Let (M, S) be a stratified space where M is an m-manifold without bound-
ary and S consists of a single stratum namely M. Note that an open set is an S-basic 
open iff it is an open topological m-ball. The local orientation cosheaf under M is the 
S-constructible cosheaf O generated by assigning to each open topological m-ball U ⊆ M

the top dimensional singular relative cohomology group

O(U) := Hm
(
M,M−U;Z

)
∼= Z.

For two m-balls V ⊆ U, the map

O(V ⊆ U) : O(V) → O(U)

is an isomorphism. Thus O is an S-constructible cosheaf. Moreover, O is a colocal system. 
The manifold M is orientable if O(M) ∼= Z. If M is orientable, then an orientation of M is 
the choice of a generator of O(M). The poset of all m-balls Basic(M, S) is a covering of M. 
By the cosheaf axiom, the universal map colim O|Basic(M,S) → O(M) is an isomorphism. 
If M is orientable, then the map O(U ⊆ M) is an isomorphism for all m-balls U.

Definition 4.6. An S-constructible cosheaf M under X is a monocosheaf if for every pair 
of S-basic opens V ⊆ U, the map M(V ⊆ U) : M(V) → M(U) is injective.

Proposition 4.7. Consider a cosheaf map α : F → M in Cosh(X, S). If M is a monocosheaf, 
then the image of α is an S-constructible monocosheaf.

Proof. By construction of im α, we need only look at the following commutative diagram 
for any pair of S-basic opens V ⊆ U:

F(U)

α(U)

F(V)

α(V)

F(V⊆U)

M(U) M(V)
M(V⊆U)

The restriction of M(V ⊆ U) to the image of α(V) is an injection into the image of α(U). 
Thus im α is a monocosheaf. �

Let F be an S-constructible cosheaf under X. A quotient-monocosheaf of F is a 
surjection F � M to an S-constructible monocosheaf M. The zero cosheaf F → 0
is the largest quotient-monocosheaf of F because its kernel is all of F. For any two 
quotient-monocosheaves F � M1 and F � M2, let K1, K2 ⊆ F be their kernels. Then 
F � F/K1 ∩ K2, which assigns to each open set U the quotient F(U)/K1(U)∩ K2(U), is a 
quotient-monocosheaf of F. Let P be the poset of kernels of quotient-monocosheaves of 
F ordered by containment. For any chain of quotient-monocosheaves
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F

· · · M3 M2 M1,

the corresponding chain of kernels in P has, by taking intersections, a minimal element 
in P. By Zorn’s Lemma, P has a minimal element and therefore F has a minimal quotient-
monocosheaf. Consider a cosheaf map α : F → G in Cosh(X, S) and suppose F � M
and G � N are minimal quotient-monocosheaves. By Proposition 4.7, the image of the 
composition

F
α

G N

is a quotient-monocosheaf of F. By minimality of M, the kernel of F � M is contained 
in the kernel of the above composition inducing a map M → N that makes the following 
diagram commute:

F
α

G

M N.

Thus the assignment to each S-constructible cosheaf its minimal quotient-monocosheaf 
is functorial.

Definition 4.8. The monofication of S-constructible cosheaves under X is the functor

Mono : Cosh(X, S) → Cosh(X, S)

that sends each cosheaf to its minimal quotient-monocosheaf. Let η : idCosh(X) ⇒ Mono
be the quotient natural transformation.

5. Bisheaves

We now have both a sheaf theoretic and a cosheaf theoretic approach to studying the 
fibers of a constructible map. As mentioned in Section 1, neither of these alone is enough 
to produce the stability results we want. We now combine the two approaches with the 
ideas of a bisheaf and an isobisheaf.

Definition 5.1. Let COpen(X) ⊆ Open(X) be the subposet consisting of path-connected 
open sets. A bisheaf around X is a triple F :=

(
F, F, F

)
where F is a sheaf over X, F is a 

cosheaf under X, and F :=
{
F(U) : F(U) → F(U)

}
is a set of maps satisfying 
U∈COpen(X)
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the following property. For each pair of open sets V ⊆ U in COpen(X), the following 
diagram commutes:

F(U)

F(U)

F(V⊆U)

F(V)

F(V)

F(U) F(V).
F(V⊆U)

A bisheaf map α : F → G is a pair of maps 
(
α, α

)
where α : F → G is a sheaf map and 

α : G → F is a cosheaf map satisfying the following property. For every path-connected 
open set U ⊆ X, the following diagram commutes:

F(U)

F(U)

α(U)

G(U)

G(U)

F(U) G(U).
α(U)

Definition 5.2. A bisheaf F =
(
F, F, F

)
around X is S-constructible if both F and F are 

S-constructible. A bisheaf is constructible if it is S-constructible for some stratification 
(X, S). Let Bish(X, S) be the category of S-constructible bisheaves around X and bisheaf 
maps. Let Bish(X) be the category of constructible bisheaves around X and bisheaf maps.

When defining an S-constructible bisheaf F = (F, F, F) around X, it is enough to specify 
the sheaf, cosheaf, and maps between them on a subposet of Open(X). Let A ⊆ Basic(X, S)
be any subposet that is a basis for the topology on X. For example, if (X, S, J) is a Thom-
Mather space, then we may let A be Basic(X, S, J). Let G : A → Ab be a contravariant 
functor such that for each pair J ⊆ I associated to a common stratum, the map G(J ⊆ I)

is an isomorphism. Let H : A → Ab be a covariant functor such that for each pair J ⊆ I

associated to a common stratum, the map H(J ⊆ I) is an isomorphism. Let 
{
Q(J)

}
J∈A

be a set of maps Q(J) : G(J) → H(J) such that for every J ⊆ I, the following diagram 
commutes:

G(I)

Q(I)

G(J⊆I)

G(J)

Q(J)

H(I) H(J).
H(J⊆I)

Given this data, we define F as follows. For an arbitrary open set U ⊆ X, let A(U) ⊆ A
be the subposet consisting of all open sets contained in U. The S-constructible sheaf F is 
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generated by setting F(U) := lim G|A as we did in Section 3. The S-constructible cosheaf 
F is generated by setting F(U) := colim H|A as we did in Section 4. Suppose U is path-
connected. For every pair of open sets J ⊆ I in A(U), the following diagram, where πJ is 
the canonical map from the limit and ιJ is the canonical map to the colimit, commutes:

F(U) := lim G|A(U)

πI

πJ

G(I)

Q(I)

G(J⊆I)

G(J)

Q(J)

H(I)
ιI

H(J)

ιJ

H(J⊆I)

F(U) := colim H|A(U).

Define F(U) : F(U) → F(U) as any composition, for example ιJ ◦Q(J) ◦πJ, from the limit 
to the colimit. Note that if U is the disjoint union of infinitely many path-connected 
components, then there is no canonical map from the limit to the colimit.

Example 5.3. Let f : Y → M be a (S, J)-constructible map to an oriented m-manifold M. 
Recall the relative homology sheaf F∗+m of f and the ordinary homology cosheaf F∗ of 
f; see Examples 3.3 and 4.4 respectively. Then there is a constructible bisheaf

F∗ :=

(
F∗+m, F∗,

{
F∗(U)

})

around M where, for each (S, J)-basic open U, F(U) is a cap product constructed as 
follows.

