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Abstract—A collection of sets displays a proximity gap with
respect to some property if for every set in the collection, either
(i) all members are J-close to the property in relative Hamming
distance or (ii) only a tiny fraction of members are J-close to the
property. In particular, no set in the collection has roughly half
of its members J-close to the property and the others -far from
it.

We show that the collection of affine spaces displays a prox-
imity gap with respect to Reed-Solomon (RS) codes, even over
small fields, of size polynomial in the dimension of the code, and
the gap applies to any 5 smaller than the Johnson/Guruswami-
Sudan list-decoding bound of the RS code. We also show near-
optimal gap results, over fields of (at least) linear size in the RS
code dimension, for § smaller than the unique decoding radius.
Concretely, if § is smaller than half the minimal distance of
an RS code V' C Fy, every affine space is either entirely -
close to the code, or alternatively at most an (n/q)-fraction of
it is d-close to the code. Finally, we discuss several applications
of our proximity gap results to distributed storage, multi-party
cryptographic protocols, and concretely efficient proof systems.

We prove the proximity gap results by analyzing the execution
of classical algebraic decoding algorithms for Reed-Solomon
codes (due to Berlekamp—Welch and Guruswami-Sudan) on a
formal element of an affine space. This involves working with
Reed-Solomon codes whose base field is an (infinite) rational
function field. Our proofs are obtained by developing an extension
(to function fields) of a strategy of Arora and Sudan for analyzing
low-degree tests.

[. INTRODUCTION

A variety of protocols, arising in the contexts of interactive
proofs, distributed storage and cryptography, give rise to
the following problem regarding proximity to a linear code
V C Fy over a finite field F, of minimal relative distance
dv. These myriad protocols assume oracle access to a batch
of vectors u = {uo,...,wi} C Fy and their soundness
requires that each and every vector u; be close to V' in relative
Hamming distance. Furthermore, soundness deteriorates as
a function of the largest distance between some vector u;
and the code V. Thus, we seek protocols that minimize the
number of queries to the entries of the vectors in u, while

maximizing the probability of recognizing when some vector
u; is significantly far from V.

The linearity of V' suggests a natural approach, first ex-
plored by Rothblum, Vadhan and Wigderson [1]: sample
a uniformly random vector u’ in the span of u (denoted
span(u)) and view the distance between u’ and V, denoted
A(u', V), as a proxy for the maximal distance between some
member of u and V. To argue soundness, we would like to
show that if even a single u; is d-far from (all members of)
V, then a randomly chosen o/ is also far from V. Indeed, the
paper [1] that suggested this approach also showed for any
V, that whenever a single u; is d-far from V, then nearly all
samples o’ are at least § /2-far from V. Here and henceforth,
we use A to denote relative Hamming distance and say “u is
d-close to V7, denoted A(u, V) < 4, when A(u,v) < § for
some v € V; otherwise we say “u is d-far from V' (denoted
A(u, V) > 0).

Note that the result above incurs a 2x degradation in the
proximity parameter §: the worst-case assumption — that
some wu; is d-far from V' — implies an average-case distance
that is only §/2. Eliminating the proximity degradation is easy
when the field size is exponential in the code length. More
concretely, if ¢ > 2" ) where H is the binary entropy
function, then a union bound over agreement sets shows that
for § < dv, if u; is d-far from V' then so are nearly all
u’ € span(u). However, exponential field size is prohibitively
large in the context of the motivating applications. Obtaining
similar results over fields of sub-exponential size appears to
be much more challenging.

A number of works looked at this question and were able
to remove the degradation in § with polynomial field size.
Ames et al. [2] showed that for proximity parameters  that
are smaller than half of the unique-decoding radius of V' (i.e.,
when § < v /4), nearly all v’ € span(u) are J-far from V.
The proximity bound was subsequently improved to § < dv /3
by Roth and Zémor [3]. Ben-Sasson et al. [4] showed similar
results for § above the unique decoding radius, holding for
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any § < 1 — /1 — v, and the state of the art' was given in
[5], holding for any § < 1—+/1 — v . In fact, this latter result
was shown to be tight for certain RS codes, in particular, of
maximal blocklength n = q.

Ames et al., who were the first to show that in certain cases
the average-case distance of u’ € span(u) from V is nearly-
always equal to the worst-case distance of u; € u from V,
also raised the following intriguing question, which is at the
focus of our investigation here: For which codes and what
range of § does the following statement hold?

If some u* € span(u) is d-far from V, then so
are nearly all u' € span(u).

One implication of our main result is that when V' is an RS
code over a sufficiently large field — polynomially large in
the code’s blocklength — and when ¢ is smaller than the
Johnson/Guruswami—Sudan list decoding bound, the above
phenomenon holds. We refer to it as a proximity gap, as
explained next.

A. Gaps and proximity gaps

When a “gap” in mentioned in theoretical computer sci-
ence, it usually refers to a situation where all objects under
consideration must fall into one of two categories, and these
categories display a large gap according to some metric.
Striking examples are given by PCP reductions whose outputs
are constraint satisfaction problems that lie in one of two
categories: satisfiable instances in which some assignment
satisfies all constraints, and unsatisfiable instances in which
all assignments fail to satisfy more than an e fraction of
constraints. Another gap example underlies randomized al-
gorithms. For instance, the Miller—Rabin primality test relies
on a gap between primes and composites: in the latter case
(composites), at least three-quarters of the integers serve as
composite witnesses whereas for primes none do, leading to
a “gap” of measure 3/4.

