
Reconstruction Algorithms for Low-Rank Tensors and Depth-3
Multilinear Circuits

Vishwas Bhargava

Rutgers University

USA

vishwas1384@gmail.com

Shubhangi Saraf

Rutgers University

USA

shubhangi.saraf@gmail.com

Ilya Volkovich

Boston College

USA

ilya.volkovich@bc.edu

ABSTRACT
We give new and efficient black-box reconstruction algorithms

for some classes of depth-3 arithmetic circuits. As a consequence,

we obtain the first efficient algorithm for computing the tensor

rank and for finding the optimal tensor decomposition as a sum of

rank-one tensors when then input is a constant-rank tensor. More

specifically, we provide efficient learning algorithms that run in

randomized polynomial time over general fields and in determin-

istic polynomial time over R and C for the following classes: 1)

Set-multilinear depth-3 circuits of constant top fan-in
(ΣΠΣ{⊔jX j }

(k) circuits). As a consequence of our algorithm, we

obtain the first polynomial time algorithm for tensor rank compu-

tation and optimal tensor decomposition of constant-rank tensors.

This result holds for d dimensional tensors for any d , but is interest-
ing even for d = 3. 2) Sums of powers of constantly many linear forms
(Σ∧Σ(k) circuits). As a consequence we obtain the first polynomial-

time algorithm for tensor rank computation and optimal tensor

decomposition of constant-rank symmetric tensors. 3) Multilin-
ear depth-3 circuits of constant top fan-in (multilinear ΣΠΣ(k) cir-
cuits). Our algorithm works over all fields of characteristic 0 or

large enough characteristic. Prior to our work the only efficient

algorithms known were over polynomially-sized finite fields (see.

Karnin-Shpilka 09’). Prior to our work, the only polynomial-time

or even subexponential-time algorithms known (deterministic or

randomized) for subclasses of ΣΠΣ(k) circuits that also work over

large/infinite fields were for the setting when the top fan-in k is at

most 2 (see Sinha 16’ and Sinha 20’).

CCS CONCEPTS
• Theory of computation → Algebraic complexity theory;
Pseudorandomness and derandomization; Circuit complexity.

KEYWORDS
Tensor Rank, Tensor Decomposition, Derandomization, Arithmetic

Circuit Reconstruction,

ACM Reference Format:
Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. 2021. Reconstruc-

tion Algorithms for Low-Rank Tensors and Depth-3 Multilinear Circuits.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC ’21, June 21–25, 2021, Virtual, Italy
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8053-9/21/06. . . $15.00

https://doi.org/10.1145/3406325.3451096

In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing (STOC ’21), June 21–25, 2021, Virtual, Italy. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3406325.3451096

1 INTRODUCTION
Arithmetic circuits are directed acyclic graphs (DAG) computing

multivariate polynomials succinctly, building up from variables us-

ing (+) addition and (×) multiplication operations. Reconstruction of
arithmetic circuits is the following problem: given black-box (a.k.a

oracle/ membership query) access to a polynomial computed by a

circuit C of size s from some class of circuits C, give an efficient

algorithm (deterministic or randomized) for recovering C or some

circuitC ′
that computes the same polynomial asC . This problem is

the algebraic analogue of exact learning in Boolean circuit complex-

ity [5]. If one additionally requires that the output circuit belongs to

the same class C as the input circuit, then it is called proper learning.
Reconstruction of arithmetic circuits is an extremely natural

problem, but also a really hard problem. Thus in the past few years,

much attention has focused on reconstruction algorithms for vari-

ous interesting subclasses of arithmetic circuits [7, 17, 38, 39]. In

particular, much attention has focused on depth-3 and depth-4 arith-

metic circuits [9, 23, 30, 55, 56]. Depth-3 and depth-4 circuits have

been intensely studied for the problem of proving lower bounds,

deterministic polynomial identity testing as well as polynomial re-

construction (which is probably the hardest of the three). Given the

depth reduction results of [3, 21, 42, 57], we know that depth-3 and

depth-4 arithmetic circuits are very expressive, and good enough

reconstruction algorithms (or even lower bounds or polynomial

identity testing) for these models would have major implications

for general circuits. Thus perhaps not surprisingly, we are quite far

from obtaining efficient reconstruction algorithms even for depth-3

circuits.

In this work, we will focus on some interesting subclasses of

depth-3 circuits with bounded top fan-in (ΣΠΣ(k) circuits) and give
efficient proper learning algorithms for them. A setting of particular

interest for us (and which motivated much of this work) is when

the underlying field is large or infinite (such as R or C), since in
that setting we have even fewer reconstruction algorithms. Though

we state many of our results over all fields, for concreteness it will

be convenient to imagine the underlying field being R or C or Fp .
The subclasses of ΣΠΣ(k) circuits that we study, already cap-

ture some very interesting models, and our result for one of these

subclasses implies the first efficient polynomial-time algorithm

for tensor rank computation and optimal tensor decomposition of

constant-rank tensors. Before describing the connection to tensors

809

https://doi.org/10.1145/3406325.3451096
https://doi.org/10.1145/3406325.3451096

STOC ’21, June 21–25, 2021, Virtual, Italy Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich

and stating our results, we first give some background on polyno-

mial reconstruction.

There is substantial evidence supporting the hardness of arith-

metic circuit reconstruction. Deterministic algorithms for recon-

struction are at least as hard as deterministic black-box algorithms

for polynomial identity testing, which is equivalent to proving

lowering bounds for general arithmetic circuits [2, 28]. Random-

ized reconstruction is also believed to be a hard problem and there

are a number of results showing hardness of reconstruction un-

der various complexity-theoretic and cryptographic assumptions

[18, 25, 40, 52]. (For more details see the section on hardness-results

in [9]).

Despite reconstruction being a very hard problem, there has been

a lot of research focused on efficient reconstruction for restricted

classes of arithmetic circuits. Yet, the progress has still been quite

slow. Even among the class of constant-depth arithmetic circuits,

we only understand reconstruction well for a handful of restricted

cases [9, 23, 30, 39, 55]. If one studies average case reconstruction (a

model that has received increased attention in recent years) then

we know a number of additional results and they hold for richer

circuit classes [19, 22, 24, 33–35]. However we will not discuss this

setting much since the focus of this work will be on the worst case

setting.

Before describing the status of what we know about reconstruc-

tion for some of the relevant circuit classes, we first define some

natural classes of arithmetic circuits that will play an important

role in our discussion.

Some Definitions of Relevant Circuit Classes. The model of depth-

3 arithmetic circuits with top fan-in k , which we refer as ΣΠΣ(k)
circuits, has three layers of alternating Σ and Π gates and computes

a polynomial of the form C(x̄) =
k∑
i=1

Ti (x̄) =
k∑
i=1

di∏
j=1

li j (x̄) where

the li j (x̄)-s are linear polynomials.

A multilinear polynomial is a polynomial with individual degree

of each variable bounded by 1. We say that a circuitC is multilinear

(or syntactically multilinear) if every gate in C computes a multi-

linear polynomial. Thus, a multilinear ΣΠΣ(k) circuit is a ΣΠΣ(k)
circuit in which each multiplication gate Ti computes a multilinear

polynomial.

A more refined subclass of multilinear polynomial is that of

set-multilinear polynomials. Let ⊔j ∈[d]X j be a partition of the set

X of input variables. Then a polynomial is set-multilinear under

partition ⊔j ∈[d]X j if each monomial of the polynomial picks up

exactly one variable from each part in the partition.

A set-multilinear ΣΠΣ(k) circuit under partition⊔j ∈[d]X j (which

we denote as ΣΠΣ{⊔jX j }
(k) circuit) is a ΣΠΣ(k) circuit in which

each multiplication gate Ti computes a set-multilinear polynomial

respecting the partition ⊔j ∈[d]X j . In the Section 1.1 we will discuss

this model and its connection to tensor decomposition.

The final subclass of ΣΠΣ(k) circuits that we discuss is the in-
nocuous looking class of sum of power of k linear forms, also

referred to as diagonal depth-3 circuits with bounded top fan-in

(Σ∧Σ(k) circuits). These are a subclass of ΣΠΣ(k) circuits where
instead of using multiplication gates, we are just allowed powering

gates which raise an input linear polynomial to some power. In Sec-

tion 1.1 we will discuss this model and its connection to symmetric
tensor decomposition.

Proper Learning. The focus of this work will be on proper learning
algorithms for subclasses of ΣΠΣ(k) circuits.

Note that in the setting of proper learning, if C′
is a subclass

of C, then an efficient proper learning algorithm for C does not

imply an efficient proper learning algorithm for C′
. Indeed, as

some evidence towards this, note that there are efficient algorithms

for proper learning of read-once algebraic branching programs

(ROABPs) [7, 17, 38], but we do not know proper learning algo-

rithms for ΣΠΣ{⊔jX j }
circuits and Σ∧Σ circuits (with no bound on

the top fan-in), which are both subclasses of ROABPs. In fact, it is

known that properly learning ΣΠΣ{⊔jX j }
circuits or Σ∧Σ circuits

with an optimal bound for the top fan-in is NP-hard [25, 52].

Reconstruction algorithms for ΣΠΣ(k) circuits and for subclasses
of ΣΠΣ(k) circuits have been studied in the past a fair bit. The only

proper reconstruction algorithms that we are aware of are for the

model of multilinear ΣΠΣ(k) circuits by Karnin and Shpilka [30]

and for ΣΠΣ(2) circuits by Sinha [55, 56]. In the case of ΣΠΣ(2)
circuits, the algorithms are proper (i.e. the output is also a ΣΠΣ(2)
circuit) only if the “rank" of the linear forms in the underlying

circuit is large enough.

All three of these results are highly nontrivial and they introduce

several beautiful techniques which give insight into the structure

of these models. The Karnin-Shpilka result is in fact more general

and gives reconstruction algorithms for ΣΠΣ(k) circuits without
the multilinearity constraint, but in this setting the learning al-

gorithms aren’t proper (and they do not work over large fields)

and we will not discuss it here. For multilinear ΣΠΣ(k) circuits
as well, the running time of the Karnin-Shpilka algorithm has a

polynomial dependence on the field size |F|. Thus it works only
over polynomially-sized finite fields, and in particular it does not

work over large or infinite fields (which is the primary focus of this

work). We discuss the algorithm from [30] in a little more detail in

Section 1.2.

Our goal is to obtain algorithms that work over infinite fields (R,
C) with polynomial dependence on the input bit complexity, and

that work over finite fields Fq with poly(logq) dependence on the

field size. In this setting, the only subclasses of ΣΠΣ(k) circuits for
which we know proper learning algorithms is for ΣΠΣ(2) circuits,
if the “rank" of the linear forms in the underlying circuit is large

enough [55, 56]. Both these results use fairly sophisticated tools,

and really show why even for the seemingly simple case of k = 2,

reconstruction can be fairly complex.

Some additional classes of bounded depth circuits for which we

do know proper learning algorithms that work over large fields are

depth-2 (ΣΠ) arithmetic circuits (a.k.a sparse polynomials) which

have efficient polynomial-time algorithms [8, 39], and multilinear

depth-4 circuits with top fan-in 2 (multilinear ΣΠΣΠ(2) circuits)
[23].

1.1 Connection to the Tensor Rank Problem
Tensors, higher dimensional analogues of matrices, are

multi-dimensional arrays with entries from some field F. For in-
stance, a 3-dimensional tensor can be written as T = (αi , j ,k) ∈

810

Reconstruction Algorithms for Low-Rank Tensors and Depth-3 Multilinear Circuits STOC ’21, June 21–25, 2021, Virtual, Italy

Fn1×n2×n3
. We will work with general d-dimensional tensors T =

(α j1, j2, ..., jd) ∈ F
n1×···×nd . The rank of a tensor T can be defined

as the smallest r for which T can be written as a sum of r tensors of
rank 1, where a rank-1 tensor is a tensor of the form v1 ⊗ · · · ⊗ vd
with vi ∈ F

ni
. Here ⊗ is the Kronecker (outer) product a.k.a ten-

sor product. The expression of T as a sum of such rank-1 tensors,

over the field F is called F-tensor decomposition or just tensor de-

composition, for short. The notion of tensor rank/decomposition

has become a fundamental tool in different branches of modern

science with applications in machine learning, statistics, signal

processing, computational complexity, psychometrics, linguistics

and chemometrics. We refer the reader to the detailed monograph

by Landsberg [43] and the references therein for more details on

applications of tensor decomposition.

