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Abstract: Accurate estimation of gross primary production (GPP), the amount of carbon absorbed 15 

by plants via photosynthesis, is of great importance for understanding ecosystem functions, carbon 16 

cycling, and climate-carbon feedbacks. Remote sensing has been widely used to quantify GPP at 17 

regional to global scales. However, polar-orbiting satellites (e.g., Landsat, Sentinel, Terra, Aqua, 18 

OCO-2) lack the capability to examine the diurnal cycles of GPP because they observe the Earth’s 19 

surface at the same time of day. The Ecosystem Spaceborne Thermal Radiometer Experiment on 20 

Space Station (ECOSTRESS), launched on June 2018, observes the land surface temperature (LST) 21 

at different times of day with high spatial resolution (70 m × 70 m) from the International Space 22 

Station (ISS). Here, we made use of ECOSTRESS data to predict instantaneous GPP with high 23 

spatial resolution for different times of day using a data-driven approach based on machine 24 

learning. The predictive GPP model used instantaneous ECOSTRESS LST observations along 25 

with the daily enhanced vegetation index (EVI) from the Moderate Resolution Imaging 26 

Spectroradiometer (MODIS), land cover type from the National Land Cover Database (NCLD), 27 

and instantaneous meteorological data from the ERA5 reanalysis dataset. Our model estimated 28 

instantaneous GPP across 56 flux tower sites fairly well (R2 = 0.88, Root Mean Squared Error 29 

(RMSE) = 2.42 μmol CO2 m
-2 s-1). The instantaneous GPP estimates driven by ECOSTRESS LST 30 

captured the diurnal variations of tower GPP for different biomes. We then produced multiple high 31 

resolution ECOSTRESS GPP maps for the central and northern California. We found distinct 32 

changes in GPP at different times of day (e.g., higher in late morning, peak around noon, 33 

approaching zero at dusk), and clear differences in productivity across landscapes (e.g., savannas, 34 

croplands, grasslands, and forests) for different times of day. ECOSTRSS GPP also captured the 35 

seasonal variations in the diurnal cycling of photosynthesis. This study demonstrates the feasibility 36 

of using ECOSTRESS data for producing instantaneous GPP (i.e., GPP for the acquisition time of 37 
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the ECOSTRESS data) for different times of day. The ECOSTRESS GPP can shed light on how 38 

plant photosynthesis and water use vary over the course of the diurnal cycle and inform agricultural 39 

management and future improvement of terrestrial biosphere/land surface models.   40 

Keywords: Gross primary productivity; Land surface temperature; Diurnal cycle; Photosynthesis; 41 

Water use efficiency; Carbon cycle; Geostationary satellite; MODIS; Stomatal conductance; Earth 42 

system model  43 
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1. Introduction 45 

Photosynthesis, the underlying process of terrestrial vegetation, constitutes the largest flux of 46 

the global carbon cycle. Quantifying the spatial and temporal dynamics of photosynthesis at the 47 

ecosystem scale (i.e., gross primary production, GPP) can provide important information on the 48 

magnitude and variability of terrestrial carbon budget and carbon-climate feedbacks (Beer et al. 49 

2010; Xiao et al. 2014). Previous studies showed the feasibility of estimating GPP at different 50 

temporal scales (e.g., daily, monthly, annual) (Zhao et al. 2005; Xiao et al., 2010; Gilabert et al. 51 

2015). The seasonal and interannual variations of GPP are found to be driven by climate variability, 52 

plant phenology, and changes in physiological capacity due to nutrient status and soil moisture 53 

deficits (Li and Xiao 2020; Mäkelä et al. 2006; Xia et al. 2015; Xu and Baldocchi 2004). Diurnal 54 

variations (or diel variations) of GPP are mainly driven by environmental (e.g., solar radiation, air 55 

temperature, soil moisture, vapor pressure deficit or VPD) and physiological (e.g., stomatal 56 

conductance) factors (Damm et al. 2010; Franco and Lüttge 2002; Paul-Limoges et al. 2018). 57 

Diagnosing the diurnal variations of GPP can provide insights into direct interactions between 58 

photosynthesis and these controlling factors, which otherwise would be obscured by aggregating 59 

the instantaneous variables to daily or seasonal scales.  60 

The eddy covariance (EC) technique provides temporally (half-hourly or hourly) continuous 61 

measurements of ecosystem-level GPP over the course of the diurnal cycle (Baldocchi et al. 2001). 62 

However, these EC flux towers provide only spatially sparse GPP estimates due to their sparse 63 

distributions across the globe (Xiao et al. 2010). Satellite observations make up for the limitation 64 

in spatial representation and global coverage of the EC technique and can lead to spatially 65 

continuous GPP estimates from regional to global scales based on different approaches (Xiao et 66 

al. 2019), including light use efficiency models (Running et al. 2004; Zhao et al. 2005; Stocker et 67 
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al. 2020), terrestrial biosphere models (Liu et al. 1997; Ryu et al. 2011), and data-driven 68 

approaches (Beer et al. 2010; Xiao et al. 2010). During the past decades, GPP has been successfully 69 

estimated from polar-orbiting satellites, such as Landsat (30 m, 16-day) (Gitelson et al. 2012; 70 

Robinson et al. 2018), Terra/Aqua (500 m, 8-day) (Running et al. 2004; Zhao et al. 2005; Xiao et 71 

al. 2010), Sentinel-2 (up to 10 m, 5 day) (Lin et al. 2019b; Wolanin et al. 2019), and OCO-2 (Li 72 

and Xiao 2019a). However, polar-orbiting satellites lack the capability to examine the diurnal cycle 73 

of GPP because they observe the Earth’s surface at the same time of day for every revisit. 74 

Fortunately, the recent launch of the Ecosystem Spaceborne Thermal Radiometer Experiment on 75 

Space Station (ECOSTRESS) provides an unprecedented yet unexplored opportunity for 76 

examining the variations of plant carbon uptake over the course of a day on large scales. 77 

ECOSTRESS, managed by National Aeronautics and Space Administration (NASA)'s Jet 78 

Propulsion Laboratory (JPL), was launched to the International Space Station (ISS) on 29 June 79 

2018. ECOSTRESS uses a multispectral thermal infrared radiometer to measure radiance in five 80 

bands from 8 to 12.5 μm and an additional band at 1.6 μm for geolocation and cloud detection 81 

(http://ecostress.jpl.nasa.gov). On board the ISS with an inclined, precessing orbit, ECOSTRESS 82 

can measure the Earth’s surface at different times of day from 53.6° N to 53.6° S, which is 83 

promising to capture diurnal biological processes that are unexploited by traditional polar orbiting, 84 

sun-synchronous platforms with a fixed equator crossing time (e.g., Landsat, Sentinel, Terra, Aqua, 85 

OCO-2). ECOSTRESS has a high spatial resolution of 38 m × 69 m (at nadir) and frequent revisit 86 

time of 1–5 days depending on the latitude (Fisher et al. 2015, 2020). The combination of diurnal 87 

sampling capability and fine spatial and temporal resolutions endows ECOSTRESS with a great 88 

potential for sampling the diurnal variation of terrestrial ecosystems, even for individual farmers’ 89 

fields. ECOSTRESS can provide key insights into plant–water dynamics, ecosystem–climate 90 
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interactions, and agricultural management. It also has potential to answer how do snapshots of 91 

remote sensing scale with daily integrals across different biomes and latitudinal zones (Sims et al. 92 

