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Abstract: Accurate estimation of gross primary production (GPP), the amount of carbon absorbed
by plants via photosynthesis, is of great importance for understanding ecosystem functions, carbon
cycling, and climate-carbon feedbacks. Remote sensing has been widely used to quantify GPP at
regional to global scales. However, polar-orbiting satellites (e.g., Landsat, Sentinel, Terra, Aqua,
0OCO0-2) lack the capability to examine the diurnal cycles of GPP because they observe the Earth’s
surface at the same time of day. The Ecosystem Spaceborne Thermal Radiometer Experiment on
Space Station (ECOSTRESS), launched on June 2018, observes the land surface temperature (LST)
at different times of day with high spatial resolution (70 m x 70 m) from the International Space
Station (ISS). Here, we made use of ECOSTRESS data to predict instantaneous GPP with high
spatial resolution for different times of day using a data-driven approach based on machine
learning. The predictive GPP model used instantaneous ECOSTRESS LST observations along
with the daily enhanced vegetation index (EVI) from the Moderate Resolution Imaging
Spectroradiometer (MODIS), land cover type from the National Land Cover Database (NCLD),
and instantaneous meteorological data from the ERAS reanalysis dataset. Our model estimated
instantaneous GPP across 56 flux tower sites fairly well (R? = 0.88, Root Mean Squared Error
(RMSE) = 2.42 umol CO2> m™ s!). The instantaneous GPP estimates driven by ECOSTRESS LST
captured the diurnal variations of tower GPP for different biomes. We then produced multiple high
resolution ECOSTRESS GPP maps for the central and northern California. We found distinct
changes in GPP at different times of day (e.g., higher in late morning, peak around noon,
approaching zero at dusk), and clear differences in productivity across landscapes (e.g., savannas,
croplands, grasslands, and forests) for different times of day. ECOSTRSS GPP also captured the
seasonal variations in the diurnal cycling of photosynthesis. This study demonstrates the feasibility

of using ECOSTRESS data for producing instantaneous GPP (i.e., GPP for the acquisition time of
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the ECOSTRESS data) for different times of day. The ECOSTRESS GPP can shed light on how
plant photosynthesis and water use vary over the course of the diurnal cycle and inform agricultural
management and future improvement of terrestrial biosphere/land surface models.

Keywords: Gross primary productivity; Land surface temperature; Diurnal cycle; Photosynthesis;
Water use efficiency; Carbon cycle; Geostationary satellite; MODIS; Stomatal conductance; Earth

system model
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1. Introduction

Photosynthesis, the underlying process of terrestrial vegetation, constitutes the largest flux of
the global carbon cycle. Quantifying the spatial and temporal dynamics of photosynthesis at the
ecosystem scale (i.e., gross primary production, GPP) can provide important information on the
magnitude and variability of terrestrial carbon budget and carbon-climate feedbacks (Beer et al.
2010; Xiao et al. 2014). Previous studies showed the feasibility of estimating GPP at different
temporal scales (e.g., daily, monthly, annual) (Zhao et al. 2005; Xiao et al., 2010; Gilabert et al.
2015). The seasonal and interannual variations of GPP are found to be driven by climate variability,
plant phenology, and changes in physiological capacity due to nutrient status and soil moisture
deficits (L1 and Xiao 2020; Mékela et al. 2006; Xia et al. 2015; Xu and Baldocchi 2004). Diurnal
variations (or diel variations) of GPP are mainly driven by environmental (e.g., solar radiation, air
temperature, soil moisture, vapor pressure deficit or VPD) and physiological (e.g., stomatal
conductance) factors (Damm et al. 2010; Franco and Liittge 2002; Paul-Limoges et al. 2018).
Diagnosing the diurnal variations of GPP can provide insights into direct interactions between
photosynthesis and these controlling factors, which otherwise would be obscured by aggregating
the instantaneous variables to daily or seasonal scales.

The eddy covariance (EC) technique provides temporally (half-hourly or hourly) continuous
measurements of ecosystem-level GPP over the course of the diurnal cycle (Baldocchi et al. 2001).
However, these EC flux towers provide only spatially sparse GPP estimates due to their sparse
distributions across the globe (Xiao et al. 2010). Satellite observations make up for the limitation
in spatial representation and global coverage of the EC technique and can lead to spatially
continuous GPP estimates from regional to global scales based on different approaches (Xiao et

al. 2019), including light use efficiency models (Running et al. 2004; Zhao et al. 2005; Stocker et
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al. 2020), terrestrial biosphere models (Liu et al. 1997; Ryu et al. 2011), and data-driven
approaches (Beer et al. 2010; Xiao et al. 2010). During the past decades, GPP has been successfully
estimated from polar-orbiting satellites, such as Landsat (30 m, 16-day) (Gitelson et al. 2012;
Robinson et al. 2018), Terra/Aqua (500 m, 8-day) (Running et al. 2004; Zhao et al. 2005; Xiao et
al. 2010), Sentinel-2 (up to 10 m, 5 day) (Lin et al. 2019b; Wolanin et al. 2019), and OCO-2 (Li
and Xiao 2019a). However, polar-orbiting satellites lack the capability to examine the diurnal cycle
of GPP because they observe the Earth’s surface at the same time of day for every revisit.
Fortunately, the recent launch of the Ecosystem Spaceborne Thermal Radiometer Experiment on
Space Station (ECOSTRESS) provides an unprecedented yet unexplored opportunity for
examining the variations of plant carbon uptake over the course of a day on large scales.
ECOSTRESS, managed by National Aeronautics and Space Administration (NASA)'s Jet
Propulsion Laboratory (JPL), was launched to the International Space Station (ISS) on 29 June
2018. ECOSTRESS uses a multispectral thermal infrared radiometer to measure radiance in five
bands from 8 to 12.5 um and an additional band at 1.6 um for geolocation and cloud detection
(http://ecostress.jpl.nasa.gov). On board the ISS with an inclined, precessing orbit, ECOSTRESS
can measure the Earth’s surface at different times of day from 53.6° N to 53.6° S, which is
promising to capture diurnal biological processes that are unexploited by traditional polar orbiting,
sun-synchronous platforms with a fixed equator crossing time (e.g., Landsat, Sentinel, Terra, Aqua,
OCO-2). ECOSTRESS has a high spatial resolution of 38 m x 69 m (at nadir) and frequent revisit
time of 1-5 days depending on the latitude (Fisher et al. 2015, 2020). The combination of diurnal
sampling capability and fine spatial and temporal resolutions endows ECOSTRESS with a great
potential for sampling the diurnal variation of terrestrial ecosystems, even for individual farmers’

fields. ECOSTRESS can provide key insights into plant-water dynamics, ecosystem—climate
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interactions, and agricultural management. It also has potential to answer how do snapshots of
remote sensing scale with daily integrals across different biomes and latitudinal zones (Sims et al.
2005; Ryu et al. 2012).