For a tensor T = (α j1, j2, ..., jd) ∈ F
n1×···×nd consider the following

polynomial

fT (X)
∆
=

∑
(j1, ..., jd)∈[n1]×···×[nd]

α j1, j2, ..., jd x1, j1x2, j2 · · · xd , jd .

Let C(X) =
k∑
i=1

d∏
j=1
ℓi , j be a set-multilinear depth-3 circuit over F

respecting the partition ⊔j ∈[d]X j , and computing fT (X). Then ob-

serve that T =
k∑
i=1

v̄(ℓi ,1) ⊗ · · · ⊗ v̄(ℓi ,d) where v̄(ℓi , j) corresponds

to the linear form ℓi , j as an nj -dimensional vector over F. Indeed, it
is easy to see that a tensor T = (α j1, j2, ..., jd) ∈ F

n1×···×nd has rank

at most r if and only if fT (X) can be computed by a ΣΠΣ{⊔jX j }
(r)

circuit. Therefore, rank of T is the smallest k for which fT (X) can

be computed by a ΣΠΣ{⊔jX j }
(k) circuit.

Consider the following question. Question 1: Given as input a

3-dimensional tensor T = (αi , j ,k) ∈ F
n1×n2×n3

, is there an efficient

algorithm for computing its tensor rank? This problem is known

to be NP-hard in general [25]. Now consider the following vari-

ant of the question. Question 1
′: Given as input a 3-dimensional

tensor T = (αi , j ,k) ∈ Fn1×n2×n3
such that the tensor rank is at

most some fixed constant. Does the problem still remain hard,

or is the rank efficiently computable? One could also ask these

same questions for d-dimensional tensors where d is large. Let

T = (α j1, j2, ..., jd) ∈ F
n1×···×nd . In such a setting, one might not

even be able to efficiently store the entire tensor as an array. How-

ever, if the tensor rank is small (say a constant), then there is still

a small “implicit" representation of T a sum of rank one tensors.

In this setting, one has black-box access to measurements of T . In

particular, given ᾱi ∈ F
ni

for all i ∈ [d], the measurement of T at

(ᾱ1, . . . , ᾱd) equals ⟨T , ᾱ1 ⊗ · · · ⊗ ᾱd ⟩. The d-dimensional question

is strictly harder than the three dimensional question, and again

we can ask (d-dimensional analog of Question 1
′
)- suppose the

tensor rank of T is at most some fixed constant. Is there an efficient

algorithm for computing the tensor rank of T ?

Observe that eachmeasurement ofT at (ᾱ1, . . . , ᾱd) corresponds
to a black-box evaluation of the polynomial fT at (ᾱ1, . . . , ᾱd).
Moreover, finding the optimal decomposition of T as a sum of rank-

1 tensors is equivalent to the following: Given black-box access to

fT , reconstruct it as a set-multilinear ΣΠΣ{⊔jX j }
circuit with the

smallest possible top fan-in.

The three dimensional version was asked as an open question in

the work of Schaefer and Stefankovic [51]. In a related setting, a

version of the d-dimensional variant (efficiently learning an optimal

decomposition of a constant-rank tensor by black-box access to

the measurements) was also raised in the recent work of Chen

and Meka [13]. It turns out that the answer to the above question

is extremely sensitive to the underlying field. For instance, if the

underlying field is the rationals (Q), then even if the tensor rank

is a constant, computing the exact value of the tensor rank over

Q is not known to be decidable (and is, in fact, believed to be

undecidable) [51, 52].

In this paper, we give the first randomized polynomial-time

algorithm for computing the tensor rank of a constant-rank, d-
dimensional tensor T 1

. Over the fields R and C we also show how

to obtain deterministic polynomial time algorithms. Moreover, our

algorithm finds the optimal decomposition of T as a sum of rank-1

tensors. Our algorithm works over fields such as R, large enough
finite fields, C, and any other algebraically closed fields. Over other

fields, we are only able to compute the tensor rank when we view

the entries of the tensor as elements of some extension field.

Theorem 1 (Informal). Let k be any constant. There exists a
randomized polynomial-time algorithm that given black-box access
to a polynomial f ∈ F[X] computable by a ΣΠΣ{⊔jX j }

(k) circuit
over F, and the partition ⊔Xi of the set of variables X , outputs a
ΣΠΣ{⊔jX j }

(k) circuit computing f . When F is R or C then our algo-
rithm is deterministic.

This implies a polynomial-time algorithm to compute the optimal

tensor decomposition (and hence also the tensor rank) of constant-

rank tensors for various fields. The formal version of the result is

given in Theorem 1.1

Our proof uses various ingredients such as a variable reduc-

tion procedure, and setting up and solving a system of polynomial

equations. Another important ingredient used is the rank bounds
that were developed in the study of polynomial identity testing

for ΣΠΣ(k) circuits [15, 36, 37, 46, 47]. These are structural results
for identically zero ΣΠΣ(k) circuits, and essentially show that un-

der some mild conditions, any ΣΠΣ(k) circuit which computes the

identically zero polynomial must have its linear forms contained in

a “low-dimensional" space. This understanding led to very efficient

deterministic polynomial identity testing results for this class, and

then eventually were used in efficient reconstruction algorithms

for subclasses of ΣΠΣ(k) circuits as well.

Symmetric Tensors: Just as we asked the question of tensor rank

computation for general tensors, we can also ask the analogous

questions for symmetric tensors.
A tensor T is called symmetric if X1 = X2 = · · · = Xd and we

have T(i1, i2, . . . , id) = T(j1, j2, . . . , jd) whenever (i1, i2, . . . , id)
is a permutation of (j1, j2, . . . , jd). Thus, a symmetric tensor is a

1
It is possible that the algorithm of Karnin and Shpilka [30] for learning multilinear

ΣΠΣ(k) circuits can be adapted to also properly learn set-multilinear ΣΠΣ(k) circuits.
The Karnin-Shpilka algorithm has a polynomial dependence on field size |F |. If there
algorithm can be adapted then it would give a polynomial-time algorithm over small

finite fields. The algorithms in this paper work over infinite fields as well, and that

setting was the primary motivation for this work.

811

STOC ’21, June 21–25, 2021, Virtual, Italy Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich

higher order generalization of a symmetric matrix. Analogous to

tensor rank, symmetric rank is obtained when the constituting

rank-1 tensors are imposed to be themselves symmetric, that is

v̄ ⊗ v̄ · · · ⊗ v̄ .
Just like in the case of general tensors, computing the symmetric

rank reduces to finding the optimal top fan-in of a special class of

arithmetic circuits, which is sum of power of linear forms (Σ∧Σ)
circuits. The class of Σ∧Σ(k) circuits computes polynomials of the

form f = ℓd
1
+ · · · ℓdk where each ℓi is a linear polynomial over the

underlying n variables.

LetC(X) =
k∑
i=1
ℓdi be a Σ∧Σ(k) circuit overF computing fSym,T (X)

for a symmetric tensor T = (α j1, j2, ..., jd) ∈ Fn1×···×nd . Then

T =
k∑
i=1

v̄(ℓi) ⊗ · · · ⊗ v̄(ℓi) where v̄(ℓi) is a n-dimensional vec-

tor corresponding to the linear form ℓi , j .

Just as in the case of tensor rank, determining the symmetric

rank of tensors is also known to be NP-hard [52]. One could still ask

if there are efficient algorithms for determining the symmetric rank

when the rank is constant. In this paper, we give (what we believe

to be) the first randomized polynomial-time algorithm for comput-

ing the symmetric tensor rank of a constant-rank d-dimensional

symmetric tensor T .

Theorem 2 (Informal). Let k be any constant. Let F be any field
of characteristic 0 or sufficiently large characteristic. There exists a
randomized polynomial-time algorithm that given black-box access to
a polynomial f ∈ F[X] computable by a Σ∧Σ(k) circuit with constant
k over F, outputs a Σ∧Σ(k) circuit computing f . When F is R or C
then our algorithm is deterministic.

This implies a polynomial-time algorithm to compute the optimal

symmetric tensor decomposition (and hence also the symmetric

tensor rank) of constant-rank symmetric tensors over various fields.

The formal version of the result is given in Theorem 1.4.

Our proof in this case also uses a variable reduction procedure,

and setting up and solving a system of polynomial equations. How-

ever the proof is overall way simpler than that for general tensors

(and actually fits in about half a page!).

1.2 Multilinear ΣΠΣ(k) Circuits
Multilinear ΣΠΣ(k) circuits are a more general class of circuits than

ΣΠΣ{⊔jX j }
(k) circuits. In the proper learning setting however, a

proper learning algorithm for multilinear ΣΠΣ(k) circuits does not
imply a proper learning algorithm for ΣΠΣ{⊔jX j }

(k) circuits.

In this paper we also study reconstruction algorithms for multi-

linear ΣΠΣ(k) circuit. Multilinear ΣΠΣ(k) circuits were studied by

by Karnin and Shpilka [30] and they give the first polynomial-time

algorithm for this class of circuits. However the running time of the

Karnin-Shpilka algorithm has a polynomial dependence on the field

size |F|. Thus it works only over polynomially sized finite fields,

and in particular it does not work over infinite fields
2
.

At a very high level, the way the algorithm works in [30] is as

follows. It finds a suitable projection of the input circuit where

2
The Karnin-Shpilka [30] result is in fact more general and gives reconstruction

algorithms for ΣΠΣ(k) circuits without the multilinearity constraint, but in this setting

the learning algorithms aren’t proper and we will not discuss it.

only constantly many variables are kept “alive" and the rest are set

to field constants. The new circuit in constantly many variables

has only constantly many field elements appearing as coefficients,

and hence in time poly(|F|) one can efficiently “guess” it by going

over all possibilities for what the projected circuit looks like. Once

the algorithm hits upon the correct guess of the projected circuit,

then it “lifts" the projected circuit to recover the original circuit.

The implementation of the lifting procedure is quite clever and

uses a very nice clustering procedure. The only place where the

prohibitive dependence on the field size comes up is in guessing

the projected circuit.

In this workwe give the first randomized polynomial-time proper

learning algorithm for this model that works over large fields (and

in particular infinite fields). Our algorithm works over all fields

of characteristic 0 or characteristic greater than d (where d is the

degree of the circuit). Over R and C we show how to derandomize

the above algorithm and to obtain deterministic polynomial time

algorithms. Several of the ideas in our algorithm are inspired by

the algorithm from [30] but we need several new ideas as well.

One similarity we have with [30] is that we also project to con-

stantly many variables and try to learn the projected circuit. Instead

of “guessing" or iterating to find the projected circuit, we reduce

the problem to solving a suitable system of polynomial equations.

The problem is that the projected circuit may not have a unique

representation as a multilinear ΣΠΣ(k) circuit, and hence the repre-
sentation learnt by polynomial system solving might be just some

representation (not the original representation) and it might not be

liftable. This leads to some subtleties and the rest of the algorithm

and how we implement the lift is quite different. We give a more

detailed overview in Section 2.3.

Theorem 3 (Informal). Let k be a constant. Let F be any field
of characteristic 0 or sufficiently large characteristic. There exists a
randomized polynomial-time algorithm that given black-box access to
a polynomial f ∈ F[X] computable by a multilinear ΣΠΣ(k) circuit
over F, outputs a multilinear ΣΠΣ(k) circuit computing f . Over R
and C the algorithms we obtain are in deterministic polynomial time.

This implies a polynomial-time algorithm for learning multilin-

ear ΣΠΣ(k) circuits over infinite fields. The formal version of the

result is given in Theorem 1.6.

1.3 Our Results
We now state our results. All our algorithms will be randomized

algorithms over general fields, and hence algorithms will output

the correctly reconstructed circuit with high (say ≥ 0.9) probability.