2005; Ryu et al. 2012). 93 

The ECOSTRESS mission measures the temperature of plants from space, and provides both 94 

land surface temperature (LST) and emissivity (Level-2 products) at a spatial resolution of ~70 m 95 

× 70 m (Hook et al. 2019; Hulley et al. 2019). LST is one of the important parameters for studying 96 

processes at the land-atmosphere interface which measures Earth’s surface temperature rather than 97 

air temperature. For plants, many physiological or biological activities (e.g., transpiration, 98 

photosynthesis) of canopy (or leaves) are closely associated with the variations in LST, and 99 

therefore LST is widely used as a key variable for estimating evapotranspiration (ET) (Su et al. 100 

2002; Nagler et al. 2005; Jin et al. 2011) and GPP (Sims et al. 2008; Xiao et al. 2010; Schubert et 101 

al. 2010). Currently, no other satellite sensors have such sufficient spatio-temporal resolution to 102 

reliably monitoring LST at the local to global scale over the diurnal cycle. For example, the 103 

Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua satellites 104 

together provides global coverage of LST only at two times during the daytime and two at night 105 

(Fig. 1: 10:30 and 22:30 for Terra and 13:30 and 1:30 for Aqua, local solar time) although with 106 

moderate spatial resolution (1 km). Geostationary satellites such as the Geostationary Operational 107 

Environmental Satellite (GOES)-R series can capture the diurnal variations of LST (Fig. 1) but 108 

with much coarser resolution (2.5-4 km) (Fig. 2b). ECOSTRESS, therefore, provides a unique 109 

combination of high spatial and temporal resolution to monitor the temperature of plants over the 110 

course of the diurnal cycle (Fisher et al. 2020) (Figs. 1-2). 111 

 112 
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 113 

Fig. 1. Diurnal cycle of LST at the Bouldin Island corn site (US-Bi2) during August 2018. (a) shows the 114 

LST from GOES-R (GOES-16) and ECOSTRESS from August 1 to August 31, 2018; (b) shows the hourly 115 

averaged LST during August: GOES-R provides continuous measurements of hourly LST; MODIS 116 

provides LST at only four times of the day; ECOSTRESS measures LST with fine spatial resolution (70 m 117 

 70 m) at different times throughout the day, and therefore can monitor plants over the course of the diurnal 118 

cycle with finer spatial resolution. 119 

 120 
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 121 

Fig. 2. Diurnal cycle of ECOSTRESS LST across California (a) and comparison of ECOSTRESS and 122 

GOES-R LST (b). Both satellites observe LST at different times of day, but ECOSTRESS has much finer 123 

spatial resolution (70 m) and much more spatial details than GOES-R (~2 km). 124 
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Although ECOSTRESS provides a suite of data products (Table S1) such as an instantaneous 125 

ET product (a Level-3 product) (Fisher et al. 2008; 2020) and the Level-4 water use efficiency 126 

(WUE) product (Fisher & ECOSTRESS algorithm development team, 2018), ECOSTRESS does 127 

not offer an instantaneous GPP product. An instantaneous GPP product for different times of day 128 

and with fine spatial resolution will be valuable for studying how plants absorb carbon throughout 129 

the day in response to the diurnal variations in environmental and physiological factors. In addition, 130 

the ECOSTRESS WUE product is based on 500 m, 8-day MODIS GPP (Zhao et al. 2005), not 131 

instantaneous GPP, and therefore can only provide WUE information on a daily or 8-day basis and 132 

miss the instantaneous variations of WUE over the different times of the day. Having an 133 

instantaneous ECOSTRESS GPP product will also allow us to develop instantaneous WUE 134 

estimates. Moreover, the synergistic use of such a new instantaneous ECOSTRESS product and 135 

the existing instantaneous ET product will allow scientists to identify when plants take up most of 136 

carbon or have most water stress over the course of a day, or how water and/or heat stress impacts 137 

plant water use and carbon uptake at diurnal timescales across different biomes, towards a better 138 

understanding of how plants link Earth’s carbon and water cycles. 139 

To advance these issues, our presented work here aims to generate instantaneous, high 140 

resolution GPP estimates based on instantaneous ECOSTRESS LST data. The 70 m ECOSTRESS 141 

LST data along with the EVI from the MODIS, land cover type from the National Land Cover 142 

Database (NCLD), and hourly meteorological variables were used for the GPP prediction. We 143 

selected California as our study region, to explore whether the ECOSTRESS-based GPP estimates 144 

could reasonably capture the diurnal cycle of photosynthesis across biomes. California has high 145 

ecological, hydrological, and biological diversity (Fig. 3), and therefore, the estimation of GPP is 146 

complicated by the diverse geography, ecosystems, microclimates, and land use and land 147 
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management across the state (Baldocchi et al. 2019). For example, local ecosystems even have 148 

different seasonality due to the complex interactions between diverse ecosystems and 149 

environmental and climate drivers (Turner et al. 2020). These characteristics make California an 150 

ideal and challenging test bed for us to examine the effectiveness of our method. If ECOSTRESS 151 

GPP works well across California, it will increase our confidence in applying our method in other 152 

regions of the United States and the globe. Please note that the term ‘diurnal cycle’ was used to 153 

name the full 24 hour period (i.e., the “diel cycle”) throughout this paper. To our knowledge, this 154 

study is the first effort to predict instantaneous GPP based on ECOSTRESS observations. The 155 

availability of instantaneous GPP for different times of day will improve our understanding of how 156 

plant photosynthesis and water use vary over the course of the diurnal cycle, and help better 157 

manage agricultural irrigation and improve terrestrial biosphere/land surface models. 158 

2. Materials and Methods 159 

2. 1. Study area 160 

     We selected the central and northern California as our study area. This area consists of four 161 

ecoregions: the Central California Foothills and Coastal Mountains, Central California Valley, 162 

Sierra Nevada, and Coast Range (Fig. 3). The climate of the four ecoregions (defined by Level 163 

III Ecoregions map) (Omernik 1987) is mainly characterized by Mediterranean climate with hot 164 

dry summers and cool moist winters. The regions with the highest elevation in Sierra Nevada have 165 

an alpine climate. The four ecoregions have distinct ecosystem types (Griffith et al. 2016): Coast 166 

Range in the west of California is dominated by highly productive evergreen forests; Central 167 

California Foothills and Coastal Mountains are primarily composed by woodlands and grasslands, 168 

with only patches of pine at high elevations; evergreen forests are the major ecosystems in the 169 

https://agupubs.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Baldocchi%2C+Dennis
https://en.wikipedia.org/wiki/Alpine_climate
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western Sierra Nevada, while juniper woodlands are on the eastern side of Sierra Nevada; Central 170 