Recall the local orientation cosheaf O of M; see Example 4.5. Fix an orientation 
o ∈ O(M). Let U ⊆ M be an (S, J)-basic open and suppose U is associated to a stratum 
S ∈ S. Choose an (S, J)-basic open U ′ � U that is also associated to S. Then the inclusion

(
f−1(U), f−1(U) − f−1(U ′)

)
↪→

(
Y, Y − f−1(U ′)

)

induces, by excision, an isomorphism on their relative singular (co)homology groups. The 
inclusion

(
Y, Y − f−1(U)

)
↪→

(
Y, Y − f−1(U ′)

)

induces, by definition of a constructible map, an isomorphism on their singular relative 
(co)homology groups. Thus the singular cap product
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H∗+m

(
f−1(U), f−1(U) − f−1(U ′)

)
⊗ Hm

(
f−1(U), f−1(U) − f−1(U ′)

) � H∗
(
f−1(U)

)

gives rise to a map

F∗+m

(
U

)
⊗ Fm

(
U

) � F∗
(
U

)

where Fm is the cosheaf of relative cohomology groups; see Example 4.3. For any pair 
of (S, J)-basic opens V ⊆ U, we have the following diagram where the vertical maps are 
induced by inclusion:

F∗+m(U)⊗ Fm
(U)

i

� F∗(U)

F∗+m(V)⊗ Fm
(V)

j

� F∗(V).

k

For any μ ∈ F∗+m(U) and c ∈ Fm
(V), the cap product satisfies

k
(
i(μ) � c

)
= μ � j(c). (1)

Let oU := O−1
(U ⊆ M)(o) and oV := O−1

(V ⊆ M)(o). The map f induces pull-backs

fmU : O
(
U

)
→ Fm

(
U

)
fmV : O

(
V

)
→ Fm

(
V

)
.

By Equation (1), the following diagram commutes:

F∗+m(U)

�fmU (oU)

i F∗+m(V)

�fmV (oV )

F∗(U) F∗(V).
k

This triple of data, over all (S, J)-basic opens, generates the S-constructible bisheaf F∗.

Proposition 5.4. Let f : Y → M be a (S, J)-constructible map to an oriented m-manifold 
M and F∗ its bisheaf as constructed in Example 5.3. For a top dimensional stratum 
S ∈ S, suppose the restriction f|f−1(S) : f−1(S) → S is a fiber bundle over S. Then for 
any S-basic open U ⊆ M associated to S, the cap product F∗(U) : F∗+m(U) → F∗(U) is 
an isomorphism.

Proof. Choose a point p ∈ U. Since U is contractible, f|f−1(S) is a trivial bundle over 
U. This means that there is a homeomorphism h that makes the following diagram 
commute:
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f−1(U)

f

h
f−1(p)×U

π2

U.

The projection π1 : f−1(p) ×U → f−1(p) is an m-disk bundle over f−1(p) putting us in 
the setting of the Thom isomorphism. The element � fmU (oU) ∈ Fm

(U) is a Thom class 
making the cap product

F∗+m(U)
�fmU (oU)

F(U)

the Thom isomorphism. Alternatively, we may view F∗+m(U) as the homology of the 
m-fold suspension of f−1(p) making the cap product the suspension isomorphism. �
Definition 5.5. An S-constructible bisheaf I =

(
I, I, I

)
around X is an isobisheaf if I is an 

episheaf and I is a monocosheaf.

Let Loc(X) be the full subcategory of Sh(X) consisting of local systems. Let Coloc(X) be 
the full subcategory of Cosh(X) consisting of colocal systems. The two categories Loc(X)
and Coloc(X) are equivalent. The equivalence takes an S-constructible local system F to 
the S-constructible colocal system F generated by assigning to every S-basic open U the 
group F(U) and by assigning to every pair V ⊆ U of S-basic opens the map F−1

(V ⊆ U). 
Similarly, the equivalence takes an S-constructible colocal system G to the S-constructible 
local system G generated by assigning to every S-basic open U the group F(U) and by 
assigning to every pair V ⊆ U of S-basic opens the map F−1

(V ⊆ U).

Proposition 5.6. Let I = (I, I, I) be an S-constructible isobisheaf around X. Then the image 
im I, generated by the images of 

{
I(U)

}
over all S-basic opens, is a colocal system under 

X and the coimage coim I, generated by the coimages of 
{
I(U)

}
over all S-basic opens, is 

a local system over X. Furthermore, im I is equivalent to coim I.

Proof. For a pair of S-basic opens V ⊆ U, consider the following commutative diagram:

I(U)

I(U)

I(V⊆U)

I(V)

I(V)

I(U) I(V).
I(V⊆U)

We first show that I(V ⊆ U) restricts to an isomorphism from im I(V) to im I(U). For 
any element c ∈ im I(V), there is, by surjectivity of I(V ⊆ U), an element a ∈ I(U) such 
that c = I(V) ◦ I(V ⊆ U)(a). This means that I(V ⊆ U) restricts to a homomorphism 
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from im I(V) to im I(U). Suppose d = I(U)(a). Then there is a c ∈ I(V), namely c =
I(V) ◦ I(V ⊆ U)

)
(a), such that d = I(V ⊆ U)(c). This means that the restriction is 

surjective. By injectivity of I(V ⊆ U), the restriction is also injective. These images and 
the maps between them generate the colocal system im I.

We now show that I(V ⊆ U) quotients to an isomorphism from coim I(U) to coim I(V). 
For any element a ∈ ker I(U), I(V ⊆ U)(a) is, by injectivity of I(V ⊆ U), an element 
of ker I(V). This means that I(V ⊆ U) quotients to a homomorphism from coim I(U) to 
coim I(V). For any a ∈ I(U), if I(V ⊆ U)(a) is in ker I(V), then a ∈ ker I(U). This means 
that the quotient map is injective. By surjectivity of I(V ⊆ U), the quotient map is also 
surjective. These coimages and the maps between them generate the local system coim I.

By the first isomorphism theorem, im I(U) is isomorphic to coim I(U) for every U. 
The colocal system im I is therefore equivalent to the local system coim I. �

Let F be an S-constructible bisheaf over X. Epification of F and monofication of F
results in an isobisheaf Iso

(
F
)
:=

(
Epi

(
F
)
, Mono

(
F
)
, Iso(F) := η

(
F
)
◦ F ◦ η

(
F
))

; see Di-
agram (2). Consider a bisheaf map α : F → G in Bish(X, S). The universal property of 
episheaves and monocosheaves induces a map of isobisheaves:

Epi
(
F
) Epi(α)

η(F)

Epi
(
G

)

η(G)

F α

F

G

G

F

η(F)

G
α

η(G)

Mono
(
F
)

Mono
(
G

)
.

Mono(α)

(2)

Thus the assignment to each bisheaf its isobisheaf is functorial.

Definition 5.7. The isofication of S-constructible bisheaves around X is the functor

Iso : Bish(X, S) → Bish(X, S)

that sends its bisheaf F to its isobisheaf Iso
(
F
)
. Let η =

(
η, η

)
: idBish(X,S) ⇒ Iso be the 

natural transformation induced by η and η.

6. Étale opens

The idea of an étale open was introduced by Grothendieck in algebraic geometry 60 
years ago as a natural generalization of an open set. For us, it is important to have 
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persistent local systems L(U) (see Section 1) not only for open sets U, but for étale 
opens as well. While it is true that the image im U of an étale open of M is an open 
subset of M, it is not true that L(im U) contains all the information of L(U). In fact 
L(im U) can vanish while L(U) is still large. If M = R, then every path-connected étale 
open is a path-connected open set. This is another way in which the 1-dimensional case 
is much simpler.