Our result can be phrased as a proximity gap according to
the following definition.

Definition 1.1 (Proximity gap). Let P C X" be a property
and C C 2%" be a collection of sets. Let A be a distance
measure on X". We say that C displays a (9, €)-proximity gap
with respect to P under A if every S € C satisfies exactly one
of the following:

1) Prees[A(s,P) < 4] =1

2) Prses[A(s,P) <] <e.
We call § the proximity parameter and € is the error parameter.
By default, A denotes the relative Hamming distance measure.

Using this definition we can state our main result. Infor-
mally, it says that if V' C F" is an RS-code and A C F"
is an affine space, then either all elements of A are close to
V, or otherwise, nearly all elements of A are far from V. In

'We note that these improvements give a roughly 2X improvement to the
protocol of [1] in which this question was originally studied, when that protocol
is instantiated with codes of sufficiently large relative distance (see Theorem
3.4 there).
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other words, there is no affine A in which roughly half of the
elements are close to V' while the other half are far from V.

Throughout this paper, F,; denotes the field of size ¢, and
RS[F,, D, k] is the RS code of dimension k + 1 and block-
length n = |D| containing as its codewords the polynomials
of degree < k, evaluated on D. We use p to denote the rate
p= % of the code. The letter ¢ will typically denote relative
Hamming distance to the relevant RS code and ¢ will denote
an error parameter, the probability that a “bad event” occurs
(with varying definitions of the term “bad event”).

The following result has two parts and each part has
its own proof. The first part holds only below the unique
decoding radius but has a smaller error parameter, denoted
eu; the second part holds for proximity parameters up to the
Johnson/Guruswami-Sudan bound (which is greater than the
unique decoding bound) but has a larger error bound € (the
proof of the second part is also significantly harder).

Theorem L.2 (Proximity Gap for RS codes). The collection
Cafiine Of affine spaces in FqD displays a (9, €)-proximity gap
with respect to the RS-code V := RS[Fq, D, k] of blocklength
n and rate p = %, for any 6 € (0,1 — /p), and € =
e(g,mn, p, ) defined as the following piecewise function:

« Unique decoding bound: For § € (0, *52], the error

parameter € is

n
e=¢ey =e€y(g,n) == —.
(g,n) .

iy

« Johnson bound: For § € (32,1 — \/p), setting 1 :=
1 —/p — 0, the error parameter ¢ is

kE+1)?
e=e = eg,np,0) = ( )
(2min (n, Ve

1 n?

O(W‘?)

There are two striking aspects to this result. First, the
proximity parameter § can take any value smaller than
the famous Johnson/Guruswami—-Sudan bound, which is the
largest distance for which we know of efficient (list) decoding
algorithms. (Looking ahead, the Guruswami—Sudan algorithm
will play a crucial, though non-algorithmic, role in our proofs.)
Second, the size of the field needed to achieve this result is
relatively small — linear in the blocklength when ¢ is below
the unique decoding radius § < (1 — p)/2 and, for fixed rate,
quadratic in blocklength for larger § up to the list decoding
bound.

Remark 1.1 (Tightness of results). The maximal proximity
parameter § for which Theorem 1.2 applies happens to coin-
cide with the Johnson/Guruswami—Sudan list-decoding bound
(I — y/p)- This evidently follows from the techniques we
use here, that rely on list-decoding algorithms that reach that
bound. However, we conjecture that Theorem 1.2 holds even
for larger proximity parameters, up to capacity (1 — p). See
Conjecture VIL.3 in [6] and the discussion there.

Remark 1.2 (Field size). The bound in Eq. (I.2) which reaches
the Johnson bound becomes nontrivial only for fields of size

)

1.2)
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q that are at least quadratically larger than the blocklength
n. In contrast, the bound for smaller proximity parameters,
below the unique decoding radius, works for ¢ = O(n) (see
Eq. (I.1)). We point out that for certain combinations of fields
and rate parameters one cannot hope to reach the Johnson
bound with linear size fields, as this would contradict prior
results from [4].

In the unique decoding regime, the result is sharp in the
sense that affine spaces do not all display a proximity gap
with ¢ - € being sublinear in n, for fixed distance parameter 0.
A simple example is of the affine line {uo + zu1 : z € Fg},
where ug,u; : D — F, are such that on a set D’ C D of
size [D'| = n(l — ) — 1 we have uo|lp = wuil|p = 0,
and on the complement we have that u1|D\D, =1, and ug
takes dn + 1 pairwise different non-zero values. We then have
dist(uo + zu1,V) < § for each of the dn + 1 values of
z € F, for which —z is in the image of u0|D\D” but that
dist(uo, V) = 6 + + > 4, thus this line does not display a
(9, %") proximity gap with respect to the code.

B. Concentration bounds

Theorem 1.2 implies the following concentration bound,
saying that for any affine space in which the element farthest
from the RS code is within the Johnson/Guruswami-Sudan
radius, nearly all elements are at exactly the same distance
from the code(!).

For two sets U,V C ¥™ define the divergence’ of U from
V as D(U, V) := maxuev A(u, V).