This probability can boosted to 1−o(1) by simply doing independent

repetitions. Over R and C, all our algorithms are deterministic.

Our first main result is a polynomial-time algorithm for proper

learning of the class of ΣΠΣ{⊔jX j }
(k) circuits.

Theorem 1.1 (Proper learning ΣΠΣ{⊔jX j }
(k) circuits). Given

black-box access to a degree d , n variate polynomial f ∈ F[X] com-
putable by a ΣΠΣ{⊔jX j }

(k) circuit over F, and given the partition
⊔Xi of the set of variables X , there is a

randomized poly(dk
3

,kk
k10
,n, c) time algorithm for computing a

ΣΠΣ{⊔jX j }
(k) circuit computing f , where c = logq if F = Fq and c

812

Reconstruction Algorithms for Low-Rank Tensors and Depth-3 Multilinear Circuits STOC ’21, June 21–25, 2021, Virtual, Italy

is the maximum bit complexity of any coefficient of f if F is infinite.
When the underlying field F is R or Fq with q ≥ nd · 2k+1 or alge-
braically closed, then the output circuit is over F as well. Otherwise the

output circuit is over a degree poly(kk
k10

) extension of F. Moreover
when F is R or C, then we show that the above algorithm can be made

to run in deterministic time poly(dk
3

,kk
k10
,n, c).

We would like to remark that this is the first proper learning

algorithm for ΣΠΣ{⊔jX j }
(k) circuits, and it works over all fields.

We feel this result is particularly interesting in the setting of large

or infinite fields such as R or C, and understanding reconstruction

algorithms in that setting was the goal of this work. If we didn’t

require the learning to be “proper" and were okay with letting the

output be a polynomial from a bigger class, then such algorithms

were already known (even without the restriction of top fan-in) [7,

38].

By the equivalence described in Section 1.1 we obtain the follow-

ing immediate corollary to Theorem 1.1 which for constant-rank

tensors gives us an efficient tensor decomposition algorithm for

expressing the input tensor as sum of rank one tensors.

When T is a d dimensional tensor, as described in Section 1.1,

even storing all of T as an array is too inefficient. However if the

rank is small, there is still a small implicit description of T . We

consider the setting when we have black-box access to measure-

ments of T (as described in Section 1.1). This exactly corresponds

to having black-box access to the associated polynomial fT .

Corollary 1.2 (Decomposing fixed rank tensors). Let T ∈

Fn1×···×nd be a d-dimensional tensor of rank at most k . Let n =∑d
i=1 ni . Given black-box access to measurements of T (equivalently

to evaluations of fT), there exists a randomized poly(dk
3

,kk
k10
,n, c)

time algorithm for computing a decomposition of T as a sum of at
most k rank 1 tensors, where c = logq if F = Fq and c is the maxi-
mum bit complexity of any coefficient of f if F is infinite. When the
underlying field F isR or Fq withq ≥ nd ·2k+1 or algebraically closed,
then the decomposition is over F as well. Otherwise the decomposition

will be over (a degree poly(kk
k10

)) extension of F. Moreover when F
is R or C, then we show that the above algorithm can be made to run

in deterministic time poly(dk
3

,kk
k10
,n, c).

Notice that we can use the above result to obtain an efficient

algorithm for computing the exact value of the tensor rank of

the input tensor (at least over R, C, large finite fields and other

algebraically closed fields). Over other fields we can only compute

the tensor rank over an extension field. The way one can compute

the tensor rank is as follows: run the above algorithm for all values

of k starting from k = 1, and the smallest k for which the algorithm

successfully outputs a tensor decomposition will be the tensor rank

of T . (Note that one can test when the output is successful by a

simple randomized polynomial identity test.)

Remark 1.3. The dependence on k (exponential tower of size 2) is
not optimized in the above theorem and corollary and can be improved
to a single exponential in k when F = C,R. However, the single
exponential dependence on k is expected as tensor decomposition is
NP-hard in general [25, 51] and not even known to be computable for

Q, thus justifying our need to go to extension fields. See Section 3.4
for more details on hardness of tensor decomposition.

Note that in the case of constant dimensional tensors (i.e. when

one can actually efficiently look at all the entries), we can simulate

black-box access to the polynomial fT , given access to the entries

of the tensor and vice versa. Thus in the constant dimensional

setting our algorithm also gives a way for computing tensor rank

and obtaining the optimal tensor decomposition given access to the

entries of the tensor. This in particular answers an open question

asked by Schaefer and Stefankovic [51], who asked as an open

question the complexity of computing the tensor-rank when the

rank is constant. Our proof in the constant dimensional setting

is simpler than that for the setting of growing d . In the setting

of d dimensional tensors (for large or growing d) the question of

whether one can get improved efficiency when the rank of T is

constant was raised in the work of Chen andMeka [13] (in a slightly

different context). Our work addresses and resolves this question

in the black-box query setting for worst case tensors.

Analogous to the result above for tensor decomposition of gen-

eral tensors, we also obtain efficient algorithms for optimal symmet-

ric tensor decomposition of constant-rank symmetric tensors. The

setting of constant-rank symmetric tensors ends up being much

simpler than general tensors, and our proofs for this model are

much simpler. This result will follow as a corollary of the next re-

sult, which is a randomized polynomial-time algorithm for proper

learning of Σ∧Σ(k) circuits.

Theorem 1.4. (Proper learning Σ∧ Σ(k) circuits) Given black-box
access to a degree d , n variate polynomial f ∈ F[X] computable
by a Σ∧Σ(k) circuit over F, such thar char (F) > d or 0, there is

a randomized poly

(
(dk)k

k10
,n, c

)
time algorithm for computing a

Σ∧Σ(k) circuit computing f , where c = logq if F = Fq and c is the
maximum bit complexity of any coefficient of f if F is infinite. When
the underlying field F is R or Fq with q ≥ nd2k or algebraically
closed, then the output circuit is over F as well. Otherwise the output

circuit is over a degree poly((dk)k
k10

) extension of F. Moreover when
F is R or C, then we show that the above algorithm can be made to

run in deterministic time poly
(
(dk)k

k10
,n, c

)
.

By the equivalence described in Section 1.1, we obtain the follow-

ing immediate corollary to Theorem 1.4 which for constant-rank

tensors gives us an efficient symmetric tensor decomposition algo-

rithm for expressing the input tensor as sum of rank one symmetric

tensors.

Corollary 1.5 (Decomposing fixed symmetric rank ten-

sors). Let T be a symmetric d-dimensional tensor of side length
n, with F-entries and symmetric rank at most k , such that char (F) >
d or 0. Given black-box access to fSym,T , there is a randomized

poly

(
(dk)k

k10
,n, c

)
time algorithm for computing a decomposition of

T as a sum of at most k rank 1 symmetric tensors, where c = logq if
F = Fq and c is themaximum bit complexity of any coefficient of f if F
is infinite. When the underlying field F isR or Fq with q ≥ nd2k or al-
gebraically closed, then the decomposition is over F as well. Otherwise

the decomposition will be over (a degree poly
(
(dk)k

k10
)
extension of

813

STOC ’21, June 21–25, 2021, Virtual, Italy Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich

F. Moreover when F is R or C, then we show that the above algorithm

can be made to run in deterministic time poly
(
(dk)k

k10
,n, c

)
.

Again, like in the case of general tensor decomposition, Remark

1.3 holds here as well.

We next state our result on proper learning ofmultilinear ΣΠΣ(k)
circuits.

Theorem 1.6 (Proper learningmultilinear-ΣΠΣ(k) circuits).
Given black-box access to a degree d , n variate polynomial f ∈

F[X] computable by a multilinear ΣΠΣ(k) circuit over F, such that

char (F) > d or 0, there is a randomized poly

(
nk

kk
10

,d,kk
kk

10

, c

)
time algorithm for computing a multilinear ΣΠΣ(k) circuit comput-
ing f , where c = logq if F = Fq and c is the maximum bit complexity
of any coefficient of f if F is infinite. When the underlying field F is
R or Fq with q ≥ nd · 2k+1 or algebraically closed, then the output
circuit is over F as well. Otherwise the output circuit is over a degree

poly

(
(k)k

kk
10
)
extension of F. Moreover when F is R or C, then we

show that the above algorithm can be made to run in deterministic

time poly
(
nk

kk
10

,d,kk
kk

10

, c

)
.

This is the first efficient proper learning algorithm formultilinear-

ΣΠΣ(k) circuits that works over large fields, and in particular infi-

nite fields such as R and C. Even here, the dependence on k (expo-

nential tower of size 3) is not optimized in the above theorem and

can be improved to a tower of size 2 in k when F = C,R,.

Deterministic vs Randomized Reconstruction Algorithms: The al-
gorithms we give in this paper are randomized over general fields

and deterministic over R and C. Indeed, derandomizing them in

general, will be highly nontrivial for the following reason. In the

reconstruction problem for all three subclasses of ΣΠΣ(k) circuits
being studied, we can embed within them the problem of solving

a system of polynomial equations. (See Theorem 3.14 and the dis-

cussion in Section 3.4.) The only efficient algorithms we know for

solving systems of polynomial equations over large finite fields (i.e

with running time polynomial in logq for a field Fq) are randomized

and it is a very interesting open question to derandomize them. A

derandomized solution to our reconstruction algorithms over large

finite fields would have very interesting algorithmic implications

for polynomial system solving, see [1, Problem 15].

Interestingly, the large characteristic case is the only case when

low-variate polynomial system solving is hard to derandomize.

That is, if the underlying field is not a finite field with large char-

acteristic, then there do exist efficient deterministic algorithms for

low-variate polynomial system solving. See Section 3.3.1 for details.

Also, this turns out to be the only bottleneck for derandomizing our

learning/decomposition algorithms. That is, if the underlying field

is not a finite field with large characteristic, then the algorithms

underlying Theorems 1.1, 1.4, 1.6 can be derandomized efficiently.

Thoughwe do not mention this explicitly, it is easy to see that, when

F = Fpt then the algorithms mentioned in Theorems 1.1, 1.4, 1.6

can be made deterministic with an additional polynomial in p (char-

acteristic) dependence in time complexity. See derandomization

remarks in respective sections for details.

When we present our proofs, for simplicity we will first present

the randomized algorithms and then later point out the changes

that need to be made in order to derandomize them.

1.4 Related/Previous Work
Reconstruction of ΣΠΣ(k) circuits has received a fair amount of

attention. The case of k = 1 is resolved by the black-box factoring

algorithm of Kaltofen and Trager [29]. The case of k = 2 is already

highly nontrivial and very interesting and thus needed quite a few

new ideas. This case was first studied by Shpilka [53], who designed

a reconstruction algorithm for k = 2 which was later improved

by Karnin and Shpilka [30] who gave efficient reconstruction algo-

rithms for (ΣΠΣ(k)) circuits for any constant top fan-in k . When

the input is an n-variate, degree d polynomial computed by a size

s circuit, both algorithms run in time quasipoly(n,d, |F| , s). The
algorithms are not ‘proper learning’ algorithms, and the output

is from a larger class of “generalized" depth-3 circuit. Moreover

given the dependence of the running time on the field size, these

algorithms aren’t efficient over large/infinite fields.

Over fields of characteristic 0, the only efficient reconstruction

algorithmwe know for ΣΠΣ(k) circuits is the randomized algorithm

by [55] which works for k = 2, and uses lots of new ideas such as

quantitative/robust Sylvester-Gallai theorems for high dimensional

points. Very recently, in [56], Sinha studied the case of k = 2 for

finite fields and gave the first algorithm in this setting with poly log

dependence in field size. These algorithms aremostly proper, but not

always. When the rank of the linear forms in the input polynomial

is not high dimensional, then the output circuit might not be a

ΣΠΣ(2) circuit.
When the input is a multilinear ΣΠΣ(k) circuit, the works of

Shpilka [53] and Karnin-Shpilka [30] give polynomial-time proper
learning algorithms. The dependence on the field size is still poly(|F|),
and hence these algorithms do not work over large/infinite fields.