California Valley is carpeted by vast agricultural regions. 171 

 172 

Fig. 3. Our study area consisting of four ecoregions across central and northern California. The base map 173 

in (a) is the MODIS land cover map (MCD12Q1, 500m) with the University of Maryland (UMD) land 174 

cover classification scheme. The green symbols in the zoomed figure (b) denote the locations of eight EC 175 

flux sites used for evaluating the performance of ECOSTRESS-based GPP predictions in Section 3.3. Two 176 

crop sites (US-Bi1/Bi2) are overlapped because they are very close to US-Tw1/Tw4/Tw5. The land cover 177 

types across the study area include evergreen needleleaf forests (ENF), evergreen broadleaf forests (EBF), 178 

deciduous broadleaf forests (DBF), mixed forests (MF), closed shrublands (CSH), open shrublands (OSH), 179 

savannas (SAV), grasslands (GRA), croplands (CRO), and wetlands (WET). 180 

2. 2. Data-driven approach, tower GPP, and explanatory data 181 

       We used a data-driven method to develop the predictive GPP model, which applied the widely 182 

used Cubist (Quinlan 1992), an advanced nonparametric regression tree model, to establish rule-183 

based multivariate linear models between the target variable - GPP and the explanatory variables.  184 

Cubist is a traditional vector data mapping algorithm developed in the machine learning domain. 185 

The established models can overlap with each other. Specifically, for a set of explanatory variables, 186 
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they can match the conditions of one or multiple rules. Cubist may thus generate multiple outputs 187 

and take their average as the final GPP prediction. The Cubist model has been successfully applied 188 

in our previous studies for predicting spatially and temporally continuous net ecosystem carbon 189 

exchange (NEE) (Xiao et al. 2008; Xiao et al. 2011), GPP (Xiao et al. 2010), and SIF (Li and Xiao 190 

2019b). More details on Cubist model were described in these studies. Cubist provides three 191 

statistical measures to evaluate the model performance including mean absolute error (MAE), 192 

relative error (RE), and the product–moment correlation coefficient (R). 193 

      Six explanatory variables were considered for predicting GPP due to their close relationships 194 

with GPP and easy data access: LST, shortwave incoming radiation (SW), and VPD for 195 

characterizing environmental conditions, daily EVI and annual mean EVI for characterizing 196 

vegetation conditions, and land cover type as a categorical variable. The environmental variables 197 

showed reasonable regulations on tower GPP (Fig. S1). As air temperature or VPD increased, GPP 198 

showed a convex parabolic curve with its peak value occurring around ~25 ℃ and 10 hPa, 199 

respectively (Fig. S1a, b). The increase of temperature and VPD would no longer lead to an 200 

increase in GPP when environmental conditions start to limit photosynthesis. GPP was also 201 

dependent on solar radiation, and high radiation overall corresponded to high productivity. The 202 

relationship between LST and tower GPP was similar with that between air temperature and tower 203 

GPP, with optimal LST around ~28 ℃.  204 

For training, we were not able to obtain sufficient overpasses of ECOSTRESS LST for 205 

robust training due to the recency of the launch. Therefore, we used LST from GOES-R satellite 206 

(GOES-16, 2 km spatial resolution) (Yu et al. 2008; GOES-R Algorithm Working Group and 207 

GOES-R Program office, 2018) which provides hourly LST since December 2017. We extracted 208 

GOES-R LST for the grid cell in which each site was located, and used two years of data (2018 209 
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and 2019) for training. MODIS LST from Terra and Aqua was not considered because these two 210 

satellites together only provide four observations per day and cannot well sample the diurnal 211 

variation of LST. The land cover type, half-hourly SW and VPD from AmeriFlux sites that overlap 212 

the GOES-R observations (2018 and 2019) were used. For each site, we used the ReddyProc 213 

software (Wutzler et al. 2018) for the gap filling of EC data and partitioning of NEE into GPP and 214 

ecosystem respiration with the nighttime partitioning method (Reichstein et al. 2005). For each 215 

flux site, we extracted the daily MODIS bidirectional reflectance distribution function (BRDF)-216 

corrected reflectance product MCD43A4 (Collection 6, 500 m) from MODIS and VIIRS Land 217 

Products Global Subsetting and Visualization Tool (ORNL DAAC 2018). The daily EVI was 218 

calculated from surface reflectances in near-infrared, red, and blue bands of the MCD43A4 and 219 

annual mean EVI was aggregated from the daily EVI. The machine learning approach can handle 220 

these different types of variables directly and normalizing these variables would not significantly 221 

influence the performance of the predictive model.  222 

Flux tower data were obtained from the AmeriFlux website (https://ameriflux.lbl.gov). We 223 

identified AmeriFlux sites that had good-quality measurements available for the ECOSTRESS era 224 

and were also relatively homogeneous. For a given site, it was considered as relatively 225 

homogeneous if the dominant land cover type within the 1 km × 1 km area surrounding the site 226 

was consistent with the land cover type of the site. The 30-m NLCD land cover map was used to 227 

identify the land cover type for each grid cell. Heterogeneous sites were excluded from this 228 

analysis. A total of 56 AmeriFlux sites (containing 10 California sites) were used in this study, 229 

generating a dataset with a large number of hourly samples (165.1 thousand) encompassing a 230 

variety of climate and ecological conditions and ecosystem types across the U.S. We randomly 231 

used two thirds of the data points as training samples, and the remaining one third as testing data. 232 
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The details of AmeriFlux sites including site code, site name, location and biome were described 233 

in Table S2. The data sets used for training and prediction were summarized in Table 1. 234 

Table 1. List of data for training and prediction  235 

 Training Prediction 

Variables Product Spatial 

resolution 

Temporal 

resolution 

Product Spatial 

resolution 

Temporal 

resolution 

LST GOES-R ~2 km Hourly ECOSTRESS 70 m Instantaneous 

SW AmeriFlux / Half-hourly ERA5 0.25° Hourly 

VPD AmeriFlux / Half-hourly ERA5 0.25° Hourly 

Land Cover AmeriFlux / / NLCD 30 m / 

EVI MCD43A4 500 m Daily MCD43A4 500 m Daily 

 236 

2. 3. ECOSTRESS LST and other explanatory data for prediction  237 

When the Cubist model was trained based on site-level samples, we then applied it with 238 

spatially explicit (i.e., 2D gridded) input data (Table 1) including ECOSTRESS LST, MODIS 239 

daily EVI and annual mean EVI, ERA5 hourly SW and VPD, and land cover from the NLCD to 240 

produce multiple 70 m, instantaneous GPP maps for four ecoregions across California.  241 

Instantaneous ECOSTRESS LST was obtained from the Level-2 product - ECO2LSTE 242 

(Version 1),  which provides both LST and emissivity retrieved from five thermal bands at a spatial 243 

resolution of ~70×70 m with the physics-based Temperature Emissivity Separation (TES) 244 

algorithm (Hulley and Hook 2010). Recent studies have shown that LST from ECOSTRESS was 245 

comparable to that from the existing thermal infrared instruments (Silvestri et al., 2020), and has 246 

high agreement with ground observations during the daytime (Li et al., 2020). The daily MODIS 247 