Corollary 1.3 (Concentration bounds). Let V,q,n,k and p
be as defined in Theorem 1.2. Let U C IF'qD be an affine space
over By and denote 6" := D(U, V). If §* is smaller than the
Johnson/Guruswami—Sudan bound, then nearly all elements
of U have distance exactly 0" from the code. In other words,
if 6" € (0,1 —/p), then

Pr (A V) £67 < 6

where € = €(q,n, p,0") is as defined in Theorem 1.2.

When the divergence of U from the RS code V' is greater
than the Johnson/Guruswami-Sudan bound (6™ > 1 — ,/p)
we may still use Theorem [.2 to conclude that nearly all
elements of U are ~ (1 — /p)-far from V, but what remains
an interesting open problem is whether nearly all members
of U are maximally far (§*-far) from V. An example from
[5] show that this need not be the case for RS codes where
g = O(n).

C. Correlated agreement

Next, we state the main technical theorem proved in the
paper. Consider two vectors uo,u; € FT. The result says
that if sufficiently many elements in the 1-dimensional affine
space A = {ug + zu1 : z € F} are sufficiently close (-
close) to the RS code V/, then there must be a nontrivial
subdomain D’ C D of density 1—§ in D, such that restricting

2 Note that divergence is not symmetric as can be seen, e.g., when U is a
strict subset of V.
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ug, u1 to D’ gives a valid RS codeword (evaluated over D).
We refer to the property that such a D’ exists as correlated
agreement, in the sense that uo, w1 and the elements of A do
not only have large agreement with the RS code individually,
but also share a common large agreement set. The result has
two ranges of parameters, as in prior statements in this paper.
The proofs for both ranges are given in our full paper [6]: for
proximity parameters in the unique decoding regime this is
proved in Theorem IV.1, and for proximity parameters in the
list decoding regime this is proved in Theorem V.1.

Theorem 1.4 (Main Theorem — Correlated agreement over
lines). Let V,q,n,k and p be as defined in Theorem 1.2. For
uo,u1 € FY, if § € (0,1 — /p) and

Pr [A(uo + z-u1,V) <] > ¢,
z€Fq

where € is as defined in Theorem 1.2, then there exists D' cCcD
and vo,v1 € V satisfying
o Density: |D’|/|D| > 1 -6, and
o Agreement: vy agrees with uo and vi agrees with ui
on all of D'.

Remark 1.3 (Sampling from extension fields). One may sam-
ple z from a finite extension field IF,/ of Fg. In this case, the
statement above holds with ey and €; modified by replacing ¢
with ¢’ in the denominators of Eqs. (I.1) and (1.2), respectively.
Note that even in this setting, the vectors vo,v1 deduced
to exist in Theorem 1.2 belong to RS[Fq, D, k|, not just
in RS[F,, D, k], because vo,v1 have high agreement with
Ug, U1 € IF?;. The ability to sample from a larger field (and
incur smaller error) applies to the other statements of this
section but for simplicity we state all of them using a single
field IF, to both define V' and sample z from.

Motivated by applications (described later), we generalize
the theorem above to two interesting cases: (i) low-degree pa-
rameterized curves, and (ii) higher-dimensional affine spaces;
details follow.

Correlated agreement over parameterized curves: The
first extension of Theorem [.4 extends it from the case of
a “line” passing through wuo and wi (the line being {uo +
zur @ z € F}) to a “low-degree curve” with coefficients
ug, U1, ..., u, as described below. This result is of particular
importance for two reasons. First, it leads to derandomized
testing of verifiable secret sharing and distributed storage
protocols (cf. Section VII-A in [6]). Second, it improves the
soundness analysis of the Fast RS IOPP (FRI) protocol [7],
which is used in concretely efficient and transparent (public
coin) proof systems [8—12]. We discuss this application in
Sections III-B and VII-B in in [6].

Let u = {uo,...,wm} C IFqD. The parameterized curve of
degree [ that is generated by u is the following collection of

vectors in IF?IJ:
z € Fq} .

1
curve(u) := {uz = Z 2
i=0
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Theorem L5 (Correlated agreement for low-degree parameter-
ized curves). Let V,q,n, k and p be as defined in Theorem I.2.

Let u = {uo,...,w} CFY. If§ € (0,1 — /p) and
Pr [A(u,V) <] >1-¢
u€Ecurve(u)

where ¢ is as defined in Theorem 1.2, then there exists D' C D
and vy, ...,v €V satisfying
o Density: |D’'|/|D| > 1 -6, and
o Agreement: for all i € {0,...,l}, the functions u; and
v; agree on all of D'

Correlated agreement for affine spaces: The second
generalization of our Main Theorem [.4, extends it from the
1-dimensional case (affine line) to an affine space of arbitrary
dimension. Theorem 1.2 follows directly from the following
statement. Note that Main Theorem 1.4 is actually a case of
the following result (for 1-dimensional spaces). However, we
stated that special case separately because we prove it first,
and from it deduce the more general case (see Section VI-C
of [6] for details).