In this section we develop the notion of an étale open of a manifold M without 
boundary. In the last section, we saw that every constructible bisheaf around M has 
associated to it a local system over M. Now, we pull-back the bisheaf along any étale 
open a : A → M then use the same procedure to compute its persistent local system 
over A. This gives us our collection of local systems one for every étale open of M which 
constitutes finer information about the bisheaf.

Definition 6.1. An étale open of M is a continuous map a : A → M from a Hausdorff, 
second countable space A to M that is locally a homeomorphism for every point of A. 
An étale map μ : a → b is a continuous map μ : A → B such that the following diagram 
commutes:

A

a

μ
B

b

M.

Let Etale(M) be the category of étale opens of M. The initial object of Etale(M) is 
the empty étale open ∅ : ∅ → M and the terminal object is the identity étale open 
idM : M → M. Note that every open set of M is an étale open.

Given a stratified space (M, S) and any étale open a : A → M, the stratification S

pulls-back along a to a stratification a�S (see Definition 2.5) of A as follows. The filtration 
∅ ⊆ M0 ⊆ · · · ⊆ Mn = M that gives rise to S lifts to a filtration ∅ ⊆ A0 ⊆ · · · ⊆ An = A

where Ai = a−1(Mi). Every point a ∈ A has a neighborhood U such that the restriction 
a|U : U → a(U) is a homeomorphism. Since the point a(p) is locally an open cone over 
a lower-dimensional stratified space, the point p is locally an open cone over the same 
lower-dimensional stratified space.

Definition 6.2. Let (M, S) be a stratified manifold. An étale open a : A → M is S-
constructible if for every stratum S ∈ S, a−1(S) is empty or the restriction a|a−1(S) :

a−1(S) → S is a covering space. Let Etale(M, S) be the category of S-constructible étale 
opens.

Proposition 6.3. Let (M, K) be a triangulation of a manifold M. For any étale open 
a : A → M, there is an étale map μ : a → b to an K-constructible étale open b
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Fig. 1. Consider the triangulation K of the plane R2 above. The yellow étale open is the universal K-
constructible étale open containing the red étale open. (For interpretation of the colors in the figure, the 
reader is referred to the web version of this article.)

satisfying the following universal property. For any étale map ν : a → c, where c is a 
K-constructible étale open, there is a unique étale map η : b → c that makes the following 
diagram commute:

a

ν

μ
b

η

c.

Proof. The map a takes the poset of strata a�K to the poset of strata K. Denote by 
ã : a�K → K this poset map. Let E := �σ∈a�K st ã(σ) be the disjoint union of open 
stars of strata in K and denote by e : E → M the map that takes each point x ∈ E

to its original copy in M. Note that there may be many strata in a�K that map to a 
single stratum τ ∈ K. In this case, E has n copies of st τ where n is the number of 
strata in a�K that map to τ. We now glue together the pieces of E. Consider two points 
x, y ∈ E and suppose x ∈ σ1 and y ∈ σ2 for strata σ1, σ2 ∈ a�K. Let us say x and y
are related, x ∼ y, if e(x) = e(y) and σ1 � σ2 or σ2 � σ1. The relation ∼ is reflexive 
and symmetric but not transitive. Take the transitive closure of ∼, let D := E/∼ be the 
quotient space, and let d : D → M the quotient of e. Note that every point x ∈ D has an 
open neighborhood U such that the restriction d|U : U → d(U) is a homeomorphism. In 
other words, d is a local homeomorphism. Furthermore, for every stratum τ ∈ K, d−1(τ)

is either empty or a covering space over τ. However, D may not be Hausdorff; see the 
example in Fig. 1. We remedy this problem by taking a second quotient as follows. Let 
us say two points p, q ∈ D are related, p ≈ q, if there is a path γ : [0, 1] → D satisfying 
the following two properties: γ(0) = p and γ(1) = q, and d ◦ γ(t) = d ◦ γ(1 − t) for 
all 0 � t � 1/2. The relation ≈ is reflexive and symmetric but not transitive. Take the 
transitive closure of ≈, let B := D/≈, and let b : B → M be the induced continuous map. 
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The map b is a K-constructible étale open. Let μ : A → B be the composition of the 
continuous inclusion A → D followed by the quotient map D → B.

We now prove the universal property. Suppose c is a K-constructible étale open and 
ν : a → c is given. For every stratum τ ∈ b�K, μ−1(τ) is non-empty, by construction 
of b. Furthermore, every stratum of a�K contained in μ−1(τ) maps, via ν, to a single 
stratum in c�K because otherwise, C could not be Hausdorff. Let η : B → C be the 
unique map induced by sending every stratum τ ∈ b�K to the stratum ν ◦ μ−1(τ). For 
any open set U ⊆ C, ν−1(U) is open because ν is continuous. Since μ is the composition 
of an open inclusion followed by a quotient map, μ maps ν−1(U) to an open set. This 
makes η continuous. �
Example 6.4. Consider the triangulation K of R2 illustrated in Fig. 1. Let a : A → R2

be the étale open in red. Then its universal K-constructible étale open b : B → R2 is in 
yellow.

Given an S-constructible bisheaf F = (F, F, F) around M and an étale open a : A → M, 
we may pull F back to a a�S-constructible bisheaf a�F = (a�F, a�F, a�F) around A as 
follows. Choose a subposet A ⊆ Basic(A, a�S) such that A is a basis for the topology on 
A and a(J) is an S-basic open for all J ∈ A. Let G : A → Ab be the contravariant functor 
that assigns to each open set J the object G(J) := F(a(J)) and to every pair J ⊆ I the 
morphism F(a(J) ⊆ a(I)). Let H : A → Ab be the covariant functor that assigns to each 
open set J the object F(a(J)) and to every pair J ⊆ I the morphism F(a(J) ⊆ a(I)). Let {
Q(J)

}
J∈A be the set of maps Q(J) : G(J) → H(J) where Q(J) := F(a(J)). This data, as 

discussed in Section 5, generates the bisheaf a�F. For a morphism μ : a → b of étale 
opens, the two bisheaves a�F and μ�b�F around A are isomorphic.

7. Isobisheaf stacks

We finally get to the central construction of this paper: isobisheaf stacks. Given a 
constructible bisheaf over a manifold M, we now have a local system for each étale open 
of M. Here we assemble these local systems into a stack. The advantage is that the 
isobisheaf stack has good functorial properties which are useful, for example, in proving 
stability. The whole construction of the persistent local systems can be thought of this 
way:
{

Maps
X → M

}
−→

{
Bisheaves
around M

}
−→

{
Isobisheaf stacks

around M

}
−→

{
Local systems for

each étale open of M

}
.

Definition 7.1. Let (M, S) be a stratified manifold. An S-constructible isobisheaf stack
F around M is the assignment to Etale(M) the following data satisfying the following 
axiom:

• To each étale open a : A → M, F(a) is an a�S-constructible isobisheaf 
(
Fa, Fa, Fa

)
.
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• To each étale map μ : a → b, F(μ) : μ�F(b) → F(a) is a bisheaf map

μ�Fb

μ�Fb

F(μ)

Fa

Fa

μ�Fb Fa
F(μ)

(3)

where F(μ) is injective and F(μ) is surjective for all open sets.
• For each pair of étale maps μ : a → b and ν : b → c, F(ν ◦ μ) = μ�F(ν) ◦ F(μ).

By Proposition 5.6, the colocal system im Fa under M is equivalent to the local system 
coim F(a) over M. Let im F(a) := im Fa be the persistent colocal system of F under a
and let coim F(a) := coim F(a) be the persistent local system of F over a.

