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1. Introduction

In this paper, we consider a continuous mapping f : X — M of a topological space X
to a manifold M. We think of f as a family of fibers f~!p C X parameterized by points
p in M. We are interested in topological properties of these fibers that are stable under
small perturbations of the map f. Besides being of mathematical interest in its own
right, this stability requirement is important for applications, where f may be subject to
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perturbations from measurement noise or computational error. Stability is particularly
appealing for data analysis as data is inherently noisy.

We study the homology groups of the fibers H; (f~!p) and their dimensions, the Betti
numbers ﬁj(f_lp). We are mainly interested in lower bounds on the Betti numbers
that continue to hold for small perturbations of f. Lower bounds are important because
linearly independent elements of H; (f~1p) that remain linearly independent under small
perturbations are regarded as interesting features of the family. The stability requirement
is a serious one: even when f3; (f~1p) is large, there can exist perturbations f arbitrarily
close to f such that {Sj(f_lp) =0.

Conventions In this introduction, we fix a map f : X — M, where M is a manifold, a
metric d on M, and an orientation of M. All homology groups are with field coefficients
and of fixed degree j and all open sets are path-connected.

Persistent dimension The simplest statement of the type of result in this paper is the
following. For every open set U C M, we will associate, in a few paragraphs below, a
nonnegative integer P(U) called the persistent dimension of U which has the following
properties:

1. Betti number lower bound: B;(f~'p) > P(U) for all p € U. That is, P(U) is a lower
bound for the Betti numbers of all the fibers over U.

2. Stability: For all sufficiently small € > 0 and for all perturbed f that is e-close to f,
we have B;(f~'p) = P(U) for all p € U that is at least e away from the boundary of
U. In other words, P(U) is still a lower bound for the Betti numbers of the fibers if
U is shrunk by €.

The metric in which we ask f to be e-close to f is sup,ex d(fx, x). By the second
property, it follows that for all p € U, there is an € so that for all f that is € close to f,
B; (f'p) > P(U). In other words, the lower bounds on Betti numbers provided by P(U)
are meaningful in the presence of small enough error in the determination of f.

We would like to say that the P(U)-dimension part of H;(f~'p) guaranteed by the
first property forms a family over U. To do that, we need to recall the idea of a local
system.

Local systems A local system £ over a space U, also called a locally constant sheaf over
U, is a “family” of vector spaces parameterized by points in U. It may be defined as the
following data:

1. a vector space £, for every point p € U called the stalk of £ at p, and
2. an isomorphism £, : £, — L4 for every homotopy class y of paths from p to ¢
called the monodromy along .
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Local systems over U form a category: morphisms £ — L’ are sets of linear maps
Ly — L{, for each p € U that commute with the monodromy maps. The isomorphisms
L., are required to be compatible with composition of paths. In other words, a local
system is a functor from the fundamental groupoid of U to the category of vector spaces,
and a morphism of local systems is a natural transformation of functors. If U’ is a subset
of U, a local system £ over U restricts to a local system L]y, over U’ by throwing away
all the data that does not lie in U’. If U is path-connected, the vector spaces £, all have
the same dimension and if further U is simply connected, then they may all be identified
with a single vector space V so that all the maps L, are the identity on V.

Persistent local systems For every path-connected open set UL C M, we will construct
(see Example 5.3 followed by Example 7.2) a local system £(U) over U called the per-
sistent local system over U with the following properties:

1. Relation to homology of fibers: For every point p € U, the stalk £(U), of £(U)
at p is naturally a subquotient of H;j(f'p), the j-th homology of the fiber over p;
see Example 7.2. Recall a subquotient of Hj(fflp) is a quotient % where A C B C
H;(f~'p) are subgroups.

2. Stability: For every perturbed f that is € close to f, £(U)|ye is naturally a subquotient
of £(U€) where U€ is the interior of the subset of U consisting of points that are
at least a distance € from the boundary of U, £(U)|ye is the restriction of £(U) to
ue, and £(U€) is the persistent local system over U€ constructed from f; see the
discussion after Corollary 9.2.

We define P(U), the persistent dimension of U, to be the dimension of the stalks of £(U).
The two properties of the persistent dimension above follow from the two properties of a
persistent local system since the dimension of any vector space V is bounded from below
by the dimension any subquotient of V.

Sheaves and cosheaves 1t is not surprising that sheaf theory is a useful tool to study
these questions. It was introduced by Leray 75 years ago precisely to study the homology
of the fibers of a map. We develop the sheaf theory we need (constructible sheaves and
cosheaves) in Sections 3 and 4. Local systems are equivalent to certain types of sheaves
(see Definition 3.2) and cosheaves (see Definition 4.2).

The j-th Leray homology cosheaf of a map f: X — M (see Example 4.4) is a cosheaf
E; under M that contains the information of the j-th homology of the fibers H;(f~'p),
for all points p € M, all woven together into one algebraic object. In the cellular setting,
it is amenable to computation [15]. The j-th Leray relative homology sheaf of f (see
Example 3.3) is a similar dual object Fj over M.

The case M =R and persistent homology If the manifold M is the space of real num-
bers, then there is a remarkably simple construction of the persistent local systems £ ().
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Let F be the Leray cosheaf of f and F|y be its restriction to U. Then £(U) can be char-
acterized as the largest local system contained in F|y as a direct summand. If F is the
Leray sheaf, £(U) can also be characterized as the largest local system contained in F|y
as a direct summand.

So £(U) constructed in this way satisfies the two properties Relation to homology of the
fibers and Stability. This construction and these properties of it were already known to the
persistent homology community [3,1]. Since U is path-connected and simply connected,
the stalks of the local system £(U) are all identified with a single vector space V.

Most of the persistent homology literature focuses on a special case of our situation.
There is a space Y with a function h : Y — R and we are interested in the homology
of the sublevel sets h™!(—oo, 1] as a function of . For every pair v < s, the image of
the homomorphism Hj(h_l(—oo,r]) — Hj(h_l(—oo, s]) is called the persistent vector
space associated to the interval (r,s) [7]. The collection of all dimensions of persistent
vector spaces, called the rank function of h, uniquely defines what is called the barcode
or the persistence diagram of h [5,4,14]. This special case translates into a case of ours
by concocting a function f : X — R such that the sublevel sets of h are the fibers of
f. Take X = {(y,r) €YxR | h(y) < r} and f(y,r) = r. The persistent vector space
of h for an interval (r,s) is the persistent local system of f over (r,s). In this way, the
persistent local system behaves very much like the well known rank function in persistent
homology.

There is work on the persistent homology of circle valued functions f: Y — S! [2]. We
believe the persistent local systems of f are closely related to their invariant.

This paper This paper was motivated by our desire to generalize this very beautiful
theory of persistent vector spaces to functions with values in any manifold. One might
ask, why not just do the same thing — The construction of the persistent local system
L(U), for the case M = R above, makes sense for any manifold M. However, it does
not work. The result does not satisfy the stability condition. This is the first indication
of many aspects of the problem that are much more complicated for higher dimensional
manifolds than for R. In fact, one can show that there can be no construction of persistent
local systems £(U) that depends only on F, gives the “right” answer for fibrations, and
satisfies stability (see Example 10.2); the situation is similar for F (see Example 10.1).

Our construction of persistent local systems uses both the cosheaf F and the sheaf F
plus a map between them F : F — F (see Example 5.3) constructed from the orientation
class of M. We call this data a bisheaf. In terms of computability, a bisheaf is not much
more complicated than a sheaf or a cosheaf. However, since the map F mixes objects
from different categories, the theory of bisheaves is complicated. For example, bisheaves
form an interesting category (see Definition 5.2), but unlike sheaves and cosheaves, it is
not an abelian category (e.g. no zero object).

Given the bisheaf F : F — F, the construction of the persistent local system £(U)
proceeds in four steps. Here is an outline:
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Restrict the bisheaf to U, Fly : Flu — Flu.

Construct a canonical subsheaf Epi(F|u) < F|u; see Definition 3.6.

Construct a canonical quotient cosheaf F|yy — Mono(F|y); see Definition 4.8.

Then £(U) is the image of the composition Epi(Fly) < Flu — Flu — Mono(F|y);

W=

see Proposition 5.6.

We would have liked the persistent local systems £(U) to satisfy a stacky functoriality
in U as in [17]. What is true is a rather weaker statement: if U’ is a subset of U,
then £(U)]y- is naturally a subquotient of £(U’). The solution we found to this is the
isobisheaf stack (see Definition 7.1) which has all the functorial properties we need. We
believe that the category of bisheaves, the Epi and Mono constructions, and isobisheaf
stacks are interesting new tools of sheaf theory. We hope they will be useful in other
contexts.

Acknowledgments The second author thanks Vidit Nanda and Oliver Vipond for care-
fully reading the first versions of this paper. The second author also thanks Justin Curry
for helpful comments on Appendices A and B. Finally, we thank our anonymous review-
ers.

2. Constructible maps

We start by defining the class of spaces and maps we will be working with. The class
we consider is chosen to be general enough to include all the maps that generally come
up in geometry and applied mathematics, but controlled enough to allow the powerful
technology of constructible sheaf theory.

Definition 2.1. [13] A Thom-Mather space is a triple (X,8,J) satisfying the following
nine axioms:

1. X is a Hausdorff, locally compact, and second-countable topological space.

2. 8§ is a set of path-connected, locally closed subsets of X such that X is the disjoint
union of the elements of 8.

The elements of 8 are called the strata of X. We call 8§ the stratification of the
Thom-Mather space.