Theorem 1.6 (Correlated agreement over affine spaces).
Let V,q,n,k and p be as defined in Theorem 1.2. For
Uo, ut,...w € FY let U = ug+span{us,...,w} C FY be
an affine subspace. If 6 € (0,1 — \/p) and

PrA@ V) <6] >

where € is as defined in Theorem 1.2, then there exists D'cD
and vy, ...,v; € V satisfying

o Density: |D'|/|D| > 1— 4, and

o Agreement: for all i € {0,...,l}, the functions u; and

v; agree on all of D'.

Furthermore, in the unique decoding regime § € (O, 177”],
there exists a unique maximal D’ satisfying the above, with
unique v;.

Correlated agreement (Theorem 1.6) is a sufficient condition
for proximity gaps with the same error and proximity param-
eters (Theorem 1.2). We leave as open problems (i) whether
correlated agreement is also a necessary condition for a
proximity gap. And, if the answer to this question is negative,
an intriguing possibility arises: (ii) obtaining proximity gaps
for 6 > 1 — ,/p while bypassing the correlated agreement
approach we took here.

Organization of the rest of the paper: We provide an
overview of the proof of Main Theorem [.4 in Section II,
and survey several applications of our results in Section III.
The detailed proofs of our theorems, as well as further details
on the applications of our results to Verifiable Secret Sharing
(VSS) and Fast RS IOPs of Proximity (FRI), are omitted here
and can be found in Sections IV-VII and Appendix A of the
full paper [6].

II. PROOF OVERVIEW

In this section, we give an overview of our proof strategy
of our main result, Theorem 1.4.
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Recall the setup. V = RS[F,, D, k] of degree k polynomi-
als evaluated at the points of D C F,, where |D| = n. We
have functions ug,u1 : D — Fg4 such that for many z € Fg,
the function ug + zu1 is d-close to V. We want to deduce
that ug and u; are themselves close to V.

The main conceptual idea of our analysis is to work with
the function field K = F,(Z) with a formal variable Z,
and to study the various received words ug + zui for the
code V' simultaneously by considering the formal received
word w = ug + Zuy : D — K for the (big field) Reed-
Solomon code RS[K, D, k]. It turns out that showing that w
is close to a (well-structured) codeword of this Reed—Solomon
code is sufficient to show that uo and w; are both close
to the original Reed-Solomon code V. With this viewpoint,
our proof strategy is to run a decoding algorithm for Reed—
Solomon codes on this received word w = ug + Zuy. Our
goal is to analyze the execution of this algorithm to show
that it succeeds in finding a nearby Reed—Solomon codeword.
We do such an analysis by relating it to the execution of that
decoding algorithm on the various received words uo + zu1
for the Reed—Solomon code V' over the small field F,,.

This strategy is instantiated with two different decoding
algorithms for Reed-Solomon codes: the Berlekamp—Welch
unique decoding algorithm, and the Guruswami-Sudan list
decoding algorithm [13]. Both instantiations give rise to
intriguing algebraic questions about polynomials, which we
resolve using nontrivial tools from algebraic geometry and
the theory of algebraic function fields.

Instantiation with the Berlekamp—Welch Algorithm: Over a
field F and an evaluation domain D, given a received word r :
D — T, the Berlekamp—Welch decoding algorithm for finding
the (unique) nearby polynomial P(X) € F[X] close to r
works as follows. First it searches for low-degree polynomials
A(X), B(X) € F[X] such that for each z € D:

A(z)r(z) = B(z).

Then the nearby polynomial P(X) is recovered as
B(X)/A(X) (which a priori may be a rational function).

In our setting, we first run the Berlekamp—Welch algorithm
with received word w uy + Zuy D — K over
the big field K = Fq,(Z) (we will sometimes view this
as a function w(z,z) with w : D x Fg — TFy). Our
goal is to find a nearby Reed—Solomon codeword (low-
degree polynomial) P(X) € K[X] which has the special
form Po(X) + ZPi(X), where each P;j(X) € F,[X].
The first step of the Berlekamp—Welch algorithm gives us
A(X),B(X) € K[X] = Fq(Z)[X]. Making the Z depen-
dence explicit, we write these as A(X,Z), B(X,Z). This
gives us a candidate, namely A(X,Z)/B(X, Z), for being
a Reed-Solomon codeword close to w. We will show two
things: that A(X, Z)/B(X, Z) is a polynomial in Fq(Z)[X]
(a priori it is only a rational function), and that it is close to
w.

The crucial step is to substitute Z z into A(X, Z)
and B(X, Z) for various values of z € F,. Letting w, =
uo + zur : D — K (the result of substituting Z = z into
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w), it turns out that A(X, z), B(X, z) € Fy[X] are what we
would get if we run the Berlekamp—Welch algorithm (over the
small field F,;) on received word w.. In particular, for many
z we get that B(X, z) is divisible by A(X, z) in F4[X], and
B(X,z)/A(X, z) equals the Reed—Solomon codeword close
to w,. This then allows us to use the Polishchuk—Spielman
lemma (a strengthening of the classical Bezout theorem, which
deduces divisibility of bivariate polynomials from divisibility
of univariate restrictions) to conclude that B(X, Z)/A(X, Z)
is in fact a polynomial P(X, Z) in K[X] of low degree in X.
The final step is to show that P(X, Z), when viewed as a
function from D to K, is close to w, and that that the Z
dependence of P(X,Z) is simple (just linear in Z). This
is again achieved by considering Z substitutions. We know
that for many z, P(X, z) is the degree at most k polynomial
P.(X) that is close to w,. This means that the X degree
of P(X,z) is at most k, and that for many x € D and 2
there is agreement between P(z, z) and w. (z) = w(z, ). On
the other hand, for any « € D, w(x,-) is a linear function,
and P(z,-) is a low degree rational function, and so they
cannot agree on too many points unless the low degree rational
function P(z,-) formally equals the linear function w(z, -).
Therefore this formal equality must happen for many x € D,
i.e., P(-,Z) is close to w. Finally, by simple linear algebra, if
P(z, Z) is linear in Z for many z, we conclude that P(X, Z)
is linear in Z. This gives us our desired conclusion.
Instantiation with the Guruswami—Sudan Algorithm: Over
a field F and an evaluation domain D, given a received word
r : D — F, the Sudan and Guruswami—Sudan decoding
algorithms for finding all nearby polynomials P(X) € F[X]
close to r work as follows. First one searches for a low-degree
polynomial Q(X,Y") € F[X, Y] such that for each = € D,