EVI throughout 2019 covering the study area were used to derive the annual mean EVI, which was 248 

used together with daily EVI corresponding to the ECOSTRESS overpass days for predicting the 249 

GPP. Both regional ECOSTRESS LST and EVI were retrieved using the Application for 250 

Extracting and Exploring Analysis Ready Samples (AppEEARS) online portal (AppEEARS 251 
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Team). The hourly SW and VPD corresponding to the ECOSTRESS overpass hours were obtained 252 

from ERA5 reanalysis dataset (Hersbach and Dee 2016). For example, if ECOSTRESS overpassed 253 

California around 14:20, the hourly SW and VPD starting from 14:00 to 15:00 were used to 254 

represent the corresponding radiation and atmospheric water conditions. ERA5 is the latest 255 

generation of global atmospheric reanalysis released by European Centre for Medium-Range 256 

Weather Forecasts (ECMWF). ERA5 data on single levels contain a variety of hourly 257 

meteorological variables at a horizontal resolution of 0.25° × 0.25° from 1979 to present. The VPD 258 

was calculated by the ERA5 2 m dewpoint temperature and 2 m air temperature. The land cover 259 

type was identified by the land cover product from NLCD 2016 recently released by U.S. 260 

Geological Survey (Yang et al. 2018). The NLCD land cover product was based on 30 m Landsat 261 

imagery with cloud cover less than 20% and has an overall agreement with reference data from 262 

71% to 97%.   263 

The MODIS EVI and ERA5 meteorological data were resampled to 70 m resolution to match 264 

the resolution of ECOSTRESS LST using the bilinear interpolation method. For each 70-m grid 265 

cell, the land cover type was determined based on the nearest neighbor interpolation. Among these 266 

input variables, the very coarse spatial resolution of ERA5 hourly data may affect the accuracy of 267 

the GPP estimates. Therefore, we evaluated the hourly ERA5 SW and VPD against flux tower 268 

data. Due to the very large number of hourly data points, we used the stratified sampling method 269 

and evaluated the data for 24 hours in the first day of each month throughout 2018 for 44 sites with 270 

flux data available. Across all sites, ERA5 hourly SW (R2=0.90, RMSE=89.18 W m-2) and VPD 271 

(R2=0.79, RMSE=4.34 hPa) were strongly correlated with tower measurements (Fig. S2a, b); at 272 

the site level, ERA5 SW and VPD were also strongly related to tower data for the majority of the 273 

sites (Fig. S2c, d). We also averaged hourly SW and VPD for 12 months for each site and found 274 

javascript:;
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that the site-averaged ERA5 hourly SW and VPD were also highly correlated with tower-averaged 275 

SW and VPD, respectively (R2=0.97, RMSE=45.53 W m-2 for SW and R2=0.75, RMSE=3. 47 hPa 276 

for VPD; Fig. S3). Therefore, the accuracy of the ERA5 SW and VPD data was reasonable.  277 

2. 4. Evaluation of ECOSTRESS GPP and analysis of diurnal cycles 278 

We first produced multiple 70-m resolution, instantaneous GPP maps for the central and 279 

northern California to examine the diurnal cycle of photosynthesis across biomes. We generated a 280 

total of nine images at different times of day during the summer from June to August 2019: 5:48 281 

am, 8:37 am, 9:51 am, 10:43 am, 12:15 pm, 1:54 pm, 3:32 pm, 6:01 pm, and 7:43 pm local time. 282 

The acquisition time of the ECOSTRESS images was irregular because the instrument is aboard 283 

the ISS with an inclined, precessing orbit. These nine images could generally describe the changes 284 

in photosynthesis of vegetation over the course of one summer day. We then calculated regional 285 

averages of GPP for major biomes including deciduous forest, evergreen forest, mixed forest, 286 

cropland, wetland, shrubland and grassland to examine how the diurnal variations of 287 

photosynthesis varied across biomes. 288 

We compared the spatial pattern of ECOSTRESS GPP with those of midday SIF from the 289 

Orbiting Carbon Observatory-2 (OCO-2) and TROPOspheric Monitoring Instrument (TROPOMI). 290 

The SIF has proven as a strong proxy of photosynthesis (Li et al. 2018), and therefore the 291 

consistency in spatial patterns between ECOSTRESS GPP and SIF based on qualitative evaluation 292 

can support the effectiveness of ECOSTRESS GPP and also highlight its higher spatial resolution. 293 

We compared our ECOSTRESS GPP at 1:54 pm, August 21, with SIF maps from TROPOMI 294 

(~12:10 pm, August 21) (Köhler et al. 2018) and OCO-2 (~12:55 pm) (Frankenberg et al. 2014). 295 

The OCO-2 SIF was aggregated over the interval from June to August 2019 due to the lack of 296 

OCO-2 overpass on the same day and the sparse coverage of OCO-2. It should be noted that the 297 
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difference in the overpass time between ECOSTRESS and OCO-2/TROPOMI could lead to 298 

significant difference in the instantaneous photosynthetic activity as indicated by GPP and SIF.  299 

  We evaluated ECOSTRESS based GPP estimates for eight flux sites in California (Table 2). 300 

The LST data for all the ECOSTRESS overpasses over each site from 2018 to 2019 were retrieved 301 

using the AppEEARS tool. We compared the extracted LST for the grid cell where each site was 302 

located and averaged LST from the neighboring pixels including 5 × 5, 10 × 10, and 15 × 15 303 

windows surrounding the site (i.e., ~350 m to 1050 m away from the tower site) (Fig. S4). The 304 

difference in LST (RMSE) between the grid cell and the average from different windows was 305 

negligible and only slightly increased with window size, suggesting relatively homogeneous 306 

temperature conditions within the ~1 km × 1 km window surrounding each site. Only cloud-free 307 

LST indicated by the L2 cloud mask product (ECO2CLD.001) was then used to predict GPP. 308 

ECOSTRESS does not provide its own cloud shadow layer. Since the Cubist model was 309 

constructed based on LST from GOES-R, we compared GOES-R LST with the ECOSTRESS LST 310 

for each site, and examined whether their difference would affect the GPP estimates. 311 

For four sites with different land cover types including US-Ton (Tonzi Ranch, woody 312 

savannas), US-Tw5 (East Pond Wetland, wetland), US-Bi1 (Bouldin Island Alfalfa, cropland), and 313 

US-Snf (Sherman Barn, grassland), we further evaluated whether ECOSTRESS GPP could capture 314 

the diurnal cycle of tower based GPP. Such analysis could only be conducted by pooling together 315 

all the ECOSTRESS overpasses within a long temporal window, such as one month or whole 316 

summertime, regardless of specific day because ECOSTRESS cannot provide temporally dense 317 

observations in one day or one week. Therefore, we predicted GPP at different times of day in 318 

August 2018 for the three sites (US-Ton, US-Bi1, US-Tw5), and compared them with mean hourly 319 

tower GPP of August 2018. For US-Snf, we compared the predicted GPP and tower GPP at 320 
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different times of day during June to July 2019 because there were few ECOSTRESS overpasses 321 

in August 2018. 322 

For the two cropland sites - US-Bi1 (Bouldin Alfalfa) and US-Bi2 (Bouldin Corn), 323 