Inspired by the work of Karnin and Shpilka, in [9] similar results

were obtained for multilinear depth-4 circuits with bounded top

fan-in (ΣΠΣΠ(k) circuits). The running time is however still at

least poly(|F|), and hence it does not work over large/infinite fields.

When the top fan-in is 2, i.e. for ΣΠΣΠ(2) circuits, we do know

such efficient polynomial-time reconstruction algorithms by the

work of Gupta, Kayal and Lokam [23].

Other Results: The class of circuits for which we understand

reconstruction really well is the class of depth-2 (ΣΠ) arithmetic cir-

cuits (a.k.a sparse polynomials). We can properly learn sparse poly-

nomials in deterministic poly(s,n,d) time over any field [8, 39]. An-

other class for which we understand reconstruction reasonably well

is the class of read-once oblivious branching programs (ROABPs).

Klivans and Shpilka [38] gave a randomized reconstruction (proper

learning) algorithm for ran in time poly(n,d, s). This was later de-
randomized in [17] with time complexity quasipoly(n,d, s). For
depth-3 circuits, reconstruction algorithms for various other re-

stricted classes have been studied. For instance, for set-multilinear

depth-3 circuits [7, 38] gave a randomized poly(n,d,s) (improper)

learning algorithm which outputs an ROABP.

Recently, there has been a flurry of activity in average case learn-

ing algorithms for various arithmetic circuit classes [19, 22, 24, 33–

35]. These results can be thought of as worst case reconstruction,

814

Reconstruction Algorithms for Low-Rank Tensors and Depth-3 Multilinear Circuits STOC ’21, June 21–25, 2021, Virtual, Italy

given some non-degeneracy condition holds for some implicit poly-

nomials (which are usually computed by intermediate gates). In-

terestingly, these results fall under the umbrella of learning from

natural lower bounds which is an exciting area of research in arith-

metic as well as Boolean circuit complexity [12, 35].

2 PROOF OVERVIEW
We have three main results in the paper:(1) reconstruction of

ΣΠΣ{⊔jX j }
(k) circuits (equivalent to low rank tensor decompo-

sition), (2) reconstruction of Σ∧Σ(k) circuits (equivalent to low

rank symmetric tensor decomposition), and (3) reconstruction of

multilinear ΣΠΣ(k) circuits.
Our algorithms are randomized over general fields and we show

how to derandomize then over R and C. For simplicity, in the proof

overview we will only discuss the randomized algorithms. Later

in the paper when we give the formal proof we will show how to

derandomize the algorithms.

A common theme in the proof of each of these results is that all

proofs involve a variable reduction procedure and setting up and

solving a suitable system of polynomial equations, where a solution to
the system gives some important information about the circuit be-

ing reconstructed. In the case of reconstruction for ΣΠΣ{⊔jX j }
(k)

circuits and multilinear ΣΠΣ(k) circuits, the proofs are consider-
ably more involved and also use “rank bound" techniques that give

structural information about ΣΠΣ(k) circuits that are identically 0.

For simplicity, we start with a proof overview of the result that

was (in hindsight) quite easy to prove, which is coming up with an

efficient reconstruction algorithm for Σ∧Σ(k) circuits.

2.1 Reconstruction of Σ∧Σ(k) Circuits
Let f be a polynomial which has a Σ∧Σ(k) representation, and let

Cf ≡

k∑
i=1

(ai ,1x1 + ai ,2x2 + ai ,3x3 + . . . + ai ,nxn)
d

be the Σ∧Σ(k) circuit computing f .
An important observation is that if f can be represented by a

Σ∧Σ(k) circuit, then f has only k “essential variables". In particular

one can apply an invertible linear transformation to the variables

of f so that the transformed f only depends on k variables.

What is nice is that such a linear transformation can actually

be computed without actually looking at Cf and its linear forms,

but only with black-box access to f . This follows from result of

Kayal [32], and which built upon a result by Carlini [11]. (The

original result by Kayal was not stated or used in the black-box

setting, but it is easy to see that the proof an be adapted to black-box

setting as well.) Let дA(x̄) = f (A · x̄), where дA(x̄) depends only
on k variables. Since the algorithm can compute A, hence given
black-box access to f , it can efficiently simulate black-box access

to дA. Moreover, observe that дA also has a Σ∧Σ(k) representation.
Thus if we can learn a Σ∧Σ(k) representation of дA, then by simply

applying the inverse linear transform, one can recover a Σ∧Σ(k)
representation of f .

Thus the new goal is to learn a Σ∧Σ(k) representation ofдA given

black-box access to it. We will do this be reducing the problem of

learning the Σ∧Σ(k) representation ofдA to solving a suitable system

of polynomial equations. Recall that дA only depends on k variables.

Thus the monomial representation of дA only has

(k+d
d

)
monomials.

Since k is small, this quantity is not too big, and one can invoke

black-box reconstruction algorithms for sparse polynomials [8, 39]

to learn дA as a sum of monomials. Let дA =
∑
ē cē · x̄ ē be the

monomial representation of дA.

Let CдA ≡
∑k
i=1(bi ,1x1 + bi ,2x2 + bi ,3x3 + . . . + bi ,kxk)

d
be a

Σ∧Σ(k) representation of дA.

Then notice that

∑k
i=1(bi ,1x1 +bi ,2x2 +bi ,3x3 + . . .+bi ,kxk)

d =∑
ē cē · x̄

ē .

Now for each monomial x̄ ē that appears in дA, we can compare

the coefficient of x̄ ē on both sides of the above expression to get a

polynomial equation in the variables bi , j . Doing this for all mono-

mials gives us a system of at most

(k+d
d

)
polynomial equations in

k2 variables, with bi , j as the unknown variables. Observe that any

solution to the system of equations would give a Σ∧Σ(k) repre-
sentation of дA an vice versa. By Theorem 3.13, this system can be

solved in polynomial time if k is a constant.

2.2 Reconstruction of ΣΠΣ{⊔jX j } (k) Circuits
We now show how to efficiently reconstruct ΣΠΣ{⊔jX j }

(k) circuits.

Again, variable reduction and setting up and solving polynomial

systems of equations play an important role, but several other

ingredients (such as rank bound techniques) also go into the proof

and the proof is more involved.

We are given as input black-box access to a degree d , n variate

polynomial f ∈ F[X] computable by a ΣΠΣ{⊔jX j }
(k) circuit over

F, and we are also given the partition ⊔Xi of the set of variables X .

Let Cf ≡
∑k
i=1

∏d
j=1 ℓi , j , be a ΣΠΣ{⊔jX j }

(k) representation of f ,

where each ℓi , j is a linear polynomial in X j variables.

2.2.1 Variable Reduction. As a first step, we show how to reduce

the number of variables in each part to at most k . Here we cannot
directly invoke the result by Kayal [32] and Carlini [11] for the

following reasons. The total number of essential variables is k × d
which is quite large. Though the number of essential variables in

every part is at most k , there seems to be no straightforward way

to apply the result separately to each part
3
. Even if kd was small,

after applying the linear transformation given by the Carlini-Kayal

result, the new circuit might not be set-multilinear, and we need to

crucially maintain set-multilinearity in order for the other steps of

the algorithm to be carried out.

Instead, we use the structural properties of set-multilinear cir-

cuits to come up with a a different black-box algorithm for perform-

ing the variable reduction. We essentially come up with d different

invertible linear transformations, one for each set of variables in the

partition, that reduces the variables in each set to at most k . In the

full version of the paper we elaborate more on how we find these

transformations using some properties of the underlying class of

circuits. After this step is performed, one can essentially assume

that the input circuit is such that each set of the partition has at

most k variables.

2.2.2 Reconstructing Low-Degree (d ≤ 2k2) ΣΠΣ{⊔jX j }
(k) Circuits.

Once we have the variable reduction established, we proceed along

3
Since the linear maps might then end up being over the field of rational functions in

the remaining variables.

815

STOC ’21, June 21–25, 2021, Virtual, Italy Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich

the same lines as the algorithm for reconstructing Σ∧Σ(k) circuits.
Since the degree is small, the number of monomials appearing in f
is small, and the total number of variables appearing in f is small.

(Unlike the symmetric case where the number of monomials was

small even for high degree circuits). One can invoke black-box

reconstruction algorithms for sparse polynomials [8, 39] to learn

f as a sum of monomials. Then, similar to the Σ∧Σ(k) case, we
set up a system of polynomial equations in poly(k) variables such
that every solution to the system corresponds to a ΣΠΣ{⊔jX j }

(k)

representation of f .

2.2.3 Reconstructing High-Degree (d > 2k2) ΣΠΣ{⊔jX j }
(k) Cir-

cuits. The high level plan for reconstructing general high degree

ΣΠΣ{⊔jX j }
(k) circuits is to use induction on k . When k = 1, then

the algorithm just invokes a black-box factoring algorithm such

as [29]. Now assume k ≥ 2.

Our first step will be to just learn any one linear form appearing

in Cf . (Actually as a first step it will be convenient to learn two

distinct linear forms such that each multiplication gate contains

at most one of them.) In the next step we will use that linear form

to learn most of the linear forms of Cf . In the final step we will

try to learn all the linear forms and obtain a full ΣΠΣ{⊔jX j }
(k)

representation of f .

Learning one (or two) linear forms appearing inCf : The algorithm

chooses k2 sets of variables in the partitionX = ⊔Xi to keep “alive"
and sets the variables in the remaining sets to random values. Let

the resulting restricted polynomial be fR and the resulting constant

degree ΣΠΣ{⊔jX j }
(k) circuit be CfR .

Now, we already know reconstruction algorithms (from the previ-

ous case) for low degree ΣΠΣ{⊔jX j }
(k) circuits which we could in-

voke. If we could learnCfR , then in particular we would have learnt

several linear forms of Cf . However note that all we have is black-
box access to fR , which might not have a unique ΣΠΣ{⊔jX j }

(k)

circuit representation. In fact it might have exponentially many

ΣΠΣ{⊔jX j }
(k) circuit representations, and our reconstruction algo-

rithm would learn one of these representations. Thus it is possible

that we do not learn CfR , but some other ΣΠΣ{⊔jX j }
(k) circuit

representation of fR , call it C
′
fR

. Now a priori it may seem that the

linear forms in C ′
fR

might not have anything in common with the

linear forms of CfR or Cf . However using rank bound arguments

that have been used extensively in the past to analyze identically

0 ΣΠΣ(k) circuits (for polynomial identity testing and polynomial

reconstruction), one can show two distinct ΣΠΣ{⊔jX j }
(k) repre-

sentations of the same polynomial must indeed have many linear

forms in common (as long as the degree is large enough, which it is

in our case). Thus we get that CfR and C ′
fR

(which we learnt) must

have many linear forms in common. Though we may not know

exactly which linear form of C ′
fR

also appears in Cf , we can come

up with a small list of candidate options and then iterate over these

options. Any wrong candidate will not lead to a successful output

of the final algorithm and we will be able to detect it by a later

testing phase. Thus we can effectively assume we know a linear

form in Cf . In fact if we do things more carefully we can ensure

that we know two linear forms ℓ1 and ℓ2 appearing inCf such that

they are supported on the same subset of variables.

Learning most of the linear forms from each multiplication gate
of Cf : Once we learn ℓ1 and ℓ2 appearing in Cf , we try to learn

more linear forms as follows. (We don’t need fR any more or C ′
fR
)

The algorithm applies a suitable random setting of the variables

of ℓ1 in the polynomial f , that makes ℓ1 evaluate to 0, and re-

sults in a circuit with < k multiplication gates. Call the restricted

polynomial fR1
and let CfR

1

be the restricted version of Cf . By

the inductive hypothesis, we can learn a ΣΠΣ{⊔jX j }
(k − 1) rep-

resentation of fR1
. Call this C ′

fR
1

. If we could actually learn the

representation CfR
1

then we would have learnt most of the linear

forms in all the multiplication gates of Cf that did not get set to

zero under the restriction. However we can only learn some other

representation, which we calledC ′
fR

1

. Using rank bound arguments,

we will however still be able to argue that C ′
fR

1

and CfR
1

have a

lot in common. In fact we show that each multiplication gate of

CfR
1

overlaps almost entirely (in all but k linear forms) with some

multiplication gate of C ′
fR

1

. Repeating this procedure for the other

linear form ℓ2 as well gives us another restricted circuit CfR
2

and

the version of it that is learnt which is C ′
fR

2

. It is now easy to see

that each multiplication gate of Cf overlaps almost entirely (in all

but k linear forms) with some multiplication gate of C ′
fR

1

or C ′
fR

1

.