Q(z,r(x)) =0.

(This is the Sudan algorithm; for the Guruswami—Sudan
algorithm we ask that ) vanishes at each (z,r(z)) with high
multiplicity.) Then every nearby polynomial P(X) turns out
to have the property that Y — P(X) divides Q(X,Y) in the
bivariate polynomial ring Fq[X,Y]. This means that all such
P(X) can be found by factoring Q(X,Y).

In our setting, we run the Guruswami—Sudan algorithm with
received word w = uo+Zu1 : D — K over the big field K =
Fq(Z). Our goal is to find a nearby low-degree polynomial
P(X) € K[X] which has the special form Py(X)+ZP;(X),
where each P;(X) € Fy[X]. The first step of the Guruswami—
Sudan algorithm gives us a bivariate polynomial Q(X,Y") €
K[X,Y] such that Q(z,w(z)) = 0 for each z € D. Again,
we write Q(X,Y) as Q(X,Y,Z) € Fqo(Z)[X,Y] to make
the Z dependence explicit (and we can clear denominators in
Z without affecting the vanishing property).

Substituting Z = z, we get that Q(z,w.(z),z) = 0 for
each z € D. This means that the polynomial Q.(X,Y) €
Fy[X,Y] given by Q:(X,Y) = Q(X,Y.2) € F,[X,Y]
is the bivariate polynomial we would have found while
running the Guruswami—Sudan algorithm with received word
w; : D — F, over the small field . Since for many z € F,
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we have that w, is close to some codeword P, (X) € Fy[X]
of the Reed—Solomon code V, we get that Y — P, (X)) divides
Q(X,Y, z) for many z € F;. We would like to deduce from
this that over the big field K there is a low-degree polynomial
P(X) € K[X] such that Y — P(X) divides Q(X,Y) in
K[X,Y] (and furthermore, this P(X) is close to w and has
a simple Z dependence).

This is the most involved (and interesting) part of the
analysis. We will factor Q(X,Y, Z) completely into linear
factors in Y.

Q(X> Ya Z) = C(X? Z)(Y - Vl(Xa Z))(Y - 72(X7 Z))
(Y —9p(X, 2)). (IL1)

This is natural to do, because we are searching for factors that
are linear in Y. Then we substitute Z = z into this, and we
should see P.(X) as one of the factors.

However, getting such a factorization for Q(X,Y, Z) may
not be possible with polynomials «;(X, Z), and we have to
look (far) beyond. What kind of objects should we think of the
~; as? After getting the v, (X, Z), we would like to (a) argue
about when ~; (X, Z) is a polynomial in X, and (b) substitute
Z = z into it and inspect the resulting object. To enable
these, we will express v;(X,Z) in the ring R = K[[X]],
the ring of power series in X, whose coefficients are in
the algebraic closure of K = F,(Z). The power series in
X representation allows us to see when ~; is a polynomial
in X, and the coefficients being simply algebraic functions
in Z (such as v/Z3 + Z + 1) allows us to reason about
substitutions Z = z. Having decided on R, it is a simple
application of Hensel lifting (after possibly a random shift)
to show that a factorization as in (II.1) is possible with the
vi € R.

Rather than describe what happens in full generality, we
just sketch what would happen in a special case with most of
the action. Suppose FF, is not of characteristic 2, and we have:

QIX,Y,Z)=Y> - (Z°+Z+1)(1 - ZX).

Going to the ring R, and letting o = vZ3+ Z +1 € K, it
turns out that Q(X,Y, Z) factors as:

QX,Y,Z) = (Y 7+ wm)
: (Y+ \/Z3+Z+1\/m>

a-Z O[’Z2 2
(e (et )
a-Z a’22 2
Y - —X - X
O )

where we used the Taylor series expansion for /1 — ZX.
Now substitute Z z for z € IF,. Substituting values
into algebraic functions like « is a slightly delicate operation
(which square root do you choose? how do you make these
choices consistent for different algebraic functions?), but it
can be done using basic concepts from the theory of algebraic
function fields. Another tool that we need from the theory of
algebraic function fields is an analogue of the degree of a
polynomial, to measure complexity of algebraic functions and
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bound the number of their zeroes. In this sketch we avoid
going into any such details.
Doing the substitution gives us:

Qz(XvY) = Q(Xv Y, Z)