The ECOSTRESS mission measures the temperature of plants from space, and provides both
land surface temperature (LST) and emissivity (Level-2 products) at a spatial resolution of ~70 m
x 70 m (Hook et al. 2019; Hulley et al. 2019). LST is one of the important parameters for studying
processes at the land-atmosphere interface which measures Earth’s surface temperature rather than
air temperature. For plants, many physiological or biological activities (e.g., transpiration,
photosynthesis) of canopy (or leaves) are closely associated with the variations in LST, and
therefore LST is widely used as a key variable for estimating evapotranspiration (ET) (Su et al.
2002; Nagler et al. 2005; Jin et al. 2011) and GPP (Sims et al. 2008; Xiao et al. 2010; Schubert et
al. 2010). Currently, no other satellite sensors have such sufficient spatio-temporal resolution to
reliably monitoring LST at the local to global scale over the diurnal cycle. For example, the
Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua satellites
together provides global coverage of LST only at two times during the daytime and two at night
(Fig. 1: 10:30 and 22:30 for Terra and 13:30 and 1:30 for Aqua, local solar time) although with
moderate spatial resolution (1 km). Geostationary satellites such as the Geostationary Operational
Environmental Satellite (GOES)-R series can capture the diurnal variations of LST (Fig. 1) but
with much coarser resolution (2.5-4 km) (Fig. 2b). ECOSTRESS, therefore, provides a unique
combination of high spatial and temporal resolution to monitor the temperature of plants over the

course of the diurnal cycle (Fisher et al. 2020) (Figs. 1-2).
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Fig. 1. Diurnal cycle of LST at the Bouldin Island corn site (US-Bi2) during August 2018. (a) shows the
LST from GOES-R (GOES-16) and ECOSTRESS from August 1 to August 31, 2018; (b) shows the hourly
averaged LST during August: GOES-R provides continuous measurements of hourly LST; MODIS
provides LST at only four times of the day; ECOSTRESS measures LST with fine spatial resolution (70 m

x 70 m) at different times throughout the day, and therefore can monitor plants over the course of the diurnal

cycle with finer spatial resolution.

20



121

122

123

124

(s) Divnal cyole of ECOSTRESS LST

Fig. 2. Diurnal cycle of ECOSTRESS LST across California (a) and comparison of ECOSTRESS and
GOES-R LST (b). Both satellites observe LST at different times of day, but ECOSTRESS has much finer

spatial resolution (70 m) and much more spatial details than GOES-R (~2 km).
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Although ECOSTRESS provides a suite of data products (Table S1) such as an instantaneous
ET product (a Level-3 product) (Fisher et al. 2008; 2020) and the Level-4 water use efficiency
(WUE) product (Fisher & ECOSTRESS algorithm development team, 2018), ECOSTRESS does
not offer an instantaneous GPP product. An instantaneous GPP product for different times of day
and with fine spatial resolution will be valuable for studying how plants absorb carbon throughout
the day in response to the diurnal variations in environmental and physiological factors. In addition,
the ECOSTRESS WUE product is based on 500 m, 8-day MODIS GPP (Zhao et al. 2005), not
instantaneous GPP, and therefore can only provide WUE information on a daily or 8-day basis and
miss the instantaneous variations of WUE over the different times of the day. Having an
instantaneous ECOSTRESS GPP product will also allow us to develop instantaneous WUE
estimates. Moreover, the synergistic use of such a new instantaneous ECOSTRESS product and
the existing instantaneous ET product will allow scientists to identify when plants take up most of
carbon or have most water stress over the course of a day, or how water and/or heat stress impacts
plant water use and carbon uptake at diurnal timescales across different biomes, towards a better
understanding of how plants link Earth’s carbon and water cycles.

To advance these issues, our presented work here aims to generate instantaneous, high
resolution GPP estimates based on instantaneous ECOSTRESS LST data. The 70 m ECOSTRESS
LST data along with the EVI from the MODIS, land cover type from the National Land Cover
Database (NCLD), and hourly meteorological variables were used for the GPP prediction. We
selected California as our study region, to explore whether the ECOSTRESS-based GPP estimates
could reasonably capture the diurnal cycle of photosynthesis across biomes. California has high
ecological, hydrological, and biological diversity (Fig. 3), and therefore, the estimation of GPP is

complicated by the diverse geography, ecosystems, microclimates, and land use and land
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management across the state (Baldocchi et al. 2019). For example, local ecosystems even have
different seasonality due to the complex interactions between diverse ecosystems and
environmental and climate drivers (Turner et al. 2020). These characteristics make California an
ideal and challenging test bed for us to examine the effectiveness of our method. If ECOSTRESS
GPP works well across California, it will increase our confidence in applying our method in other
regions of the United States and the globe. Please note that the term ‘diurnal cycle’ was used to
name the full 24 hour period (i.e., the “diel cycle) throughout this paper. To our knowledge, this
study is the first effort to predict instantaneous GPP based on ECOSTRESS observations. The
availability of instantaneous GPP for different times of day will improve our understanding of how
plant photosynthesis and water use vary over the course of the diurnal cycle, and help better
manage agricultural irrigation and improve terrestrial biosphere/land surface models.
2. Materials and Methods
2. 1. Study area

We selected the central and northern California as our study area. This area consists of four
ecoregions: the Central California Foothills and Coastal Mountains, Central California Valley,
Sierra Nevada, and Coast Range (Fig. 3). The climate of the four ecoregions (defined by Level
IIT Ecoregions map) (Omernik 1987) is mainly characterized by Mediterranean climate with hot
dry summers and cool moist winters. The regions with the highest elevation in Sierra Nevada have
an alpine climate. The four ecoregions have distinct ecosystem types (Griffith et al. 2016): Coast
Range in the west of California is dominated by highly productive evergreen forests; Central
California Foothills and Coastal Mountains are primarily composed by woodlands and grasslands,

with only patches of pine at high elevations; evergreen forests are the major ecosystems in the
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Fig. 3. Our study area consisting of four ecoregions across central and northern California. The base map
in (a) is the MODIS land cover map (MCD12Q1, 500m) with the University of Maryland (UMD) land
cover classification scheme. The green symbols in the zoomed figure (b) denote the locations of eight EC
flux sites used for evaluating the performance of ECOSTRESS-based GPP predictions in Section 3.3. Two
crop sites (US-Bi1/Bi2) are overlapped because they are very close to US-Tw1/Tw4/Tw5. The land cover
types across the study area include evergreen needleleaf forests (ENF), evergreen broadleaf forests (EBF),
deciduous broadleaf forests (DBF), mixed forests (MF), closed shrublands (CSH), open shrublands (OSH),
savannas (SAV), grasslands (GRA), croplands (CRO), and wetlands (WET).
2. 2. Data-driven approach, tower GPP, and explanatory data

