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Abstract—A collection of sets displays a proximity gap with
respect to some property if for every set in the collection, either
(i) all members are δ-close to the property in relative Hamming
distance or (ii) only a tiny fraction of members are δ-close to the
property. In particular, no set in the collection has roughly half
of its members δ-close to the property and the others δ-far from
it.

We show that the collection of affine spaces displays a prox-
imity gap with respect to Reed–Solomon (RS) codes, even over
small fields, of size polynomial in the dimension of the code, and
the gap applies to any δ smaller than the Johnson/Guruswami–
Sudan list-decoding bound of the RS code. We also show near-
optimal gap results, over fields of (at least) linear size in the RS
code dimension, for δ smaller than the unique decoding radius.
Concretely, if δ is smaller than half the minimal distance of
an RS code V ⊂ F

n
q , every affine space is either entirely δ-

close to the code, or alternatively at most an (n/q)-fraction of
it is δ-close to the code. Finally, we discuss several applications
of our proximity gap results to distributed storage, multi-party
cryptographic protocols, and concretely efficient proof systems.

We prove the proximity gap results by analyzing the execution
of classical algebraic decoding algorithms for Reed–Solomon
codes (due to Berlekamp–Welch and Guruswami–Sudan) on a
formal element of an affine space. This involves working with
Reed–Solomon codes whose base field is an (infinite) rational
function field. Our proofs are obtained by developing an extension
(to function fields) of a strategy of Arora and Sudan for analyzing
low-degree tests.

I. INTRODUCTION

A variety of protocols, arising in the contexts of interactive

proofs, distributed storage and cryptography, give rise to

the following problem regarding proximity to a linear code

V ⊂ F
n
q over a finite field Fq of minimal relative distance

δV . These myriad protocols assume oracle access to a batch

of vectors u = {u0, . . . , ul} ⊂ F
n
q and their soundness

requires that each and every vector ui be close to V in relative

Hamming distance. Furthermore, soundness deteriorates as

a function of the largest distance between some vector ui

and the code V . Thus, we seek protocols that minimize the

number of queries to the entries of the vectors in u, while

maximizing the probability of recognizing when some vector

ui is significantly far from V .

The linearity of V suggests a natural approach, first ex-

plored by Rothblum, Vadhan and Wigderson [1]: sample

a uniformly random vector u′ in the span of u (denoted

span(u)) and view the distance between u′ and V , denoted

Δ(u′, V ), as a proxy for the maximal distance between some

member of u and V . To argue soundness, we would like to

show that if even a single ui is δ-far from (all members of)

V , then a randomly chosen u′ is also far from V . Indeed, the

paper [1] that suggested this approach also showed for any

V , that whenever a single ui is δ-far from V , then nearly all

samples u′ are at least δ/2-far from V . Here and henceforth,

we use Δ to denote relative Hamming distance and say “u is

δ-close to V ”, denoted Δ(u, V ) ≤ δ, when Δ(u, v) ≤ δ for

some v ∈ V ; otherwise we say “u is δ-far from V ” (denoted

Δ(u, V ) > δ).

Note that the result above incurs a 2× degradation in the

proximity parameter δ: the worst-case assumption — that

some ui is δ-far from V — implies an average-case distance

that is only δ/2. Eliminating the proximity degradation is easy

when the field size is exponential in the code length. More

concretely, if q � 2nH(δ), where H is the binary entropy

function, then a union bound over agreement sets shows that

for δ < δV , if ui is δ-far from V then so are nearly all

u′ ∈ span(u). However, exponential field size is prohibitively

large in the context of the motivating applications. Obtaining

similar results over fields of sub-exponential size appears to

be much more challenging.

A number of works looked at this question and were able

to remove the degradation in δ with polynomial field size.

Ames et al. [2] showed that for proximity parameters δ that

are smaller than half of the unique-decoding radius of V (i.e.,

when δ < δV /4), nearly all u′ ∈ span(u) are δ-far from V .

The proximity bound was subsequently improved to δ < δV /3
by Roth and Zémor [3]. Ben-Sasson et al. [4] showed similar

results for δ above the unique decoding radius, holding for
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any δ < 1− 4
√
1− δV , and the state of the art1 was given in

[5], holding for any δ < 1− 3
√
1− δV . In fact, this latter result

was shown to be tight for certain RS codes, in particular, of

maximal blocklength n = q.

Ames et al., who were the first to show that in certain cases

the average-case distance of u′ ∈ span(u) from V is nearly-

always equal to the worst-case distance of ui ∈ u from V ,

also raised the following intriguing question, which is at the

focus of our investigation here: For which codes and what

range of δ does the following statement hold?

If some u∗ ∈ span(u) is δ-far from V , then so
are nearly all u′ ∈ span(u).

One implication of our main result is that when V is an RS

code over a sufficiently large field — polynomially large in

the code’s blocklength — and when δ is smaller than the

Johnson/Guruswami–Sudan list decoding bound, the above

phenomenon holds. We refer to it as a proximity gap, as

explained next.

A. Gaps and proximity gaps

When a “gap” in mentioned in theoretical computer sci-

ence, it usually refers to a situation where all objects under

consideration must fall into one of two categories, and these

categories display a large gap according to some metric.

Striking examples are given by PCP reductions whose outputs

are constraint satisfaction problems that lie in one of two

categories: satisfiable instances in which some assignment

satisfies all constraints, and unsatisfiable instances in which

all assignments fail to satisfy more than an ε fraction of

constraints. Another gap example underlies randomized al-

gorithms. For instance, the Miller–Rabin primality test relies

on a gap between primes and composites: in the latter case

(composites), at least three-quarters of the integers serve as

composite witnesses whereas for primes none do, leading to

a “gap” of measure 3/4.