Once we have this, by iterating over all ways of matching up the

multiplication gates and choices of overlap, we can make generate

a polynomial sized list of k-tuples (G1,G2, . . .Gk) which has the

following property. One of the k-tuples (G1,G2, . . .Gk) from the

list will have the property that f = G1H1 + · · ·GkHk and GiHi =

Ti where Ti was one of the multiplication gates in the original

ΣΠΣ{⊔jX j }
(k) representation of f , Cf . Each Gi has degree d − k2

and hence eachHi has degree k
2
. By a little bit of more effort we can

also ensure that all theHi depend on the same sets of the underlying

variable partition. The final algorithm will go over all possible k-
tuples (G1,G2, . . .Gk) from the list in order to find the correct one.

All the wrong ones will not lead to a successful reconstruction, and

will get eliminated by a later testing phase.

Learning the full ΣΠΣ{⊔jX j }
(k) representation of f : We now

assume that we have learnt k polynomialsG1,G2, . . . ,Gk such that

f = G1H1 + · · ·GkHk . GiHi = Ti where Ti was one of the multi-

plication gates in the original ΣΠΣ{⊔jX j }
(k) representation of f .

Each Hi is a polynomial in k3 variables of degree at most k2 (since
after variable reduction each part had at most k variables) and all

the Hi depend on the same sets of the underlying variable partition.

We need to now learn theHi , or even some variation of them which

will eventually lead to a full ΣΠΣ{⊔jX j }
(k) representation of f .

We demonstrate how we do this with some simple examples.

As a simple case, suppose that the Gi are linearly independent

polynomials. By substituting random values into the variables of

the Gi , we obtain black-box access to a random linear combination

ofH1, . . .Hk . Call this linear combination P1. From black-box access

to P1, we can actually obtain the monomial representation of P1
using black-box interpolation for sparse polynomials.We can repeat

this process k times to get k different random linear combinations

of H1, . . .Hk . The linear independence of G1,G2, . . .Gk implies

816

Reconstruction Algorithms for Low-Rank Tensors and Depth-3 Multilinear Circuits STOC ’21, June 21–25, 2021, Virtual, Italy

that these random linear combinations will be linearly independent

with high probability. Since we know the Gi , we actually know

to coefficients of the random linear combinations. Thus once we

learn these combinations, we can invert the transformation and

actually get black-box access to each Hi individually. Once we have

black-box access to each Hi , we can factorize them in a black-box

way and hence recover the full underlying circuit.

Here is a slightly more general case. Imagine that k = 3, G1 and

G2 are independent, butG3 = G1 +G2. Since we actually know the

Gi s, we can learn their linear dependency structure (for instance by

taking enough random evaluations of them and learning the linear

dependence structure of the evaluations. Then,

Cf = G1H1 +G2H2 + (G1 +G2)H3 = G1(H1 + H3) +G2(H2 + H3)

Let H1 +H3 = K1 and H2 +H3 = K2. Now just as in the simple case

when all the Gi s were independent, we can again learn the mono-

mial representation of two distinct random linear combinations

of K1 and K2, and then use this to recover the monomial repre-

sentations of K1 and K2. What remains is to find a representation

of K1 which looks like H1 + H3 and a representation of K2 which

looks like H2 + H3. Individually, each looks like a case of finding

a ΣΠΣ{⊔jX j }
(2) representation for low degree polynomials, but

these two ΣΠΣ{⊔jX j }
(2) representations are entangled since they

must share a multiplication gate. However we can set up one big

system of polynomial equations for solving both these reconstruc-

tion problems at the same time that takes into account the shared

multiplication gate.

This more general case that we just described contains most of

the ideas for the fully general case. For more details, refer to the

full version of the paper.

2.3 Reconstruction of Multilinear ΣΠΣ(k)
Circuits

We now give a proof overview and describe our algorithm for

efficiently learning multilinear ΣΠΣ(k) circuits. The main goal of

this result is to find a procedure which also works over large and

infinite fields.

Variable reduction and setting up and solving polynomial sys-

tems of equations again play an important role, especially for the

case of low degree multilinear ΣΠΣ(k) circuits. However the imple-

mentation of this technique and how to set up and solve the system

of equations is more subtle. For general high degree multilinear

ΣΠΣ(k) circuits, we need several other tools such as a clustering

procedure (inspired by the work of [30], rank bounds, the notion

of rank preserving subspaces, black-box factoring algorithms and

an error correcting procedure.

2.3.1 Reconstruction of Low-Degree Multilinear ΣΠΣ(k) Circuits.
Think of k (the top fan-in) and d (the degree) to be constants, and

the number of variables, n, to be growing. Let f ∈ F[x1, x2, . . . , xn]
be a polynomial computed by a degree d , multilinear ΣΠΣ(k) circuit
C of the form

k∑
i=1

Ti (x̄) =
k∑
i=1

di∏
j=1
ℓi , j (x̄) (1)

where for each fixed i , the different ℓi , j are supported on disjoint

variables.

Let m be the number of essential variables in f . Since there

at most kd linear forms appearing in C , it is easy to see that the

number of essential variables in f , i.e.m, is at most kd .
We now apply a variable reduction procedure, and for this we in-

voke the result by Kayal[32] and Carlini [11] to efficiently compute

an invertible linear transformation A ∈ Fn×n such that f (A · x̄)
only depends on the firstm variables.

Let д(x̄) = f (A · x̄). Observe that given black-box access to f , one
can easily simulate black-box access to д. Also since д(A−1 · x̄) =
f (x̄), any algorithm that can efficiently learn д can also efficiently

learn f in the following way. For each i ∈ [n], suppose that Ri
denote the ith row of A−1

. Then in the ith input to д we simply

input the linear polynomial Li = ⟨Ri , x̄⟩, which is the inner product

ofRi and the vector x̄ of formal input variables. Sinceд only depends
on the firstm variables, we only really need to do this operation

for i ∈ [m].

Since f is computed by a degree d multilinear ΣΠΣ(k) circuit,
hence д(X) = f (A · x̄) also has a natural degree d ΣΠΣ(k) circuit
representation, where the linear forms of that representation are

obtained by applying the transformation A to corresponding linear

forms of C . Let us call this circuit Cд . Notice that Cд may not be
multilinear. However, if were somehow able to learn the precise

circuitCд , then by substituting each variable xi to Li then we would
recover the circuit C which is indeed multilinear.

Thus our goal is now the following. We have black-box access

to д which only depends onm variables. We would like to devise

an algorithm for reconstructing Cд . Now here is a slight issue. Cд
is a particular degree d ΣΠΣ(k) representation of д. It has the nice
property that when we plug in xi = Li (for all i ∈ [m]) in this rep-

resentation, then we recover a multilinear ΣΠΣ(k) representation
of f . Let us call the new circuit obtained by plugging in xi = Li for
each i , the “lift" ofCд . Observe that д might have multiple (perhaps

exponentially many) representations as a degree d ΣΠΣ(k) circuit.
If given black-box access to д, the reconstruction algorithm finds

some other degree d ΣΠΣ(k) representation of д, call it C ′
д , then

there is no guarantee that when we plug in xi = Li in this repre-

sentation, then we recover a multilinear ΣΠΣ(k) representation of

f . In other words, the lift of C ′
д in general may not be multilinear.

Although in our algorithm we will not actually be able to guar-

antee that we learn precisely Cд , however the existence of Cд tells

us that there exists a ΣΠΣ(k) representation of д whose lift is a

multilinear ΣΠΣ(k) circuit. We will use this existence to actually

find a suitable ΣΠΣ(k) representation of д whose lift is multilinear.

In order to learn a degree d ΣΠΣ(k) representation of д we will

set up a system of polynomial equations such that any solution

to it will give as a degree d ΣΠΣ(k) representation of д. (We do

this in a very similar manner to how we did it for Σ∧Σ(k) circuits
and ΣΠΣ{⊔jX j }

(k) circuits.) We then show how to impose several

additional polynomial constraints to this system that will further

ensure that whatever ΣΠΣ(k) representation is learnt will be such

that its lift will be a multilinear ΣΠΣ(k) circuit.

2.3.2 Reconstructing General (High-Degree) Multilinear ΣΠΣ(k)
Circuits. We now describe our algorithm for reconstructing general

multilinear ΣΠΣ(k) circuits. What we describe here is a bit of a

simplification and it avoids some technical issues, but we hope that

it provides a high level picture of the algorithm.

817

STOC ’21, June 21–25, 2021, Virtual, Italy Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich

Clustering of gates: We use a very nice and elegant clustering

procedure devised in the work of Karnin and Shpilka [31] (which

they used for reconstructing ΣΠΣ(k) circuits over small fields). We

will not describe the algorithm here, but describe some nice prop-

erties that the clustering satisfies. Given as input C =
∑
i Ti where

theTi are the multiplication gates of a degree d multilinear ΣΠΣ(k)
circuit C , the clustering algorithm looks at the Ti and outputs a

partition of the the k multiplication gates into a set of clusters

C1,C2, . . .Cr (for some r ∈ [k]). Each cluster Ci is some subset of

the multiplication gates of C , and has the property that any two

multiplication gates in a cluster are very “close" to each other. Sup-

pose that Ci = {Ti1 ,Ti2 ,Ti3 }. Then consider the associated circuit

C ′
i = Ti1 +Ti2 +Ti3 . The closeness of every two of the multiplication

gates will imply that one can write C ′
i as

C ′
i = Ti1 +Ti2 +Ti3 = gcd(Ti1 ,Ti2 ,Ti3) ×

(
T ′
i1 +T

′
i2 +T

′
i3

)
whereT ′

i1 +T
′
i2 +T

′
i3 is a low degreemultilinear ΣΠΣ(3) circuit. Now

notice that we don’t know what C is (that is what we are trying to

learn) and hence we cannot apply any clustering procedure to it.

However this clustering exists, and it is canonical. We only have

black-box access to the original circuit C . Suppose that we could
somehow obtain black-box access to each of the clusters (or rather to

the circuits corresponding to the clusters). We would then actually

be done! Here is why. Suppose we had black-box access to C ′
i , then

we would first apply a black-box factoring algorithm (such as that

given by [29]) to compute all the linear factors ofC ′
i (thus we would

obtain gcd(Ti1 ,Ti2 ,Ti3)) and divide them out. We would then be left

with black-box access to T ′
i1 +T

′
i2 +T

′
i3 is a low degree multilinear

ΣΠΣ(3) circuit. But we already saw how to reconstruct low degree

multilinear ΣΠΣ(3) circuits! By multiplying it with its linear factors,

we we would be able to recover a multilinear ΣΠΣ(3) circuit for Ci .
We would repeat this procedure for each cluster and then put it all

together to obtain a multilinear ΣΠΣ(k) representation for C .
Thus the goal from now on will be to somehow obtain black-box

access to the clusters. The clustering output by the clustering al-

gorithm also has some additional nice properties. It is a “robust"

clustering, that is, if two multiplication gates got assigned to dif-

ferent clusters, then they are quite “far" from each other (in some

well defined sense). This nice property ends up implying the follow-

ing. We start with the circuit C in n variables. Then there is some

constant number (about kk) of variables one can keep “alive" (call

these the ȳ variables) such that if we set the remaining variables

(call these the z̄ variables) to random values (z̄ = ᾱ), then the new

restricted circuit C |z̄=ᾱ has the following property. Suppose we ap-

plied the clustering algorithm to C |z̄=ᾱ , then the clusters obtained

would exactly match up with the clusters output by the clustering

algorithm applied to the circuit C , and each cluster of C |z̄=ᾱ would

be obtained by the same restriction procedure being applied to the

corresponding cluster of C .