ECOSTRESS had dense observations during the phenological transition period of vegetation 324 

which offers a valuable opportunity to examine whether ECOSTRESS-based GPP estimates could 325 

track the change in diurnal cycle resulted from seasonal dynamics of vegetation phenology. We 326 

predicted GPP for US-Bi1 in two periods: day of year (DOY) 152-171 and DOY 275-305 in 2019. 327 

The first period includes the cutting and regrowth dates during the alfalfa growing season which 328 

has multiple and periodical harvesting across the year. The second period is the senescence 329 

stage of alfalfa in late autumn. For US-Bi2, we predicted GPP for the early (“green-up”) stage of 330 

the growing season (DOY 145-171 in 2019). The year 2018 was selected for examining the diurnal 331 

cycle for above four sites due to the availability of a number of ECOSTRESS overpasses, and the 332 

year 2019 was selected for examining the seasonal dynamics because ECOSTRESS provided 333 

continuous data from May to December 2019 while only about three months of data from July to 334 

mid-September were collected in 2018. 335 

Finally, we produced another group of instantaneous GPP maps for two times in different 336 

seasons: one was around midday and the other one was afternoon, which helped us examine 337 

whether ECOSTRESS GPP could also capture the seasonal variations of photosynthesis at the 338 

regional scale. Four GPP maps around midday in 2019 were generated: 12:53 pm (June 6), 12:15 339 

pm (August 25), 12:39 pm (October 5), and 11:01 am (December 6), and other four images in the 340 

afternoon were acquired: 4:14 pm (May 30), 3:32 pm (August 17), 3:05 pm (October 17), and 3:36 341 

pm (December 16). The selected four maps for both times were used to represent four different 342 

seasons: early summer, summer, autumn, and winter, respectively. We did not generate GPP maps 343 



19 

 

for spring 2019 because ECOSTRESS data were not available due to the issues with the 344 

ECOSTRESS recorders. 345 

3. Results 346 

3.1. Model evaluation  347 

Using six explanatory variables (LST, SW, VPD, EVI, annual mean EVI, and land cover 348 

type), we used the training dataset to develop the Cubist model, and found that Cubist performed 349 

well to develop the predictive GPP model (RE=0.24, MAE= 1.22 μmol CO2 m
-2 s-1, R=0.94). We 350 

then used the testing tower GPP data to evaluate the performance of the model. The scatterplots 351 

between half-hourly tower GPP and predicted GPP were shown in Fig. 4. Our model estimated 352 

half-hourly GPP fairly well (R2= 0.88, RMSE = 2.42 μmol CO2 m-2 s-1), and only slightly 353 

underestimated GPP greater than 20 μmol CO2 m
-2 s-1 (Fig. 4a). The performance of the predictive 354 

GPP model was consistently strong across biomes (Fig. 4b-i). Across the eight biomes, R2 ranged 355 

from 0.80 to 0.90, and RMSE ranged from 0.82 to 4.24 μmol CO2 m
-2 s-1), indicating that our data-356 

driven approach driven by ECOSTRESS LST and other input data could estimate instantaneous 357 

GPP fairly well for all the biomes.  358 

 359 
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 360 

Fig. 4. The evaluation of the predictive model for the estimation of instantaneous GPP. (a) shows the 361 

scatterplot of observed GPP versus predicted GPP by ECOSTRESS for all the testing data (y=0.88x+0.33); 362 

(b-i) show the results separated by eight major biomes including evergreen needleleaf forests (ENF), 363 

deciduous broadleaf forests (DBF), mixed forests (MF), shrublands (SHR), savannas (SAV), grasslands 364 

(GRA), croplands (CRO), and wetlands (WET). All the relationships are statistically significant (p < 365 

0.0001). The units of the RMSE are μmol CO2 m
-2 s-1. The dashed line is the 1:1 line, and the solid line is 366 

the regression line. 367 

3.2. Diurnal variations of ECOSTRESS GPP across California 368 

       Fig. 5 shows the regional-scale diurnal variations in photosynthetic activity for four California 369 

ecoregions in summer. Plants started photosynthesis at sunrise when the solar radiation was 370 

available (Fig. 5a). The GPP increased in the morning (Fig. 5b-d) with plenty of sunlight and 371 



21 

 

favorable temperature and moisture conditions, and then peaked around midday (Fig. 5e, f). In the 372 

afternoon, the GPP began to decrease, and photosynthesis considerably slowed down and 373 

approached zero after sunset without sunlight (Fig. 5g-i).  374 

 375 

Fig. 5. Magnitude and spatial patterns of predicted ECOSTRESS GPP at different times of day in summer 376 

2019 across the Central Foothills and Coastal Mountains, Central Valley, Sierra Nevada and Coast Range 377 

in California.  378 

Fig. 5 also distinguishes the change in magnitude of photosynthesis for different biomes over 379 

the course of the day, and well captures the spatial variation of photosynthesis across different 380 
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ecoregions. The forests located in Coast Range and western Sierra Nevada (higher latitude) and 381 

croplands in Central California Valley had high productivity during the daytime (Fig. 5b-h). This 382 

was in stark contrast to the woodlands and grasslands in Central California Foothills and Coastal 383 

Mountains which had consistently lower photosynthesis (less than 10 umol CO2 m
-2 s-1) throughout 384 

the day. The croplands with the highest photosynthetic capacity were also highlighted, which had 385 

particularly high GPP values (more than 30 umol CO2 m
-2 s-1) from morning to early afternoon 386 

(Fig. 5c-g), and still maintained moderate GPP value around 20 umol CO2 m-2 s-1 in the late 387 

afternoon (Fig. 5h). These highly productive croplands mainly include rice in northwestern Central 388 

Valley and cotton in southeastern Central Valley. We also averaged regional GPP for each major 389 

biome for these nine images at different times (Fig. 6).  The regionally averaged ECOSTRESS 390 

GPP showed clear diurnal variations for all the biomes. Forests, cropland, and wetland had higher 391 

GPP than shrubland and grassland throughout the day. Among forests, evergreen forest had the 392 

highest productivity, followed by mixed forest and deciduous forest.  393 

 394 
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Fig. 6. Diurnal cycles of predicted ECOSTRESS GPP (umol CO2 m
-2 s-1) for the major biomes including 395 

deciduous forest, evergreen forest, mixed forest, cropland, wetland, shrubland and grassland.  396 

ECOSTRESS-based GPP estimates exhibited overall consistent spatial pattern with SIF from 397 

OCO-2 and TROPOMI (Fig. 7). Compared with the two SIF maps, ECOSTRESS GPP had 398 

spatially continuous coverage, and could also provide much more spatial details, which allows for 399 

examining photosynthesis at an individual field level and provides more accurate characterization 400 

for the transition zones between different ecoregions. Although ECOSTRESS GPP exhibited 401 

overall consistent spatial pattern with SIF from OCO-2 and TROPOMI, SIF indicated higher 402 

photosynthetic capacity for croplands in the southeastern Central Valley relative to other biomes 403 

than did GPP. This is likely due to the fact that the ecosystems in California tend to have the 404 

highest photosynthetic activity around noon, while the overpass time of OCO-2 (~1:55 pm) and 405 