Our result can be phrased as a proximity gap according to

the following definition.

Definition I.1 (Proximity gap). Let P ⊂ Σn be a property
and C ⊂ 2Σ

n

be a collection of sets. Let Δ be a distance
measure on Σn. We say that C displays a (δ, ε)-proximity gap
with respect to P under Δ if every S ∈ C satisfies exactly one
of the following:

1) Prs∈S[Δ(s,P) ≤ δ] = 1.
2) Prs∈S[Δ(s,P) ≤ δ] ≤ ε.

We call δ the proximity parameter and ε is the error parameter.
By default, Δ denotes the relative Hamming distance measure.

Using this definition we can state our main result. Infor-

mally, it says that if V ⊂ F
n is an RS-code and A ⊂ F

n

is an affine space, then either all elements of A are close to

V , or otherwise, nearly all elements of A are far from V . In

1We note that these improvements give a roughly 2× improvement to the
protocol of [1] in which this question was originally studied, when that protocol
is instantiated with codes of sufficiently large relative distance (see Theorem
3.4 there).

other words, there is no affine A in which roughly half of the

elements are close to V while the other half are far from V .

Throughout this paper, Fq denotes the field of size q, and

RS[Fq,D, k] is the RS code of dimension k + 1 and block-
length n = |D| containing as its codewords the polynomials

of degree ≤ k, evaluated on D. We use ρ to denote the rate
ρ = k+1

n
of the code. The letter δ will typically denote relative

Hamming distance to the relevant RS code and ε will denote

an error parameter, the probability that a “bad event” occurs

(with varying definitions of the term “bad event”).

The following result has two parts and each part has

its own proof. The first part holds only below the unique

decoding radius but has a smaller error parameter, denoted

εU; the second part holds for proximity parameters up to the

Johnson/Guruswami–Sudan bound (which is greater than the

unique decoding bound) but has a larger error bound εJ (the

proof of the second part is also significantly harder).

Theorem I.2 (Proximity Gap for RS codes). The collection
CAffine of affine spaces in F

D
q displays a (δ, ε)-proximity gap

with respect to the RS-code V := RS[Fq,D, k] of blocklength
n and rate ρ = k+1

n
, for any δ ∈ (0, 1 − √

ρ), and ε =
ε(q, n, ρ, δ) defined as the following piecewise function:

• Unique decoding bound: For δ ∈ (
0, 1−ρ

2

]
, the error

parameter ε is

ε = εU = εU(q, n) :=
n

q
. (I.1)

• Johnson bound: For δ ∈ (
1−ρ
2

, 1−√
ρ
)
, setting η :=

1−√
ρ− δ, the error parameter ε is

ε = εJ = εJ(q, n, ρ, δ) :=
(k + 1)2(

2min
(
η,

√
ρ

20

))7

q

= O

(
1

(ηρ)O(1)
· n

2

q

)
(I.2)

There are two striking aspects to this result. First, the

proximity parameter δ can take any value smaller than

the famous Johnson/Guruswami–Sudan bound, which is the

largest distance for which we know of efficient (list) decoding

algorithms. (Looking ahead, the Guruswami–Sudan algorithm

will play a crucial, though non-algorithmic, role in our proofs.)

Second, the size of the field needed to achieve this result is

relatively small — linear in the blocklength when δ is below

the unique decoding radius δ < (1− ρ)/2 and, for fixed rate,

quadratic in blocklength for larger δ up to the list decoding

bound.

Remark I.1 (Tightness of results). The maximal proximity

parameter δ for which Theorem I.2 applies happens to coin-

cide with the Johnson/Guruswami–Sudan list-decoding bound

(1 − √
ρ). This evidently follows from the techniques we

use here, that rely on list-decoding algorithms that reach that

bound. However, we conjecture that Theorem I.2 holds even

for larger proximity parameters, up to capacity (1 − ρ). See

Conjecture VII.3 in [6] and the discussion there.

Remark I.2 (Field size). The bound in Eq. (I.2) which reaches

the Johnson bound becomes nontrivial only for fields of size
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q that are at least quadratically larger than the blocklength

n. In contrast, the bound for smaller proximity parameters,

below the unique decoding radius, works for q = O(n) (see

Eq. (I.1)). We point out that for certain combinations of fields

and rate parameters one cannot hope to reach the Johnson

bound with linear size fields, as this would contradict prior

results from [4].

In the unique decoding regime, the result is sharp in the

sense that affine spaces do not all display a proximity gap

with q · ε being sublinear in n, for fixed distance parameter δ.

A simple example is of the affine line {u0 + zu1 : z ∈ Fq},

where u0, u1 : D → Fq are such that on a set D′ ⊂ D of

size |D′| = n(1 − δ) − 1 we have u0|D′ = u1|D′ = 0,

and on the complement we have that u1|D\D′ = 1, and u0

takes δn+1 pairwise different non-zero values. We then have

dist(u0 + zu1, V ) ≤ δ for each of the δn + 1 values of

z ∈ Fq for which −z is in the image of u0|D\D′ , but that

dist(u0, V ) = δ + 1
n

> δ, thus this line does not display a

(δ, δn
q
) proximity gap with respect to the code.

B. Concentration bounds

Theorem I.2 implies the following concentration bound,

saying that for any affine space in which the element farthest

from the RS code is within the Johnson/Guruswami–Sudan

radius, nearly all elements are at exactly the same distance

from the code(!).