Let F be an S-constructible isobisheaf around M and G a T-constructible isobisheaf 
around M where S and T may be different. A map of constructible isobisheaf stacks
Φ : F → G is the following data satisfying the following axiom:

• To each étale open a : A → M, Φ(a) : F(a) → G(a) is a bisheaf map

Fa

Fa

Φ(a)

Ga

Ga

Fa Ga.
Φ(a)

(4)

Note there are no conditions on Φ(a) and Φ(a) other than that the diagram com-
mutes for every open set of A.

• For each étale map μ : a → b, the following diagram commutes for every open set of 
A:

μ�Fb

μ�Fb

μ�Φ(b)

F(μ)

μ�Gb

μ�Gb

G(μ)

Fa

Fa

Φ(a)

Ga

Ga

Fa

F(μ)

Ga
Φ(a)

G(μ)

μ�Fb μ�Gb.
μ�Φ(b)
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Let Stack(X) be the category consisting of isobisheaf stacks around M, each constructible 
with respect to some stratification of M, and constructible isobisheaf stack maps.

Given an S-constructible isobisheaf stack F around M, we have a persistent colocal 
system im F(a) for each étale open a : A → M. For an étale map μ : a → b, the two 
colocal systems im F(a) and im F(b) are related by Diagram (3). Let I := im

(
Fa ◦F(μ)

)
and K := I ∩ kerF(μ). Then

im μ�F(b) I
/K

im F(a).

In other words, the data im μ�F(b) persists in im F(a) as a quotient of a sub-colocal 
system. Given a stack map Φ : F → G and an étale open a, the two colocal systems 
im F(a) and im G(a) are related by Diagram (4). Thus

im F(a) I
/K

im G(a), (5)

where K and I are defined similarly. As we will see in Section 9, this observation implies 
that persistent colocal systems satisfy the property Stability of Section 1.

Example 7.2. A constructible bisheaf F over a manifold M gives rise to a constructible 
isobisheaf stack F as follows. For each étale open a : A → M, let F(a) := Iso

(
a�F

)
. 

For an étale map μ : a → b, we have the following commutative diagram where the 
top and bottom horizontal maps are induced by the universal property of Epi and Mono
respectively:

μ�Epi
(
b�F

) β

μ�η(b�F)

Epi
(
a�F

)

η(a�F)

μ�b�F
∼=

μ�b�F

a�F

a�F

μ�b�F

μ�η(b�F)

a�F
∼=

η(a�F))

μ�Mono
(
b�F

)
Mono

(
a�F

)
.

β

(6)

Both μ�Epi
(
b�F

)
and Epi

(
a�F

)
are sub-episheaves of μ�b�F ∼= a�F and the latter is 

maximal. This makes the sheaf map β injective on every open set. Both μ�Mono
(
b�F

)
and Mono

(
a�F

)
are quotient-monocosheaves of μ�b�F ∼= a�F and the later is minimal. 

This makes the cosheaf map β surjective on every open set. Let F(μ) :=
(
β, β

)
.
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Note that if the bisheaf F is constructed from a constructible map f as in Example 5.3, 
then every persistent colocal system is a subquotient of the homology of the fibers of f. 
In other words, persistent colocal systems satisfy property Relation to homology of fibers
of Section 1.

A bisheaf map α : F → G gives rise to a map of isobisheaf stacks Φ : F → G as follows. 
Recall Diagram (2). For each étale open a : A → M, replace the bisheaf F in Diagram 
(2) with a�F and replace the bisheaf G with a�G to get the following diagram:

Epi
(
a�F

) Epi(a�α)

η(a�F)

Epi
(
a�G

)

η(a�G)

a�F a�α

a�F

a�G

a�G

a�F

η(a�F)

a�G
a�α

η(a�G)

Mono
(
a�F

)
Mono

(
a�G

)
.

Mono(a�α)

For each étale open a : A → M, let Φ(a) := Epi(a�α) and let Φ(a) := Mono(a�α).

Proposition 7.3. Let (M, K) be a triangulation of a manifold M, F an K-constructible 
bisheaf over M, and F its K-constructible isobisheaf stack. For an étale open a : A → M, 
let μ : a → b be the universal étale map to a K-constructible étale open b in the sense 
of Proposition 6.3. Then F(a) ∼= μ�F(b).

Proof. Since every stratum of K is contractible, every stratum of a�K is also contractible. 
The bisheaf a�F is completely determined (up to an isomorphism) by the assignment to 
each stratum σ ∈ a�K the map F(st a(σ)) : F(st a(σ)) → F(st a(σ)) and to each relation 
σ � τ the bisheaf map 

(
F(st a(τ) ⊆ st a(σ)), F(st a(τ) ⊆ st a(σ)

)
. For convenience, we 

will simply identity a�F with this stratum-wise assignment. The bisheaf b�F is deter-
mined similarly since every stratum of b�K is contractible. Consider Diagram (6). We 
prove the claim by showing that β is surjective and β is injective.

For very stratum σ ∈ b�K, there is, by universality of b, at least one stratum σ ′ ∈ a�K

such that μ(σ ′) = σ. Consider the following sub-episheaf E of b�F. For each stratum 
σ ∈ b�K, let

E(st σ) :=
⊎

′ � ′

Epi
(
a�F

)
(st σ ′) ⊆ F

(
st b(σ)

)

{σ ∈a K | μ(σ )⊆σ}
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and for each σ � τ, let E(st τ ⊆ st σ) : E(st σ) → E(st τ) be the restriction of the 
map F

(
st b(τ) ⊆ st b(σ)

)
. Note that E(st τ ⊆ st σ) is surjective. The pull-back μ�E is a 

sub-episheaf of a�F containing Epi
(
a�F

)
. By maximality of Epi

(
a�F

)
, β is surjective.

The dual argument shows that β is injective. Consider the following quotient-
monocosheaf M of b�F. For each stratum σ ∈ b�K, let

M(st σ) :=
F
(
st b(σ)

)
⋂

{σ′∈a�K | μ(σ′)⊆σ} kerη(a�F)(st σ ′)

and for each σ � τ, let M(st τ ⊆ st σ) : M(st τ) → M(st σ) be the map F
(
st b(τ) ⊆

st b(σ)
)

quotient the intersection of the kernels. Note that M(st τ ⊆ st σ) is injective. The 
pull-back μ�M is a quotient-monocosheaf of a�F smaller than Mono

(
a�F

)
. By minimality 

of Mono
(
a�F

)
, β is surjective. �

8. Dilation

In this section, we begin the task of proving stability of the isobisheaf stack of a map. 
Dilation is an operation that coarsens or smooths the data of a constructible bisheaf.

Let K be a simplicial complex. The first subdivision of K is the simplicial complex K1

whose (open) simplices are chains [σi0 � · · · � σin ] of simplices in K. The face relation 
[σi0 � · · · � σin ] � [σj0 � · · · � σjm ] in K1 is the subchain relation. Similarly, the second 
subdivision of K is the simplicial complex K2 whose (open) simplices are chains

[
[σi0 � · · · � σin ] � · · · � [σj0 � · · · � σjm ]

]

of simplices in K1. The face relation in K2 is the subchain relation.

Definition 8.1. The dilation of a simplicial complex K is the simplicial map Σ : K2 → K1

defined by sending each vertex 
[
[σi0 � · · · � σin ]

]
∈ K2 to the vertex [σi0 ] ∈ K1. Thus 

each simplex
[
[σi0 � · · · � σil ] � · · · � [σj0 � · · · � σjm ] � · · · � [σk0 � · · · � σkn

]

]
∈ K2

maps to the simplex [σk0 � · · · � σj0 � · · · � σi0 ] ∈ K1. Note that for a simplex τ ∈ K,

Σ−1([τ]) = cl st
[
[τ]

]
−

⋃
σ<τ

{
cl st

[
[σ]

]}
.