Obtaining access to evaluations of the clusters at random inputs:
Notice that though we do not know what C is, we can know what

C |z̄=ᾱ is. This is because C |z̄=ᾱ has only about kk variables and

hence is a low degree multilinear ΣΠΣ(k) circuit. Hence we can
reconstruct it. We have to be a bit careful here since our recon-

struction algorithm might not output the precise circuit C |z̄=ᾱ but

some other multilinear ΣΠΣ(k) circuit representation of the same

polynomial, call it C ′ |z̄=ᾱ . However the clustering procedure turns

out to be robust enough that the clusters of C |z̄=ᾱ and the clusters

of C ′ |z̄=ᾱ match up to compute the same polynomials. Hence we

can essentially assume that we know what C |z̄=ᾱ is and hence we

can cluster its gates as well. By the properties of clustering, the

clusters of C |z̄=ᾱ match up with the clusters of C (after we set the

z̄ = ᾱ). Thus though we do not as yet have black-box access to the

clusters of C , we can indeed recover what the clusters look like

after setting z̄ = ᾱ . Thus if C ′
1
,C ′

2
, . . .C ′

r are circuits corresponding

to the clusters of C , then we can recover their restrictions to z̄ = ᾱ .
Notice that α was any random sample from Fm , where m is the

number of Z variables. Thus we can essentially recover black-box

evaluations of the clusters at randomly chosen inputs. If we could do
the same for the Z variables being set to any arbitrary adversarially

chosen β ∈ Fm then we would be done.

There is one issue we have swept under the rug, which is the

following. The clusters ofC |z̄=ᾱ match up with the clusters ofC , but
we don’t know what this matching is. In particular, we might be able

to learnC |z̄=ᾱ as well asC |z̄=ᾱ ′ for two distinct ᾱ, ᾱ ′ ∈ Fm , and we

might be able to cluster both of them, and these clusters correspond

to the clusters of C , but since we don’t know the correspondence

we cannot really say that we know the value of C ′
i |z̄ = ᾱ as well as

C ′
i |z̄=ᾱ ′ for the same C ′

i . We will refer to this as “ambiguity issue".

Obtaining the corresponding between two clusterings: We now ad-

dress the ambiguity issue. Suppose we knowwhatC ′
i |z̄=ᾱ looks like.

We would like to be able to computeC ′
i |z̄=ᾱ ′ for any other randomly

chosen α ′ ∈ Fm . Note that we can reconstructC |z̄ = ᾱ ′
and cluster

it and that would give us the set {C ′
1
|z̄=ᾱ ′,C ′

1
|z̄=ᾱ ′, . . .C ′

r |z̄=ᾱ ′}, but

we may not know which element of the set corresponds to C ′
i |z̄=ᾱ ′ .

In order to do this identification, we first show how to do this when

ᾱ and ᾱ ′
differ in only one coordinate, and then we use a hybrid

argument to stitch it together for general ᾱ and ᾱ ′
(by considering

a sequence of different αs going from α to α ′
and with consecu-

tive elements differing in one coordinate). When ᾱ and ᾱ ′
differ in

only one coordinate, we observe that C ′
i |z̄=ᾱ and C ′

i |z̄=ᾱ ′ are very

similar or very “near each other" in a suitably defined metric. Then

using the robustness property of the clustering we show that the

identification of C ′
i |z̄=ᾱ ′ can be done.

From evaluations at random points to evaluations at worst case
points: Let C ′

i be the circuit corresponding to cluster Ci . Let us
assume we know how to computeC ′

i |z̄=ᾱ for any randomly chosen

α ∈ Fm . Now let
¯β be some arbitrary point in Fm . We would like

to compute C ′
i |z̄= ¯β . We use Reed-Solomon decoding for this. We

consider the line t · ᾱ + (1− t) · ¯β passing through ᾱ and
¯β in Fm . In

order to learn C ′
i |z̄= ¯β , we will learn the restriction of C ′

i to the full

line, which is a polynomial in the Y variables and the additional t
variable. Then setting t = 0 would give us the value at β . To learn

the restriction to the line, it suffices to learn the restriction on at

least d + 1 points on the line, where d is the degree of the t variable.
By evaluating at d + 1 random points (which can be done since

these points look random) on the line, we can accomplish this.

Derandomization: The result can be derandomized over R and

C. For more details, see the full version of the paper.

818

Reconstruction Algorithms for Low-Rank Tensors and Depth-3 Multilinear Circuits STOC ’21, June 21–25, 2021, Virtual, Italy

3 DEPTH-3 CIRCUITS
In this section we formally introduce the general model of depth-3

circuits and specialization of set-multilinear depth-3 circuits, which

is the focus of our paper. It is to be noted that depth-3 circuits were

a subject for a long line of study [6, 15, 31, 36, 37, 48–50, 54].

Definition 3.1. A depth-3 ΣΠΣ(k) circuit C computes a polyno-
mial of the form

C(X) =

k∑
i=1

Ti (X) =

k∑
i=1

di∏
j=1
ℓi , j (X),

where the ℓi , j -s are linear functions; ℓi , j (X) =
n∑
t=1

ati , jxt + a
0

i , j with

ati , j ∈ F.
A multilinear ΣΠΣ(k) circuit is a ΣΠΣ(k) circuit in which each Ti is
a multilinear polynomial. In particular, each such Ti is a product of
variable-disjoint linear functions.
Given a partitionX = ⊔j ∈[d]X j ofX , a set-multilinear ΣΠΣ{⊔jX j }

(k)

circuit is a further specialization of a multilinear circuit to the case
when each ℓi , j is a linear form in F[X j]. That is, each ℓi , j is defined
over the variables in X j and a0i , j = 0.

We say that C is minimal if no subset of the multiplication gates
sums to zero. We define gcd(C) as the linear product of all the non-
constant linear functions that belong to all the Ti -s. I.e. gcd(C) =
gcd(T1, . . . ,Tk). We say that C is simple if gcd(C) = 1. The sim-
plification of C , denoted by sim(C), is defined as C/gcd(C). In other
words, the circuit resulting upon the removal of all the linear functions
that appears in gcd(C). Finally, we say that a ΣΠΣ{⊔jX j }

circuit has

widthw , if
��X j

�� ≤ w for all j.

Throughout the paper, we will be referring to this quantity as

the width of a polynomial, width of a circuit, since our model is is

ΣΠΣ{⊔jX j }
circuits, it all essentially means the same.

3.1 Tensors and Set-Multilinear Depth-3
Circuits

Tensors, higher dimensional analogues of matrices, are

multi-dimensional arrays with entries from some field F. For in-
stance, a 3-dimensional tensor can be written as T = (αi , j ,k) ∈

Fn1×n2×n3
and 2-dimensional tensors simply corresponds to tradi-

tional matrices. We will work with general d-dimensional tensors

T = (α j1, j2, ..., jd) ∈ F
n1×···×nd , here [n1] × · · · × [nd] refers to the

shape of the tensor and ni as length of tensor in i-th dimension.

Just like any matrix has a natural definition of rank, there is an

analogue for tensors as well.

The rank of a tensor T can be defined as the smallest r for which
T can be written as a sum of r tensors of rank 1, where a rank-1 ten-
sor is a tensor of the formv1 ⊗ · · · ⊗vd withvi ∈ F

ni
. Here ⊗ is the

Kronecker (outer) product a.k.a tensor product. The expression of T

as a sum of such rank-1 tensors, over the field F is called F-tensor
decomposition or just tensor decomposition, for short. The notion

of Tensor rank/decomposition has become a fundamental tool in

different branches of modern science with applications in statis-

tics, signal processing, complexity of computation, psychometrics,

linguistics and chemometrics. We refer the reader to a monograph

by Landsberg [43] and the references therein for more details on

application of tensor decomposition.

For our application, it would be useful to think of tensors as

a restricted form of multilinear polynomials that are called set-
multilinear polynomials. To this end, let us fix the following nota-

tion throughout the paper.

Let d ∈ N. We will refer to d as the dimension. For j ∈ [d] let X j ={
x j ,1, x j ,2, . . . , x j ,nj

}
, where nj =

��X j
��
. Finally, let X = ⊔j ∈[d]X j .

That is,

{
X j

}
{j ∈[d]} form a partition of X .

Definition 3.2 (Set-Multilinear polynomial). A polynomial
P ∈ F[X] is called set-multilinear w.r.t (the partition) X , if every
monomial that appears in P is of the form xi1xi2 · · · xid where xi j ∈
X j .

In other words, each monomial of a set-multilinear polynomial

picks up exactly one variable from each part in the partition. These

polynomial have been well studied in the past [4, 16, 45] in par-

ticular since many natural polynomials like the Determinant, the

Permanent, Nisan-Wigderson and others are set-multilinear w.r.t

appropriate partitions of variables. Furthermore, each tensor can

be regraded as a set-multilinear polynomial.

Definition 3.3. For a tensor T = (α j1, j2, ..., jd) ∈ Fn1×···×nd

consider the following polynomial

fT (X)
∆
=

∑
(j1, ..., jd)∈[n1]×···×[nd]

α j1, j2, ..., jd x1, j1x2, j2 · · · xd , jd .

Observe that fT (X) is a set-multilinear polynomial w.r.tX . More

interestingly, there is a direct correspondence between tensor de-

composition and computing the polynomial fT (X) in the model of

set-multilinear depth-3 circuits. We first define the model formally.

Definition 3.4 (Set-Multilinear Depth-3 Circuits). A set-
multilinear depth-3 circuit w.r.t to (a partition) X with top fan-in k ,
denoted by ΣΠΣ{⊔jX j }

(k) computes a (set-multilinear) polynomial
of the form

C(X) ≡

k∑
i=1

d∏
j=1
ℓi , j (X j)

where ℓi , j (X j) is a linear form in F[X j].

To gain some intuition, suppose that

fT (X) = ℓi ,1(X1) · ℓi ,2(X2) · · · ℓi ,d (Xd) for some tensor T . We can

observe that in this case T is a rank-1 tensor. Extending this ob-

servation, the following provides a formal connection between

tensor decomposition and computing the polynomial fT (X) by

set-multilinear depth-3 circuits.

Observation 3.5. Let C(X) =
k∑
i=1

d∏
j=1
ℓi , j be a set-multilinear

depth-3 circuit over F computing fT (X) for a tensor
T = (α j1, j2, ..., jd) ∈ F

n1×···×nd . Then

T =

k∑
i=1

v̄(ℓi ,1) ⊗ · · · ⊗ v̄(ℓi ,d)

where v̄(ℓi , j) corresponds to the linear form ℓi , j as an nj -dimensional
vector over F.

819

STOC ’21, June 21–25, 2021, Virtual, Italy Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich

Note that this connection is, in fact, a correspondence: any F-
tensor decomposition of T gives a circuit over F. This leads to the

following important lemma:

Lemma 3.6. A tensor T = (α j1, j2, ..., jd) ∈ Fn1×···×nd has rank
at most r if and only if fT (X) can be computed by a ΣΠΣX (r) cir-
cuit. Therefore, rank of T is the smallest k for which fT (X) can be
computed by a ΣΠΣX (k) circuit.

Proof. The proof is straightforward. Note that,

ℓi ,1(X1) · ℓi ,2(X2) · · · ℓi ,d (Xd) exactly corresponds to a rank-1 ten-

sors. Thus,Cf gives a rank k F-tensor decomposition of T and any

F-tensor decomposition gives a circuit over F. □

3.2 Symmetric Tensors and Sums of Powers of
Linear Forms

A tensor T is called symmetric if X = X1 = X2 = · · · = Xd and we

have T(i1, i2, . . . , id) = T(j1, j2, . . . , jd) whenever (i1, i2, . . . , id)
is a permutation of (j1, j2, . . . , jd). Thus, a symmetric tensor is a

higher order generalization of a symmetric matrix. Analogous to

tensor rank, symmetric rank is obtained when the constituting

rank-1 tensors are imposed to be themselves symmetric, that is

v̄ ⊗ v̄ · · · ⊗ v̄ .