We used a data-driven method to develop the predictive GPP model, which applied the widely
used Cubist (Quinlan 1992), an advanced nonparametric regression tree model, to establish rule-
based multivariate linear models between the target variable - GPP and the explanatory variables.

Cubist is a traditional vector data mapping algorithm developed in the machine learning domain.

The established models can overlap with each other. Specifically, for a set of explanatory variables,
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they can match the conditions of one or multiple rules. Cubist may thus generate multiple outputs
and take their average as the final GPP prediction. The Cubist model has been successfully applied
in our previous studies for predicting spatially and temporally continuous net ecosystem carbon
exchange (NEE) (Xiao et al. 2008; Xiao et al. 2011), GPP (Xiao et al. 2010), and SIF (Li and Xiao
2019b). More details on Cubist model were described in these studies. Cubist provides three
statistical measures to evaluate the model performance including mean absolute error (MAE),
relative error (RE), and the product—-moment correlation coefficient (R).

Six explanatory variables were considered for predicting GPP due to their close relationships
with GPP and easy data access: LST, shortwave incoming radiation (SW), and VPD for
characterizing environmental conditions, daily EVI and annual mean EVI for characterizing
vegetation conditions, and land cover type as a categorical variable. The environmental variables
showed reasonable regulations on tower GPP (Fig. S1). As air temperature or VPD increased, GPP
showed a convex parabolic curve with its peak value occurring around ~25 °C and 10 hPa,
respectively (Fig. Sla, b). The increase of temperature and VPD would no longer lead to an
increase in GPP when environmental conditions start to limit photosynthesis. GPP was also
dependent on solar radiation, and high radiation overall corresponded to high productivity. The
relationship between LST and tower GPP was similar with that between air temperature and tower
GPP, with optimal LST around ~28 °C.

For training, we were not able to obtain sufficient overpasses of ECOSTRESS LST for
robust training due to the recency of the launch. Therefore, we used LST from GOES-R satellite
(GOES-16, 2 km spatial resolution) (Yu et al. 2008; GOES-R Algorithm Working Group and
GOES-R Program office, 2018) which provides hourly LST since December 2017. We extracted

GOES-R LST for the grid cell in which each site was located, and used two years of data (2018

12
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and 2019) for training. MODIS LST from Terra and Aqua was not considered because these two
satellites together only provide four observations per day and cannot well sample the diurnal
variation of LST. The land cover type, half-hourly SW and VPD from AmeriFlux sites that overlap
the GOES-R observations (2018 and 2019) were used. For each site, we used the ReddyProc
software (Wutzler et al. 2018) for the gap filling of EC data and partitioning of NEE into GPP and
ecosystem respiration with the nighttime partitioning method (Reichstein et al. 2005). For each
flux site, we extracted the daily MODIS bidirectional reflectance distribution function (BRDF)-
corrected reflectance product MCD43A4 (Collection 6, 500 m) from MODIS and VIIRS Land
Products Global Subsetting and Visualization Tool (ORNL DAAC 2018). The daily EVI was
calculated from surface reflectances in near-infrared, red, and blue bands of the MCD43A4 and
annual mean EVI was aggregated from the daily EVI. The machine learning approach can handle
these different types of variables directly and normalizing these variables would not significantly
influence the performance of the predictive model.

Flux tower data were obtained from the AmeriFlux website (https://ameriflux.Ibl.gov). We
identified AmeriFlux sites that had good-quality measurements available for the ECOSTRESS era
and were also relatively homogeneous. For a given site, it was considered as relatively
homogeneous if the dominant land cover type within the 1 km x 1 km area surrounding the site
was consistent with the land cover type of the site. The 30-m NLCD land cover map was used to
identify the land cover type for each grid cell. Heterogeneous sites were excluded from this
analysis. A total of 56 AmeriFlux sites (containing 10 California sites) were used in this study,
generating a dataset with a large number of hourly samples (165.1 thousand) encompassing a
variety of climate and ecological conditions and ecosystem types across the U.S. We randomly

used two thirds of the data points as training samples, and the remaining one third as testing data.
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The details of AmeriFlux sites including site code, site name, location and biome were described

in Table S2. The data sets used for training and prediction were summarized in Table 1.

Table 1. List of data for training and prediction

Training Prediction
Variables Product Spatial Temporal Product Spatial Temporal
resolution | resolution resolution resolution
LST GOES-R ~2 km Hourly ECOSTRESS 70 m Instantaneous
SW AmeriFlux / Half-hourly ERAS 0.25° Hourly
VPD AmeriFlux / Half-hourly ERAS 0.25° Hourly
Land Cover | AmeriFlux / / NLCD 30 m /
EVI MCD43A4 500 m Daily MCD43A4 500 m Daily

2. 3. ECOSTRESS LST and other explanatory data for prediction

When the Cubist model was trained based on site-level samples, we then applied it with
spatially explicit (i.e., 2D gridded) input data (Table 1) including ECOSTRESS LST, MODIS
daily EVI and annual mean EVI, ERAS hourly SW and VPD, and land cover from the NLCD to
produce multiple 70 m, instantaneous GPP maps for four ecoregions across California.