Here cl st
[
[τ]

]
means the closure of the open star of 

[
[τ]

]
in K2. See Fig. 2.

Let (X, K) be a triangulation and φ : |K − K0| → X the associated homeomorphism 
from a simplicial pair (K, K0). We subdivide (X, K) by subdividing (K, K0) and pushing-
forward along φ. Denote by (X, Ki) the i-th subdivision of (X, K). The simplicial dilation 
map Σ : K2 → K1 gives rise to a continuous dilation map Σ : (X, K2) → (X, K1).
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Fig. 2. The dilation of the 2-simplex K is the simplicial map Σ : K2 → K1 where K1 is its first subdivision 
and K2 its second subdivision. For each vertex (resp. edge) τ ∈ K, Σ−1(

[τ]
)

is colored in red (resp. yellow). 
(For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

A K1-constructible bisheaf F around a manifold M pulls back along the dilation 
map to produce a K2-constructible bisheaf Σ�F around M generated by the following 
assignments. Consider any pair V ⊆ U of K2-basic opens. Suppose V is associated to 
a stratum τ and U to a stratum σ. Then σ � τ and therefore Σ(σ) � Σ(τ). The K2-
constructible sheaf Σ�F is generated by Σ�F(U) := F

(
st Σ(σ)

)
and Σ�F(V ⊆ U) is the 

map F
(
st Σ(τ) ⊆ st Σ(σ)

)
. The K2-constructible cosheaf Σ�F is generated by Σ�F(U) :=

F
(
st Σ(σ)

)
and Σ�F(V ⊆ U) is the map F

(
st Σ(τ) ⊆ st Σ(σ)

)
. Let Σ�F(U) := F

(
st Σ(σ)

)
.

Proposition 8.2. Let (M, K) be a triangulation and F a K1-constructible bisheaf. Then 
there is a canonical bisheaf map α : Σ�F → F.

Proof. By the above construction of Σ�F, it is enough to specify α on the open stars 
of each stratum of K2. For each τ ∈ K2, we have st τ ⊆ st Σ(τ). Since Σ�F(st τ) is 
canonically isomorphic to F

(
st Σ(τ)

)
, let α(st τ) be the map generated by the map 

F
(
st τ ⊆ st Σ(τ)

)
. Since Σ�F(st τ) is canonically isomorphic to F

(
st Σ(τ)

)
, let α(st τ) be 

generated by the map F
(
st τ ⊆ st Σ(τ)

)
. �

Definition 8.3. Let (M, K) be a triangulation of a manifold and a : A → M a 
K-constructible étale open. The shrinking of a is the K2-constructible étale open 
ȧ : Ȧ → M that is obtained by pulling back a along the continuous dilation map 
Σ : (M, K2) → (M, K1):

Ȧ

ȧ

μ
A

a

M
Σ

M.
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For example, suppose M is 2-dimensional. If a is a 2-stratum of K as in Fig. 2, then ȧ
is the white region in the interior.

Proposition 8.4. Let (M, K) be a triangulation of a manifold, F a K-constructible bisheaf, 
a : A → M a K-constructible étale open, and μ : ȧ → a the canonical étale map from the 
shrinking of a. Then the two persistent colocal systems im μ�Iso

(
a�F

)
and im Iso

(
ȧ�Σ�F

)
under Ȧ are isomorphic.

Proof. The dilation map Σ : (M, K2) → (M, K1) pulls-back to a surjective a�K1-
constructible map Λ : (Ȧ, ȧ�K2) → (A, a�K1). The isobisheaf

Epi
(
ȧ�Σ�F

)
↪→ ȧ�Σ�F → ȧ�Σ�F � Mono

(
ȧ�Σ�F

)

is the pull-back along Λ of the isobisheaf

Epi
(
a�F

)
↪→ a�F → a�F � Mono

(
a�F

)
.

For each simplex σ ∈ ȧ�K2, Λ(st σ) ⊇ μ(st σ). Thus we have the following diagram

Epi
(
ȧ�Σ�F

)
(st σ) Epi

(
a�F

)(
μ(st σ)

)

Mono
(
ȧ�Σ�F

)
(st σ) Mono

(
a�F

)(
μ(st σ)

)

which induces an isomorphism between the two vertical images. Therefore im μ�Iso
(
a�F

)
and im Iso

(
ȧ�Σ�F

)
are isomorphic. �

9. Stability

Let M be a compact oriented m-manifold and W(X, M) the set of all constructible 
maps X → M as in Definition 2.2. For each open set U ⊆ X ×M, let

TU :=
{
f ∈ W(X,M)

∣∣ graph(f) ⊆ U
}
.

The collection 
{
TU

}
over all open sets U forms the basis for the Whitney topology

on W(X, M).

Theorem 9.1. Every map f ∈ W(X, M) has an open neighborhood U ⊆ W(X, M) such 
that for every map g ∈ U, their bisheaves F∗ and G∗ are related by canonical bisheaf 
maps in Bish(M):

F∗ ← Σ�F∗ → G∗.
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Note that f and g need not be constructible with respect to the same stratification and 
therefore F∗ and G∗ may not be constructible with respect to the same stratification. 
Recall Σ : M → M is the dilation map with respect to some triangulation of M and 
Bish(M) is the category of all constructible bisheaves over M.

Proof. Suppose f is (S, J)-constructible making F∗ an S-constructible bisheaf. By Propo-
sition 2.7, there is a triangulation (M, K) of (M, S, J) and this triangulation can be 
chosen so that the open star of each stratum in K is contained in an (S, J)-basic open. 
This makes F∗ a K1-constructible bisheaf and Σ�F a K2-constructible bisheaf. The bisheaf 
map Σ�F∗ → F∗ follows from Proposition 8.2.

Every second-countable, Hausdorff space is metrizable. Choose a metric on M. For 
each stratum σ ∈ K, we have st

[
[σ]

]
⊆ st σ. By compactness of M, K is finite. Let

ρ := min
σ∈K

Haus
(
st

[
[σ]

]
, st σ

)
(7)

where Haus is the Hausdorff distance between the two sets. The set

U :=

{
f ′ ∈ W(X,M)

∣∣∣ sup
x∈X

dist
(
f(x), f ′(x)

)
< ρ

}
(8)

is an open neighborhood of f in W(X, M).
Choose a map g ∈ U and suppose it is (S ′, J ′)-constructible making G∗ an S ′-

constructible bisheaf. Choose a triangulation (M, L) of (M, S ′, J ′). For each τ ∈ L, 
we assume there is a

σ =

[
[σi0 � · · · � σil ] � · · · � [σj0 � · · · � σjm ] � · · · < [σk0 < · · · < σkn

]

]
∈ K2

such that st τ ⊆ st σ. If this is not the case, subdivide L until this is true. Note that there 
may be many σ satisfying this relation. In this case, choose the unique top dimensional 
simplex σ. We have the following inclusions:

st τ ⊆ st σ ⊆ st
[
[σi0 � · · · � σil ]

]
⊆ st

[
[σi0 ]

]
⊆ st σi0 .