For two sets U, V ⊂ Σn define the divergence2 of U from

V as D(U, V ) := maxu∈U Δ(u, V ).

Corollary I.3 (Concentration bounds). Let V, q, n, k and ρ
be as defined in Theorem I.2. Let U ⊂ F

D
q be an affine space

over Fq and denote δ∗ := D(U, V ). If δ∗ is smaller than the
Johnson/Guruswami–Sudan bound, then nearly all elements
of U have distance exactly δ∗ from the code. In other words,
if δ∗ ∈ (0, 1−√

ρ), then

Pr
u∈U

[Δ(u, V ) �= δ∗] ≤ ε,

where ε = ε(q, n, ρ, δ∗) is as defined in Theorem I.2.

When the divergence of U from the RS code V is greater

than the Johnson/Guruswami–Sudan bound (δ∗ > 1 − √
ρ)

we may still use Theorem I.2 to conclude that nearly all

elements of U are ≈ (1−√
ρ)-far from V , but what remains

an interesting open problem is whether nearly all members

of U are maximally far (δ∗-far) from V . An example from

[5] show that this need not be the case for RS codes where

q = O(n).

C. Correlated agreement

Next, we state the main technical theorem proved in the

paper. Consider two vectors u0, u1 ∈ F
D . The result says

that if sufficiently many elements in the 1-dimensional affine

space A = {u0 + zu1 : z ∈ F} are sufficiently close (δ-

close) to the RS code V , then there must be a nontrivial

subdomain D′ ⊂ D of density 1−δ in D, such that restricting

2 Note that divergence is not symmetric as can be seen, e.g., when U is a
strict subset of V .

u0, u1 to D′ gives a valid RS codeword (evaluated over D′).
We refer to the property that such a D′ exists as correlated
agreement, in the sense that u0, u1 and the elements of A do

not only have large agreement with the RS code individually,

but also share a common large agreement set. The result has

two ranges of parameters, as in prior statements in this paper.

The proofs for both ranges are given in our full paper [6]: for

proximity parameters in the unique decoding regime this is

proved in Theorem IV.1, and for proximity parameters in the

list decoding regime this is proved in Theorem V.1.

Theorem I.4 (Main Theorem — Correlated agreement over

lines). Let V, q, n, k and ρ be as defined in Theorem I.2. For
u0, u1 ∈ F

D
q , if δ ∈ (0, 1−√

ρ) and

Pr
z∈Fq

[Δ(u0 + z · u1, V ) ≤ δ] > ε,

where ε is as defined in Theorem I.2, then there exists D′ ⊂ D
and v0, v1 ∈ V satisfying

• Density: |D′|/|D| ≥ 1− δ, and
• Agreement: v0 agrees with u0 and v1 agrees with u1

on all of D′.

Remark I.3 (Sampling from extension fields). One may sam-

ple z from a finite extension field Fq′ of Fq . In this case, the

statement above holds with εU and εJ modified by replacing q
with q′ in the denominators of Eqs. (I.1) and (I.2), respectively.

Note that even in this setting, the vectors v0, v1 deduced

to exist in Theorem I.2 belong to RS[Fq,D, k], not just

in RS[Fq′ ,D, k], because v0, v1 have high agreement with

u0, u1 ∈ F
D
q . The ability to sample from a larger field (and

incur smaller error) applies to the other statements of this

section but for simplicity we state all of them using a single

field Fq to both define V and sample z from.

Motivated by applications (described later), we generalize

the theorem above to two interesting cases: (i) low-degree pa-

rameterized curves, and (ii) higher-dimensional affine spaces;

details follow.

Correlated agreement over parameterized curves: The

first extension of Theorem I.4 extends it from the case of

a “line” passing through u0 and u1 (the line being {u0 +
zu1 : z ∈ F}) to a “low-degree curve” with coefficients

u0, u1, . . . , ul, as described below. This result is of particular

importance for two reasons. First, it leads to derandomized

testing of verifiable secret sharing and distributed storage

protocols (cf. Section VII-A in [6]). Second, it improves the

soundness analysis of the Fast RS IOPP (FRI) protocol [7],

which is used in concretely efficient and transparent (public

coin) proof systems [8–12]. We discuss this application in

Sections III-B and VII-B in in [6].

Let u = {u0, . . . , ul} ⊂ F
D
q . The parameterized curve of

degree l that is generated by u is the following collection of

vectors in F
D
q :

curve(u) :=

{
uz :=

l∑
i=0

zi · ui

∣∣∣∣∣ z ∈ Fq

}
.
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Theorem I.5 (Correlated agreement for low-degree parameter-

ized curves). Let V, q, n, k and ρ be as defined in Theorem I.2.
Let u = {u0, . . . , ul} ⊂ F

D
q . If δ ∈ (0, 1−√

ρ) and

Pr
u∈curve(u)

[Δ(u, V ) ≤ δ] > l · ε,

where ε is as defined in Theorem I.2, then there exists D′ ⊂ D
and v0, . . . , vl ∈ V satisfying

• Density: |D′|/|D| ≥ 1− δ, and
• Agreement: for all i ∈ {0, . . . , l}, the functions ui and

vi agree on all of D′.

Correlated agreement for affine spaces: The second

generalization of our Main Theorem I.4, extends it from the

1-dimensional case (affine line) to an affine space of arbitrary

dimension. Theorem I.2 follows directly from the following

statement. Note that Main Theorem I.4 is actually a case of

the following result (for 1-dimensional spaces). However, we

stated that special case separately because we prove it first,

and from it deduce the more general case (see Section VI-C

of [6] for details).