Instantaneous ECOSTRESS LST was obtained from the Level-2 product - ECO2LSTE
(Version 1), which provides both LST and emissivity retrieved from five thermal bands at a spatial
resolution of ~70x70 m with the physics-based Temperature Emissivity Separation (TES)
algorithm (Hulley and Hook 2010). Recent studies have shown that LST from ECOSTRESS was
comparable to that from the existing thermal infrared instruments (Silvestri et al., 2020), and has
high agreement with ground observations during the daytime (Li et al., 2020). The daily MODIS
EVI throughout 2019 covering the study area were used to derive the annual mean EVI, which was
used together with daily EVI corresponding to the ECOSTRESS overpass days for predicting the
GPP. Both regional ECOSTRESS LST and EVI were retrieved using the Application for
Extracting and Exploring Analysis Ready Samples (AppEEARS) online portal (AppEEARS

14
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Team). The hourly SW and VPD corresponding to the ECOSTRESS overpass hours were obtained
from ERAS reanalysis dataset (Hersbach and Dee 2016). For example, if ECOSTRESS overpassed
California around 14:20, the hourly SW and VPD starting from 14:00 to 15:00 were used to
represent the corresponding radiation and atmospheric water conditions. ERAS is the latest
generation of global atmospheric reanalysis released by European Centre for Medium-Range
Weather Forecasts (ECMWF). ERAS data on single levels contain a variety of hourly
meteorological variables at a horizontal resolution of 0.25° x 0.25" from 1979 to present. The VPD
was calculated by the ERAS 2 m dewpoint temperature and 2 m air temperature. The land cover
type was identified by the land cover product from NLCD 2016 recently released by U.S.
Geological Survey (Yang et al. 2018). The NLCD land cover product was based on 30 m Landsat
imagery with cloud cover less than 20% and has an overall agreement with reference data from

71% to 97%.

The MODIS EVI and ERAS meteorological data were resampled to 70 m resolution to match
the resolution of ECOSTRESS LST using the bilinear interpolation method. For each 70-m grid
cell, the land cover type was determined based on the nearest neighbor interpolation. Among these
input variables, the very coarse spatial resolution of ERAS hourly data may affect the accuracy of
the GPP estimates. Therefore, we evaluated the hourly ERAS SW and VPD against flux tower
data. Due to the very large number of hourly data points, we used the stratified sampling method
and evaluated the data for 24 hours in the first day of each month throughout 2018 for 44 sites with
flux data available. Across all sites, ERAS hourly SW (R*=0.90, RMSE=89.18 W m) and VPD
(R?=0.79, RMSE=4.34 hPa) were strongly correlated with tower measurements (Fig. S2a, b); at
the site level, ERAS SW and VPD were also strongly related to tower data for the majority of the

sites (Fig. S2c, d). We also averaged hourly SW and VPD for 12 months for each site and found
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that the site-averaged ERAS hourly SW and VPD were also highly correlated with tower-averaged
SW and VPD, respectively (R*=0.97, RMSE=45.53 W m™ for SW and R?>=0.75, RMSE=3. 47 hPa
for VPD; Fig. S3). Therefore, the accuracy of the ERAS SW and VPD data was reasonable.

2. 4. Evaluation of ECOSTRESS GPP and analysis of diurnal cycles

We first produced multiple 70-m resolution, instantaneous GPP maps for the central and
northern California to examine the diurnal cycle of photosynthesis across biomes. We generated a
total of nine images at different times of day during the summer from June to August 2019: 5:48
am, 8:37 am, 9:51 am, 10:43 am, 12:15 pm, 1:54 pm, 3:32 pm, 6:01 pm, and 7:43 pm local time.
The acquisition time of the ECOSTRESS images was irregular because the instrument is aboard
the ISS with an inclined, precessing orbit. These nine images could generally describe the changes
in photosynthesis of vegetation over the course of one summer day. We then calculated regional
averages of GPP for major biomes including deciduous forest, evergreen forest, mixed forest,
cropland, wetland, shrubland and grassland to examine how the diurnal variations of
photosynthesis varied across biomes.

We compared the spatial pattern of ECOSTRESS GPP with those of midday SIF from the
Orbiting Carbon Observatory-2 (OCO-2) and TROPOspheric Monitoring Instrument (TROPOMI).
The SIF has proven as a strong proxy of photosynthesis (Li et al. 2018), and therefore the
consistency in spatial patterns between ECOSTRESS GPP and SIF based on qualitative evaluation
can support the effectiveness of ECOSTRESS GPP and also highlight its higher spatial resolution.
We compared our ECOSTRESS GPP at 1:54 pm, August 21, with SIF maps from TROPOMI
(~12:10 pm, August 21) (Kohler et al. 2018) and OCO-2 (~12:55 pm) (Frankenberg et al. 2014).
The OCO-2 SIF was aggregated over the interval from June to August 2019 due to the lack of

OCO-2 overpass on the same day and the sparse coverage of OCO-2. It should be noted that the
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difference in the overpass time between ECOSTRESS and OCO-2/TROPOMI could lead to
significant difference in the instantaneous photosynthetic activity as indicated by GPP and SIF.

We evaluated ECOSTRESS based GPP estimates for eight flux sites in California (Table 2).
The LST data for all the ECOSTRESS overpasses over each site from 2018 to 2019 were retrieved
using the AppEEARS tool. We compared the extracted LST for the grid cell where each site was
located and averaged LST from the neighboring pixels including 5 x 5, 10 x 10, and 15 x 15
windows surrounding the site (i.e., ~350 m to 1050 m away from the tower site) (Fig. S4). The
difference in LST (RMSE) between the grid cell and the average from different windows was
negligible and only slightly increased with window size, suggesting relatively homogeneous
temperature conditions within the ~1 km % 1 km window surrounding each site. Only cloud-free
LST indicated by the L2 cloud mask product (ECO2CLD.001) was then used to predict GPP.
ECOSTRESS does not provide its own cloud shadow layer. Since the Cubist model was
constructed based on LST from GOES-R, we compared GOES-R LST with the ECOSTRESS LST
for each site, and examined whether their difference would affect the GPP estimates.

For four sites with different land cover types including US-Ton (Tonzi Ranch, woody
savannas), US-Tw5 (East Pond Wetland, wetland), US-Bil (Bouldin Island Alfalfa, cropland), and
US-Snf (Sherman Barn, grassland), we further evaluated whether ECOSTRESS GPP could capture
the diurnal cycle of tower based GPP. Such analysis could only be conducted by pooling together
all the ECOSTRESS overpasses within a long temporal window, such as one month or whole
summertime, regardless of specific day because ECOSTRESS cannot provide temporally dense
observations in one day or one week. Therefore, we predicted GPP at different times of day in
August 2018 for the three sites (US-Ton, US-Bil, US-TwS5), and compared them with mean hourly

tower GPP of August 2018. For US-Snf, we compared the predicted GPP and tower GPP at
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different times of day during June to July 2019 because there were few ECOSTRESS overpasses
in August 2018.