= (Y - (a(z) - %X 4+ Faa(2) X 4 - >>

x (Y + a(z)—MX—F-'--i-cioc(z)ziXi—l-”- .
2

By properties of the Guruswami—Sudan decoding algorithm,
we know for all “good” z € F,; where w. is close to some
low degree polynomial P., we must have that Y — P.(X)
divides Q. (X,Y’). Given the factorization above, one of the
following must occur:

2 GZ‘Z2
) P.(X)= (a(z)—%x —%)@_}_...),
a(z)-z alz) 22
2) PZ(X):f(a(z)f(T)Xf(li)sszr...)_

Whichever power series ends up equaling P;(X), the coef-
ficient of X**1 in that power series must equal 0. In our
particular example, we deduce that cx 1 (z)2F ™! = 0 for
some constant cp1. Assuming cg1 is nonzero in F,, we
get that a(z)z"*! = 0 for every good z. Finally we use the
fact that a nonzero algebraic functions of low “degree” like
a(Z2)ZF = \/Z3 + Z +1-Z**! cannot vanish at too many
points z. This means that there cannot be too many good z,
contradicting our hypothesis. We conclude that Q(X,Y, Z)
cannot equal Y2 — (Z% + Z 4+ 1)(1 — ZX)!

A very similar argument derives a contradiction unless
Q(X,Y,Z) has a factor of the form Y — P(X) for some
P(X) € K[X] of degree at most k. The only twist is that we
may have to focus on the coefficient of some different power
X*+¢ in the power series than the coefficient of X**! (in
case the coefficient of X**! in the power series is identically
0). To make this argument work, we need to estimate the
“degree” of the algebraic functions that appear as coefficients
in these power series. This involves a careful study of the
Hensel lifting process, especially its effect on the complexity
of its coefficients.

The final part of the argument, showing that some Y —
P(X) factor of Q(X,Y,Z) is such that P(X) has high
agreement with w and all the coefficients of P(X) are
linear polynomials in Z, is similar to what happened in the
unique decoding case. Instead of using the fact that a low
degree rational function and a linear function cannot have
high agreement unless they are equal, we use the fact that
a low degree algebraic function and a linear function cannot
have high agreement unless they are equal. This completes
our sketch of the proof.

Technical issues: When we actually implement the ar-
gument, there are some technical changes we make (both for
simplicity and for optimizing parameters). First, we do not do
the proof by contradiction, but instead show how to find the
factor of the form Y — P(X). Next, instead of directly doing
Hensel lifting with @, we factor @ into irreducible factors
over Fy[X, Y, Z] and focus on a single irreducible factor that
is “responsible” for many of the P,. This helps in that we
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do not need to factor arbitrarily messy @’s completely into
linear factors, but only those which have the property that
Q(X,Y, z) has a linear factor of the form Y — P, (X). Finally,
instead of arguing over the algebraic closure K, we go to
a small algebraic extension L of K which is rich enough
to express all the coefficients of the relevant power series.
These changes lead to some simplifications and quantitative
improvements in our proofs.

Relationship with the Arora-Sudan low degree test [14]:
A beautiful and fundamental paper of Arora and Sudan [14],
analyzed the “line vs. line” low degree test for multivariate
polynomials in the high error regime. The heart of their paper
is a theorem that says that if a function f : F2 — F, is such
that for most lines L givenby Y = aX +bin Fg the univariate
function obtained from restricting f to L (denoted f|z) is
close to a low degree univariate polynomial, then f is itself
close to a low degree bivariate polynomial. This is closely
related to our theorem which deduces a similar conclusion
about a received word w : D x F, — F,, also based on
restrictions to lines. Our proof is heavily influenced by the
proof in [14] (which in turn builds on fundamental results on
polynomial factorization and the Hilbert irreducibility theorem
by Kaltofen [15, 16]). There is one crucial difference in our
proof. Our approach is spearheaded by the idea of running
all arguments over the big field K = F,(Z) (as opposed to
treating Z as another variable over F, just like X and Y, as is
done in [14]). This difference affects our proofs in a tangible
sense: our proofs are based on bivariate interpolation over the
big field K rather than trivariate interpolation over the small
field [F,. Inside the analysis, our proofs use power series in
one variable over function fields rather than power series in
two variables over finite extensions of F,. This leads to more
involved algebraic tools being needed for our proof (most
seriously the use of algebraic function fields), but also yields
three improvements. First, our result is about axis parallel
restrictions Z = z (for z € F,) instead of more general
linear restrictions Z = aX + b (for a,b € F;). This simpler
form of restriction is important for our applications. Second,
our result deduces structure all the way up to the Johnson
radius, while the result in Arora-Sudan is to a smaller radius
(polynomially worse in terms of agreement parameter). Third,
our result works over fields that are quadratic in the degree
of the polynomials involved whereas the Arora-Sudan result
requires fields that are quartic (at least) in the degree.

III. APPLICATIONS

Our proximity gap results are motivated by the following
general setting. There are several purported codewords u =
{u1,...,w} C Fy of an RS code V. A verifier would like
to be assured that they are all close to V. This is done by
taking a random linear combination of the u; and checking
its proximity to V. The analysis of this simple test, which
arises naturally in a variety of application scenarios, turns out
to be surprisingly challenging. Indeed, it is closely related to
the proximity gap problem we study in this work.