Theorem I.6 (Correlated agreement over affine spaces).
Let V, q, n, k and ρ be as defined in Theorem I.2. For
u0, u1, . . . ul ∈ F

D
q let U = u0+span{u1, . . . , ul} ⊂ F

D
q be

an affine subspace. If δ ∈ (0, 1−√
ρ) and

Pr
u∈U

[Δ(u, V ) ≤ δ] > ε,

where ε is as defined in Theorem I.2, then there exists D′ ⊂ D
and v0, . . . , vl ∈ V satisfying

• Density: |D′|/|D| ≥ 1− δ, and
• Agreement: for all i ∈ {0, . . . , l}, the functions ui and

vi agree on all of D′.

Furthermore, in the unique decoding regime δ ∈ (
0, 1−ρ

2

]
,

there exists a unique maximal D′ satisfying the above, with
unique vi.

Correlated agreement (Theorem I.6) is a sufficient condition

for proximity gaps with the same error and proximity param-

eters (Theorem I.2). We leave as open problems (i) whether

correlated agreement is also a necessary condition for a

proximity gap. And, if the answer to this question is negative,

an intriguing possibility arises: (ii) obtaining proximity gaps

for δ > 1 − √
ρ while bypassing the correlated agreement

approach we took here.

Organization of the rest of the paper: We provide an

overview of the proof of Main Theorem I.4 in Section II,

and survey several applications of our results in Section III.

The detailed proofs of our theorems, as well as further details

on the applications of our results to Verifiable Secret Sharing

(VSS) and Fast RS IOPs of Proximity (FRI), are omitted here

and can be found in Sections IV–VII and Appendix A of the

full paper [6].

II. PROOF OVERVIEW

In this section, we give an overview of our proof strategy

of our main result, Theorem I.4.

Recall the setup. V = RS[Fq,D, k] of degree k polynomi-

als evaluated at the points of D ⊆ Fq , where |D| = n. We

have functions u0, u1 : D → Fq such that for many z ∈ Fq ,

the function u0 + zu1 is δ-close to V . We want to deduce

that u0 and u1 are themselves close to V .

The main conceptual idea of our analysis is to work with

the function field K = Fq(Z) with a formal variable Z,

and to study the various received words u0 + zu1 for the

code V simultaneously by considering the formal received
word w = u0 + Zu1 : D → K for the (big field) Reed–

Solomon code RS[K,D, k]. It turns out that showing that w
is close to a (well-structured) codeword of this Reed–Solomon

code is sufficient to show that u0 and u1 are both close

to the original Reed–Solomon code V . With this viewpoint,

our proof strategy is to run a decoding algorithm for Reed–
Solomon codes on this received word w = u0 + Zu1. Our

goal is to analyze the execution of this algorithm to show

that it succeeds in finding a nearby Reed–Solomon codeword.

We do such an analysis by relating it to the execution of that

decoding algorithm on the various received words u0 + zu1

for the Reed–Solomon code V over the small field Fq .

This strategy is instantiated with two different decoding

algorithms for Reed–Solomon codes: the Berlekamp–Welch

unique decoding algorithm, and the Guruswami–Sudan list

decoding algorithm [13]. Both instantiations give rise to

intriguing algebraic questions about polynomials, which we

resolve using nontrivial tools from algebraic geometry and

the theory of algebraic function fields.

Instantiation with the Berlekamp–Welch Algorithm: Over a

field F and an evaluation domain D, given a received word r :
D → F, the Berlekamp–Welch decoding algorithm for finding

the (unique) nearby polynomial P (X) ∈ F[X] close to r
works as follows. First it searches for low-degree polynomials

A(X), B(X) ∈ F[X] such that for each x ∈ D:

A(x)r(x) = B(x).

Then the nearby polynomial P (X) is recovered as

B(X)/A(X) (which a priori may be a rational function).

In our setting, we first run the Berlekamp–Welch algorithm

with received word w = u0 + Zu1 : D → K over

the big field K = Fq(Z) (we will sometimes view this

as a function w(x, z) with w : D × Fq → Fq). Our

goal is to find a nearby Reed–Solomon codeword (low-

degree polynomial) P (X) ∈ K[X] which has the special

form P0(X) + ZP1(X), where each Pi(X) ∈ Fq[X].
The first step of the Berlekamp–Welch algorithm gives us

A(X), B(X) ∈ K[X] = Fq(Z)[X]. Making the Z depen-

dence explicit, we write these as A(X,Z), B(X,Z). This

gives us a candidate, namely A(X,Z)/B(X,Z), for being

a Reed–Solomon codeword close to w. We will show two

things: that A(X,Z)/B(X,Z) is a polynomial in Fq(Z)[X]
(a priori it is only a rational function), and that it is close to

w.

The crucial step is to substitute Z = z into A(X,Z)
and B(X,Z) for various values of z ∈ Fq . Letting wz =
u0 + zu1 : D → K (the result of substituting Z = z into
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w), it turns out that A(X, z), B(X, z) ∈ Fq[X] are what we

would get if we run the Berlekamp–Welch algorithm (over the

small field Fq) on received word wz . In particular, for many

z we get that B(X, z) is divisible by A(X, z) in Fq[X], and

B(X, z)/A(X, z) equals the Reed–Solomon codeword close

to wz . This then allows us to use the Polishchuk–Spielman

lemma (a strengthening of the classical Bezout theorem, which

deduces divisibility of bivariate polynomials from divisibility

of univariate restrictions) to conclude that B(X,Z)/A(X,Z)
is in fact a polynomial P (X,Z) in K[X] of low degree in X .