For the two cropland sites - US-Bil (Bouldin Alfalfa) and US-Bi2 (Bouldin Corn),
ECOSTRESS had dense observations during the phenological transition period of vegetation
which offers a valuable opportunity to examine whether ECOSTRESS-based GPP estimates could
track the change in diurnal cycle resulted from seasonal dynamics of vegetation phenology. We
predicted GPP for US-Bil in two periods: day of year (DOY) 152-171 and DOY 275-305 in 2019.
The first period includes the cutting and regrowth dates during the alfalfa growing season which
has multiple and periodical harvesting across the year. The second period is the senescence
stage of alfalfa in late autumn. For US-Bi2, we predicted GPP for the early (“green-up”) stage of
the growing season (DOY 145-171 in 2019). The year 2018 was selected for examining the diurnal
cycle for above four sites due to the availability of a number of ECOSTRESS overpasses, and the
year 2019 was selected for examining the seasonal dynamics because ECOSTRESS provided
continuous data from May to December 2019 while only about three months of data from July to
mid-September were collected in 2018.

Finally, we produced another group of instantaneous GPP maps for two times in different
seasons: one was around midday and the other one was afternoon, which helped us examine
whether ECOSTRESS GPP could also capture the seasonal variations of photosynthesis at the
regional scale. Four GPP maps around midday in 2019 were generated: 12:53 pm (June 6), 12:15
pm (August 25), 12:39 pm (October 5), and 11:01 am (December 6), and other four images in the
afternoon were acquired: 4:14 pm (May 30), 3:32 pm (August 17), 3:05 pm (October 17), and 3:36
pm (December 16). The selected four maps for both times were used to represent four different

seasons: early summer, summer, autumn, and winter, respectively. We did not generate GPP maps
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for spring 2019 because ECOSTRESS data were not available due to the issues with the
ECOSTRESS recorders.
3. Results
3.1. Model evaluation

Using six explanatory variables (LST, SW, VPD, EVI, annual mean EVI, and land cover
type), we used the training dataset to develop the Cubist model, and found that Cubist performed
well to develop the predictive GPP model (RE=0.24, MAE= 1.22 umol CO, m? s™!, R=0.94). We
then used the testing tower GPP data to evaluate the performance of the model. The scatterplots
between half-hourly tower GPP and predicted GPP were shown in Fig. 4. Our model estimated
half-hourly GPP fairly well (R>= 0.88, RMSE = 2.42 umol CO> m? s!), and only slightly
underestimated GPP greater than 20 umol CO> m? s! (Fig. 4a). The performance of the predictive
GPP model was consistently strong across biomes (Fig. 4b-i). Across the eight biomes, R? ranged
from 0.80 to 0.90, and RMSE ranged from 0.82 to 4.24 umol CO> m™ s™!), indicating that our data-
driven approach driven by ECOSTRESS LST and other input data could estimate instantaneous

GPP fairly well for all the biomes.
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Fig. 4. The evaluation of the predictive model for the estimation of instantaneous GPP. (a) shows the
scatterplot of observed GPP versus predicted GPP by ECOSTRESS for all the testing data (y=0.88x+0.33);
(b-1) show the results separated by eight major biomes including evergreen needleleaf forests (ENF),
deciduous broadleaf forests (DBF), mixed forests (MF), shrublands (SHR), savannas (SAV), grasslands
(GRA), croplands (CRO), and wetlands (WET). All the relationships are statistically significant (p <
0.0001). The units of the RMSE are umol CO, m? s'. The dashed line is the 1:1 line, and the solid line is
the regression line.

3.2. Diurnal variations of ECOSTRESS GPP across California
Fig. 5 shows the regional-scale diurnal variations in photosynthetic activity for four California
ecoregions in summer. Plants started photosynthesis at sunrise when the solar radiation was

available (Fig. 5a). The GPP increased in the morning (Fig. 5b-d) with plenty of sunlight and
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favorable temperature and moisture conditions, and then peaked around midday (Fig. Se, f). In the
afternoon, the GPP began to decrease, and photosynthesis considerably slowed down and

approached zero after sunset without sunlight (Fig. 5g-i).

Fig. 5. Magnitude and spatial patterns of predicted ECOSTRESS GPP at different times of day in summer
2019 across the Central Foothills and Coastal Mountains, Central Valley, Sierra Nevada and Coast Range

in California.
Fig. 5 also distinguishes the change in magnitude of photosynthesis for different biomes over

the course of the day, and well captures the spatial variation of photosynthesis across different
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ecoregions. The forests located in Coast Range and western Sierra Nevada (higher latitude) and
croplands in Central California Valley had high productivity during the daytime (Fig. 5b-h). This
was in stark contrast to the woodlands and grasslands in Central California Foothills and Coastal
Mountains which had consistently lower photosynthesis (less than 10 umol CO> m™ s!) throughout
the day. The croplands with the highest photosynthetic capacity were also highlighted, which had
particularly high GPP values (more than 30 umol CO, m? s™!) from morning to early afternoon
(Fig. 5c-g), and still maintained moderate GPP value around 20 umol CO> m? s in the late
afternoon (Fig. Sh). These highly productive croplands mainly include rice in northwestern Central
Valley and cotton in southeastern Central Valley. We also averaged regional GPP for each major
biome for these nine images at different times (Fig. 6). The regionally averaged ECOSTRESS
GPP showed clear diurnal variations for all the biomes. Forests, cropland, and wetland had higher
GPP than shrubland and grassland throughout the day. Among forests, evergreen forest had the
highest productivity, followed by mixed forest and deciduous forest.
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Fig. 6. Diurnal cycles of predicted ECOSTRESS GPP (umol CO, m™ s!) for the major biomes including

deciduous forest, evergreen forest, mixed forest, cropland, wetland, shrubland and grassland.