Choose an (S, J)-basic open U ⊆ M containing st σi0 such that both open sets are 
associated to a common stratum in S. Choose an (S ′, J ′)-basic open V ⊆ M contained 
in st τ such that both open sets are associated to a common stratum in S ′. The above 
inclusions imply an inclusion i : g−1(V) → f−1(U). Recall Σ

([
[σi0 ]

])
= [σi0 ]. Thus we 

have the following commutative diagram of solid arrows:
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H∗+m

(
X,X− f−1(U)

) ∼=

i∗+m

F∗+m(st σi0)
∼=

Σ�F
(
st

[
[σi0 ]

])

α(st τ)

H∗+m

(
X,X− g−1(V)

) ∼=

�

G∗+m(st τ)

G∗(st τ)

H∗
(
g−1(V)

)

i∗

G∗(st τ)∼=

α(st τ)

H∗
(
f−1(U)

)
F∗

(
φ(st σi0)

)
∼=

Σ�F
(
st

[
[σi0 ]

]))
∼=

The bisheaf map Σ�F∗ → G∗ is generated by defining, for each τ ∈ L, the unique maps 
α(st τ) and α(st τ) that make the above diagram commute. �
Corollary 9.2. Every map f ∈ W(X, M) has an open neighborhood U ⊆ W(X, M) such 
that for each map g ∈ U their isobisheaf stacks F∗ and G∗ are related by canonical stack 
maps in Stack(M):

F∗ ← Σ�F∗ → G∗.

Proof. A bisheaf map gives rise to a canonical map of isobisheaf stacks as constructed in 
Example 7.2. The two stack maps follow from the two bisheaf maps of Theorem 9.1. �

We now discuss how Theorem 9.1 and Corollary 9.2 imply the property of Stability
for persistent local systems mentioned in Section 1. For every map f ∈ W(X, M), there is 
a triangulation (M, K) such that f is K-constructible. Choose a metric on M and recall 
ρ > 0 of Equation (7). Note that ρ is a measure of the coarseness of K. The finer the 
triangulation, the smaller ρ gets. Given any étale open a : A → M, the metric on M lifts 
to a metric on A. Define the distance between a and its shrinking ȧ as the Hausdorff 
distance between A and Ȧ along the inclusion Ȧ ↪→ A. The Hausdorff distance between 
a and ȧ is at most ρ. Let F∗ be the isobisheaf stack associated to f and let G∗ be the 
isobisheaf stack associated to any g ∈ W(X, M) such that supx∈X d(fx, gx) < ρ. By 
Corollary 9.2 and Equation (5), the persistent colocal system im Fa restricted to Ȧ is a 
subquotient of im Gȧ.

10. Examples

We have carefully chosen three examples to illustrate key behaviors of persistent 
(co)local systems.
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Example 10.1. Let R2 be the plane parameterized by polar coordinates (r, θ) and S the 
stratification of R2 consisting of the following two strata: the origin (0, 0) is the 0-stratum 
and R2 − {(0, 0)} is the 2-stratum. The stratification S is a Whitney stratification [13, 
§5] of the plane thus admitting control data (R2, S, J) [13, §7]. Let S1 be the circle 
parameterized by [0, 2π) and let X := [0, ∞) × S1 × S1. Define the map f : X → R2 as 
f(r, φ, θ) = (r, θ). The map f is (S, J)-constructible.

We now examine the bisheaf F1 of f in dimension one as constructed in Example 5.3. 
Let V ⊆ U ⊆ R2 be two (S, J)-basic opens where U is associated to the 0-stratum and 
V to the 2-stratum. Since all of R2 is an S-basic open, F1 is, by [6, Proposition 4.11]
and [6, Theorem 6.1], uniquely determined (up to an isomorphism) by the following 
commutative diagram:

F3(U) ∼= 0 0
Z ∼= F3(V)

id

F1(U) ∼= Z⊕ Z Z ∼= F1(V).1	→(1,0)

The restriction f|f−1(V) : f
−1(V) → V is a fiber bundle. By Proposition 5.4, F1(V) is an 

isomorphism.
Now consider the isobisheaf stack F1 of the bisheaf F1 as constructed in Example 7.2. 

For any étale open a : A → R2 that covers the origin, im F1(a) = 0. For any étale open 
b : B → R2 that avoids the origin, im F1(b) is the constant colocal system Z.

Note that H1
(
f−1(0)

)
is isomorphic to Z ⊕ Z but im F(U) is zero indicating that 

H1
(
f−1(0)

)
is not stable. Indeed, we can make an arbitrarily small perturbation to f, 

with respect to the Euclidean metric on R2, so that the pre-image of the origin is empty.

Example 10.2. Let R2 be the plane parameterized by polar coordinates (r, θ) and S the 
stratification of R2 consisting of the following two strata: the origin (0, 0) is the 0-stratum 
and R2 − {(0, 0)} is the 2-stratum. The stratification S is a Whitney stratification of the 
plane thus admitting control data (R2, S, J). Let S1 be the circle parameterized by [0, 2π), 
let X := [0, ∞) × S1 × S1, and let X0 := {0} × S1 × S1. Define the map f : X/X0 → R2 as 
f(r, φ, θ) = (r, θ). The map f is (S, J)-constructible.

We now examine the bisheaf F1 of f in dimension one as constructed in Example 5.3. 
Let V ⊆ U ⊆ R2 be two (S, J)-basic opens where U is associated to the 0-stratum and 
V to the 2-stratum. Since all of R2 is an S-basic open, F1 is, by [6, Proposition 4.11]
and [6, Theorem 6.1], uniquely determined (up to an isomorphism) by the following 
commutative diagram:

F3(U) ∼= Z
id

Z ∼= F3(V)

id

F1(U) ∼= 0 Z ∼= F1(V).
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Fig. 3. Here we have an illustration of the torus X0 as a square with opposite sides glued. The boundary 
of the disk A is glued to the torus along the horizontal circle and the boundary of B is glued to the torus 
along the vertical circle as indicated. The map f takes x to X0 and takes the two circles (0, θ) and (θ, 0)
around the circle S0 ∪ S1. For a point p in the rest of the torus X0, project p away from the diagonal to 
one of the circles and apply f.

The restriction f|f−1(V) : f
−1(V) → V is a fiber bundle. By Proposition 5.4, F1(V) is an 

isomorphism.
Now consider the isobisheaf stack F1 of the bisheaf F1 as constructed in Example 7.2. 

For any étale open a : A → R2 that covers the origin, im F1(a) = 0. For any étale open 
b : B → R2 that avoids the origin, im F1(b) is the constant persistent colocal system Z.

Example 10.3. Let X0 be the torus parameterized by [0, 2π) × [0, 2π) and

D := {(r, θ) ⊆ R2 | r � 1 and 0 � θ < 2π}

the closed disk of radius one. Once again, we are using polar coordinates to label points 
in the plane. Let x ∈ X0 be the distinguished point (0, 0). Let A and B be two copies 
of D. Glue the boundary of A to X0 along the map φA : (1, θ) → (θ, 0) and glue 
the boundary of B to X0 along the map φB : (1, θ) → (0, θ). Call the resulting space 
X := X0 ∪φA

A ∪φB
B.

Let S2 := R2∪{∞} be the 2-sphere with the following stratification. Let S0 ⊂ S2 be the 
point (1, 0), S1 ⊂ S2 the arc {(1, θ) | 0 < θ < 2π}, S2 the connected component of S2−S1
containing the origin, and S3 the connected component of S2 − S1 containing infinity. 
The poset S := {S0, S1, S2, S3} is a Whitney stratification of S2 thus admitting control 
data (S2, S, J). Finally, define f : X → S2 as the (S, J)-constructible map that takes x to 
S0, the interior of A homeomorphically to S2, the interior of B homeomorphically to S3, 
and the torus X0 to the circle S0 ∪ S1 as shown in Fig. 3.