3. Each stratum of X is a topological manifold (in the induced topology) provided with
a C*® smoothness structure.

4. The set § is locally finite. That is, each point x € X has an open neighborhood that
intersects finitely many strata.

5. The set 8 satisfies the condition of the frontier: if R,S € § and S has a non-empty
intersection with the closure of R, then S is a subset of the closure of R. In this case,
we say S is on the frontier of R.

The axiom of the frontier makes S a poset with S < R iff S is on the frontier of R.
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6. J is a triple {(Tg)7 (7s), (ps)}7 where for each S € 8, Ts is an open neighborhood
of Sin X, s : Ts — S is a continuous retraction onto S, and ps : Ts — [0, 00) is a
continuous function.

The open set Ts C X is called the tubular neighborhood of S in X, s is called the
local retraction of Ts onto S, and ps is called the tubular function of S. We call J the
control data of the Thom-Mather space.

7. For each stratum S € 8, S ={x € Ts | ps(x) = 0}

For two strata R,S € §, let TR75 =Tr NS, TIR,S = 7TR|TR,S : TR75 — R, and PR,s =
Pr[Tr,s : Tr;s — [0,00). It is possible that Tgr s is empty, in which case these maps
are the empty mappings.

8. For any strata R,S € 8, the mapping

(mr,s, PR,s) : TR,s = R x (0, 00)

is a smooth submersion.
9. For any strata Q,R,S € 8, the following diagrams commute:

1 TR, S c TR, S
Tq,s NTr,s N7k 5(Tq R) Tor Tr;s Tr
Q,s PQ,s
7TQ,R PQ,R
To,s [0, 00)

Let (X,8,d) be a Thom-Mather space. Choose a stratum S € § and a topological ball
B C S open in S. For a value r € (0, 00), let

B, ={x € Ts | ps(x) <t and 7ts(x) € B}.

We call B, a basic open of (X,8,J) associated to the stratum S. Let Basic(X, 8, J) be the
poset of all basic opens over all strata S € § and over all r € (0, 00) ordered by inclusion.
The union of the open sets in Basic(X, 8, J) is X. For any two U,V € Basic(X, 8, J) with
x € UNYV, there is a set W € Basic(X, 8, J) such that x € W and W C UNV. This makes
Basic(X, S, J) a basis for the topology on X.

Definition 2.2. Let X and Y be Hausdorff, locally compact, and second countable topolog-
ical spaces. A continuous map f:Y — X is (8, J)-constructible if there is a Thom-Mather
space (X, 8, J) such that for every pair V C U in Basic(X, 8, J) associated to a common
stratum, the inclusions

(VoY =71 (W) = (¥, Y = £1(V)) V) o FL(W)

are homotopy equivalences. A continuous map f : Y — X is constructible if it is (8, J)-
constructible for some Thom-Mather space (X, 8, J).
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Example 2.3. The following classes of maps are all constructible: (a) Real algebraic maps,
(b) real analytic maps that are “controlled at infinity,” (c) piecewise linear maps that
are “controlled at infinity,” and (d) an open dense set of proper smooth maps.

Here “controlled at infinity” means that the map Y — X factorizes in the category
of analytic (resp. PL spaces) as follows: Y C Z — X where Y C Z is an inclusion of an
open set, Z—Y is analytic (resp. PL) subspace of Z, and Z — X is proper. Proper maps
are automatically controlled at infinity: set Z =Y. Algebraic maps are always similarly
controlled at infinity.

In all four cases, the proof has three steps:

1. Construct a Whitney stratified structure on the map Y — X in which Y is a union
of strata, using [16] in cases (a), (b), and (c) and [8] in case (d).

2. Choose the Thom-Mather data on X to be the one obtained from the Whitney
stratification of X in [13].

3. Use moving the wall from [10, Chapter 4 page 70] to show the required homotopy
equivalences.

Remark 2.4. We expect almost any map defined by a finite process to be constructible.
Non-constructible examples, like the inclusion of a Cantor set into a manifold, come from
infinite or iterative processes.

We will not require the smooth structure of a Thom-Mather space until Section 8. For

the next few sections, all we require is a topological stratified space. Recall the open cone
Xx[0
C(X) on a topological space X is the quotient space &

X x {0}
X x {0}

X x {0}’

. Its cone point, denoted

e € C(X), is the point

Definition 2.5. [9] An n-dimensional (topological) stratified space X is an n-step filtration
P=X1C---CXp=X

of a second countable, locally compact, Hausdorff space where for each d and each point
p € Xq — Xq—1, there is a compact (n — d — 1)-dimensional stratified space L and a
filtration preserving homeomorphism

h:RYx C(L) = U

such that U is an open neighborhood of p and h(0,e) = p. Here R¢ is interpreted as
a filtered space with just one step and e is the cone point of C(L). We call h a local
parameterization of the stratified space. Each path-connected component of Xgq — Xgq_1
is a d-stratum. It will be convenient to write a stratified space as a tuple (X, 8) where 8
is its set of strata.
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Let (X,8) be an n-dimensional stratified space. The local parameterizations imply
that each d-stratum is a topological d-manifold and that the condition of the frontier is
satisfied. This makes 8 a poset. We call an open set U C X an S-basic open if it is the
image of a local parameterization h : R4 x C(L) — X. An 8-basic open is associated to the
unique stratum in 8§ containing the topological ball h(R¢ x e). Let Basic(X, 8) C Open(X)
be the poset of 8-basic opens ordered by inclusion. The set Basic(X, 8) is a basis for the
topology on X. Note that every finite dimensional Thom-Mather space (X,8,7) is a
stratified space (X,8) and Basic(X, 8,J) C Basic(X,8). However, not every open set in
Basic(X, 8) belongs to Basic(X, 8, ).

For the purpose of proving stability (see Theorem 9.1), it will be convenient to work
with a triangulation of a Thom-Mather space as opposed to working directly with a
Thom-Mather space. Recall a pair (K, Kq) of simplicial complexes is a simplicial complex
K and a subcomplex Kg C K. The geometric realization [K—Kg| of the pair is the geometric
realization |K| take-away the subspace |Kq| C [K].

Definition 2.6. A stratified space (X,X) is a triangulation if there is a simplicial pair
(K, Kg) and a homeomorphism ¢ : [K—Kg| — X such that each stratum of X is the image
of a simplex in K— K. A stratified space (X, 8) is triangulable if there is a triangulation
(X, X) such that for each stratum o € X there is a stratum S € 8§ where o C S.

We use 0 and T to denote strata of a triangulation (X, X). The open star of a stratum
o € X is the subposet st ¢ := {T ceX|o< T} C XK. Note that every open star st o is a
XK-basic open associated to the stratum o.

Proposition 2.7 ([11]). Every Thom-Mather space (X,8,d) is triangulable.

Throughout this paper, M will denote a topological m-manifold without boundary.
A topological manifold is a locally Euclidean, second-countable, and Hausdorff space.

3. Sheaves

In this section, we develop the theory of constructible sheaves. We introduce the
notions of an episheaf and epification which we will use to study the fibers of a con-
structible map. On a technical level, the main new device is the use of basic open sets.

For a topological space X, let Open(X) be its poset of open sets ordered by inclu-
sion V C U. An open cover of an open set U C X is a subposet U C Open(X) of open
sets whose union is U and for every U;, U; € U, Uy N'U; is a union of elements in U. Let
Ab be the category of abelian groups.

Definition 3.1. A sheaf (of abelian groups) over X is a contravariant functor

F : Open(X) — Ab
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satisfying the following property. For every open set U C X and for every open cover U
of U, the universal map F(U) — lim F|y is an isomorphism. A sheaf map is a natural
transformation of functors & : F — G.

Definition 3.2. Let (X, 8) be a stratified space. A sheaf F over X is 8-constructible if for
every pair of 8-basic opens V C U associated to a common stratum, the map

F(VCu):FU) —F(V)

is an isomorphism. If F(V C U) is an isomorphism for every pair of 8-basic opens V C U,
then F is a local system. A sheaf F over X is constructible if there is a stratified space
(X,8) for which F is S-constructible. Let Sh(X,8) be the category of S-constructible
sheaves over X and sheaf maps. Let Sh(X) be the category of constructible sheaves over
X and sheaf maps.

When defining an S-constructible sheaf over X, it is enough to specify a well behaved
contravariant functor on a subposet of Open(X). Let A C Basic(X,8) be any subposet
that is a basis for the topology on X. For example, if (X,S§,J) is a Thom-Mather space,
then we may let A be Basic(X,8,J). Let F: A — Ab be a contravariant functor such that
for every pair | C I associated to a common stratum, the map F(J C I) is an isomorphism.
Then F uniquely generates (up to an isomorphism) an 8-constructible sheaf F as follows.
For an arbitrary open set U C X, let A(U) C A be the subposet consisting of all open
sets contained in U. Let F(U) := lim Fla(u)- Note that if U € A, then F(U) is canonically
isomorphic to F(U). For an arbitrary pair of open sets V C U C X, let F(V C U) be the
universal morphism between the two limits. See Appendix A for a check that F is indeed
an 8-constructible sheaf.

Given a sheaf map & : F — G between two 8-constructible sheaves, its image im & is
an S-constructible sheaf equipped with a canonical inclusion im & < G as follows. Let
H : Basic(X,8) — Ab be the contravariant functor that assigns to each 8-basic open U the
group H(U) := im &(U). For V C U, the map H(V C U) is the map G(V C U) restricted
to im o(U). If both V C U are associated to a common stratum, then H(V C U) is
an isomorphism. Extend H to a sheaf H over X using the procedure in the previous
paragraph. For any open set U C X, the universal morphism H(U) — G(U) is injective.
The coimage, kernel, and cokernel of & are defined similarly.