ECOSTRESS-based GPP estimates exhibited overall consistent spatial pattern with SIF from
OCO-2 and TROPOMI (Fig. 7). Compared with the two SIF maps, ECOSTRESS GPP had
spatially continuous coverage, and could also provide much more spatial details, which allows for
examining photosynthesis at an individual field level and provides more accurate characterization
for the transition zones between different ecoregions. Although ECOSTRESS GPP exhibited
overall consistent spatial pattern with SIF from OCO-2 and TROPOMI, SIF indicated higher
photosynthetic capacity for croplands in the southeastern Central Valley relative to other biomes
than did GPP. This is likely due to the fact that the ecosystems in California tend to have the
highest photosynthetic activity around noon, while the overpass time of OCO-2 (~1:55 pm) and
TROPOMI (~12:10 pm) was ~1 hour and ~1.7 hour earlier than that of ECOSTRESS (1:54 pm).
More importantly, ECOSTRESS-based GPP could provide GPP estimates for different times of

day, while OCO-2 and TROPOMI only provide SIF snapshots for the same time of day.
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Fig. 7. Spatial patterns of predicted ECOSTRESS GPP (70 m) at 1:54 pm on August 21, 2019 (a), OCO-2
SIF (0.1°) at ~12:55 pm aggregated from June to August 2019 (b), and TROPOMI SIF at ~12:10 pm on
August 21,2019 (c: 0.057; d: 0.17) across California. TROPOMI (740 nm) has higher SIF signal than OCO-
2 (757 nm). The units of GPP and SIF are umol CO; m™ s and W m™ um™ sr”', respectively. Please note
that the difference (~1 hour for ECOSTRESS versus OCO-2 and ~1.7 hour for ECOSTRESS versus
TROPOMI) in overpass time between ECOSTRESS and OCO2/TROPOMI can lead to significant
differences in the spatial patterns between instantaneous GPP and instantaneous SIF.

3.3. Diurnal variations of ECOSTRESS GPP at the site level
The predicted GPP driven by ECOSTRESS LST was highly correlated with tower GPP for

most of the sites (R?=0.53-0.96, Table 2). We also predicted GPP directly using LST from GOES-
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R for the seven sites except for US-Snf, and found that the performance was very similar to that
based on ECOSTRESS LST (two rightmost columns in Table 2). The LST from ECOSTRESS
was strongly consistent with that from GOES-R (Fig. S4), although some differences were found
for the US-Snf site that was surrounded by water within the footprints of GOES-R (2-3 km). This
suggests that the temporal disagreement in LST between ECOSTRESS and GOES-R at the site
level was negligible and GOES-R LST could be used for the training of the GPP model.
ECOSTRESS GPP performed the best for cropland and wetland sites, while performed moderately
for US-Var site which had smaller diurnal variation of GPP during the non-growing season.

Table 2. Evaluation of instantaneous ECOSTRESS GPP for the eddy covariance flux sites in California.
N is the number of ECOSTRESS overpasses for each site; R* e and RMSE e are the measures for GPP
predictions driven by ECOSTRESS LST, while R> gand RMSE g are the measures for GPP directly based
on GOES-R LST. The units of RMSE are umol CO, m™ s™'. The GOES-R LST was not used to predict
GPP for the US-Snf site because US-Snf was surrounded by water within the footprint of GOES-R (2 km

x 2 km). ECOSTRESS LST with much smaller footprint can better represent the temperature condition

around this site.

Site ID Lat Lon Biome N R’e | RMSEe | R g RMSE g
US-Bil | 38.10 | -121.50 | CRO 88 0.88 4.40 0.90 421
US-Bi2 | 38.11 | -121.54 | CRO 38 0.95 5.14 0.95 5.32
US-Snf | 38.04 | -121.73 | GRA 45 0.71 4.59 / /
US-Ton | 38.43 | -120.97 | SAV 49 0.85 1.50 0.84 1.38
US-Twl | 38.11 | -121.65 | WET 87 0.96 1.96 0.95 2.10
US-Tw4 | 38.10 | -121.64 | WET 89 0.95 2.09 0.95 2.08
US-Tw5 | 38.11 | -121.64 | WET 76 0.99 1.10 0.99 1.10
US-Var | 3841 | -120.95 | GRA 53 0.53 1.97 0.60 1.76
All / / / / 0.91 3.02 0.91 2.99

Our predicted ECOSTRESS GPP was able to produce similar shapes of diurnal cycle of
tower GPP for four flux sites with different land cover (Fig. 8). The time of onset, peak, and end

of photosynthesis was well captured. US-Tw5 (wetland) and US-Bil (cropland) maintained high
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photosynthetic activity for a long time during the day (e.g., 9 am- 4 pm), leading to relatively flat
diurnal curve, especially near the peak. For US-Ton, a woody savanna site, photosynthesis peaked
in the morning (about 10 am), and then decreased till the sunset. The ECOSTRESS GPP captured
such two contrasting diurnal changes of photosynthesis fairly well, although it showed fluctuations
for US-Bil (12:00 pm to 3 pm). For the grassland site - US-Snf (Fig. 8d), the ECOSTRESS GPP
moderately overestimated the tower GPP, but it still showed consistent diurnal variation. Note that
the large standard deviation of monthly averaged GPP for US-Bil resulted from a mix of high and

low GPP as the leaf area index (LAI) of alfalfa changed quickly during the growing season (Fig.

8¢).
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Fig. 8. Diurnal cycles of tower GPP and ECOSTRESS GPP for (a) US-TwS, (b) US-Ton, (¢) US-Bil,
(d) US-Snf. Blue curves denote averaged hourly tower GPP during August 2018 (a-c) and June to July
2019 (d); red circles denote estimated ECOSTRESS GPP. The predicted GPP was strongly correlated
with tower GPP: US-Tw5 (R?=0.99, p<0.0001, RMSE=1.1 umol CO, m? s™), US-Ton (R?=0.85,
p<0.0001, RMSE=1.5 umol CO, m™ s), US-Bil (R*=0.88, p<0.0001, RMSE=4.4 ymol CO> m™ s™),,

and and US-Snf (R?=0.71, p<0.0001, RMSE=4.59 umol CO, m™ s™)(Table 2).

3.4. Seasonal variations in diurnal cycling of ECOSTRESS GPP

The diurnal cycling of tower GPP varied with the seasonal growth of vegetation (Fig. 9). For
example, at US-Bi2, the green-up of plants began around DOY 161 when the maximum GPP in
the diurnal cycle significantly increased; the peak instantaneous GPP approached to about 15 umol
CO> m? s'onDOY 171 (Fig. 9a, b). For US-Bil, GPP suddenly dropped from 30 umol CO, m™
sonDOY 291 to near zero after DOY 292 during autumn senescence (Fig. 9c, d). The predicted
ECOSTRESS GPP, although not temporally continuous, well tracked the trajectory of tower GPP

in such two different phenological stages of plant growth.
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Fig. 9. Diurnal cycling of photosynthesis changes with plant phenology at the US-Bil and US-Bi2
sites. (a-b) show the dynamics of tower GPP, predicted ECOSTRESS GPP, and MODIS EVI during the
green-up of plants for US-Bi2; (c-d) show these three variables during the senescence of plants for US-

Bil. Other sites were not included because there were very few or no ECOSTRESS overpasses during these

phenological stages in 2018 and 2019.