Now consider the bisheaf F0 of f in dimension zero as constructed in Example 5.3. 
Let U0 ⊆ S2 be an (S, J)-basic open associated to the stratum S0, U1 ⊆ U0 an (S, J)-
basic open associated to the stratum S1, U2 ⊆ U1 an (S, J)-basic open associated to the 
stratum S2, and U3 ⊆ U1 an (S, J)-basic open associated to the stratum S3. All four 
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strata are contractible and therefore F0 is uniquely determined (up to an isomorphism) 
by the following commutative diagram:

F2(U0) ∼= Z⊕ Z

(1,0)
id

(1,0)

F2(U2) ∼= Z

id

F2(U1) ∼= Z⊕ Z

(1,0)

(1,0)

(1,0)
F2(U3) ∼= Z

id

F0(U2) ∼= Z
id

id

F0(U1) ∼= Z

id

F0(U3) ∼= Z
id

id

F0(U0) ∼= Z.

The restrictions f|f−1(U2) : f
−1(U2) → U2 and f|f−1(U3) : f

−1(U3) → U3 are fiber bundles. 
By Proposition 5.4, F0(U2) and F0(U3) are isomorphisms. Let F0 be the isobisheaf stack 
of F0 as constructed in Example 7.2. For any étale open a : A → S2, im F0(a) is the 
constant persistent colocal system Z.

We now construct a second constructible map h : X → S2. Let S ′ be the stratification 
on S2 consisting of the origin as the 0-stratum S ′

1 and S2 −S ′
1 as the 2-stratum S ′

2. Once 
again, (S2, S ′) is a Whitney stratification and therefore admits control data (S2, S ′, J ′). 
Define h as the map that takes the interior of B homeomorphically to S ′

2 and the rest 
of X to the origin S ′

1. Now consider the bisheaf H0 of h in dimension 0 as constructed 
in Example 5.3. Let U ⊆ S2 be an S-basic open associated to S ′

1 and V ⊆ U an S-basic 
open associated to S ′

2. Then H0 is uniquely determined (up to an isomorphism) by the 
following commutative diagram:

H2(U) ∼= Z
0

0

H2(V) ∼= Z

id

H0(U) ∼= Z H0(V)
∼= Z.

id

The support of a class in H2(U) is the torus X0 whereas the support of a class in H2(V)

is in the interior of B. Thus the top horizontal map is zero. The left vertical map is 
the cap product with the pullback of the orientation to H2

(U). This pullback is zero 
making the cap product zero. Let H0 be the isobisheaf stack of H0 as constructed in 
Example 7.2. For any étale open a : A → S2 that covers the origin, im H0(a) is zero 
because the cap product over U is zero. This zero is explained by the fact that we may 
perturb h by an arbitrarily small amount, with respect to any metric on S2 as in the 
proof of Theorem 9.1, so that the pre-image of the origin is empty.
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By Theorem 9.1, f has an open neighborhood W ⊆ W(X, S2) such that for each map 
g ∈ W their bisheaves are related by canonical bisheaf maps

F0 ← Σ�F0 → G0.

By Corollary 9.2, their isobisheaf stacks are related by canonical stack maps

F0 ← Σ�F0 → G0.

Consider the étale open id : S2 → S2. The shrinking of id is id itself. This means that the 
persistent colocal system im F0(id) is a subquotient of im G0(id). However, im H0(id) = 0
and therefore h cannot be in the open set W. Our stability theorem is inherently local.

Appendix A. Sheafification

Fix a stratified space (X, S) as in Definition 2.5. The poset Basic(X, S) of all S-basic 
opens is a basis for the topology on X. Choose a sub-basis A ⊆ Basic(X, S) and consider 
a contravariant functor F : A → Ab such that for every pair J ⊆ I of S-basic opens 
associated to a common stratum, the map F(J ⊆ I) is an isomorphism. We call such 
a contravariant functor F an S-constructible contravariant functor. Given such an F, 
we may extend it to an S-constructible sheaf F over X as follows. For any open set 
U ⊆ X, denote by A(U) ⊆ A the subposet consisting of all open sets contained in U. 
Let F(U) := lim F|A(U). For every pair of open sets V ⊆ U, the inclusion A(V) ⊆ A(U)

induces a canonical map F(V ⊆ U) between the two limits. In this section, we use the 
equivalence between the category of S-constructible sheaves Sh(X, S) and the category 
of functors 

[
Exit(X, S), Ab

]
from the exit path category Exit(X, S) to show that F is an 

S-constructible sheaf as in see Definition 3.2.
An exit path in (X, S) is a continuous map γ : [0, 1] → X such that the dimension 

of the stratum containing the point γ(t) is non-decreasing with increasing t. Two exit 
paths α, β : [0, 1] → X, where α(0) = β(0) and α(1) = β(1), are equivalent if, roughly 
speaking, there is a homotopy of exit paths taking α to β. See [6, Definition 4.5] for 
a precise definition of equivalence in the dual setting of entrance paths, [17, Definition 
7.4] for equivalence in the 2-category setting, and [12, Definition A.6.2] for equivalence 
in the ∞-category setting. The exit path category Exit(X, S) consists of points of X as 
objects and a morphism from x to x ′ is an equivalence class of exit paths starting at x
and ending at x ′.

The category Sh(X, S) of S-constructible sheaves over X is equivalent to the category 
of functors 

[
Exit(X, S), Ab

]
. See [6, Theorem 6.1] for the equivalence in the dual setting of 

constructible cosheaves, [17, Theorem 7.14] for the 2-category setting, and [12, Theorem 
A.9.3] for the ∞-category setting. There are two functors
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Sh(X, S)
[
Exit(X, S), Ab

]
Φ

Ψ

in this equivalence, but we only need Ψ, which we now describe on an object H :
Exit(X, S) → Ab. For an open set U ⊆ X, denote by Exit(U, S|U) the full subcategory 
of Exit(X, S) restricted to the stratified space (U, S|U). Then Ψ(H)(U) := limExit(U,S|U) H. 
For every pair of open sets V ⊆ U, Ψ(H)(V ⊆ U) is the universal homomorphism between 
the two limits.

Proposition A.1. Let A ⊆ Basic(X, S) be a sub-basis and F : A → Ab an S-constructible 
contravariant functor. Then the contravariant functor F : Open(X) → Ab, as constructed 
above from F, is an S-constructible sheaf.

Proof. First, we construct a functor H : Exit(X, S) → Ab from F. Next, we show that 
the two contravariant functors Ψ(H), F : Open(X) → Ab are naturally isomorphic thus 
proving F is an S-constructible sheaf.

For a point x ∈ X, let H(x) be the colimit of F over all open sets containing x. 
For an open set I ∈ A containing x, denote by H(x ∈ I) : F(I) → H(x) the canonical 
homomorphism to the colimit. Note that if I is associated to the stratum containing x, 
then H(x ∈ I) is an isomorphism. Now consider an exit path α in (X, S) that meets 
at most two strata and satisfies the following condition. Suppose the point α(0) lies 
on a stratum S1 ∈ S and the point α(1) lies on a stratum S2 ∈ S. Then we require 
that there is an S-basic open I ∈ A associated to S1 containing the path α. Define 
H(α) : H(α(0)) → H(α(1)) as the following composition:

H(α(0)) F(I) H(α(1)).H(α(0)∈I)−1

∼=

H(α(1)∈I)

The homomorphism H(α) is independent of the choice of I; see proof of [6, Theorem 
6.1]. An arbitrary exit path β in (X, S) can be written as a composition of simpler exit 
paths each satisfying the conditions imposed on α above. The homomorphism H(β) is 
simply the composition of homomorphisms associated to each of these simpler exit paths. 
Furthermore, if β ′ is a second exit path equivalent to β, then H(β) = H(β ′); see proof 
of [6, Theorem 6.1].