Example 3.3. Let f : Y — X be an (8,J)-constructible map. Define F, as the $-
constructible sheaf generated by assigning to each U € Basic(X, 8, J) the relative singular
homology group

Fo(U):=Ho (Y, Y—f1(U);Z).

For two (8, J)-basic opens V C U associated to a common stratum, the map
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is, by definition of an (8,J)-constructible map, an isomorphism. Thus F, is an §-
constructible sheaf.

Definition 3.4. An S-constructible sheaf F over X is an episheaf if for every pair of 8-basic
opens V C U, the map F(V C U) : F(U) — F(V) is surjective.

Proposition 3.5. Consider a sheaf map & : E — F in Sh(X,8). If E is an episheaf, then
im & is an 8-constructible episheaf.

Proof. By construction of im &, we need only look at the following commutative diagram
for any pair of 8-basic opens V C U:

_ E(VCU) _

E(U) E(V)
x=(U) l l x(V)

_ F(vcu) _

F(U) F(V).

The restriction of F(V C U) to the image of &(U) is a surjection onto the image of &(V).
Thus im & is an episheaf. 0O

Let F be an S-constructible sheaf over X. A sub-episheaf of F is an inclusion E < F
of an 8-constructible episheaf E. The zero sheaf 0 < F is the smallest sub-episheaf of
F. For any two sub-episheaves E;, E; < F, their internal sum E; & E5, which assigns to
each open set U the smallest subgroup of F(U) containing both E; (U) and E5(U), is also
a sub-episheaf. Let P be the poset of sub-episheaves of F ordered by inclusion. For any
chain

in P, the sub-episheaf |4 E; contains them all. By Zorn’s Lemma, P has a maximal element
and therefore F has a maximal sub-episheaf. Consider a sheaf map & : F — G in Sh(X, 8).
Suppose D < F and E < G are maximal sub-episheaves. By Proposition 3.5, the image
of the composition

D ~F—*.G
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is a sub-episheaf of G. My maximality of E, this image is contained in E thus inducing a
map D — E that makes the following diagram commute:

Thus the assignment to each 8-constructible sheaf its maximal sub-episheaf is functorial.
Definition 3.6. The epification of S-constructible sheaves over X is the functor
Epi: Sh(X,8) — Sh(X, 8§)

that sends each sheaf to its maximal sub-episheaf. Let 1] : Epi = idgpn(x,s) be the inclusion
natural transformation.

4. Cosheaves

Cosheaves are “dual” to their better known cousins, sheaves. In this section, whose
parallel structure to the last one reflects that “duality,” we develop the theory of con-
structible cosheaves. We introduce the notions of a monocosheaf and monofication.

Definition 4.1. A cosheaf (of abelian groups) under X is a covariant functor
F: Open(X) — Ab

satisfying the following property. For every open set U C X and for every open cover U of
U, the universal map colim F|y — F(U) is an isomorphism. A cosheaf map is a natural
transformation of functors & : F — G.

Definition 4.2. Let (X, 8) be a stratified space. A cosheaf F under X is 8-constructible if
for every pair of open sets V C U in Basic(X, 8) associated to a common stratum, the
map

F(vcu):E(V) - E(U)

is an isomorphism. A cosheaf F under X is constructible if it is S-constructible for some
stratified space (X, 8). If E(V C U) is an isomorphism for every pair of 8-basic opens V C
U, then F is a colocal system. Let Cosh(X, 8) be the category of 8-constructible cosheaves
under X and cosheaf maps. Let Cosh(X) be the category of constructible cosheaves under
X and cosheaf maps.
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When defining an 8-constructible cosheaf under X, it is enough to specify a well
behaved covariant functor on a subposet of Open(X). Let A C Basic(X, 8) be any subposet
that is a basis for the topology on X. For example, if (X,S§,J) is a Thom-Mather space,
then we may let A be Basic(X,8,J). Let F: A — Ab be a covariant functor such that for
every pair | C I associated to a common stratum, the map F(] C I) is an isomorphism.
Then F uniquely generates (up to an isomorphism) an 8-constructible cosheaf F as follows.
For an arbitrary open set U C X, let A(U) C A be the subposet consisting of all open sets
in U. Let F(U) := colim F|p(u). Note that is U € A, then F(U) is canonically isomorphic
to F(U). For an arbitrary pair of open sets V C U C X, let F(V C U) be the universal
morphism between the two colimits. See Appendix B for a check that F is indeed an
S-constructible cosheaf.

Given a cosheaf map & : F — G between two 8-constructible cosheaves, its image im «
is an 8-constructible cosheaf equipped with a canonical inclusion im & < G as follows.
Let H : Basic(X,8) — Ab be the covariant functor that assigns to each 8-basic open U the
group H(U) :=im «(U). For V C U, the map H(V C U) is the map G(V C U) restricted
to im «(V). If both V C U are associated to a common stratum, then H(V C U) is
an isomorphism. Extend H to a cosheaf H under X using the procedure in the previous
paragraph. For any open set U C X, the universal morphism H(U) — G(U) is injective.
The coimage, kernel, and cokernel of « are defined similarly.

Example 4.3. Let f : Y — X be a (8, J)-constructible map. Define F* as the 8-constructible
cosheaf generated by assigning to each U € Basic(X, 8, J) the singular relative cohomology

group
F*(U) == H*(Y,Y —f }(U); Z).

For two (8, J)-basic opens V C U associated to a common stratum, the map
Fr(VCu):F* (V) —» E*(U)

is, by definition of an (8, J)-constructible map, an isomorphism. Thus F* is an 8-
constructible cosheaf.

Example 4.4. Let f : Y — X be a (8, J)-constructible map. Define F, as the 8-constructible
cosheaf generated by assigning to each U € Basic(X, 8,J) the singular homology group

For two (8, J)-basic opens V C U associated to a common stratum, the map
E.(VCU):E,(V)—E.(U)

is, by definition of an (8, J)-constructible map, an isomorphism. Thus F, is a 8-
constructible cosheaf.
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Example 4.5. Let (M, 8) be a stratified space where M is an m-manifold without bound-
ary and 8 consists of a single stratum namely M. Note that an open set is an S-basic
open iff it is an open topological m-ball. The local orientation cosheaf under M is the
S-constructible cosheaf O generated by assigning to each open topological m-ball U C M
the top dimensional singular relative cohomology group

oU) :=H"M,M—-U;Z) = Z.
For two m-balls V C U, the map

o(vcu):0(vV)— O(u)
is an isomorphism. Thus O is an S-constructible cosheaf. Moreover, O is a colocal system.
The manifold M is orientable if O(M) = Z. If M is orientable, then an orientation of M is
the choice of a generator of O(M). The poset of all m-balls Basic(M, 8) is a covering of M.
By the cosheaf axiom, the universal map colim Olgasic(m,s) — O(M) is an isomorphism.
If M is orientable, then the map O(U C M) is an isomorphism for all m-balls U.

Definition 4.6. An S-constructible cosheaf M under X is a monocosheaf if for every pair
of 8-basic opens V C U, the map M(V C U) : M(V) — M(U) is injective.

Proposition 4.7. Consider a cosheaf map & : F — M in Cosh(X,8). If M is a monocosheaf,
then the image of & is an S-constructible monocosheaf.

Proof. By construction of im &, we need only look at the following commutative diagram
for any pair of 8-basic opens V C U:

The restriction of M(V C U) to the image of (V) is an injection into the image of o(U).
Thus im « is a monocosheaf. O

Let F be an S-constructible cosheaf under X. A quotient-monocosheaf of F is a
surjection F — M to an 8-constructible monocosheaf M. The zero cosheaf F — 0
is the largest quotient-monocosheaf of F because its kernel is all of F. For any two
quotient-monocosheaves F — M; and F — M,, let K;, Ky C F be their kernels. Then
F — E/k,nkK,, which assigns to each open set U the quotient F(W)/k, (u)nk,(u), is a
quotient-monocosheaf of F. Let P be the poset of kernels of quotient-monocosheaves of
F ordered by containment. For any chain of quotient-monocosheaves
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the corresponding chain of kernels in P has, by taking intersections, a minimal element
in P. By Zorn’s Lemma, P has a minimal element and therefore F has a minimal quotient-
monocosheaf. Consider a cosheaf map « : F — G in Cosh(X,8) and suppose F - M
and G — N are minimal quotient-monocosheaves. By Proposition 4.7, the image of the
composition

®
F——G—=N

is a quotient-monocosheaf of F. By minimality of M, the kernel of F — M is contained
in the kernel of the above composition inducing a map M — N that makes the following
diagram commute:

Thus the assignment to each 8-constructible cosheaf its minimal quotient-monocosheaf
is functorial.

Definition 4.8. The monofication of S-constructible cosheaves under X is the functor
Mono : Cosh(X, 8) — Cosh(X, 8)

that sends each cosheaf to its minimal quotient-monocosheaf. Let 1 : idcosh(x) = Mono
be the quotient natural transformation.

5. Bisheaves

We now have both a sheaf theoretic and a cosheaf theoretic approach to studying the
fibers of a constructible map. As mentioned in Section 1, neither of these alone is enough
to produce the stability results we want. We now combine the two approaches with the
ideas of a bisheaf and an isobisheaf.

Definition 5.1. Let COpen(X) C Open(X) b
open sets. A bisheaf around X is a triple F
cosheaf under X, and F := {F(U) cF(U) —

e the subposet consisting of path-connected
:= (F,F,F) where F is a sheaf over X, F is a

E(u)}UGCOpen(X) is a set of maps satisfying
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the following property. For each pair of open sets V. C U in COpen(X), the following
diagram commutes:

_ F(vCcu) _

F(UW) F(V)
F(u)l lF(vu

F(W) < E(V).