For the alfalfa site (US-Bil), ECOSTRESS GPP captured the multiple and periodical
harvesting characteristic of alfalfa within one year (Fig. 10). The alfalfa had high productivity
during DOY 152-159; the maximum instantaneous GPP decreased to less than 5 umol CO, m? s°

!'during the period DOY 160-165 from the harvest to the replanting of alfalfa, and then increased
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during the next growth cycle (Fig. 10a). The cutting of alfalfa led to an increase in ambient

temperature, which was revealed by both ECOSTRESS and GOES-R LST (Fig. 10b).
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Fig. 10. Diurnal cycling of photosynthesis changes with the cutting and regrowth of alfalfa at the US-

Bil site. (a) shows the dynamics of tower GPP and predicted ECOSTRESS GPP; (b) shows the changes
in air temperature and land surface temperature. The shaded areas indicate the increase in temperature
during the period from the harvest to the replanting of alfalfa. The predicted GPP on DOY 163 was much
higher than tower GPP mainly because the 500-m MODIS EVI on that day contained information on the

crop field in which the tower is located and neighboring fields that crops were not yet harvested.

Finally, we produced instantaneous GPP maps in different seasons to examine how
instantaneous GPP varied with seasons. ECOSTRSS GPP exhibited clear seasonal variations at
both midday and afternoon (Fig. 11). The majority of the grid cells showed high GPP in early

summer and continued to increase by August. With the gradual senescence of plants, the GPP
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showed small or intermediate values in the autumn and had the lowest values in winter due to the
dormancy of deciduous plants. Evergreen forests in Sierra Nevada continued
to conduct photosynthesis but with substantially reduced rates in the winter (Fig. 11 d and h).
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Fig. 11. Magnitude and spatial patterns of predicted ECOSTRESS GPP at midday (upper panel) and
afternoon (lower panel) in early summer, summer, autumn, and winter across California.

4. Discussion

This study provides the first demonstration of using the new ECOSTRESS thermal
observations for estimating instantaneous GPP over the course of the diurnal cycle at regional
scales. Previous studies based on polar-orbiting satellites such as Landsat, Sentinel, Terra, Aqua,
and OCO-2 can only estimate GPP at daily or 8-day time steps and coarse spatial resolutions (e.g.,
1 km) (Running et al. 2004; Xiao et al. 2010; Zhao et al. 2005; Li and Xiao 2019a). The
ECOSTRESS-based GPP estimates in this study have two significant advantages which raise
previous approaches to the next level: (1) measuring the sub-daily variations in ecosystem

photosynthesis at the large scale and has the potential to extend globally (between 53.6° N and
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53.6" S); and (2) depicting these variations at a fine spatial resolution (70 m). These were realized
by an important variable LST provided by ECOSTRESS along with other vegetation and
instantaneous meteorological variables.

The ECOSTRESS-based GPP estimates well characterized the changes in photosynthetic
activity over the course of the diurnal cycle across different ecoregions in California. The diurnal
variations in GPP were driven by environmental (e.g., solar radiation, air temperature, soil
moisture, VPD) and physiological (e.g., stomatal conductance) factors (Damm et al. 2010; Franco
and Liittge 2002; Paul-Limoges et al. 2018). LST measures skin temperature of the surface
including soil temperature for bare soil and canopy temperature for vegetation, and is a more useful
measure of physiological activity of canopy leaves than air temperature (Sims et al. 2008). LST
measured by ECOSTRESS has high spatial resolution (i.e., 70m) at different times of day, and is
also physiologically related to plant photosynthesis. Specifically, both low and high temperature
will affect the enzyme activity (e.g., Rubisco) and intercellular CO; concentration that underlie the
photosynthesis process (Ferrar et al. 1989; Fredeen and Sage 1999, Allen and Ort 2001). High
temperature will even lead to a reduction of stomatal conductance to prevent further loss of water
through transpiration, but at the expense of reduced photosynthesis (Ferrar et al. 1989; Xu et al.
2020).

The diurnal amplitude of predicted GPP varied with ecosystems. Parts of the croplands with
the highest instantaneous productivity were highlighted by ECOSTRESS GPP maps, which was
consistent with the recent study that also reported the maximum GPP of some croplands during
the day across the globe (Bodesheim et al. 2018). Shrubland and grassland had lower productivity
due to their low vegetation cover or LAI. Tower-based GPP confirmed this wide range of

photosynthetic capacity across biomes, indicating that our model was adept at simulating the highs

31



525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

and the lows. The predicted GPP, although produced at the sub-daily time scale, could also indicate
the seasonal growth of plants. Plants experience large changes in vegetation structure (e.g., LAI or
the absorbed fraction of photosynthetically active radiation, fPAR) during the critical
phenological transition dates (e.g., start or end of growing season), which can cause apparent
changes in productivity. For the harvesting of alfalfa, the cutting could also lead to the increase of
ambient temperature. The proper use of predictor variables in our model including ECOSTRESS
LST, vegetation, and environmental variables is essential for ensuring the consistency between
estimated and tower GPP.

The ECOSTRESS GPP enables the examination of instantaneous physiological variations of
plants in response to environmental conditions, such as high temperature, excessive radiation, and
water stress. These important physiological characteristics would be easily obscured when
analyses were conducted at daily or monthly scales. Our predicted ECOSTRESS GPP successfully
produced the different shapes of diurnal courses which were in line with corresponding tower GPP.
The “midday depression” phenomenon was observed at the woody savanna site - US-Ton (Fig. 8),
which indicated the distinct reduction in GPP (or carbon exchange) at midday. This phenomenon
was caused by high temperature and high VPD that was often linked to limited water supply
(Damm et al. 2010), which led to the closure of stomata to conserve water at the expense of reduced
carbon uptake. The midday depression was discussed by previous studies based on in
situ observations (Damm et al. 2010; Lin et al. 2019a; Liu et al. 2017; Paul-Limoges et al. 2018),
and found for different ecosystems such as grassland, mixed forest, and cropland (Damm et al.
2010; Paul-Limoges et al. 2018; Wagle and Kakani 2014). Fig. S6 showed that the decrease of
GPP at the US-Ton site was followed by the peak of incoming radiation, with progressive increase

of air temperature and VPD from midday to 4 pm. The midday depression was not found for other
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three sites with lower temperature and atmospheric water stresses. The response of photosynthesis
to temperature was confounded by the covariations in light intensity, air dryness, and soil moisture
across biomes (Ma et al. 2017).