We now build a natural isomorphism μ : Ψ(H) ⇒ F. Suppose I ∈ A is associated 
to a stratum S ∈ S. Then, by [6, Proposition 4.11], every point x ∈ I ∩ S is initial in 
Exit(I, S|I). This implies Ψ(H)(I) is canonically isomorphic to H(x), which is canonically 
isomorphic to F(I), which is canonically isomorphic to F(I). Let μ(I) : Ψ(H)(I) → F(I) be 
this canonical isomorphism. For every pair J ⊆ I in A, there is, by [6, Proposition 4.11], 
a unique exit path α in I from x ∈ I ∩S to y ∈ J ∩S ′, where S ′ is the stratum associated 
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to J. Combined with the fact that both x and y are initial in Exit(I, S|I) and Exit(J, S|J), 
respectively, the following diagram commutes:

Ψ(H)(I) Ψ(H)(J)

F(I) F(J).

μ(I)∼=

Ψ(H)(J⊆I)

μ(J)∼=

F(J⊆I)

Now let U ⊆ X be an arbitrary open set. Since Ψ(H) satisfies the gluing axiom and 
A(U) is an open cover of U, the universal homomorphism Ψ(H)(U) → limΨ(H)|A(U) is 
an isomorphism. Furthermore, there is a canonical isomorphism limΨ(H)|A(U) → F(U)

because both groups are limits over naturally isomorphic diagrams Ψ(H)|A(U) and F|A(U), 
respectively. Thus for every pair of open sets V ⊆ U, the following diagram commutes:

Ψ(H)(U) Ψ(H)(V)

F(U) F(V).

μ(U)∼=

Ψ(H)(V⊆U)

μ(V)∼=

F(V⊆U)

Therefore, F is canonically isomorphic to Ψ(H). �

Appendix B. Cosheafification

Fix a stratified space (X, S) as in Definition 2.5. The poset Basic(X, S) of all S-basic 
opens is a basis for the topology on X. Choose a sub-basis A ⊆ Basic(X, S) and consider 
a covariant functor F : A → Ab such that for every pair J ⊆ I of S-basic opens associated 
to a common stratum, the map F(J ⊆ I) is an isomorphism. We call such a covariant 
functor F an S-constructible covariant functor. Given such an F, we may extend it to an S-
constructible cosheaf F under X as follows. For any open set U ⊆ X, denote by A(U) ⊆ A
the subposet consisting of all open sets contained in U. Let F(U) := colim F|A(U). For 
every pair of open sets V ⊆ U, the inclusion A(V) ⊆ A(U) induces a canonical map F(V ⊆
U) between the two colimits. In this section, we use the equivalence between the category 
of S-constructible cosheaves Cosh(X, S) and the category of functors 

[
Ent(X, S), Ab

]
from 

the entrance path category Ent(X, S) to show that F is an S-constructible cosheaf as in 
Definition 3.2. The entrance path category Ent(X, S) is simply the opposite of the exit 
path category Exit(X, S) from Appendix A.

The category Cosh(X, S) of S-constructible cosheaves under X is equivalent to the 
category of functors 

[
Ent(X, S), Ab

]
; see [6, Theorem 6.1]. There are two functors
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Cosh(X, S)
[
Ent(X, S), Ab

]
Φ

Ψ

in this equivalence, but we only need Ψ, which we now describe on an object H :
Ent(X, S) → Ab. For an open set U ⊆ X, denote by Ent(U, S|U) the full subcategory of 
Ent(X, S) restricted to the stratified space (U, S|U). Then Ψ(H)(U) := colim Ent(U,S|U)H. 
For every pair of open sets V ⊆ U, Ψ(H)(V ⊆ U) is the universal homomorphism between 
the two colimits.

Proposition B.1. Let A ⊆ Basic(X, S) be a sub-basis and F : A → Ab an S-constructible 
covariant functor. Then the covariant functor F : Open(X) → Ab, as constructed above 
from F, is an S-constructible cosheaf.

Proof. First, we construct a functor H : Ent(X, S) → Ab from F. Next, we show that the 
two covariant functors Ψ(H), F : Open(X) → Ab are naturally isomorphic thus proving F
is an S-constructible cosheaf.

We now construct a functor H : Ent(X, S) → Ab from the covariant functor F given 
above. For a point x ∈ X, let H(x) be the limit of F over all open sets containing x. 
For an open set I ∈ A containing x, denote by H(x ∈ I) : H(x) → F(I) the canonical 
homomorphism from the limit. Note that if I is associated to the stratum containing x, 
then H(x ∈ I) is an isomorphism. Now consider an entrance path α in (X, S) that meets 
at most two strata and satisfies the following condition. Suppose the point α(0) lies 
on a stratum S2 ∈ S and the point α(1) lies on a stratum S1 ∈ S. Then we require 
that there is an S-basic open I ∈ A associated to S1 containing the path α. Define 
H(α) : H(α(0)) → H(α(1)) as the following composition

H(α(0)) F(I) H(α(1)).H(α(0)∈I) H(α(1)∈I)−1

∼=

The homomorphism H(α) is independent of the choice of I; see proof of [6, Theorem 6.1]. 
An arbitrary entrance path β in (X, S) can be written as a composition of simpler entrance 
paths each satisfying the conditions imposed on α above. The homomorphism H(β) is 
simply the composition of homomorphisms associated to each of these simpler entrance 
paths. Furthermore, if β ′ is a second entrance path equivalent to β, then H(β) = H(β ′); 
see proof of [6, Theorem 6.1].

We now build a natural isomorphism μ : F ⇒ Ψ(H). Suppose I ∈ A is associated 
to a stratum S ∈ S. Then, by [6, Proposition 4.11], every point x ∈ I ∩ S is final in 
Ent(I, S|I). This implies Ψ(H)(I) is canonically isomorphic to H(x), which is canonically 
isomorphic to F(I), which is canonically isomorphic to F(I). Let μ(I) : F(I) → Ψ(H)(I)
be this canonical isomorphism. For every pair J ⊆ I in A, there is, by [6, Proposition 
4.11], a unique entrance path α in I from y ∈ J ∩ S ′ to x ∈ I ∩ S, where S ′ is the stratum 
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associated to J. Combined with the fact that both x and y are final in Ent(I, S|I) and 
Ent(J, S|J), respectively, the following diagram commutes:

F(J) F(I)

Ψ(H)(J) Ψ(H)(I).

μ(J)∼=

F(J⊆I)

μ(I)∼=

Ψ(H)(J⊆I)

Now let U ⊆ X be an arbitrary open set. Since Ψ(H) satisfies the gluing axiom and A(U)

is an open cover of U, the universal homomorphism colim Ψ(H)|A(U) → Ψ(H)(U) is an 
isomorphism. Furthermore, there is a canonical isomorphism colim Ψ(H)|A(U) → F(U)

because both groups are colimits over naturally isomorphic diagrams Ψ(H)|A(U) and 
F|A(U), respectively. Thus for every pair of open sets V ⊆ U, the following diagram 
commutes:

F(V) F(U)

Ψ(H)(V) Ψ(H)(U).

μ(V)∼=

F(V⊆U)

μ(U)∼=

Ψ(H)(V⊆U)

Therefore, F is canonically isomorphic to Ψ(H). �
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