A bisheaf map & : F — G is a pair of maps (&, gc) where & : F — G is a sheaf map and
o« : G — F is a cosheaf map satisfying the following property. For every path-connected
open set U C X, the following diagram commutes:

Fw— G
F(U) \L \LG(U)
E(U) ~———— GlU).

Definition 5.2. A bisheaf F = (F, F, F) around X is S-constructible if both F and F are
S-constructible. A bisheaf is constructible if it is S-constructible for some stratification
(X,8). Let Bish(X,8) be the category of 8-constructible bisheaves around X and bisheaf
maps. Let Bish(X) be the category of constructible bisheaves around X and bisheaf maps.

When defining an 8-constructible bisheaf F = (F, F, F) around X, it is enough to specify
the sheaf, cosheaf, and maps between them on a subposet of Open(X). Let A C Basic(X, 8)
be any subposet that is a basis for the topology on X. For example, if (X, 8,J) is a Thom-
Mather space, then we may let A be Basic(X,8,J). Let G: A — Ab be a contravariant
functor such that for each pair J C I associated to a common stratum, the map G(J C I)
is an isomorphism. Let H : A — Ab be a covariant functor such that for each pair | C I
associated to a common stratum, the map H(] C I) is an isomorphism. Let {Q(])}IEA
be a set of maps Q(J) : G(J) — H(J) such that for every ] C I, the following diagram
comimutes:

H(T) W H(]).

Given this data, we define F as follows. For an arbitrary open set U C X, let A(U) C A
be the subposet consisting of all open sets contained in U. The 8-constructible sheaf F is
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generated by setting F(U) := lim G|a as we did in Section 3. The $-constructible cosheaf
F is generated by setting F(U) := colim H|a as we did in Section 4. Suppose U is path-
connected. For every pair of open sets ] C Iin A(U), the following diagram, where 7y is
the canonical map from the limit and (; is the canonical map to the colimit, commutes:

=1lim Gla(u

lQ(I) Q())

H(T) H(J)

\ e /

= colim Hla(u

Define F(U) : F(U) — F(U) as any composition, for example ty 0 Q(J) o7y, from the limit
to the colimit. Note that if U is the disjoint union of infinitely many path-connected
components, then there is no canonical map from the limit to the colimit.

Example 5.3. Let f: Y — M be a (8, J)-constructible map to an oriented m-manifold M.
Recall the relative homology sheaf F,, , of f and the ordinary homology cosheaf F, of
f; see Examples 3.3 and 4.4 respectively. Then there is a constructible bisheaf

F.i= (Fom Eo {F.(W)})

around M where, for each (8,J)-basic open U, F(U) is a cap product constructed as
follows.

Recall the local orientation cosheaf O of M; see Example 4.5. Fix an orientation
0 € O(M). Let UC M be an (8, J)-basic open and suppose U is associated to a stratum
S € 8. Choose an (8, J)-basic open U’ C U that is also associated to S. Then the inclusion

(F W), £ Hu) — £ HU)) < (Y, Y—f1(Uu")

induces, by excision, an isomorphism on their relative singular (co)homology groups. The
inclusion

(Y,Y—f W) <= (Y,Y—f 1 (U")

induces, by definition of a constructible map, an isomorphism on their singular relative
(co)homology groups. Thus the singular cap product
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Hucm (F7H(U), F7HU) — £ (U)) @ H™ (F7H (W), £ 1 (W) — 1 (U)) —— H. (FH (W)

gives rise to a map

Fem(U) @ F™ (W) —F,(U)

where F™ is the cosheaf of relative cohomology groups; see Example 4.3. For any pair
of (8,3)-basic opens V C U, we have the following diagram where the vertical maps are
induced by inclusion:

—~

o

—~

Foim(V) @ E™(V) — E (V).
For any p € F, . (U) and ¢ € F™(V), the cap product satisfies

k(i(n) ~¢) = ~jlc). (1)

Let oy := O (U C M)(0) and oy := 0 *(V C M)(0). The map f induces pull-backs
fIr:0(W) — F™(u) 21 0(V) = E™ (V).

By Equation (1), the following diagram commutes:

F*—o—m(u) F*+m(v)
~f7t (ou) l lAfWOV)
F.(U) £ F.(V).

This triple of data, over all (8, J)-basic opens, generates the 8-constructible bisheaf F,.

Proposition 5.4. Let f: Y — M be a (8, J)-constructible map to an oriented m-manifold
M and F, its bisheaf as constructed in Ezample 5.3. For a top dimensional stratum
S € 8, suppose the restriction flg-1(s) : T1(S) — S is a fiber bundle over S. Then for

any 8-basic open U C M associated to S, the cap product Fo(U) : Fuyrm (W) — E,(U) is
an isomorphism.

Proof. Choose a point p € U. Since U is contractible, fl;—1(s) is a trivial bundle over
U. This means that there is a homeomorphism h that makes the following diagram
cominute:
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1) b fp)x U
\ /
u.

The projection m; : f~1(p) x U — f~1(p) is an m-disk bundle over f~!(p) putting us in
the setting of the Thom isomorphism. The element —~ f{}(oy) € E™(U) is a Thom class
making the cap product

— ~f{ (ou)

the Thom isomorphism. Alternatively, we may view F,, ., (U) as the homology of the
m-fold suspension of f~!(p) making the cap product the suspension isomorphism. O

Definition 5.5. An 8-constructible bisheaf | = (T, I, I) around X is an isobisheaf if | is an
episheaf and | is a monocosheaf.

Let Loc(X) be the full subcategory of Sh(X) consisting of local systems. Let Coloc(X) be
the full subcategory of Cosh(X) consisting of colocal systems. The two categories Loc(X)
and Coloc(X) are equivalent. The equivalence takes an 8-constructible local system F to
the 8-constructible colocal system F generated by assigning to every 8-basic open U the
group F(U) and by assigning to every pair V C U of 8-basic opens the map Fil(V cu).
Similarly, the equivalence takes an 8-constructible colocal system G to the 8-constructible
local system G generated by assigning to every 8-basic open U the group F(U) and by
assigning to every pair V C U of 8-basic opens the map F~1(V C U).

Proposition 5.6. Let | = (1,1,1) be an 8-constructible isobisheaf around X. Then the image
im |, generated by the images of {I(U)} over all 8-basic opens, is a colocal system under
X and the coimage coim |, generated by the coimages of {I(U)} over all 8-basic opens, is
a local system over X. Furthermore, im | is equivalent to coim .

Proof. For a pair of 8-basic opens V C U, consider the following commutative diagram:

_ i(vcu)

We first show that 1(V C U) restricts to an isomorphism from im I(V) to im I(U). For
any element ¢ € im |(V), there is, by surjectivity of I(V C U), an element a € [(U) such
that ¢ = I(V) o [(V C U)(a). This means that [(V C U) restricts to a homomorphism
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from im (V) to im I(U). Suppose d = I(U)(a). Then there is a ¢ € I(V), namely ¢ =
(V) ol(V C U.))(a), such that d = I(V C U)(c). This means that the restriction is
surjective. By injectivity of I(V C U), the restriction is also injective. These images and
the maps between them generate the colocal system im I.

We now show that I(V C U) quotients to an isomorphism from coim I(U) to coim 1(V).
For any element a € kerl(U), [(V C U)(a) is, by injectivity of I(V C U), an element
of ker I(V). This means that [(V C U) quotients to a homomorphism from coim I(U) to
coim I(V). For any a € I(U), if [(V € U)(a) is in ker I(V), then a € ker I(U). This means
that the quotient map is injective. By surjectivity of [(V C U), the quotient map is also
surjective. These coimages and the maps between them generate the local system coim I.

By the first isomorphism theorem, im I(U) is isomorphic to coim I(U) for every U.
The colocal system im | is therefore equivalent to the local system coim . 0O

Let F be an 8-constructible bisheaf over X. Epification of F and monofication of F
results in an isobisheaf Iso(E) = (Epi(F), Mono(E), Iso(F) := T_](E) oFo ﬁ(F)); see Di-

agram (2). Consider a bisheaf map & : F — G in Bish(X,8). The universal property of
episheaves and monocosheaves induces a map of isobisheaves:

Epi(F) - — — . Epi(G)

A(F) 1(G)
F = G
F G (2)

xX

E — G

n(E) n(G)

Mono(E) < Monola) Mono(g)

Thus the assignment to each bisheaf its isobisheaf is functorial.
Definition 5.7. The isofication of S-constructible bisheaves around X is the functor
Iso : Bish(X,8) — Bish(X, 8)

that sends its bisheaf F to its isobisheaf Iso(E). Let n = (ﬁ, T_]) : idgish(x,s) = lso be the
natural transformation induced by 7 and 7.

6. Etale opens

The idea of an étale open was introduced by Grothendieck in algebraic geometry 60
years ago as a natural generalization of an open set. For us, it is important to have
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persistent local systems £(U) (see Section 1) not only for open sets U, but for étale
opens as well. While it is true that the image im U of an étale open of M is an open
subset of M, it is not true that £(im U) contains all the information of £(U). In fact
L(im U) can vanish while £(U) is still large. If M = R, then every path-connected étale
open is a path-connected open set. This is another way in which the 1-dimensional case
is much simpler.

In this section we develop the notion of an étale open of a manifold M without
boundary. In the last section, we saw that every constructible bisheaf around M has
associated to it a local system over M. Now, we pull-back the bisheaf along any étale
open a : A — M then use the same procedure to compute its persistent local system
over A. This gives us our collection of local systems one for every étale open of M which
constitutes finer information about the bisheaf.

Definition 6.1. An étale open of M is a continuous map a : A — M from a Hausdorff,
second countable space A to M that is locally a homeomorphism for every point of A.
An étale map 1 : a — b is a continuous map p: A — B such that the following diagram
commutes:

DN

M.