The final step is to show that P (X,Z), when viewed as a

function from D to K, is close to w, and that that the Z
dependence of P (X,Z) is simple (just linear in Z). This

is again achieved by considering Z substitutions. We know

that for many z, P (X, z) is the degree at most k polynomial

Pz(X) that is close to wz . This means that the X degree

of P (X, z) is at most k, and that for many x ∈ D and z
there is agreement between P (x, z) and wz(x) = w(x, z). On

the other hand, for any x ∈ D, w(x, ·) is a linear function,

and P (x, ·) is a low degree rational function, and so they

cannot agree on too many points unless the low degree rational

function P (x, ·) formally equals the linear function w(x, ·).
Therefore this formal equality must happen for many x ∈ D,

i.e., P (·, Z) is close to w. Finally, by simple linear algebra, if

P (x, Z) is linear in Z for many x, we conclude that P (X,Z)
is linear in Z. This gives us our desired conclusion.

Instantiation with the Guruswami–Sudan Algorithm: Over

a field F and an evaluation domain D, given a received word

r : D → F, the Sudan and Guruswami–Sudan decoding

algorithms for finding all nearby polynomials P (X) ∈ F[X]
close to r work as follows. First one searches for a low-degree

polynomial Q(X,Y ) ∈ F[X,Y ] such that for each x ∈ D,

Q(x, r(x)) = 0.

(This is the Sudan algorithm; for the Guruswami–Sudan

algorithm we ask that Q vanishes at each (x, r(x)) with high

multiplicity.) Then every nearby polynomial P (X) turns out

to have the property that Y − P (X) divides Q(X,Y ) in the

bivariate polynomial ring Fq[X,Y ]. This means that all such

P (X) can be found by factoring Q(X,Y ).

In our setting, we run the Guruswami–Sudan algorithm with

received word w = u0+Zu1 : D → K over the big field K =
Fq(Z). Our goal is to find a nearby low-degree polynomial

P (X) ∈ K[X] which has the special form P0(X)+ZP1(X),
where each Pi(X) ∈ Fq[X]. The first step of the Guruswami–

Sudan algorithm gives us a bivariate polynomial Q(X,Y ) ∈
K[X,Y ] such that Q(x,w(x)) = 0 for each x ∈ D. Again,

we write Q(X,Y ) as Q(X,Y, Z) ∈ Fq(Z)[X,Y ] to make

the Z dependence explicit (and we can clear denominators in

Z without affecting the vanishing property).

Substituting Z = z, we get that Q(x,wz(x), z) = 0 for

each x ∈ D. This means that the polynomial Qz(X,Y ) ∈
Fq[X,Y ] given by Qz(X,Y ) = Q(X,Y, z) ∈ Fq[X,Y ]
is the bivariate polynomial we would have found while

running the Guruswami–Sudan algorithm with received word

wz : D → Fq over the small field Fq . Since for many z ∈ Fq

we have that wz is close to some codeword Pz(X) ∈ Fq[X]
of the Reed–Solomon code V , we get that Y −Pz(X) divides

Q(X,Y, z) for many z ∈ Fq . We would like to deduce from

this that over the big field K there is a low-degree polynomial

P (X) ∈ K[X] such that Y − P (X) divides Q(X,Y ) in

K[X,Y ] (and furthermore, this P (X) is close to w and has

a simple Z dependence).

This is the most involved (and interesting) part of the

analysis. We will factor Q(X,Y, Z) completely into linear

factors in Y .

Q(X,Y, Z) = C(X,Z)(Y − γ1(X,Z))(Y − γ2(X,Z))

· · · (Y − γD(X,Z)). (II.1)

This is natural to do, because we are searching for factors that

are linear in Y . Then we substitute Z = z into this, and we

should see Pz(X) as one of the factors.

However, getting such a factorization for Q(X,Y, Z) may

not be possible with polynomials γi(X,Z), and we have to

look (far) beyond. What kind of objects should we think of the

γi as? After getting the γi(X,Z), we would like to (a) argue

about when γi(X,Z) is a polynomial in X , and (b) substitute

Z = z into it and inspect the resulting object. To enable

these, we will express γi(X,Z) in the ring R = K[[X]],
the ring of power series in X , whose coefficients are in

the algebraic closure of K = Fq(Z). The power series in

X representation allows us to see when γi is a polynomial

in X , and the coefficients being simply algebraic functions

in Z (such as
√
Z3 + Z + 1) allows us to reason about

substitutions Z = z. Having decided on R, it is a simple

application of Hensel lifting (after possibly a random shift)

to show that a factorization as in (II.1) is possible with the

γi ∈ R.

Rather than describe what happens in full generality, we

just sketch what would happen in a special case with most of

the action. Suppose Fq is not of characteristic 2, and we have:

Q(X,Y, Z) = Y 2 − (Z3 + Z + 1)(1− ZX).

Going to the ring R, and letting α =
√
Z3 + Z + 1 ∈ K, it

turns out that Q(X,Y, Z) factors as:

Q(X,Y, Z) =
(
Y −

√
Z3 + Z + 1

√
1− ZX

)
·
(
Y +

√
Z3 + Z + 1

√
1− ZX

)
=

(
Y −

(
α− α · Z

2
X − α · Z2

16
X2 + . . .

))

·
(
Y +

(
α− α · Z

2
X − α · Z2

16
X2 + . . .

))
where we used the Taylor series expansion for

√
1− ZX .

Now substitute Z = z for z ∈ Fq . Substituting values

into algebraic functions like α is a slightly delicate operation

(which square root do you choose? how do you make these

choices consistent for different algebraic functions?), but it

can be done using basic concepts from the theory of algebraic

function fields. Another tool that we need from the theory of

algebraic function fields is an analogue of the degree of a

polynomial, to measure complexity of algebraic functions and
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bound the number of their zeroes. In this sketch we avoid

going into any such details.