Definition 3.7. For a symmetric tensor T = (α j1, j2, ..., jd) ∈

Fn×···×n consider the following polynomial

fSym,T (X)
∆
=

∑
(j1, ..., jd)∈[n]×···×[n]

α j1, j2, ..., jd x j1x j2 · · · x jd .

Just like in case of general tensors, computing the symmetric

rank reduces to finding the optimal top fan-in of a special class of

arithmetic circuits, which is sum of power of linear forms (Σ∧Σ)
circuits defined below.

Definition 3.8 (Sum of power of linear forms). The Sum of
power of linear forms with top fan-in k computes a polynomial of the
form f = ℓd

1
+ · · · ℓdk where each ℓi is a linear polynomial over the n

variables.

Observation 3.9. Let C(X) =
k∑
i=1
ℓdi be a Σ∧Σ(k) circuit over F

computing fSym,T (X) for a symmetric tensor T = (α j1, j2, ..., jd) ∈

Fn1×···×nd . Then

T =

k∑
i=1

v̄(ℓi) ⊗ · · · ⊗ v̄(ℓi)

wherev(ℓi) is a n-dimensional vector corresponding to the linear form
ℓi , j .

Remark 3.10. Both Tensor rank and Symmetric rank are dependent
on the underlying field, that is Tensor rank of a tensor T over F and
G, an extension of F can be different, see [51, 52] for details. The
correspondence discussed above, among Tensor rank(symmetric rank)
and top fan-in of ΣΠΣ{⊔jX j }

circuits(Σ∧Σ circuits), respects the
dependence of rank on underlying field. That is, in order to find rank
of T over G we have to find an optimal top fan-in of a ΣΠΣ{⊔jX j }
circuit over G computing fT .

3.3 Complexity of Solving a System of
Polynomial Equations

Solving a system of polynomial equations is the following prob-

lem: For a field F, we are given m polynomials f1, f2, . . . , fm ∈

F[x1, . . . , xn], each of degree at mostd . We want to test if there exist

a solution (this is the decision version) to f1 = 0, f2 = 0, . . . , fm = 0

in Fn , or find a solution if it exists (this is the search version). A

straightforward reduction from 3-SAT shows that polynomial sys-

tem solving is NP-hard in general. This is a fundamental problem

in computational algebra, and it has received lot of attention over

various fields. To mention a few, system solving is NP-complete for

finite fields, in PSPACE over R [10] and in Polynomial Hierarchy

(Σ2), assuming GRH [41].

Interestingly, for F = Q system solving is not even known to be

decidable! In fact, if we restrict the question to integral domains

(like Z) then the problem is undecidable. This was the well-known

Hilbert’s tenth problem, which asks if a given Diophantine equation

has an integral solution, and was famously proved to be undecidable

in the 70’s, see [44].

In this work, we are mainly concerned with polynomial system

solving when the number of variables involved is small (such as

a constant). In this case, polynomial system solving turns out is

efficient under various settings. We will use the following defini-

tions for describing the complexity of solving a system of equations

under various settings.

Definition 3.11 (SysF(n,m,d)). Let SysF(n,m,d) denote the ran-
domized time complexity of finding a solution ∈ Fn to a system ofm
polynomial equations ∈ F[x1, . . . , xn] of total degree d (if one exists).

Also, consider a weaker version of the above problem, let
S̃ysF(n,m,d) denote the randomized time complexity of finding a
solution (could be in an extension of F) to a system ofm polynomial
equations ∈ F[x1, . . . , xn] of total degree d (if one exists).

Definition 3.12 (Det-SysF(n,m,d)). Let Det-SysF(n,m,d) de-
note the deterministic time complexity of finding a solution ∈ Fn to a
system ofm polynomial equations ∈ F[x1, . . . , xn] of total degree d
(if one exists).

We will now mention various known upper bounds on

S̃ysF(n,m,d) and SysF(n,m,d) for various fields. In all these bounds,
we have suppressed a poly(c) dependence in the running time,

where c = logq if F = Fq and c is the maximum bit complexity of

any coefficient of f if F is infinite.

Theorem 3.13. Let f1, f2, . . . fm ∈ F[x1, . . . , xn] be n-variate
polynomials of degree at most d . Then, the complexity of finding a
single solution to the system f1(x) = 0, . . . , fm (x) = 0 (if one exists)
over various fields is as follows:

(1) For all fields F, S̃ysF(n,m,d) = poly((nmd)3
n
). This follows

from standard techniques in elimination theory, see [14] for
details. For a detailed sketch of the argument and a bound on
the size of the extension.

(2) [26]4 For F = Fq , SysF(n,m,d) = O(d
nn · (m logqO (1))).

(3) [20] For F = R,
SysF(n,m,d) =Det-SysF(n,m,d) = poly((md)n

2

). Note that
4
the main results of this work is written for the case when q is prime, but the authors

observe that it works for general q as well.

820

Reconstruction Algorithms for Low-Rank Tensors and Depth-3 Multilinear Circuits STOC ’21, June 21–25, 2021, Virtual, Italy

in this case the assumption is that the coefficients are integers
or rationals5. However, the output might be a tuple of algebraic
numbers over R where the degree of the extension is polynomi-
ally bounded when n is a constant. See [20] for details. Note
that all algebraic algorithms used in this paper will continue to
hold when the inputs are algebraic numbers of low/polynomial
degree, and we deal with algebraic extensions in the standard
way.

(4) [27] ForF = C (or any algebraically closed field), SysF(n,m,d) =

Det-SysF(n,m,d) = (mn)O (n) · dO (n2).

Note that, for all cases described above, both SysF(n,m,d) and

S̃ysF(n,m,d) are bounded by poly((nmd)n
n
). Thus, when n = O(1),

Sys(n,m,d) = poly(m,d).
For clarity in presentation, we artificially define Sys(n,m,d) as

the complexity of finding a solution to a system ofm polynomial

equations ∈ F[x1, . . . , xn] of total degree d s.t. the solution has to

lie in F if F = R,C, Fq or an algebraically closed field, and it could

be over an algebraic extension for other fields. Clearly, as discussed

above Sys(n,m,d) = poly((nmd)n
n
).

3.3.1 Derandomizing Solving System of Equations. Derandomizing

solving system of equation in general is considered a hard problem

for the following reason. Just solving a univarite quadratic equation

over Fp in deterministic poly(logp) time is a notoriously hard open

problem, See [1, Problem 15]. Interestingly, this is the only case

when low-variate plynomial system solving is hard to derandomize.

That is, if the underlying field is not a finite field with large char-

acteristic, then there do exist efficient deterministic algorithms for

low-variate system solving.

Indeed solving systems of polynomial equations is the only place

in the paper where randomness is utilized. Thus, all our algorithms

can be derandomized over R,C, since the algorithms mentioned in

Theorem 3.13, for polynomial system solving over F = R and C are

already deterministic. Though we did not mention it, polynomial

system solving (and hence our algorithms) can also be derandom-

ized over Fpd (in time poly(p,d) time).

3.4 Hardness of Computing Tensor Rank
The first step towards understanding the computational complexity

was by Håstad [25] who showed that determining the tensor rank

is an NP-hard over Q and NP-complete over finite fields. A better

way to understand hardness results for computing tensor rank is

to study its connection to solving system of polynomial equations.

Theorem 3.14. [51] For any field F, given a system ofm algebraic
equations S over F, we can in polynomial time construct a 3 dimension
tensor TS of shape [3m] × [3m] × [n + 1] and an integer k = 2m + n
such that S has a solution ∈ F iff T has rank atmost 2m + n over F.

This shows equivalence between system solving and computing

tensor rank. This along with complexity of system solving (dis-

cussed in the previous section) shows that computing tensor rank

is NP-complete over finite fields, over R it is in PSPACE [10] and is

in the Polynomial Hierarchy (Σ2), assuming the GRH [41].

5
Here the authors assumed that the constants appearing in the system are integers (or

rationals). Note that for all computational applications we can WLOG assume this by

simply approximating/truncating a given real number at some number of bits.

Similar, reductions also hold for integral domains (e.g. Z) [52],
thus showing that computing Tensor rank is undecidable over Z and
not known to be decidable over Q. Due to the equivalence between
tensor rank computation and learning ΣΠΣ{⊔jX j }

circuits with op-

timal top fan-in, we get the corresponding hardness consequences

for ΣΠΣ{⊔jX j }
-circuit reconstruction as well.

Such results also hold for symmetric rank computation, see [52].

Concretely, for 3-dimensional tensors of length n, Shitov showed
that we can convert general tensorsT to symmetric tensorsTsym s.t.

rank(T) + 4.5(n2 + n) = symmetric-rank(Tsym), thus transferring

the results mentioned above for general tensors to symmetric ten-

sors as well. Again, these hardness results along with equivalence

between symmetric tensor rank computation and reconstructing

optimal (w.r.t top fan-in) Σ∧Σ circuits implies that proper learning

(with optimal top-fan-in) for Σ∧Σ circuits is as hard as polyno-

mial system solving. In particular, it is NP-hard for most fields and

maybe even undecidable over Q.

4 ACKNOWLEDGMENTS
Research supported in part byNSF grants CCF-1350572, CCF-1540634,

CCF-1909683, BSF grant 2014359, a Sloan research fellowship and

the Simons Collaboration on Algorithms and Geometry.

REFERENCES
[1] L. M. Adleman and K. S. McCurley. 1994. Open problems in number theoretic

complexity, II. In International Algorithmic Number Theory Symposium. Springer,

291–322.

[2] M. Agrawal. 2005. Proving Lower Bounds Via Pseudo-random Generators. In

Proceedings of the 25th FSTTCS (LNCS, Vol. 3821). 92–105.
[3] M. Agrawal and V. Vinay. 2008. Arithmetic circuits: A chasm at depth four.

In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer
Science (FOCS). 67–75.

[4] N. Alon, M. Kumar, and B. L. Volk. 2020. Unbalancing Sets and An Almost

Quadratic Lower Bound for Syntactically Multilinear Arithmetic Circuits. Comb.
40, 2 (2020), 149–178. https://doi.org/10.1007/s00493-019-4009-0

[5] D. Angluin. 1988. Queries and Concept Learning. Machine Learning 2 (1988),

319–342.

[6] V. Arvind and P. Mukhopadhyay. 2010. The Monomial Ideal Membership Problem

and Polynomial Identity Testing. Information and Computation 208, 4 (2010),

351–363.

[7] A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio. 2000.

Learning functions represented as multiplicity automata. J. ACM 47, 3 (2000),

506–530.

[8] M. Ben-Or and P. Tiwari. 1988. A Deterministic Algorithm for Sparse Multivariate

Polynominal Interpolation. In Proceedings of the 20th Annual ACM Symposium
on Theory of Computing (STOC). 301–309.

[9] V. Bhargava, S. Saraf, and I. Volkovich. 2020. Reconstruction of Depth-4 Mul-

tilinear Circuits. In Proceedings of the 31st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), Shuchi Chawla (Ed.). SIAM, 2144–2160. https:

//doi.org/10.1137/1.9781611975994.132

[10] J. Canny. 1988. Some algebraic and geometric computations in PSPACE. In

Proceedings of the twentieth annual ACM symposium on Theory of computing.
460–467.

[11] E. Carlini. 2006. Reducing the number of variables of a polynomial. In Algebraic
Geometry and Geometric Modeling, Mohamed Elkadi, Bernard Mourrain, and

Ragni Piene (Eds.). Springer, 237–247. https://doi.org/10.1007/978-3-540-33275-

6_15

[12] M. L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova. 2016. Learning

Algorithms from Natural Proofs. In Proceedings of the 31st Conference on Compu-
tational Complexity, CCC. 1–24. https://doi.org/10.4230/LIPIcs.CCC.2016.10

[13] S. Chen and R. Meka. 2020. Learning Polynomials in Few Relevant Dimensions.