TROPOMI (~12:10 pm) was ~1 hour and ~1.7 hour earlier than that of ECOSTRESS (1:54 pm). 406 

More importantly, ECOSTRESS-based GPP could provide GPP estimates for different times of 407 

day, while OCO-2 and TROPOMI only provide SIF snapshots for the same time of day.  408 

 409 

 410 
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 411 

Fig. 7. Spatial patterns of predicted ECOSTRESS GPP (70 m) at 1:54 pm on August 21, 2019 (a), OCO-2 412 

SIF (0.1°) at ~12:55 pm aggregated from June to August 2019 (b), and TROPOMI SIF at ~12:10 pm on 413 

August 21, 2019 (c: 0.05°; d: 0.1°) across California. TROPOMI (740 nm) has higher SIF signal than OCO-414 

2 (757 nm). The units of GPP and SIF are μmol CO2 m
-2 s-1 and W m-2 µm-1 sr-1, respectively. Please note 415 

that the difference (~1 hour for ECOSTRESS versus OCO-2 and ~1.7 hour for ECOSTRESS versus 416 

TROPOMI) in overpass time between ECOSTRESS and OCO2/TROPOMI can lead to significant 417 

differences in the spatial patterns between instantaneous GPP and instantaneous SIF. 418 

3.3. Diurnal variations of ECOSTRESS GPP at the site level  419 

 The predicted GPP driven by ECOSTRESS LST was highly correlated with tower GPP for 420 

most of the sites (R2=0.53–0.96, Table 2). We also predicted GPP directly using LST from GOES-421 
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R for the seven sites except for US-Snf, and found that the performance was very similar to that 422 

based on ECOSTRESS LST (two rightmost columns in Table 2). The LST from ECOSTRESS 423 

was strongly consistent with that from GOES-R (Fig. S4), although some differences were found 424 

for the US-Snf site that was surrounded by water within the footprints of GOES-R (2–3 km). This 425 

suggests that the temporal disagreement in LST between ECOSTRESS and GOES-R at the site 426 

level was negligible and GOES-R LST could be used for the training of the GPP model. 427 

ECOSTRESS GPP performed the best for cropland and wetland sites, while performed moderately 428 

for US-Var site which had smaller diurnal variation of GPP during the non-growing season. 429 

 Table 2. Evaluation of instantaneous ECOSTRESS GPP for the eddy covariance flux sites in California. 430 

N is the number of ECOSTRESS overpasses for each site; R2_e and RMSE_e are the measures for GPP 431 

predictions driven by ECOSTRESS LST, while R2_g and RMSE_g are the measures for GPP directly based 432 

on GOES-R LST. The units of RMSE are μmol CO2 m
-2 s-1.  The GOES-R LST was not used to predict 433 

GPP for the US-Snf site because US-Snf was surrounded by water within the footprint of GOES-R (2 km 434 

× 2 km). ECOSTRESS LST with much smaller footprint can better represent the temperature condition 435 

around this site.  436 

Site ID Lat Lon Biome N R2_e RMSE_e R2_g RMSE_g 

US-Bi1 38.10 -121.50 CRO 88 0.88 4.40 0.90 4.21 

US-Bi2 38.11 -121.54 CRO 38 0.95 5.14 0.95 5.32 

US-Snf 38.04 -121.73 GRA 45 0.71 4.59 / / 

US-Ton 38.43 -120.97 SAV 49 0.85 1.50 0.84 1.38 

US-Tw1 38.11 -121.65 WET 87 0.96 1.96 0.95 2.10 

US-Tw4 38.10 -121.64 WET 89 0.95 2.09 0.95 2.08 

US-Tw5 38.11 -121.64 WET 76 0.99 1.10 0.99 1.10 

US-Var 38.41 -120.95 GRA 53 0.53 1.97 0.60 1.76 

All / / / / 0.91 3.02 0.91 2.99 

 Our predicted ECOSTRESS GPP was able to produce similar shapes of diurnal cycle of 437 

tower GPP for four flux sites with different land cover (Fig. 8). The time of onset, peak, and end 438 

of photosynthesis was well captured. US-Tw5 (wetland) and US-Bi1 (cropland) maintained high 439 
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photosynthetic activity for a long time during the day (e.g., 9 am- 4 pm), leading to relatively flat 440 

diurnal curve, especially near the peak. For US-Ton, a woody savanna site, photosynthesis peaked 441 

in the morning (about 10 am), and then decreased till the sunset. The ECOSTRESS GPP captured 442 

such two contrasting diurnal changes of photosynthesis fairly well, although it showed fluctuations 443 

for US-Bi1 (12:00 pm to 3 pm). For the grassland site - US-Snf (Fig. 8d), the ECOSTRESS GPP 444 

moderately overestimated the tower GPP, but it still showed consistent diurnal variation. Note that 445 

the large standard deviation of monthly averaged GPP for US-Bi1 resulted from a mix of high and 446 

low GPP as the leaf area index (LAI) of alfalfa changed quickly during the growing season (Fig. 447 

8c). 448 

 449 
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Fig. 8. Diurnal cycles of tower GPP and ECOSTRESS GPP for (a) US-Tw5, (b) US-Ton, (c) US-Bi1, 450 

(d) US-Snf. Blue curves denote averaged hourly tower GPP during August 2018 (a-c) and June to July 451 

2019 (d); red circles denote estimated ECOSTRESS GPP. The predicted GPP was strongly correlated 452 

with tower GPP: US-Tw5 (R2=0.99, p<0.0001, RMSE=1.1 μmol CO2 m-2 s-1), US-Ton (R2=0.85, 453 

p<0.0001, RMSE=1.5 μmol CO2 m
-2 s-1), US-Bi1 (R2=0.88, p<0.0001, RMSE=4.4 μmol CO2 m

-2 s-1),, 454 

and and US-Snf (R2=0.71, p<0.0001, RMSE=4.59 μmol CO2 m
-2 s-1) (Table 2).  455 

3.4. Seasonal variations in diurnal cycling of ECOSTRESS GPP  456 

The diurnal cycling of tower GPP varied with the seasonal growth of vegetation (Fig. 9). For 457 

example, at US-Bi2, the green-up of plants began around DOY 161 when the maximum GPP in 458 

the diurnal cycle significantly increased; the peak instantaneous GPP approached to about 15 umol 459 

CO2 m
-2 s-1 on DOY 171 (Fig. 9a, b). For US-Bi1, GPP suddenly dropped from 30 umol CO2 m

-2 460 

s-1 on DOY 291 to near zero after DOY 292 during autumn senescence (Fig. 9c, d). The predicted 461 

ECOSTRESS GPP, although not temporally continuous, well tracked the trajectory of tower GPP 462 

in such two different phenological stages of plant growth.  463 
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 464 

Fig. 9. Diurnal cycling of photosynthesis changes with plant phenology at the US-Bi1 and US-Bi2 465 

sites. (a-b) show the dynamics of tower GPP, predicted ECOSTRESS GPP, and MODIS EVI during the 466 

green-up of plants for US-Bi2; (c-d) show these three variables during the senescence of plants for US-467 