Our study well demonstrates the feasibility of using ECOSTRESS observations for predicting
instantaneous GPP and the ability of ECOSTRESS based GPP estimates for examining the
variations in photosynthesis over the course of the diurnal cycle at regional scales. This method
can also be extended to other regions or even the globe encompassing various climatic conditions
and ecosystem types. When the global ECOSTRESS GPP covering one or two years is available
in the near future, it will undoubtedly make great contributions to the scientific community. The
regional to global ECOSTRESS GPP will be valuable for various ecological studies. For example,
it can indicate what time of the day plants "wake up" to begin photosynthesis and what time of the
day they “sleep” and stop photosynthesis from space. The ECOSTRESS GPP can help scientists
understand how plants absorb carbon dioxide over the course of the day, how the magnitude and
shape of diurnal course vary across latitude, plant species, and climatic zones, and how temperature
and water stresses influence photosynthesis throughout the day. The instantanecous ECOSTRESS
GPP is also essential for monitoring the water use efficiency (WUE) of plant throughout the day,
which partly inspired our research in this study. Combined with the instantaneous ECOSTRESS
ET (L3 product) (Fisher et al. 2015), ECOSTRESS GPP can generate ‘real’ instantaneous WUE
estimates, and help better address the scientific questions of the ECOSTRESS mission. With these
products, scientists may better understand how plants use water for carbon uptake and identify
critical thresholds of water use and water stress in climate-sensitive biomes globally. These
instantaneous products have great potential for informing agricultural irrigation management. For

example, farmers can adjust the timing and location for crop irrigation. It also helps improve the
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ability of agricultural drought monitoring and can point out which areas and which biomes are
more susceptible to drought. ECOSTRESS GPP for different times of day will also be valuable for
benchmarking terrestrial biosphere models and Earth system models such as the Community Land
Model (CLM) (Lawrence et al. 2019) at the diurnal timescales.

The combination of high-resolution ECOSTRESS LST (70 m), medium-resolution MODIS
EVI (500 m), and much coarser ERAS5 meteorological data (0.25°) in this study estimated GPP
effectively for different times of day. For a given ECOSTRESS grid cell, the corresponding 500
m MODIS EVI can contain information on not only the ECOSTRESS grid cell but also
neighboring grid cells that may have different productivity, vegetation type, or phenology, likely
leading to over- or under-estimation of GPP. In future work, finer-resolution EVI data from
Landsat or Sentinel should be used to improve the accuracy of GPP. The overall match of EARS
with tower measurements (Fig. S2-3) showed that the use of coarse-resolution ERAS data had
relatively small effects on the accuracy of GPP. However, ERAS data were simply interpolated to
70-m resolution with a bilinear interpolation approach, and as a result, the “true” spatial resolution
of the resulting GPP estimates is coarser than 70 m. Future work could benefit from downscaling
EARS with a better strategy. A potential strategy is to merge ERAS with Daymet
(https://daymet.ornl.gov), a daily, gridded meteorological dataset with 1-km spatial resolution, to
generate a new dataset with hourly time step and 1-km spatial resolution. The hourly
meteorological data with much finer resolution (e.g., 1 km) and EVI data with fine resolution (e.g.,
30-70 m) could enhance the spatial details and ensure the fine spatial resolution of ECOSTRESS
GPP.

Despite the great potential, the ECOSTRESS GPP enables the monitoring of diurnal changes

of photosynthesis by pooling together the observations at different times of day in multiple days

34



594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

(unusually longer than half a month), which is inherently limited by the overpass of ECOSTRESS.
The variations in instantaneous GPP over such a period can be caused by not only the diurnal
variations in photosynthesis but also day-to-day variations resulting from day-to-day changes in
environmental factors (e.g., meteorological variables), LAI, and phenology, which will likely
complicate the analyses of diurnal variations. As mentioned earlier, the geostationary satellites
(e.g., GOES-R, Himawari-8) can provide temporally dense observations within one day but with
a coarse spatial resolution. High-frequency GEOS-R LST data have recently been used to study
the diurnal cycling of surface urban heat island in Boston (Chang et al. 2021). Synergistic use (i.e.,
data fusion) of LST from ECOSTRESS and geostationary satellites have the potential to maintain
high resolution in both time and space and thereby better monitor the diurnal changes of
photosynthesis. The combination of ECOSTRESS data with Landsat observations or thermal
infrared spaceborne measurements from upcoming missions such as the Surface Biology and
Geology (SBG) designated observable and Land Surface Temperature Monitoring (LSTM)
mission from the European Space Agency (ESA) is also likely to produce more temporally dense
images for better monitoring of plant photosynthesis.
5. Conclusions

This study is the first attempt to produce instantaneous GPP maps with fine spatial resolution
(70 m) for different times of day using ECOSTRESS observations and to use the instantaneous
GPP maps to examine the diurnal variations of photosynthesis across biomes at the regional scale.
We used the instantaneous LST from ECOSTRESS, vegetation index from MODIS, hourly
meteorological variables from ERAS, and land cover from the NLCD dataset along with a data-
driven (or machine learning) method to predict instantaneous GPP. The predictive GPP model

performed well for different biomes, with R? ranging from 0.80 to 0.90, and RSME from 0.82 to
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4.24 umol CO, m™ s!. The predicted ECOSTRESS GPP maps well captured the variations of
photosynthesis over the course of the diurnal cycle, and clearly depicted the differences in
photosynthetic capacity for different biomes throughout the day. The ECOSTRESS GPP also
indicated the varying photosynthesis of plants during key phenological transition periods. Future
work is needed to increase the temporal density of the instantaneous GPP estimates for different
times of day with more frequent satellite data (e.g., geostationary satellites such as GOES-R and
Himawari-8) and to strengthen the spatial resolution of the GPP estimates with finer-resolution
EVI (e.g., Landsat, Sentinel) and meteorological reanalysis data. ECOSTRESS GPP will have
strong potential for ecological applications. It will be useful for understanding how plants absorb
carbon over the course of the diurnal cycle. In combination with instantaneous ECOSTRESS ET,
it will also allow us to how plants use water and how plant water use efficiency varies throughout
the day. ECOSTRESS GPP is also useful for benchmarking terrestrial biosphere and Earth system

models at diurnal timescales.
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