In Conference on Learning Theory, COLT 2020, 9-12 July 2020, Virtual Event [Graz,
Austria] (Proceedings of Machine Learning Research, Vol. 125), Jacob D. Abernethy
and Shivani Agarwal (Eds.). PMLR, 1161–1227. http://proceedings.mlr.press/

v125/chen20a.html

[14] D. A. Cox, J. Little, and D. O’Shea. 2015. Ideals, varieties, and algorithms - an
introduction to computational algebraic geometry and commutative algebra (4. ed.).
Springer.

821

https://doi.org/10.1007/s00493-019-4009-0
https://doi.org/10.1137/1.9781611975994.132
https://doi.org/10.1137/1.9781611975994.132
https://doi.org/10.1007/978-3-540-33275-6_15
https://doi.org/10.1007/978-3-540-33275-6_15
https://doi.org/10.4230/LIPIcs.CCC.2016.10
http://proceedings.mlr.press/v125/chen20a.html
http://proceedings.mlr.press/v125/chen20a.html

STOC ’21, June 21–25, 2021, Virtual, Italy Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich

[15] Z. Dvir and A. Shpilka. 2007. Locally decodable codes with 2 queries and poly-

nomial identity testing for depth 3 circuits. SIAM J. on Computing 36, 5 (2007),

1404–1434.

[16] M. A. Forbes, R. Saptharishi, and A. Shpilka. 2014. Hitting sets for multilinear

read-once algebraic branching programs, in any order. In Symposium on Theory
of Computing, STOC. 867–875. https://doi.org/10.1145/2591796.2591816

[17] M. A. Forbes and A. Shpilka. 2012. Quasipolynomial-time Identity Testing of

Non-Commutative and Read-Once Oblivious Algebraic Branching Programs.

Electronic Colloquium on Computational Complexity (ECCC) 19 (2012), 115.
[18] L. Fortnow and A. R. Klivans. 2009. Efficient learning algorithms yield circuit

lower bounds. J. Comput. Syst. Sci. 75, 1 (2009), 27–36.
[19] A. Garg, N. Kayal, and C. Saha. 2020. Learning sums of powers of low-degree

polynomials in the non-degenerate case. arXiv preprint arXiv:2004.06898 (2020).
[20] D. Yu. Grigor’ev and N.N. Vorobjov. 1988. Solving systems of polynomial inequal-

ities in subexponential time. Journal of Symbolic Computation 5, 1 (1988), 37 – 64.

https://doi.org/10.1016/S0747-7171(88)80005-1

[21] A. Gupta, P. Kamath, N. Kayal, and R. Saptharishi. 2013. Arithmetic Circuits: A

Chasm at Depth Three. In Proceedings of the 54th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 578–587. https://doi.org/10.1109/FOCS.

2013.68

[22] A. Gupta, N. Kayal, and S. V. Lokam. 2011. Efficient Reconstruction of Random

Multilinear Formulas. In IEEE 52ndAnnual Symposium on Foundations of Computer
Science, FOCS. 778–787. https://doi.org/10.1109/FOCS.2011.70

[23] A. Gupta, N. Kayal, and S. V. Lokam. 2012. Reconstruction of Depth-4 Mul-

tilinear Circuits with Top fanin 2. In Proceedings of the 44th Annual ACM
Symposium on Theory of Computing (STOC). 625–642. Full version at

https://eccc.weizmann.ac.il/report/2011/153.

[24] A. Gupta, N. Kayal, and Y. Qiao. 2014. Random arithmetic formulas can be

reconstructed efficiently. Computational Complexity 23, 2 (2014), 207–303. https:

//doi.org/10.1007/s00037-014-0085-0

[25] Johan Håstad. 1990. Tensor Rank is NP-Complete. J. Algorithms 11, 4 (1990),
644–654.

[26] M. D. Huang and Y. C. Wong. 1999. Solvability of systems of polynomial congru-

ences modulo a large prime. computational complexity 8, 3 (1999), 227–257.

[27] D. Ierardi. 1989. Quantifier Elimination in the Theory of an Algebraically-Closed

Field. In Proceedings of the Twenty-First Annual ACM Symposium on Theory of
Computing (Seattle, Washington, USA) (STOC ’89). Association for Computing

Machinery, New York, NY, USA, 138–147. https://doi.org/10.1145/73007.73020

[28] V. Kabanets and R. Impagliazzo. 2003. Derandomizing polynomial identity tests

means proving circuit lower bounds. In Proceedings of the 35th Annual ACM
Symposium on Theory of Computing (STOC). 355–364.

[29] E. Kaltofen and B. M. Trager. 1990. Computing with Polynomials Given by

Black Boxes for Their Evaluations: Greatest Common Divisors, Factorization,

Separation of Numerators and Denominators. J. of Symbolic Computation 9, 3

(1990), 301–320.

[30] Z. S. Karnin and A. Shpilka. 2009. Reconstruction of Generalized Depth-3 Arith-

metic Circuits with Bounded Top Fan-in. In Proceedings of the 24th Annual
IEEE Conference on Computational Complexity (CCC). 274–285. Full version

at http://www.cs.technion.ac.il/ shpilka/publications/KarninShpilka09.pdf.

[31] Z. S. Karnin and A. Shpilka. 2011. Black box polynomial identity testing of

generalized depth-3 arithmetic circuits with bounded top fan-in. Combinatorica
31, 3 (2011), 333–364. https://doi.org/10.1007/s00493-011-2537-3

[32] N. Kayal. 2011. Efficient algorithms for some special cases of the polynomial

equivalence problem. In Proceedings of the twenty-second annual ACM-SIAM
symposium on Discrete algorithms. SIAM, 1409–1421.

[33] N. Kayal, V. Nair, and C. Saha. 2018. Average-case linear matrix factorization

and reconstruction of low width Algebraic Branching Programs. Electronic
Colloquium on Computational Complexity (ECCC) 25 (2018), 29. https://eccc.

weizmann.ac.il/report/2018/029

[34] N. Kayal, V. Nair, C. Saha, and S. Tavenas. 2017. Reconstruction of Full Rank

Algebraic Branching Programs. In 32nd Computational Complexity Conference,
CCC 2017. 21:1–21:61. https://doi.org/10.4230/LIPIcs.CCC.2017.21

[35] N. Kayal and C. Saha. 2019. Reconstruction of non-degenerate homogeneous

depth three circuits. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019. 413–424. https://doi.org/10.1145/3313276.

3316360

[36] N. Kayal and S. Saraf. 2009. Blackbox Polynomial Identity Testing for

Depth 3 Circuits. In Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 198–207. Full version at

https://eccc.weizmann.ac.il/report/2009/032.

[37] N. Kayal and N. Saxena. 2007. Polynomial Identity Testing for Depth 3 Circuits.

Computational Complexity 16, 2 (2007), 115–138.

[38] A. Klivans and A. Shpilka. 2006. Learning restricted models of arithmetic circuits.

Theory of computing 2, 10 (2006), 185–206.

[39] A. Klivans and D. Spielman. 2001. Randomness efficient identity testing of

multivariate polynomials. In Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing (STOC). 216–223.

[40] A. R. Klivans and A. A. Sherstov. 2009. Cryptographic hardness for learning

intersections of halfspaces. J. Comput. Syst. Sci. 75, 1 (2009), 2–12.
[41] P. Koiran. 1996. Hilbert’s Nullstellensatz is in the polynomial hierarchy. Journal

of complexity 12, 4 (1996), 273–286.

[42] P. Koiran. 2010. Arithmetic circuits: the chasm at depth four gets wider. CoRR
abs/1006.4700 (2010).

[43] J. Landsberg. 2012. Tensors: geometry and applications. Representation theory
381, 402 (2012), 3.

[44] Y. Matijasevič and J. Robinson. 1975. Reduction of an arbitrary Diophantine

equation to one in 13 unknowns. Acta Arithmetica 27, 1 (1975), 521–553.
[45] R. Raz. 2013. Tensor-Rank and Lower Bounds for Arithmetic Formulas. J. ACM

60, 6 (2013), 40:1–40:15. https://doi.org/10.1145/2535928

[46] N. Saxena and C. Seshadhri. 2009. An Almost Optimal Rank Bound for Depth-3

Identities. In Proceedings of the 24th Annual IEEE Conference on Computational
Complexity (CCC). 137–148.

[47] N. Saxena and C. Seshadhri. 2010. From Sylvester-Gallai Configurations to Rank

Bounds: Improved Black-Box Identity Test for Deph-3 Circuits. In Proceedings
of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS).
21–30.

[48] N. Saxena and C. Seshadhri. 2011. An Almost Optimal Rank Bound for Depth-3

Identities. SIAM J. Comput. 40, 1 (2011), 200–224.
[49] N. Saxena and C. Seshadhri. 2012. Blackbox Identity Testing for Bounded Top-

Fanin Depth-3 Circuits: The Field Doesn’t Matter. SIAM J. Comput. 41, 5 (2012),
1285–1298.

[50] N. Saxena and C. Seshadhri. 2013. From sylvester-gallai configurations to rank

bounds: Improved blackbox identity test for depth-3 circuits. J. ACM 60, 5 (2013),

33.

[51] M. Schaefer and D. Stefankovic. 2016. The Complexity of Tensor Rank. CoRR
abs/1612.04338 (2016). arXiv:1612.04338 http://arxiv.org/abs/1612.04338

[52] Y. Shitov. 2016. How hard is the tensor rank? arXiv preprint arXiv:1611.01559
(2016).

[53] A. Shpilka. 2009. Interpolation of depth-3 arithmetic circuits with two multipli-

cation gates. SIAM J. on Computing 38, 6 (2009), 2130–2161.

[54] A. Shpilka and I. Volkovich. 2015. Read-Once Polynomial Identity Testing. Com-
putational Complexity 24, 3 (2015), 477–532.

[55] G. Sinha. 2016. Reconstruction of Real Depth-3 Circuits with Top Fan-In 2. In

31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016,
Tokyo, Japan. 31:1–31:53. https://doi.org/10.4230/LIPIcs.CCC.2016.31

[56] G. Sinha. 2020. Efficient reconstruction of depth three circuits with top fan-in two.

Electron. Colloquium Comput. Complex. 27 (2020), 125. https://eccc.weizmann.ac.

il/report/2020/125

[57] S. Tavenas. 2013. Improved Bounds for Reduction to Depth 4 and Depth 3. In

MFCS. 813–824.

822

https://doi.org/10.1145/2591796.2591816
https://doi.org/10.1016/S0747-7171(88)80005-1
https://doi.org/10.1109/FOCS.2013.68
https://doi.org/10.1109/FOCS.2013.68
https://doi.org/10.1109/FOCS.2011.70
https://doi.org/10.1007/s00037-014-0085-0
https://doi.org/10.1007/s00037-014-0085-0
https://doi.org/10.1145/73007.73020
https://doi.org/10.1007/s00493-011-2537-3
https://eccc.weizmann.ac.il/report/2018/029
https://eccc.weizmann.ac.il/report/2018/029
https://doi.org/10.4230/LIPIcs.CCC.2017.21
https://doi.org/10.1145/3313276.3316360
https://doi.org/10.1145/3313276.3316360
https://doi.org/10.1145/2535928
https://arxiv.org/abs/1612.04338
http://arxiv.org/abs/1612.04338
https://doi.org/10.4230/LIPIcs.CCC.2016.31
https://eccc.weizmann.ac.il/report/2020/125
https://eccc.weizmann.ac.il/report/2020/125

	Abstract
	1 Introduction
	1.1 Connection to the Tensor Rank Problem
	1.2 Multilinear (k) Circuits
	1.3 Our Results
	1.4 Related/Previous Work

	2 Proof Overview
	2.1 Reconstruction of (k) Circuits
	2.2 Reconstruction of j Xj(k) Circuits
	2.3 Reconstruction of Multilinear (k) Circuits

	3 Depth-3 Circuits
	3.1 Tensors and Set-Multilinear Depth-3 Circuits
	3.2 Symmetric Tensors and Sums of Powers of Linear Forms
	3.3 Complexity of Solving a System of Polynomial Equations
	3.4 Hardness of Computing Tensor Rank

	4 Acknowledgments
	References