Let Etale(M) be the category of étale opens of M. The initial object of Etale(M) is
the empty étale open () : ) — M and the terminal object is the identity étale open
idpm : M — M. Note that every open set of M is an étale open.

Given a stratified space (M, 8) and any étale open a : A — M, the stratification 8
pulls-back along a to a stratification a*$ (see Definition 2.5) of A as follows. The filtration
f C Mg C--- CM,, =M that gives rise to 8 lifts to a filtration ) CAy C--- C A, =A
where A; = a~'(M;). Every point a € A has a neighborhood U such that the restriction
aly : U — a(U) is a homeomorphism. Since the point a(p) is locally an open cone over
a lower-dimensional stratified space, the point p is locally an open cone over the same
lower-dimensional stratified space.

Definition 6.2. Let (M, 8) be a stratified manifold. An étale open a : A — M is §-
constructible if for every stratum S € 8, a~!(S) is empty or the restriction alq-1(s) :
a~!(S) = S is a covering space. Let Etale(M, 8) be the category of S-constructible étale
opens.

Proposition 6.3. Let (M, X) be a triangulation of a manifold M. For any étale open
a: A — M, there is an étale map u : a — b to an K-constructible étale open b



R. MacPherson, A. Patel / Advances in Mathematics 386 (2021) 107795 21

Fig. 1. Consider the triangulation K of the plane R? above. The yellow étale open is the universal K-
constructible étale open containing the red étale open. (For interpretation of the colors in the figure, the
reader is referred to the web version of this article.)

satisfying the following universal property. For any étale map v : a — ¢, where ¢ is a
K-constructible étale open, there is a unique étale mapm : b — ¢ that makes the following
diagram commute:

Proof. The map a takes the poset of strata a*X to the poset of strata K. Denote by
a: a*X — X this poset map. Let E := | |scq+5c St @(0) be the disjoint union of open
stars of strata in X and denote by e : E — M the map that takes each point x € E
to its original copy in M. Note that there may be many strata in a*X that map to a
single stratum T € XK. In this case, E has n copies of st T where n is the number of
strata in a*X that map to T. We now glue together the pieces of E. Consider two points
X,y € E and suppose x € 01 and y € o0 for strata 01,09 € a*X. Let us say x and y
are related, x ~ vy, if e(x) = e(y) and 07 < 03 or 02 < 07. The relation ~ is reflexive
and symmetric but not transitive. Take the transitive closure of ~, let D := E/~ be the
quotient space, and let d : D — M the quotient of e. Note that every point x € D has an
open neighborhood U such that the restriction d|y : U — d(U) is a homeomorphism. In
other words, d is a local homeomorphism. Furthermore, for every stratum t € K, d~!(7)
is either empty or a covering space over 1. However, D may not be Hausdorff; see the
example in Fig. 1. We remedy this problem by taking a second quotient as follows. Let
us say two points p, q € D are related, p & ¢, if there is a path y : [0, 1] — D satisfying
the following two properties: y(0) = p and y(1) = g, and doy(t) = doy(1 —1t) for
all 0 < t < /2. The relation = is reflexive and symmetric but not transitive. Take the
transitive closure of =, let B := D/~, and let b : B —+ M be the induced continuous map.
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The map b is a K-constructible étale open. Let i : A — B be the composition of the
continuous inclusion A — D followed by the quotient map D — B.

We now prove the universal property. Suppose c is a K-constructible étale open and
v :a — c is given. For every stratum T € b*X, p~'(1) is non-empty, by construction
of b. Furthermore, every stratum of a*X contained in p~!(T) maps, via v, to a single
stratum in ¢*X because otherwise, C could not be Hausdorff. Let n : B — C be the
unique map induced by sending every stratum T € b*X to the stratum v o u=!(t). For
any open set U C C, v_1(U) is open because v is continuous. Since p is the composition
of an open inclusion followed by a quotient map, i maps v_'(U) to an open set. This
makes 1 continuous. 0O

Example 6.4. Consider the triangulation X of R? illustrated in Fig. 1. Let a : A — R?2
be the étale open in red. Then its universal K-constructible étale open b : B — R? is in
yellow.

Given an 8-constructible bisheaf F = (F, F, F) around M and an étale open a: A — M,
we may pull F back to a a*$-constructible bisheaf a*F = (a*F, a*F, a*F) around A as
follows. Choose a subposet A C Basic(A, a*8) such that A is a basis for the topology on
A and a(]) is an 8-basic open for all ] € A. Let G : A — Ab be the contravariant functor
that assigns to each open set ] the object G(]) := F(a(])) and to every pair ] C I the
morphism F(a(]) € a(I)). Let H: A — Ab be the covariant functor that assigns to each
open set | the object F(a(])) and to every pair J] C I the morphism F(a(]J) C a(I)). Let
{Q(])}]eA be the set of maps Q(J) : G(J) — H(J) where Q(J) := F(a(J)). This data, as
discussed in Section 5, generates the bisheaf a*F. For a morphism w: a — b of étale
opens, the two bisheaves a*F and p*b*F around A are isomorphic.

7. Isobisheaf stacks

We finally get to the central construction of this paper: isobisheaf stacks. Given a
constructible bisheaf over a manifold M, we now have a local system for each étale open
of M. Here we assemble these local systems into a stack. The advantage is that the
isobisheaf stack has good functorial properties which are useful, for example, in proving
stability. The whole construction of the persistent local systems can be thought of this
way:

Maps . Bisheaves . Isobisheaf stacks . Local systems for
X—->M around M around M each étale open of M |

Definition 7.1. Let (M, 8) be a stratified manifold. An 8-constructible isobisheaf stack
F around M is the assignment to Etale(M) the following data satisfying the following
axiom:

o To each étale open a: A — M, F(a) is an a*S-constructible isobisheaf (Fa, EFa, Fa).



R. MacPherson, A. Patel / Advances in Mathematics 386 (2021) 107795 23
e To each étale map p:a — b, F(u) : w*F(b) — F(a) is a bisheaf map

— F(n) —
H-*Fb > Fa

w*Fp i \L Fa (3)

Fooee—F
e ) @

where F(p1) is injective and F(p) is surjective for all open sets.
e For each pair of étale maps p:a —band v:b —c, F(vou) = wF(v) o F(n).

By Proposition 5.6, the colocal system im Fq under M is equivalent to the local system
coim F(a) over M. Let im F(a) := im F4 be the persistent colocal system of F under a
and let coim F(a) := coim F(a) be the persistent local system of F over a.

Let F be an S-constructible isobisheaf around M and E a T-constructible isobisheaf
around M where 8§ and T may be different. A map of constructible isobisheaf stacks
@ :F — G is the following data satisfying the following axiom:

e To each étale open a: A — M, ®(a): F(a) — g(a) is a bisheaf map

— D(a) —
Fo —— > Ga

Ful lca (4)
T

Note there are no conditions on ®(a) and ®(a) other than that the diagram com-
mutes for every open set of A.

e For each étale map 1: a — b, the following diagram commutes for every open set of
A:

Wy 1 Gp

w*Fy Fui lca n* Gy
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Let Stack(X) be the category consisting of isobisheaf stacks around M, each constructible
with respect to some stratification of M, and constructible isobisheaf stack maps.

Given an 8-constructible isobisheaf stack F around M, we have a persistent colocal
system im JF(a) for each étale open a : A — M. For an étale map 1 : a — b, the two
colocal systems im F(a) and im F(b) are related by Diagram (3). Let | := im (Fa o F( u))
and K := I Nker F(u). Then

_ /K _
im WF(b) <— 1—~——im F(a).

In other words, the data im u*JF(b) persists in im F(a) as a quotient of a sub-colocal
system. Given a stack map @ : F — E and an étale open a, the two colocal systems
im F(a) and im §(a) are related by Diagram (4). Thus

im F(a) < 1< im §(a), (5)

where K and | are defined similarly. As we will see in Section 9, this observation implies
that persistent colocal systems satisfy the property Stability of Section 1.

Example 7.2. A constructible bisheaf F over a manifold M gives rise to a constructible
isobisheaf stack F as follows. For each étale open a : A — M, let F(a) := Iso(a*E).
For an étale map i : a — b, we have the following commutative diagram where the
top and bottom horizontal maps are induced by the universal property of Epi and Mono

respectively:
W EpI(bF) " Epi(a”F)
w(b*F) n(a*F)
wb*F - a*F
W brF a*F (6)
Wb F - a*F
wn(b*EF) n(a*E))
n*Mono(b*F) Mono(a*F).

Both u*Epi(b*F) and Epi(a*F) are sub-episheaves of u*b*F = a*F and the latter is
maximal. This makes the sheaf map B injective on every open set. Both u*l\/lono(b*E)
and Mono(a*E) are quotient-monocosheaves of W*b*F = a*F and the later is minimal.
This makes the cosheaf map ( surjective on every open set. Let F(u) := (E, E)
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Note that if the bisheaf F is constructed from a constructible map f as in Example 5.3,
then every persistent colocal system is a subquotient of the homology of the fibers of f.
In other words, persistent colocal systems satisfy property Relation to homology of fibers
of Section 1.

A bisheaf map & : F — G gives rise to a map of isobisheaf stacks @ : F — g as follows.
Recall Diagram (2). For each étale open a : A — M, replace the bisheaf F in Diagram
(2) with a*F and replace the bisheaf G with a*G to get the following diagram:

Epi(a*F) — =" Epi(a*G)
A(a*F) (a*G)
a*F @ a*G
a*F a*G
a*F v a*G
n(a*F) n(a*6)
Mono(a*F) Monola’ o) Mono(a*G).