This batch verification problem arises in two kinds of
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settings: a distributed setting, where entries of u are split
between multiple servers and may not be known to any single
entity, and a centralized setting, where u is entirely known to
a prover and can be queried by a verifier. We briefly explain
the role of proximity gaps in these two types of applications.

In the distributed setting, the coefficients of the random
linear combination is either generated by a single verifier or
jointly via a distributed coin tossing protocol. Each server
then responds with its own share of the output. Verification
succeeds if the joint output is a codeword, or alternatively it is
close to the code. Examples for applications in the distributed
setting include Verifiable Secret Sharing (see Section VII-A
in [6]) and secure multiparty computation protocols, such
as those from [17, 18]. These applications typically rely on
unique decoding and can thus benefit from our near-optimal
analysis for this regime. In this type of applications, the main
challenge is protecting against an adaptive adversary who may
choose which servers to corrupt after seeing the coefficients of
the random linear combination. To defeat such an adversary,
we need to ensure that if at least one of the w; is far from
the code, then (with high probability) so is their random
linear combination. If this were not the case, an adaptive
adversary could eliminate all inconsistencies by corrupting a
small number of servers. Proximity gaps rule out this kind of
attack.

In the centralized setting, u is known to a prover and can
be queried by the verifier. A typical realization is using a
tree-based succinct cryptographic commitment that binds the
prover to a uniquely defined u and yet enables efficient local
opening of symbols queried by the verifier. In this case, the
verifier challenges the prover by choosing the coefficients r;
of the random linear combination. The prover, who claims
that all u; are codewords in V, must respond with a valid
codeword v € V. The verifier checks that u agrees with
u' = riuy + ...+ by querying a random entry of v and
the corresponding entries of u and checking their consistency.
(To amplify soundness, the verifier can query several random
entries of u.) Here too, proximity gaps guarantee that if
one of the u; is far from V/, then (with high probability)
so is u’. This ensures that the verifier detects an incon-
sistency with high probability. Examples for applications in
the centralized setting include communication-efficient proof
systems [1, 2, 7], homomorphic commitment schemes [19],
and secure two-party computation protocols [20, 21]. See
more in Section III-B below.

An appealing feature of the simple “random linear combi-
nation” test is that it can be implemented with low communi-
cation and computation costs. In particular, in the distributed
setting it suffices for each server to send a single field
element to the verifier. In both settings, communicating the [
random coefficients is typically not a bottleneck. This random
challenge can be made shorter either by using a cryptographic
pseudorandom generator or unconditionally by using simple
derandomization techniques. In particular, one can generate
all coefficients as distinct powers of a single random field
elements and appeal to the parameterized curves variant of
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the proximity gap theorem (Theorem L.5).

Our new proximity gaps imply a tighter analysis of appli-
cations that test proximity to RS codes. Generally speaking, in
the distributed setting the improved proximity gap bounds im-
ply a constant-factor improvement in the resilience threshold,
namely the number of corrupted parties that can be tolerated.
In the centralized setting, one typically gets constant-factor
savings in the overall communication and computation costs.
While often ignored in theory-oriented research, the latter kind
of improvements can be very significant in the context of
practical succinct proof systems.

Why RS codes?: Reed—Solomon codes are commonly
used in distributed storage, efficient proof systems, and cryp-
tographic protocols. They are useful because of their MDS
property, near-linear encoding, and efficient (list)-decoding
algorithms. A more qualitative feature of RS codes, which is
commonly used in proof systems and cryptography, is the fol-
lowing multiplication-friendliness property: when n = |D| >
2k, the pointwise products of codewords in V' = RS[F,, D, k]
span a linear code that has nontrivial minimal distance, namely
the code RS[Fq, D, 2k].

We now give more concrete examples of applying prox-
imity gaps to analyze batch-verification tasks that arise in
different application scenarios.

A. Distributed storage and cryptography

Distributed storage.: Consider a scenario in which [
users encode their inputs using a length-n RS code V' =
RS[F,, D, k], where server 4 stores the i-th symbol of each
of the ! codewords. Suppose that some of the nl symbols
were corrupted, say by a transient malware that overwrites a
subset of the symbols before being discovered and eliminated.
A verifier would like to get a quick estimate of the amount of
damage caused by the malware. A natural idea is to have the
servers communicate a random linear combination u’ of the
potentially corrupted codewords u;. Using the basic proximity
gap result (Theorem 1.2), if at least one of u; is d-far from
the code (for 6 < I_T” or 6 <1—,/p), then o' is §-far from
the code except with small failure probability (at most n/q
for 6 < 1%”). Thus, for sufficiently large [y, the distance of
u’ from V provides a reliable upper bound on the maximal
relative distance of a vector u; from V' within the proximity
bounds of Theorem [.2. This estimate is not too pessimistic in
the sense that if only a u-fraction of the servers were affected,
the upper bound obtained by the test is no bigger than p.