Bi1. Other sites were not included because there were very few or no ECOSTRESS overpasses during these 468 

phenological stages in 2018 and 2019. 469 

For the alfalfa site (US-Bi1), ECOSTRESS GPP captured the multiple and periodical 470 

harvesting characteristic of alfalfa within one year (Fig. 10). The alfalfa had high productivity 471 

during DOY 152-159; the maximum instantaneous GPP decreased to less than 5 umol CO2 m
-2 s-472 

1 during the period DOY 160-165 from the harvest to the replanting of alfalfa, and then increased 473 
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during the next growth cycle (Fig. 10a). The cutting of alfalfa led to an increase in ambient 474 

temperature, which was revealed by both ECOSTRESS and GOES-R LST (Fig. 10b). 475 

 476 

Fig. 10. Diurnal cycling of photosynthesis changes with the cutting and regrowth of alfalfa at the US-477 

Bi1 site. (a) shows the dynamics of tower GPP and predicted ECOSTRESS GPP; (b) shows the changes 478 

in air temperature and land surface temperature. The shaded areas indicate the increase in temperature 479 

during the period from the harvest to the replanting of alfalfa. The predicted GPP on DOY 163 was much 480 

higher than tower GPP mainly because the 500-m MODIS EVI on that day contained information on the 481 

crop field in which the tower is located and neighboring fields that crops were not yet harvested.  482 

Finally, we produced instantaneous GPP maps in different seasons to examine how 483 

instantaneous GPP varied with seasons. ECOSTRSS GPP exhibited clear seasonal variations at 484 

both midday and afternoon (Fig. 11). The majority of the grid cells showed high GPP in early 485 

summer and continued to increase by August. With the gradual senescence of plants, the GPP 486 
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showed small or intermediate values in the autumn and had the lowest values in winter due to the 487 

dormancy of deciduous plants. Evergreen forests in Sierra Nevada continued 488 

to conduct photosynthesis but with substantially reduced rates in the winter (Fig. 11 d and h). 489 

 490 

Fig. 11. Magnitude and spatial patterns of predicted ECOSTRESS GPP at midday (upper panel) and 491 

afternoon (lower panel) in early summer, summer, autumn, and winter across California.  492 

4. Discussion 493 

This study provides the first demonstration of using the new ECOSTRESS thermal 494 

observations for estimating instantaneous GPP over the course of the diurnal cycle at regional 495 

scales. Previous studies based on polar-orbiting satellites such as Landsat, Sentinel, Terra, Aqua, 496 

and OCO-2 can only estimate GPP at daily or 8-day time steps and coarse spatial resolutions (e.g., 497 

1 km) (Running et al. 2004; Xiao et al. 2010; Zhao et al. 2005; Li and Xiao 2019a). The 498 

ECOSTRESS-based GPP estimates in this study have two significant advantages which raise 499 

previous approaches to the next level: (1) measuring the sub-daily variations in ecosystem 500 

photosynthesis at the large scale and has the potential to extend globally (between 53.6° N and 501 
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53.6° S); and (2) depicting these variations at a fine spatial resolution (70 m). These were realized 502 

by an important variable LST provided by ECOSTRESS along with other vegetation and 503 

instantaneous meteorological variables.  504 

The ECOSTRESS-based GPP estimates well characterized the changes in photosynthetic 505 

activity over the course of the diurnal cycle across different ecoregions in California. The diurnal 506 

variations in GPP were driven by environmental (e.g., solar radiation, air temperature, soil 507 

moisture, VPD) and physiological (e.g., stomatal conductance) factors (Damm et al. 2010; Franco 508 

and Lüttge 2002; Paul-Limoges et al. 2018). LST measures skin temperature of the surface 509 

including soil temperature for bare soil and canopy temperature for vegetation, and is a more useful 510 

measure of physiological activity of canopy leaves than air temperature (Sims et al. 2008). LST 511 

measured by ECOSTRESS has high spatial resolution (i.e., 70m) at different times of day, and is 512 

also physiologically related to plant photosynthesis. Specifically, both low and high temperature 513 

will affect the enzyme activity (e.g., Rubisco) and intercellular CO2 concentration that underlie the 514 

photosynthesis process (Ferrar et al. 1989; Fredeen and Sage 1999, Allen and Ort 2001). High 515 

temperature will even lead to a reduction of stomatal conductance to prevent further loss of water 516 

through transpiration, but at the expense of reduced photosynthesis (Ferrar et al. 1989; Xu et al. 517 

2020).  518 

The diurnal amplitude of predicted GPP varied with ecosystems. Parts of the croplands with 519 

the highest instantaneous productivity were highlighted by ECOSTRESS GPP maps, which was 520 

consistent with the recent study that also reported the maximum GPP of some croplands during 521 

the day across the globe (Bodesheim et al. 2018). Shrubland and grassland had lower productivity 522 

due to their low vegetation cover or LAI. Tower-based GPP confirmed this wide range of 523 

photosynthetic capacity across biomes, indicating that our model was adept at simulating the highs 524 
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and the lows. The predicted GPP, although produced at the sub-daily time scale, could also indicate 525 

the seasonal growth of plants. Plants experience large changes in vegetation structure (e.g., LAI or 526 

the absorbed fraction of photosynthetically active radiation, fPAR) during the critical 527 

phenological transition dates (e.g., start or end of growing season), which can cause apparent 528 

changes in productivity. For the harvesting of alfalfa, the cutting could also lead to the increase of 529 

ambient temperature. The proper use of predictor variables in our model including ECOSTRESS 530 

LST, vegetation, and environmental variables is essential for ensuring the consistency between 531 

estimated and tower GPP.  532 

        The ECOSTRESS GPP enables the examination of instantaneous physiological variations of 533 

plants in response to environmental conditions, such as high temperature, excessive radiation, and 534 

water stress. These important physiological characteristics would be easily obscured when 535 

analyses were conducted at daily or monthly scales. Our predicted ECOSTRESS GPP successfully 536 

produced the different shapes of diurnal courses which were in line with corresponding tower GPP. 537 

The “midday depression” phenomenon was observed at the woody savanna site - US-Ton (Fig. 8), 538 

which indicated the distinct reduction in GPP (or carbon exchange) at midday. This phenomenon 539 

was caused by high temperature and high VPD that was often linked to limited water supply 540 

(Damm et al. 2010), which led to the closure of stomata to conserve water at the expense of reduced 541 

carbon uptake. The midday depression was discussed by previous studies based on in 542 

situ observations (Damm et al. 2010; Lin et al. 2019a; Liu et al. 2017; Paul-Limoges et al. 2018), 543 

and found for different ecosystems such as grassland, mixed forest, and cropland (Damm et al. 544 

2010; Paul-Limoges et al. 2018; Wagle and Kakani 2014). Fig. S6 showed that the decrease of 545 