For each étale open a: A — M, let ®(a) := Epi(a*®) and let ®(a) := Mono(a*®).

Proposition 7.3. Let (M, X) be a triangulation of a manifold M, F an K-constructible
bisheaf over M, and F its K-constructible isobisheaf stack. For an étale open a: A — M,
let w:a— b be the universal étale map to a K-constructible étale open b in the sense
of Proposition 6.3. Then F(a) = u*F(b).

Proof. Since every stratum of X is contractible, every stratum of a*X is also contractible.
The bisheaf a*F is completely determined (up to an isomorphism) by the assignment to
each stratum o € a*X the map F(st a(o)) : F(st a(co)) — F(st a(o)) and to each relation
0 < T the bisheaf map (F(st a(t) C st a(o)),F(st a(t) C st a(O‘)). For convenience, we
will simply identity a*F with this stratum-wise assignment. The bisheaf b*F is deter-
mined similarly since every stratum of b*X is contractible. Consider Diagram (6). We
prove the claim by showing that B is surjective and B is injective.

For very stratum o € b*X, there is, by universality of b, at least one stratum ¢’ € a*X
such that p(o’) = 0. Consider the following sub-episheaf E of b*F. For each stratum

o€ b*X, let

E(st 0) := tI-J Epi(a*F)(st 0') C F(st b(o))
{o’€a*XK | u(o’)Co}
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and for each o0 < 7, let E(st T C st o) : E(st 0) — E(st T) be the restriction of the
map F(st b(t) Cst b((r)). Note that E(st T C st o) is surjective. The pull-back p*E is a
sub-episheaf of a*F containing Epi(a*?). By maximality of Epi(a*F), B is surjective.

The dual argument shows that B is injective. Consider the following quotient-
monocosheaf M of b*F. For each stratum o € b*X, let

Mist o) F(st b(0))
st o) =
_ n{c’ea*ﬂC | w(o’)Co} kern(a*E) (St O'/)

and for each 0 < 7, let M(st T C st ) : M(st T) — M(st o) be the map E(st b(t) C
st b(G)) quotient the intersection of the kernels. Note that M(st T C st o) is injective. The
pull-back u*M is a quotient-monocosheaf of a*F smaller than Mono(a*E). By minimality
of Mono(a*E), B is surjective. O

8. Dilation

In this section, we begin the task of proving stability of the isobisheaf stack of a map.
Dilation is an operation that coarsens or smooths the data of a constructible bisheaf.

Let K be a simplicial complex. The first subdivision of K is the simplicial complex K!
whose (open) simplices are chains [0j, < --- < 04, ] of simplices in K. The face relation
o, << o0y,]<[oj, < -~ < o5, ]in K! is the subchain relation. Similarly, the second
subdivision of X is the simplicial complex K? whose (open) simplices are chains

[[O'io < <o)< <loj, <+ < Ujm]}
of simplices in K'. The face relation in K? is the subchain relation.

Definition 8.1. The dilation of a simplicial complex K is the simplicial map £ : K2 — K!
defined by sending each vertex |:[O'io <o <oyl € K2 to the vertex [oi,] € K!. Thus
each simplex

(o1, <+ < 0] <o <oy <o <0y, ] <o Ko < <o )] €K

maps to the simplex [0y, < -+ < 0j, < --- < 03,] € KL Note that for a simplex T € K,

() =l st [[T] — | {clst [[o]] }.

o<T

Here cl st [[T]] means the closure of the open star of [[T]] in K2. See Fig. 2.

Let (X,X) be a triangulation and ¢ : |K — Kg| — X the associated homeomorphism
from a simplicial pair (K, Kg). We subdivide (X, X) by subdividing (K, Ky) and pushing-
forward along ¢. Denote by (X, K1) the i-th subdivision of (X, X). The simplicial dilation
map I : K2 — K! gives rise to a continuous dilation map  : (X, X?) — (X, K1).
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Fig. 2. The dilation of the 2-simplex K is the simplicial map £ : K2 — K! where K' is its first subdivision
and K? its second subdivision. For each vertex (resp. edge) T € K, Z~1([t]) is colored in red (resp. yellow).
(For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

A XK'-constructible bisheaf F around a manifold M pulls back along the dilation
map to produce a X2-constructible bisheaf Z*F around M generated by the following
assignments. Consider any pair V C U of X?-basic opens. Suppose V is associated to
a stratum T and U to a stratum o. Then o < T and therefore (o) < Z(t). The X?-
constructible sheaf £*F is generated by Z*F(U) := F(st Z(G)) and Z*F(V C U) is the
map F(St 2(t) Cst Z(G)). The K?-constructible cosheaf Z*F is generated by Z*F(U) :=
F(st £(0)) and £*F(V C U) is the map F(st £(t) C st £(0)). Let Z*F(U) := F(st Z(0)).

Proposition 8.2. Let (M, X) be a triangulation and F a K'-constructible bisheaf. Then
there is a canonical bisheaf map & : L*F — F.

Proof. By the above construction of L*F, it is enough to specify & on the open stars
of each stratum of K?2. For each T € X2, we have st T C st (7). Since Z*F(st T) is
canonically isomorphic to ?(st Z(T)), let ®(st T) be the map generated by the map
F(st T Cst Z(T)). Since Z*F(st T) is canonically isomorphic to E(st Z(T)), let o(st T) be
generated by the map E(st TCst Z(T)). a

Definition 8.3. Let (M,X) be a triangulation of a manifold and a : A — M a
K-constructible étale open. The shrinking of a is the K?-constructible étale open

a : A — M that is obtained by pulling back a along the continuous dilation map
(M K2 — (M, KY):
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For example, suppose M is 2-dimensional. If a is a 2-stratum of X as in Fig. 2, then a
is the white region in the interior.

Proposition 8.4. Let (M, X) be a triangulation of a manifold, F a K-constructible bisheaf,
a: A — M a K-constructible étale open, and 1 : @& — a the canonical étale map from the
shrinking of a. Then the two persistent colocal systems im u*lso(a*E) and im Iso(d*Z*E)

under A are isomorphic.

Proof. The dilation map £ : (M,X?) — (M, X') pulls-back to a surjective a*X'-
constructible map A : (A, a*%2) — (A, a*X?'). The isobisheaf

Epi(a*Z*F) < a*Z*F — a*Z*F — Mono(a*Z*F)
is the pull-back along A of the isobisheaf
Epi(a*F) — a*F - a*F —» Mono(a*E).
For each simplex o € a*X?, A(st o) D u(st o). Thus we have the following diagram

Epi(a*Z*F)(st o) = Epi(a*F) (u(st 0))

| |

Mono(a*£*F) (st 0) <<—————— Mono(a*F) (u(st 0))

which induces an isomorphism between the two vertical images. Therefore im p*lso(a*E)
and im Iso(c'l*Z*E) are isomorphic. 0O

9. Stability

Let M be a compact oriented m-manifold and 20(X, M) the set of all constructible
maps X — M as in Definition 2.2. For each open set U C X x M, let

Ty := {f € W(X, M) | graph(f) C U}.

The collection {Tu} over all open sets U forms the basis for the Whitney topology
on (X, M).

Theorem 9.1. Every map f € Q0(X, M) has an open neighborhood U C 23(X, M) such
that for every map g € WU, their bisheaves F, and G, are related by canonical bisheaf

maps in Bish(M):

F,.+ Z'F, = G,.
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Note that f and g need not be constructible with respect to the same stratification and
therefore F, and G, may not be constructible with respect to the same stratification.
Recall £ : M — M is the dilation map with respect to some triangulation of M and
Bish(M) is the category of all constructible bisheaves over M.

Proof. Suppose f is (8, J)-constructible making F, an 8-constructible bisheaf. By Propo-
sition 2.7, there is a triangulation (M, X) of (M,8,J) and this triangulation can be
chosen so that the open star of each stratum in X is contained in an (8, J)-basic open.
This makes F, a K'-constructible bisheaf and Z*F a K?-constructible bisheaf. The bisheaf
map I*F, — F, follows from Proposition 8.2.

Every second-countable, Hausdorff space is metrizable. Choose a metric on M. For
each stratum o € K, we have st [[0‘]] C st 0. By compactness of M, X is finite. Let

p:= grgjré Haus(st [[G}],st (r) (7)
where Haus is the Hausdorfl distance between the two sets. The set

U= {f’ € WX, M)

sup dist(f(x), f'(x)) < p} (8)
xeX

is an open neighborhood of f in 20(X, M).

Choose a map g € U and suppose it is (8’,d’)-constructible making G, an §'-
constructible bisheaf. Choose a triangulation (M, L) of (M,8’,3’). For each T € L,
we assume there is a

0= [[Gio<~-~<Gil]<~-<[650<~-~<Gjm}<---<[Gk0<---<cfkn] € K?

such that st T C st o. If this is not the case, subdivide £ until this is true. Note that there
may be many o satisfying this relation. In this case, choose the unique top dimensional
simplex 0. We have the following inclusions:

st CstoCst[log, < - < oy,]] Cst[log,]] Cstoy,.