Distributed proximity test for Interleaved RS codes.: The
above analysis leaves something to be desired: if u’ is within
(sufficiently small) distance 6 from V, the verifier is only
assured that each w; is individually within distance ¢ from
V. In some applications, we would like to get the stronger
guarantee that in such an event there is a d-fraction of the
coordinates whose removal makes all u; consistent with V.
Moreover, we would like to identify this set of coordinates,
which is uniquely defined in the unique decoding regime. This
is useful even in the above distributed storage scenario, but
will be even more useful for the applications we discuss next.
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The stronger feature can be conveniently captured using the
notion of an Interleaved Reed—Solomon (IRS) code. In an
IRS(V, 1) code, the codewords are | X n matrices in which
each row is a codeword in V. The symbols of such a codeword
are the matrix columns. Namely, a codeword consists of n
symbols in ]Ff;. The following theorem, which follows easily
from Theorem 1.6, phrases the stronger guarantee provided
by the refined analysis in terms of proximity testing for IRS
codes. We state it for the unique decoding regime, which
suffices (and is sometimes required) for the applications we
discuss next. For v within the unique decoding radius of V', we
denote by I'(u, V') the set of coordinates on which v disagrees
with the closest codeword from V.

Theorem III.1 (Distributed proximity test for Interleaved RS
codes). Let V. = RS[Fq,D,k| for |D| = n and V =
IRS(V,1). We view codewords in V and V as vectors in Fy
and matrices in FéX" respectively. Let p = % and § < %.
Let u € F.*™ and let ' = r"u where r € F..
o Completeness: If A(u, V) < § then Pr[A(v/,V) <
8] = 1 and moreover Pr[l'(v/,V) #T'(u, V)] < n/q.
o Soundness: If A(u, V) > 6 then Pr[A(v/,V) < §] <
n/q.

)
<
<

We refer to the above test as distributed because it can
be implemented with low communication complexity in the
distributed setting, where each server holds a different column
of u. One can similarly obtain an affine version with the same
guarantee, where u has an additional row ug that is always
added to v’ (i.e., with coefficient ro = 1), and the code V is
extended to by IRS(V, [+ 1). This affine version is useful for
zero-knowledge variants of the test, where a single random
ug € V is used for blinding w1, ...,u;. This is used in the
cryptographic applications we discuss next.

General cryptographic protocols.: Theorem III.1 serves
as a useful tool for analyzing cryptographic protocols in
the presence of an adaptive adversary who can dynamically
choose the set of corrupted parties. For instance, it shows
that secure multiparty computation protocols from [17, 18]
are adaptively secure when the adversary can corrupt roughly
1/3 of the parties. The best previous proximity gaps from [3—
5] could only get up to 1/4 corruption threshold in the
same setting. Adaptive security, in turn, is crucial for the
general transformation from [20, 22] of these honest-majority
protocols to two-party protocols and protocols for dishonest
majority. Indeed, this is the context that gave rise to proximity
gap in the analysis of the Ligero zero-knowledge proof
system [2], which applies a variant of the transformation
from [22] to a variant of the protocol from [17]. We give
a detailed exposition of the application of proximity gaps to
verifiable secret sharing, which serves as a basis for the above
results on secure multiparty computation, in Section VII of [6].

B. Soundness of the Fast RS IOPP (FRI) protocol

FRI is an Interactive Oracle Proof of Proximity (IOP of
Proximity, or IOPP) as defined in [23, 24]. An IOP is an
interactive protocol in which the verifier has oracle access
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to messages sent by the prover, so she need not read and
store those messages but may query random entries of them.
FRI is one of a family of protocols for testing proximity to
the RS code (an “RS proximity testing” (RPT) protocol). Its
purpose is to check whether a received word f : D — [y
belongs to a pre-specified RS code V' := RS[Fq, D, k] and to
reject words that are §-far from the code with high probability
and low query complexity. Due to its efficiency it is used as
a building block in several recent succinct zero knowledge
protocols including scalable and transparent (public coins)
arguments of knowledge (STARKS) [8, 9], Aurora [10] and its
succinct version [11], and Fractal [12], to name a few. These
systems have been shown by Chiesa et al. to be sound in
the quantum random oracle model (hence are “plausibly post-
quantum secure”) [25]. Therefore, understanding the concrete
soundness error of FRI, denoted €fry, is of significant practical
value, in addition to being a theoretically interesting question.

Consider the case of f that is maximally far from V,
ie, A(f,V) &~ 1 — p (this holds, e.g., for random f, with
high probability). Fix a target soundness error bound 2>
(in concrete settings, A is the “security parameter”, often
fixed to A = 128). The communication complexity of FRI
is dominated by the number ¢ of iterations of the QUERY
phase, so the question at hand is:

How many iterations t of the QUERY phase are
needed to obtain err < 2777

The initial analysis of [7] required a number ¢ that is
quite large, and does not tend to O even for tiny rates p.
This was improved by [4] to ¢ 4\ log%, and then by
[5] to ¢ 3/\log%. Sadly, that paper also showed that
this bound is tight, at least when the field size g equals
the code’s blocklength n. Our main result regarding FRI
(Theorem VIL.2 in [6]) shows that for ¢ > n? we can
reduce the number ¢ of iterations by 33% to t ~ 2\log %,
which leads to communication complexity that is at least 33%)
shorter, for provable soundness settings. The actual savings in
the provable soundness case are likely larger, due to smaller
field size and the ability of the improved analysis to operate
with any sequence of oracle sizes in the FRI COMMIT phase
(as discussed after the statement of Theorem VII.2).

~
~

~
~
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