GPP at the US-Ton site was followed by the peak of incoming radiation, with progressive increase 546 

of air temperature and VPD from midday to 4 pm. The midday depression was not found for other 547 
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three sites with lower temperature and atmospheric water stresses. The response of photosynthesis 548 

to temperature was confounded by the covariations in light intensity, air dryness, and soil moisture 549 

across biomes (Ma et al. 2017). 550 

Our study well demonstrates the feasibility of using ECOSTRESS observations for predicting 551 

instantaneous GPP and the ability of ECOSTRESS based GPP estimates for examining the 552 

variations in photosynthesis over the course of the diurnal cycle at regional scales. This method 553 

can also be extended to other regions or even the globe encompassing various climatic conditions 554 

and ecosystem types. When the global ECOSTRESS GPP covering one or two years is available 555 

in the near future, it will undoubtedly make great contributions to the scientific community. The 556 

regional to global ECOSTRESS GPP will be valuable for various ecological studies. For example, 557 

it can indicate what time of the day plants "wake up" to begin photosynthesis and what time of the 558 

day they “sleep” and stop photosynthesis from space. The ECOSTRESS GPP can help scientists 559 

understand how plants absorb carbon dioxide over the course of the day, how the magnitude and 560 

shape of diurnal course vary across latitude, plant species, and climatic zones, and how temperature 561 

and water stresses influence photosynthesis throughout the day. The instantaneous ECOSTRESS 562 

GPP is also essential for monitoring the water use efficiency (WUE) of plant throughout the day, 563 

which partly inspired our research in this study. Combined with the instantaneous ECOSTRESS 564 

ET (L3 product) (Fisher et al. 2015), ECOSTRESS GPP can generate ‘real’ instantaneous WUE 565 

estimates, and help better address the scientific questions of the ECOSTRESS mission. With these 566 

products, scientists may better understand how plants use water for carbon uptake and identify 567 

critical thresholds of water use and water stress in climate-sensitive biomes globally. These 568 

instantaneous products have great potential for informing agricultural irrigation management. For 569 

example, farmers can adjust the timing and location for crop irrigation. It also helps improve the 570 
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ability of agricultural drought monitoring and can point out which areas and which biomes are 571 

more susceptible to drought. ECOSTRESS GPP for different times of day will also be valuable for 572 

benchmarking terrestrial biosphere models and Earth system models such as the Community Land 573 

Model (CLM) (Lawrence et al. 2019) at the diurnal timescales.  574 

The combination of high-resolution ECOSTRESS LST (70 m), medium-resolution MODIS 575 

EVI (500 m), and much coarser ERA5 meteorological data (0.25º) in this study estimated GPP 576 

effectively for different times of day. For a given ECOSTRESS grid cell, the corresponding 500 577 

m MODIS EVI can contain information on not only the ECOSTRESS grid cell but also 578 

neighboring grid cells that may have different productivity, vegetation type, or phenology, likely 579 

leading to over- or under-estimation of GPP. In future work, finer-resolution EVI data from 580 

Landsat or Sentinel should be used to improve the accuracy of GPP. The overall match of EAR5 581 

with tower measurements (Fig. S2-3) showed that the use of coarse-resolution ERA5 data had 582 

relatively small effects on the accuracy of GPP. However, ERA5 data were simply interpolated to 583 

70-m resolution with a bilinear interpolation approach, and as a result, the “true” spatial resolution 584 

of the resulting GPP estimates is coarser than 70 m. Future work could benefit from downscaling 585 

EAR5 with a better strategy. A potential strategy is to merge ERA5 with Daymet 586 

(https://daymet.ornl.gov), a daily, gridded meteorological dataset with 1-km spatial resolution, to 587 

generate a new dataset with hourly time step and 1-km spatial resolution. The hourly 588 

meteorological data with much finer resolution (e.g., 1 km) and EVI data with fine resolution (e.g., 589 

30-70 m) could enhance the spatial details and ensure the fine spatial resolution of ECOSTRESS 590 

GPP.  591 

Despite the great potential, the ECOSTRESS GPP enables the monitoring of diurnal changes 592 

of photosynthesis by pooling together the observations at different times of day in multiple days 593 
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(unusually longer than half a month), which is inherently limited by the overpass of ECOSTRESS. 594 

The variations in instantaneous GPP over such a period can be caused by not only the diurnal 595 

variations in photosynthesis but also day-to-day variations resulting from day-to-day changes in 596 

environmental factors (e.g., meteorological variables), LAI, and phenology, which will likely 597 

complicate the analyses of diurnal variations. As mentioned earlier, the geostationary satellites 598 

(e.g., GOES-R, Himawari-8) can provide temporally dense observations within one day but with 599 

a coarse spatial resolution. High-frequency GEOS-R LST data have recently been used to study 600 

the diurnal cycling of surface urban heat island in Boston (Chang et al. 2021). Synergistic use (i.e., 601 

data fusion) of LST from ECOSTRESS and geostationary satellites have the potential to maintain 602 

high resolution in both time and space and thereby better monitor the diurnal changes of 603 

photosynthesis. The combination of ECOSTRESS data with Landsat observations or thermal 604 

infrared spaceborne measurements from upcoming missions such as the Surface Biology and 605 

Geology (SBG) designated observable and Land Surface Temperature Monitoring (LSTM) 606 

mission from the European Space Agency (ESA) is also likely to produce more temporally dense 607 

images for better monitoring of plant photosynthesis.  608 

5. Conclusions  609 

This study is the first attempt to produce instantaneous GPP maps with fine spatial resolution 610 

(70 m) for different times of day using ECOSTRESS observations and to use the instantaneous 611 

GPP maps to examine the diurnal variations of photosynthesis across biomes at the regional scale. 612 

We used the instantaneous LST from ECOSTRESS, vegetation index from MODIS, hourly 613 

meteorological variables from ERA5, and land cover from the NLCD dataset along with a data-614 

driven (or machine learning) method to predict instantaneous GPP. The predictive GPP model 615 

performed well for different biomes, with R2 ranging from 0.80 to 0.90, and RSME from 0.82 to 616 
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4.24 μmol CO2 m
-2 s-1. The predicted ECOSTRESS GPP maps well captured the variations of 617 

photosynthesis over the course of the diurnal cycle, and clearly depicted the differences in 618 

photosynthetic capacity for different biomes throughout the day. The ECOSTRESS GPP also 619 

indicated the varying photosynthesis of plants during key phenological transition periods. Future 620 

work is needed to increase the temporal density of the instantaneous GPP estimates for different 621 

times of day with more frequent satellite data (e.g., geostationary satellites such as GOES-R and 622 

Himawari-8) and to strengthen the spatial resolution of the GPP estimates with finer-resolution 623 

EVI (e.g., Landsat, Sentinel) and meteorological reanalysis data. ECOSTRESS GPP will have 624 

strong potential for ecological applications. It will be useful for understanding how plants absorb 625 

carbon over the course of the diurnal cycle. In combination with instantaneous ECOSTRESS ET, 626 

it will also allow us to how plants use water and how plant water use efficiency varies throughout 627 

the day. ECOSTRESS GPP is also useful for benchmarking terrestrial biosphere and Earth system 628 

models at diurnal timescales.  629 
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