Choose an (8,d)-basic open U C M containing st o3, such that both open sets are
associated to a common stratum in 8. Choose an (8’,J’)-basic open V C M contained
in st T such that both open sets are associated to a common stratum in 8’. The above
inclusions imply an inclusion i: g~ (V) — f~1(U). Recall £([[oy,]]) = [oi,]. Thus we
have the following commutative diagram of solid arrows:
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Huom (X, X = £ (U)) ——= Fasm(st 03,) —— Z*F(st [[o3,]])

|
Litm | (st T)
N \
Hitm (X,X— 971(\/)) — E*er(St T)
~ G, (st 1)
H.(g ' (V) - G, (st )
(sv) : \
li* I (st 7)
\
HL (W) = EL(0lst 03,)) = ZF(st [0y, ]]))

The bisheaf map I*F, — G, is generated by defining, for each T € £, the unique maps
(st T) and «(st T) that make the above diagram commute. O

Corollary 9.2. Every map f € 20(X, M) has an open neighborhood U C 20(X, M) such
that for each map g € U their isobisheaf stacks T, and E* are related by canonical stack
maps in Stack(M):

F,«TF, =G5,

Proof. A bisheaf map gives rise to a canonical map of isobisheaf stacks as constructed in
Example 7.2. The two stack maps follow from the two bisheaf maps of Theorem 9.1. O

We now discuss how Theorem 9.1 and Corollary 9.2 imply the property of Stability
for persistent local systems mentioned in Section 1. For every map f € 25(X, M), there is
a triangulation (M, X) such that f is K-constructible. Choose a metric on M and recall
p > 0 of Equation (7). Note that p is a measure of the coarseness of X. The finer the
triangulation, the smaller p gets. Given any étale open a : A — M, the metric on M lifts
to a metric on A. Define the distance between a and its shrinking a as the Hausdorff
distance between A and A along the inclusion A < A. The Hausdorff distance between
a and a is at most p. Let F, be the isobisheaf stack associated to f and let E* be the
isobisheaf stack associated to any g € 20(X, M) such that sup,cx d(fx,gx) < p. By
Corollary 9.2 and Equation (5), the persistent colocal system im F, restricted to Aisa
subquotient of im Gg.

10. Examples

We have carefully chosen three examples to illustrate key behaviors of persistent
(co)local systems.
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Example 10.1. Let R? be the plane parameterized by polar coordinates (r,0) and § the
stratification of R? consisting of the following two strata: the origin (0, 0) is the O-stratum
and R? —{(0,0)} is the 2-stratum. The stratification 8 is a Whitney stratification [13,
§5] of the plane thus admitting control data (R%,8,J) [13, §7]. Let S* be the circle
parameterized by [0, 27) and let X := [0,00) x S' x S!. Define the map f: X — R? as
f(r,$,0) = (r,0). The map f is (8, J)-constructible.

We now examine the bisheaf F; of f in dimension one as constructed in Example 5.3.
Let V C U C R? be two (8, J)-basic opens where U is associated to the 0-stratum and
V to the 2-stratum. Since all of R? is an S-basic open, F, is, by [6, Proposition 4.11]
and [6, Theorem 6.1], uniquely determined (up to an isomorphism) by the following
commutative diagram:

F3(U) =0

| !

FW=ZaeZ 7=
1(1,0)

The restriction fl¢-1(y) : f~1(V) = Vis a fiber bundle. By Proposition 5.4, F;(V) is an
isomorphism.

Now consider the isobisheaf stack JF; of the bisheaf F; as constructed in Example 7.2.
For any étale open a: A — R? that covers the origin, im F;(a) = 0. For any étale open
b : B — R? that avoids the origin, im F, (b) is the constant colocal system Z.

Note that Hl(ffl(O)) is isomorphic to Z @ Z but im F(U) is zero indicating that
Hy (f71(0)) is not stable. Indeed, we can make an arbitrarily small perturbation to f,
with respect to the Euclidean metric on R?, so that the pre-image of the origin is empty.

Example 10.2. Let R? be the plane parameterized by polar coordinates (r,0) and § the
stratification of R? consisting of the following two strata: the origin (0,0) is the 0-stratum
and R? —{(0,0)} is the 2-stratum. The stratification 8§ is a Whitney stratification of the
plane thus admitting control data (R2,8,J). Let S be the circle parameterized by [0, 271),
let X :=1[0,00) x S! x S, and let X :={0} x S! x S'. Define the map f: X/Xy = R? as
f(r,¢,0) = (r,0). The map f is (8, J)-constructible.

We now examine the bisheaf F; of f in dimension one as constructed in Example 5.3.
Let V C U C R? be two (8, J)-basic opens where U is associated to the 0-stratum and
V to the 2-stratum. Since all of R? is an S-basic open, F, is, by [6, Proposition 4.11]
and [6, Theorem 6.1], uniquely determined (up to an isomorphism) by the following
commutative diagram:

= id

Fs(U) =Z Z =F3(V)
lid
FW=0<~——Z=F (V).
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Fig. 3. Here we have an illustration of the torus Xy as a square with opposite sides glued. The boundary
of the disk A is glued to the torus along the horizontal circle and the boundary of B is glued to the torus
along the vertical circle as indicated. The map f takes x to X and takes the two circles (0,0) and (6,0)
around the circle So U S;. For a point p in the rest of the torus Xo, project p away from the diagonal to
one of the circles and apply f.

The restriction fl¢—1(y) : f1(V) = V is a fiber bundle. By Proposition 5.4, F;(V) is an
isomorphism.

Now consider the isobisheaf stack F, of the bisheaf F; as constructed in Example 7.2.
For any étale open a: A — R? that covers the origin, im J;(a) = 0. For any étale open
b:B — R? that avoids the origin, im F; (b) is the constant persistent colocal system Z.

Example 10.3. Let Xy be the torus parameterized by [0, 27t) x [0, 271) and
D:={(r,0) CR?|r<1land 0<0<2n}

the closed disk of radius one. Once again, we are using polar coordinates to label points
in the plane. Let x € Xy be the distinguished point (0,0). Let A and B be two copies
of D. Glue the boundary of A to Xy along the map A : (1,0) — (0,0) and glue
the boundary of B to Xg along the map ¢p : (1,0) — (0,0). Call the resulting space
X:=XoUgp, AUg, B.

Let S? := R2U{o0o} be the 2-sphere with the following stratification. Let So C S? be the
point (1,0), S; C S? the arc {(1,0) | 0 < 0 < 27}, S, the connected component of S —S;
containing the origin, and Ss the connected component of S2 — S; containing infinity.
The poset 8§ := {Sy, S1, S2, S3} is a Whitney stratification of S? thus admitting control
data (S2,8,d). Finally, define f: X — S? as the (8, J)-constructible map that takes x to
So, the interior of A homeomorphically to Ss, the interior of B homeomorphically to Ss,
and the torus Xy to the circle Sy U S; as shown in Fig. 3.

Now consider the bisheaf F, of f in dimension zero as constructed in Example 5.3.
Let Uy € S? be an (8, J)-basic open associated to the stratum So, U; € Uy an (8, J)-
basic open associated to the stratum S;, Uy C U; an (8, J)-basic open associated to the
stratum So, and Uz C Uy an (8, J)-basic open associated to the stratum Ss3. All four
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strata are contractible and therefore F is uniquely determined (up to an isomorphism)
by the following commutative diagram:

Fo(Up) = Z D Z

Fo(Uz) = Z Eo(Uy) = Z ” Fo(Us) = Z
\
id
id
Eo(Uo) = Z.

The restrictions flg—1 (1, : 1 (Usz) = Us and fl¢—1(u,) : T 1(Us) — Us are fiber bundles.
By Proposition 5.4, Fo(Uy) and Fo(Us) are isomorphisms. Let I, be the isobisheaf stack
of F, as constructed in Example 7.2. For any étale open a : A — S?, im JFy(a) is the
constant persistent colocal system Z.

We now construct a second constructible map h : X — S2. Let 8’ be the stratification
on S? consisting of the origin as the O-stratum S and S? — S/ as the 2-stratum Sj. Once
again, (S?,8’) is a Whitney stratification and therefore admits control data (S2,8’,3').
Define h as the map that takes the interior of B homeomorphically to S} and the rest
of X to the origin S{. Now consider the bisheaf H, of h in dimension 0 as constructed
in Example 5.3. Let U C S? be an $-basic open associated to S{ and V C U an 8-basic
open associated to S5. Then H, is uniquely determined (up to an isomorphism) by the
following commutative diagram:

Ha(U) = 7 Ha(V) = Z
lO \le
Hy(W) =Z - Ho(V) =Z

The support of a class in Ha(U) is the torus Xo whereas the support of a class in Ha(V)
is in the interior of B. Thus the top horizontal map is zero. The left vertical map is
the cap product with the pullback of the orientation to H?(U). This pullback is zero
making the cap product zero. Let EO be the isobisheaf stack of H, as constructed in
Example 7.2. For any étale open a : A — S? that covers the origin, im Eo(a) is zero
because the cap product over U is zero. This zero is explained by the fact that we may
perturb h by an arbitrarily small amount, with respect to any metric on S? as in the
proof of Theorem 9.1, so that the pre-image of the origin is empty.
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By Theorem 9.1, f has an open neighborhood W C 20(X, S?) such that for each map
g € W their bisheaves are related by canonical bisheaf maps

Fy « Z'Fy —= Gy
By Corollary 9.2, their isobisheaf stacks are related by canonical stack maps
Fo2F;— G,

Consider the étale open id : S?2 — S2. The shrinking of id is id itself. This means that the
persistent colocal system im J,(id) is a subquotient of im Eo(id). However, im J{,(id) =0
and therefore h cannot be in the open set W. Our stability theorem is inherently local.