Doing the substitution gives us:

Qz(X,Y ) = Q(X,Y, z)

=

(
Y −

(
α(z)− α(z) · z

2
X + · · ·+ ciα(z)z

iXi + · · ·
))

×
(
Y +

(
α(z)− α(z) · z

2
X + · · ·+ ciα(z)z

iXi + · · ·
))

.

By properties of the Guruswami–Sudan decoding algorithm,

we know for all “good” z ∈ Fq where wz is close to some

low degree polynomial Pz , we must have that Y − Pz(X)
divides Qz(X,Y ). Given the factorization above, one of the

following must occur:

1) Pz(X) =
(
α(z)− α(z)·z

2
X − α(z)·z2

16
X2 + · · ·

)
,

2) Pz(X) = −
(
α(z)− α(z)·z

2
X − α(z)·z2

16
X2 + · · ·

)
.

Whichever power series ends up equaling Pz(X), the coef-

ficient of Xk+1 in that power series must equal 0. In our

particular example, we deduce that ck+1α(z)z
k+1 = 0 for

some constant ck+1. Assuming ck+1 is nonzero in Fq , we

get that α(z)zk+1 = 0 for every good z. Finally we use the

fact that a nonzero algebraic functions of low “degree” like

α(Z)Zk+1 =
√
Z3 + Z + 1·Zk+1 cannot vanish at too many

points z. This means that there cannot be too many good z,

contradicting our hypothesis. We conclude that Q(X,Y, Z)
cannot equal Y 2 − (Z3 + Z + 1)(1− ZX)!

A very similar argument derives a contradiction unless

Q(X,Y, Z) has a factor of the form Y − P (X) for some

P (X) ∈ K[X] of degree at most k. The only twist is that we

may have to focus on the coefficient of some different power

Xk+c in the power series than the coefficient of Xk+1 (in

case the coefficient of Xk+1 in the power series is identically

0). To make this argument work, we need to estimate the

“degree” of the algebraic functions that appear as coefficients

in these power series. This involves a careful study of the

Hensel lifting process, especially its effect on the complexity

of its coefficients.

The final part of the argument, showing that some Y −
P (X) factor of Q(X,Y, Z) is such that P (X) has high

agreement with w and all the coefficients of P (X) are

linear polynomials in Z, is similar to what happened in the

unique decoding case. Instead of using the fact that a low

degree rational function and a linear function cannot have

high agreement unless they are equal, we use the fact that

a low degree algebraic function and a linear function cannot

have high agreement unless they are equal. This completes

our sketch of the proof.

Technical issues: When we actually implement the ar-

gument, there are some technical changes we make (both for

simplicity and for optimizing parameters). First, we do not do

the proof by contradiction, but instead show how to find the

factor of the form Y −P (X). Next, instead of directly doing

Hensel lifting with Q, we factor Q into irreducible factors

over Fq[X,Y, Z] and focus on a single irreducible factor that

is “responsible” for many of the Pz . This helps in that we

do not need to factor arbitrarily messy Q’s completely into

linear factors, but only those which have the property that

Q(X,Y, z) has a linear factor of the form Y −Pz(X). Finally,

instead of arguing over the algebraic closure K, we go to

a small algebraic extension L of K which is rich enough

to express all the coefficients of the relevant power series.

These changes lead to some simplifications and quantitative

improvements in our proofs.

Relationship with the Arora-Sudan low degree test [14]:
A beautiful and fundamental paper of Arora and Sudan [14],

analyzed the “line vs. line” low degree test for multivariate

polynomials in the high error regime. The heart of their paper

is a theorem that says that if a function f : F2
q → Fq is such

that for most lines L given by Y = aX+b in F
2
q the univariate

function obtained from restricting f to L (denoted f |L) is

close to a low degree univariate polynomial, then f is itself

close to a low degree bivariate polynomial. This is closely

related to our theorem which deduces a similar conclusion

about a received word w : D × Fq → Fq , also based on

restrictions to lines. Our proof is heavily influenced by the

proof in [14] (which in turn builds on fundamental results on

polynomial factorization and the Hilbert irreducibility theorem

by Kaltofen [15, 16]). There is one crucial difference in our

proof. Our approach is spearheaded by the idea of running

all arguments over the big field K = Fq(Z) (as opposed to

treating Z as another variable over Fq just like X and Y , as is

done in [14]). This difference affects our proofs in a tangible

sense: our proofs are based on bivariate interpolation over the

big field K rather than trivariate interpolation over the small

field Fq . Inside the analysis, our proofs use power series in

one variable over function fields rather than power series in

two variables over finite extensions of Fq . This leads to more

involved algebraic tools being needed for our proof (most

seriously the use of algebraic function fields), but also yields

three improvements. First, our result is about axis parallel

restrictions Z = z (for z ∈ Fq) instead of more general

linear restrictions Z = aX + b (for a, b ∈ Fq). This simpler

form of restriction is important for our applications. Second,

our result deduces structure all the way up to the Johnson

radius, while the result in Arora-Sudan is to a smaller radius

(polynomially worse in terms of agreement parameter). Third,

our result works over fields that are quadratic in the degree

of the polynomials involved whereas the Arora-Sudan result

requires fields that are quartic (at least) in the degree.

III. APPLICATIONS

Our proximity gap results are motivated by the following

general setting. There are several purported codewords u =
{u1, . . . , ul} ⊂ F

n
q of an RS code V . A verifier would like

to be assured that they are all close to V . This is done by

taking a random linear combination of the ui and checking

its proximity to V . The analysis of this simple test, which

arises naturally in a variety of application scenarios, turns out

to be surprisingly challenging. Indeed, it is closely related to

the proximity gap problem we study in this work.

This batch verification problem arises in two kinds of

905

Authorized licensed use limited to: Rutgers University. Downloaded on September 01,2021 at 22:36:03 UTC from IEEE Xplore.  Restrictions apply. 



settings: a distributed setting, where entries of u are split

between multiple servers and may not be known to any single

entity, and a centralized setting, where u is entirely known to

a prover and can be queried by a verifier. We briefly explain

the role of proximity gaps in these two types of applications.

In the distributed setting, the coefficients of the random

linear combination is either generated by a single verifier or

jointly via a distributed coin tossing protocol. Each server

then responds with its own share of the output. Verification

succeeds if the joint output is a codeword, or alternatively it is

close to the code. Examples for applications in the distributed

setting include Verifiable Secret Sharing (see Section VII-A

in [6]) and secure multiparty computation protocols, such

as those from [17, 18]. These applications typically rely on

unique decoding and can thus benefit from our near-optimal

analysis for this regime. In this type of applications, the main

challenge is protecting against an adaptive adversary who may

choose which servers to corrupt after seeing the coefficients of

the random linear combination. To defeat such an adversary,

we need to ensure that if at least one of the ui is far from

the code, then (with high probability) so is their random

linear combination. If this were not the case, an adaptive

adversary could eliminate all inconsistencies by corrupting a

small number of servers. Proximity gaps rule out this kind of

attack.

In the centralized setting, u is known to a prover and can

be queried by the verifier. A typical realization is using a

tree-based succinct cryptographic commitment that binds the

prover to a uniquely defined u and yet enables efficient local

opening of symbols queried by the verifier. In this case, the

verifier challenges the prover by choosing the coefficients ri
of the random linear combination. The prover, who claims

that all ui are codewords in V , must respond with a valid

codeword u ∈ V . The verifier checks that u agrees with

u′ = r1u1 + . . .+ rlul by querying a random entry of u and

the corresponding entries of u and checking their consistency.

(To amplify soundness, the verifier can query several random

entries of u.) Here too, proximity gaps guarantee that if

one of the ui is far from V , then (with high probability)

so is u′. This ensures that the verifier detects an incon-

sistency with high probability. Examples for applications in

the centralized setting include communication-efficient proof

systems [1, 2, 7], homomorphic commitment schemes [19],

and secure two-party computation protocols [20, 21]. See

more in Section III-B below.

An appealing feature of the simple “random linear combi-

nation” test is that it can be implemented with low communi-

cation and computation costs. In particular, in the distributed

setting it suffices for each server to send a single field

element to the verifier. In both settings, communicating the l
random coefficients is typically not a bottleneck. This random

challenge can be made shorter either by using a cryptographic

pseudorandom generator or unconditionally by using simple

derandomization techniques. In particular, one can generate

all coefficients as distinct powers of a single random field

elements and appeal to the parameterized curves variant of

the proximity gap theorem (Theorem I.5).

Our new proximity gaps imply a tighter analysis of appli-

cations that test proximity to RS codes. Generally speaking, in

the distributed setting the improved proximity gap bounds im-

ply a constant-factor improvement in the resilience threshold,

namely the number of corrupted parties that can be tolerated.

In the centralized setting, one typically gets constant-factor

savings in the overall communication and computation costs.

While often ignored in theory-oriented research, the latter kind

of improvements can be very significant in the context of

practical succinct proof systems.

Why RS codes?: Reed–Solomon codes are commonly

used in distributed storage, efficient proof systems, and cryp-

tographic protocols. They are useful because of their MDS

property, near-linear encoding, and efficient (list)-decoding

algorithms. A more qualitative feature of RS codes, which is

commonly used in proof systems and cryptography, is the fol-

lowing multiplication-friendliness property: when n = |D| >
2k, the pointwise products of codewords in V = RS[Fq,D, k]
span a linear code that has nontrivial minimal distance, namely

the code RS[Fq,D, 2k].

We now give more concrete examples of applying prox-

imity gaps to analyze batch-verification tasks that arise in

different application scenarios.

A. Distributed storage and cryptography

Distributed storage.: Consider a scenario in which l
users encode their inputs using a length-n RS code V =
RS[Fq,D, k], where server i stores the i-th symbol of each

of the l codewords. Suppose that some of the nl symbols

were corrupted, say by a transient malware that overwrites a

subset of the symbols before being discovered and eliminated.

A verifier would like to get a quick estimate of the amount of

damage caused by the malware. A natural idea is to have the

servers communicate a random linear combination u′ of the

potentially corrupted codewords uj . Using the basic proximity

gap result (Theorem I.2), if at least one of uj is δ-far from

the code (for δ ≤ 1−ρ
2

or δ < 1−√
ρ), then u′ is δ-far from

the code except with small failure probability (at most n/q
for δ ≤ 1−ρ

2
). Thus, for sufficiently large Fq , the distance of

u′ from V provides a reliable upper bound on the maximal

relative distance of a vector ui from V within the proximity

bounds of Theorem I.2. This estimate is not too pessimistic in

the sense that if only a μ-fraction of the servers were affected,

the upper bound obtained by the test is no bigger than μ.

Distributed proximity test for Interleaved RS codes.: The

above analysis leaves something to be desired: if u′ is within

(sufficiently small) distance δ from V , the verifier is only

assured that each uj is individually within distance δ from

V . In some applications, we would like to get the stronger

guarantee that in such an event there is a δ-fraction of the

coordinates whose removal makes all uj consistent with V .