Appendix A. Sheafification

Fix a stratified space (X,8) as in Definition 2.5. The poset Basic(X,8) of all 8-basic
opens is a basis for the topology on X. Choose a sub-basis A C Basic(X,8) and consider
a contravariant functor F : A — Ab such that for every pair ] C I of 8-basic opens
associated to a common stratum, the map F(] C I) is an isomorphism. We call such
a contravariant functor F an 8-constructible contravariant functor. Given such an F,
we may extend it to an S-constructible sheaf F over X as follows. For any open set
U C X, denote by A(U) C A the subposet consisting of all open sets contained in U.
Let F(U) := lim Fla(u)- For every pair of open sets V C U, the inclusion A(V) € A(U)
induces a canonical map F(V C U) between the two limits. In this section, we use the
equivalence between the category of 8-constructible sheaves Sh(X,8) and the category
of functors [EXit(X,S),Ab] from the exit path category Exit(X,8) to show that F is an
S-constructible sheaf as in see Definition 3.2.

An exit path in (X,8) is a continuous map vy : [0,1] — X such that the dimension
of the stratum containing the point y(t) is non-decreasing with increasing t. Two exit
paths o,  : [0,1] — X, where «(0) = B(0) and x(1) = B(1), are equivalent if, roughly
speaking, there is a homotopy of exit paths taking o to (3. See [6, Definition 4.5] for
a precise definition of equivalence in the dual setting of entrance paths, [17, Definition
7.4] for equivalence in the 2-category setting, and [12, Definition A.6.2] for equivalence
in the oo-category setting. The exit path category Exit(X,8) consists of points of X as
objects and a morphism from x to x’ is an equivalence class of exit paths starting at x
and ending at x’.

The category Sh(X, 8) of 8-constructible sheaves over X is equivalent to the category
of functors [Exit(X, 8), /—\b] . See [6, Theorem 6.1] for the equivalence in the dual setting of
constructible cosheaves, [17, Theorem 7.14] for the 2-category setting, and [12, Theorem
A.9.3] for the co-category setting. There are two functors
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[

T

Sh(X, 8) [Exit(X, 8), Ab]

\/

v

in this equivalence, but we only need W, which we now describe on an object H :
Exit(X,8) — Ab. For an open set U C X, denote by Exit(U,8|y) the full subcategory
of Exit(X, 8) restricted to the stratified space (U, 8|y ). Then W(H)(U) := limgu(u,s|,) H-
For every pair of open sets V C U, W(H)(V C U) is the universal homomorphism between
the two limits.

Proposition A.1. Let A C Basic(X,8) be a sub-basis and F : A — Ab an 8-constructible
contravariant functor. Then the contravariant functor F : Open(X) — Ab, as constructed
above from F, is an 8-constructible sheaf.

Proof. First, we construct a functor H : Exit(X,8) — Ab from F. Next, we show that
the two contravariant functors W(H),F : Open(X) — Ab are naturally isomorphic thus
proving F is an 8-constructible sheaf.

For a point x € X, let H(x) be the colimit of F over all open sets containing x.
For an open set I € A containing x, denote by H(x € I) : F(I) — H(x) the canonical
homomorphism to the colimit. Note that if I is associated to the stratum containing x,
then H(x € I) is an isomorphism. Now consider an exit path « in (X,8) that meets
at most two strata and satisfies the following condition. Suppose the point «(0) lies
on a stratum S; € 8§ and the point «(1) lies on a stratum S, € 8. Then we require
that there is an 8-basic open I € A associated to S; containing the path o. Define
H() : H(x(0)) — H(x(1)) as the following composition:

H(ex(1)€T)

—1
H(a(0) H(oc(();GI)

F(I) H(x(1)).

The homomorphism H(«) is independent of the choice of I; see proof of [6, Theorem
6.1]. An arbitrary exit path f in (X,8) can be written as a composition of simpler exit
paths each satisfying the conditions imposed on &« above. The homomorphism H(B) is
simply the composition of homomorphisms associated to each of these simpler exit paths.
Furthermore, if B’ is a second exit path equivalent to 3, then H(B) = H(B’); see proof
of [6, Theorem 6.1].

We now build a natural isomorphism p : W(H) = F. Suppose I € A is associated
to a stratum S € 8. Then, by [6, Proposition 4.11], every point x € I NS is initial in
Exit(I, 8|1). This implies W(H)(I) is canonically isomorphic to H(x), which is canonically
isomorphic to F(I), which is canonically isomorphic to F(I). Let w(I) : W(H)(I) — F(I) be
this canonical isomorphism. For every pair ] C I in A, there is, by [6, Proposition 4.11],
a unique exit path « in I from x € INS toy € JNS’, where S’ is the stratum associated



36 R. MacPherson, A. Patel / Advances in Mathematics 386 (2021) 107795

to J. Combined with the fact that both x and y are initial in Exit(I, 8|1) and Exit(], 8|y),
respectively, the following diagram commutes:

Now let U C X be an arbitrary open set. Since W(H) satisfies the gluing axiom and
A(U) is an open cover of U, the universal homomorphism W(H)(U) — lim W(H)|au is
an isomorphism. Furthermore, there is a canonical isomorphism lim W(H)[a(u) — F(u)
because both groups are limits over naturally isomorphic diagrams W(H)|a(u) and F| A(U)>
respectively. Thus for every pair of open sets V C U, the following diagram commutes:

Therefore, F is canonically isomorphic to W(H). O
Appendix B. Cosheafification

Fix a stratified space (X,8) as in Definition 2.5. The poset Basic(X,8) of all S-basic
opens is a basis for the topology on X. Choose a sub-basis A C Basic(X,8) and consider
a covariant functor F : A — Ab such that for every pair J C I of 8-basic opens associated
to a common stratum, the map F(] C I) is an isomorphism. We call such a covariant
functor F an 8-constructible covariant functor. Given such an F, we may extend it to an 8-
constructible cosheaf F under X as follows. For any open set U C X, denote by A(U) C A
the subposet consisting of all open sets contained in U. Let F(U) := colim F|s(y). For
every pair of open sets V C U, the inclusion A(V) C A(U) induces a canonical map F(V C
U) between the two colimits. In this section, we use the equivalence between the category
of 8-constructible cosheaves Cosh(X, 8) and the category of functors [Ent(X7 8), Ab] from
the entrance path category Ent(X,8) to show that F is an 8-constructible cosheaf as in
Definition 3.2. The entrance path category Ent(X,8) is simply the opposite of the exit
path category Exit(X,8) from Appendix A.

The category Cosh(X,8) of 8-constructible cosheaves under X is equivalent to the
category of functors [Ent(X7 8), Ab]; see [6, Theorem 6.1]. There are two functors
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[
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Cosh(X, §) [Ent(X, ), Ab]

\/

v

in this equivalence, but we only need W, which we now describe on an object H :
Ent(X,8) — Ab. For an open set U C X, denote by Ent(U, 8|y ) the full subcategory of
Ent(X, 8) restricted to the stratified space (U, 8|y). Then W(H)(U) := colim gne(u,s/, ) H-
For every pair of open sets V C U, W(H)(V C U) is the universal homomorphism between
the two colimits.

Proposition B.1. Let A C Basic(X,8) be a sub-basis and F : A — Ab an S-constructible
covariant functor. Then the covariant functor E : Open(X) — Ab, as constructed above
from F, is an 8-constructible cosheaf.

Proof. First, we construct a functor H: Ent(X,8) — Ab from F. Next, we show that the
two covariant functors W(H), F : Open(X) — Ab are naturally isomorphic thus proving F
is an S-constructible cosheaf.

We now construct a functor H : Ent(X,8) — Ab from the covariant functor F given
above. For a point x € X, let H(x) be the limit of F over all open sets containing x.
For an open set I € A containing x, denote by H(x € I) : H(x) — F(I) the canonical
homomorphism from the limit. Note that if I is associated to the stratum containing x,
then H(x € I) is an isomorphism. Now consider an entrance path « in (X, 8) that meets
at most two strata and satisfies the following condition. Suppose the point «(0) lies
on a stratum S, € 8§ and the point «(1) lies on a stratum S; € 8. Then we require
that there is an S-basic open I € A associated to S; containing the path «. Define
H(o) : H(x(0)) — H(x(1)) as the following composition

H(ex(0)€I)

H(x(0)) H(x(1)).

F(I) H(Oé(liel)*l
The homomorphism H(«) is independent of the choice of I; see proof of [6, Theorem 6.1].
An arbitrary entrance path 3 in (X, 8) can be written as a composition of simpler entrance
paths each satisfying the conditions imposed on « above. The homomorphism H(B) is
simply the composition of homomorphisms associated to each of these simpler entrance
paths. Furthermore, if 3’ is a second entrance path equivalent to 8, then H(B) = H(B');
see proof of [6, Theorem 6.1].

We now build a natural isomorphism @ : F = W(H). Suppose I € A is associated
to a stratum S € §. Then, by [6, Proposition 4.11], every point x € I NS is final in
Ent(I, 8|1). This implies W(H)(I) is canonically isomorphic to H(x), which is canonically
isomorphic to F(I), which is canonically isomorphic to F(I). Let w(I) : F(I) — W(H)(I)
be this canonical isomorphism. For every pair ] C I in A, there is, by [6, Proposition
4.11], a unique entrance path « in I fromy € JNS’ to x € INS, where S’ is the stratum
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associated to J. Combined with the fact that both x and y are final in Ent(I, 8|;) and
Ent(], 8j), respectively, the following diagram commutes:

Now let U C X be an arbitrary open set. Since W(H) satisfies the gluing axiom and A(U)
is an open cover of U, the universal homomorphism colim W(H)|aw) — Y(H)(U) is an
isomorphism. Furthermore, there is a canonical isomorphism colim W(H)|aw) — F(U)
because both groups are colimits over naturally isomorphic diagrams W(H)|ay) and

Flacu), respectively. Thus for every pair of open sets V C U, the following diagram
commutes:

F(V) &) F(U)
=u(Vv Slu(u)
Y(H)(V) —C“> Y(H)(U)

Therefore, F is canonically isomorphic to W(H). O
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