Moreover, we would like to identify this set of coordinates,

which is uniquely defined in the unique decoding regime. This

is useful even in the above distributed storage scenario, but

will be even more useful for the applications we discuss next.
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The stronger feature can be conveniently captured using the

notion of an Interleaved Reed–Solomon (IRS) code. In an

IRS(V, l) code, the codewords are l × n matrices in which

each row is a codeword in V . The symbols of such a codeword

are the matrix columns. Namely, a codeword consists of n
symbols in F

�
q . The following theorem, which follows easily

from Theorem I.6, phrases the stronger guarantee provided

by the refined analysis in terms of proximity testing for IRS

codes. We state it for the unique decoding regime, which

suffices (and is sometimes required) for the applications we

discuss next. For u within the unique decoding radius of V , we

denote by Γ(u, V ) the set of coordinates on which u disagrees

with the closest codeword from V .

Theorem III.1 (Distributed proximity test for Interleaved RS

codes). Let V = RS[Fq,D, k] for |D| = n and V =
IRS(V, l). We view codewords in V and V as vectors in F

n
q

and matrices in F
l×n
q respectively. Let ρ = k+1

n
and δ ≤ 1−ρ

2
.

Let u ∈ F
l×n
q and let u′ = rTu where r ∈R F

l
q .

• Completeness: If Δ(u,V) ≤ δ then Pr[Δ(u′, V ) ≤
δ] = 1 and moreover Pr[Γ(u′, V ) �= Γ(u,V)] ≤ n/q.

• Soundness: If Δ(u,V) > δ then Pr[Δ(u′, V ) ≤ δ] ≤
n/q.

We refer to the above test as distributed because it can

be implemented with low communication complexity in the

distributed setting, where each server holds a different column

of u. One can similarly obtain an affine version with the same

guarantee, where u has an additional row u0 that is always

added to u′ (i.e., with coefficient r0 = 1), and the code V is

extended to by IRS(V, l+1). This affine version is useful for

zero-knowledge variants of the test, where a single random

u0 ∈ V is used for blinding u1, . . . , ul. This is used in the

cryptographic applications we discuss next.

General cryptographic protocols.: Theorem III.1 serves

as a useful tool for analyzing cryptographic protocols in

the presence of an adaptive adversary who can dynamically

choose the set of corrupted parties. For instance, it shows

that secure multiparty computation protocols from [17, 18]

are adaptively secure when the adversary can corrupt roughly

1/3 of the parties. The best previous proximity gaps from [3–

5] could only get up to 1/4 corruption threshold in the

same setting. Adaptive security, in turn, is crucial for the

general transformation from [20, 22] of these honest-majority

protocols to two-party protocols and protocols for dishonest

majority. Indeed, this is the context that gave rise to proximity

gap in the analysis of the Ligero zero-knowledge proof

system [2], which applies a variant of the transformation

from [22] to a variant of the protocol from [17]. We give

a detailed exposition of the application of proximity gaps to

verifiable secret sharing, which serves as a basis for the above

results on secure multiparty computation, in Section VII of [6].

B. Soundness of the Fast RS IOPP (FRI) protocol

FRI is an Interactive Oracle Proof of Proximity (IOP of

Proximity, or IOPP) as defined in [23, 24]. An IOP is an

interactive protocol in which the verifier has oracle access

to messages sent by the prover, so she need not read and

store those messages but may query random entries of them.

FRI is one of a family of protocols for testing proximity to

the RS code (an “RS proximity testing” (RPT) protocol). Its

purpose is to check whether a received word f : D → Fq

belongs to a pre-specified RS code V := RS[Fq,D, k] and to

reject words that are δ-far from the code with high probability

and low query complexity. Due to its efficiency it is used as

a building block in several recent succinct zero knowledge

protocols including scalable and transparent (public coins)

arguments of knowledge (STARKs) [8, 9], Aurora [10] and its

succinct version [11], and Fractal [12], to name a few. These

systems have been shown by Chiesa et al. to be sound in

the quantum random oracle model (hence are “plausibly post-

quantum secure”) [25]. Therefore, understanding the concrete

soundness error of FRI, denoted εFRI, is of significant practical

value, in addition to being a theoretically interesting question.

Consider the case of f that is maximally far from V ,

i.e., Δ(f, V ) ≈ 1 − ρ (this holds, e.g., for random f , with

high probability). Fix a target soundness error bound 2−λ

(in concrete settings, λ is the “security parameter”, often

fixed to λ = 128). The communication complexity of FRI

is dominated by the number t of iterations of the QUERY

phase, so the question at hand is:

How many iterations t of the QUERY phase are
needed to obtain εFRI ≤ 2−λ?

The initial analysis of [7] required a number t that is

quite large, and does not tend to 0 even for tiny rates ρ.

This was improved by [4] to t ≈ 4λ log 1
ρ

, and then by

[5] to t ≈ 3λ log 1
ρ

. Sadly, that paper also showed that

this bound is tight, at least when the field size q equals

the code’s blocklength n. Our main result regarding FRI

(Theorem VII.2 in [6]) shows that for q � n2 we can

reduce the number t of iterations by 33% to t ≈ 2λ log 1
ρ

,

which leads to communication complexity that is at least 33%
shorter, for provable soundness settings. The actual savings in

the provable soundness case are likely larger, due to smaller

field size and the ability of the improved analysis to operate

with any sequence of oracle sizes in the FRI COMMIT phase

(as discussed after the statement of Theorem VII.2).
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