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BOTTLENECK STABILITY FOR GENERALIZED

PERSISTENCE DIAGRAMS

ALEX MCCLEARY AND AMIT PATEL

(Communicated by Mark Behrens)

Abstract. In this paper, we extend bottleneck stability to the setting of one
dimensional constructible persistence modules valued in any skeletally small
abelian category.

1. Introduction

Persistent homology is a way of quantifying the topology of a function. Given a
function f : X → R, persistence scans the homology of the sublevel sets f−1(−∞, r]
as r varies from −∞ to∞. As it scans, homology appears and homology disappears.
This history of births and deaths is recorded as a persistence diagram [CSEH07] or
a barcode [ZC05]. What makes persistence special is that the persistence diagram of
f is stable to arbitrary perturbations to f . This is the celebrated bottleneck stability
of Cohen-Steiner, Edelsbrunner, and Harer [CSEH07]. Bottleneck stability makes
persistent homology a useful tool in data analysis and in pure mathematics. All
of this is in the setting of vector spaces where each homology group is computed
using coefficients in a field.

Fix a field k and let Vec be the category of k-vector spaces. As persistence
scans the sublevel sets of f , it records its homology as a functor F : (R,≤) → Vec
where F(r) := H∗

(
f−1(−∞, r]; k

)
and F(r ≤ s) : F(r) → F(s) is the map induced

by the inclusion of the sublevel set at r into the sublevel set at s. The functor F
is called the persistence module of f . Assuming some tameness conditions on f ,
the persistence diagram of F is equivalent to its barcode, but the two definitions
are very different. The barcode of F is its list of indecomposables. This list is
unique up to a permutation and furthermore, each indecomposable is an interval
persistence module [ZC05,CdS10,CB15]. The barcode model is how most people
now think about persistence. However in [CSEH07] where bottleneck stability was
first proved, the persistence diagram is defined as a purely combinatorial object.
The rank function of F assigns to each pair of values r ≤ s the rank of the map
F(r ≤ s). The Möbius inversion of the rank function is the persistence diagram of
F. Remarkably, these two very different approaches to persistence give equivalent
answers.

The persistence diagram of [CSEH07] generalizes to the setting of constructible
persistence modules valued in any skeletally small abelian category C [Pat18]. The
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3150 ALEX MCCLEARY AND AMIT PATEL

rank function of such a persistence module records the image of each F(r ≤ s) as
an element of the Grothendieck group of C. Here we are using the Grothendieck
group of an abelian category: this is the abelian group with one generator for each
isomorphism class of objects and one relation for each short exact sequence. The
persistence diagram of F is then the Möbius inversion of this rank function. A weak
form of stability was shown in [Pat18]. In this paper, we prove bottleneck stability.
Our proof is an adaptation of the proofs of [CSEH07] and [CdSGO16].

2. Persistence modules

Fix a skeletally small abelian category C. By skeletally small, we mean that the
collection of isomorphism classes of objects in C is a set. For example, C may be the
category of finite dimensional k-vector spaces, the category of finite abelian groups,
or the category of finite length R-modules. Let R̄ := R∪{∞} be the totally ordered
set of real numbers with the point ∞ satisfying p < ∞ for all p ∈ R. For any p ∈ R̄,
we let ∞+ p = ∞.

Definition 2.1. A persistence module is a functor F : R → C. Let

S = {s1 < s2 < · · · < sk < ∞} ⊆ R̄

be a finite subset. A persistence module F is S-constructible if it satisfies the
following conditions:

• For p ≤ q < s1, F(p ≤ q) : 0 → 0 is the zero map.
• For si ≤ p ≤ q < si+1, F(p ≤ q) is an isomorphism.
• For sk ≤ p ≤ q < ∞, F(p ≤ q) is an isomorphism.

For example, let f : M → R be a Morse function on a compact manifold M . The

function f filters M by sublevel sets Mf
≤r := {p ∈ M | f(p) ≤ r}. For every r ≤ s,

Mf
≤r ⊆ Mf

≤s. Now apply homology with coefficients in a finite abelian group. The
result is a persistence module of finite abelian groups that is constructible with
respect to the set of critical values of f union {∞}. If one applies homology with
coefficients in a field k, then the result is a constructible persistence module of finite
dimensional k-vector spaces. In topological data analysis, one usually starts with a
constructible filtration of a finite simplicial complex.

There is a natural distance between persistence modules called the interleaving
distance [CCSG+09]. For any ε ≥ 0, let R×ε{0, 1} be the poset

(
R×{0}

)
∪

(
R×{1}

)
where (p, t) ≤ (q, s) if

• t = s and p ≤ q, or
• t 	= s and p+ ε ≤ q.

Let ι0, ι1 : R ↪→ R×ε {0, 1} be the poset maps ι0 : p 
→ (p, 0) and ι1 : p 
→ (p, 1).

Definition 2.2. An ε-interleaving between two constructible persistence modules
F and G is a functor Φ that makes the following diagram commute up to a natural
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Figure 1. An illustration of the poset relation on R×ε [0, 1].
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Two constructible persistence modules F and G are ε-interleaved if there is an ε-
interleaving between them. The interleaving distance dI(F,G) between F and G is
the infimum over all ε ≥ 0 such that F and G are ε-interleaved. This infimum is
attained since both F and G are constructible. If F and G are not interleaved, then
we let dI(F,G) = ∞.

Proposition 2.3 (Interpolation [BdSN17]). Let F and G be two ε-interleaved con-
structible persistence modules. Then there exists a one-parameter family of con-
structible persistence modules {Kt}t∈[0,1] such that K0

∼= F, K1
∼= G, and dI(Kt,Ks)

≤ ε|t− s|.

Proof. Let F and G be ε-interleaved by Φ as in Definition 2.2. Define R×ε[0, 1] as the
poset with the underlying set R× [0, 1] and (p, t) ≤ (q, s) whenever p+ ε|t− s| ≤ q.
Note that R ×ε {0, 1} naturally embeds into R ×ε [0, 1] via ι : (p, t) 
→ (p, t). See
Figure 1. Finding {Kt}t∈[0,1] is equivalent to finding a functor Ψ that makes the
following diagram commute up to a natural isomorphism:

R×ε {0, 1} C

R×ε [0, 1].

Φ

ι Ψ

This functor Ψ is the right Kan extension of Φ along ι for which we now give an
explicit construction. For convenience, let P := R×ε{0, 1} and Q := R×ε [0, 1]. For
(p, t) ∈ Q, let P ↑ (p, t) be the subposet of P consisting of all elements (p′, t′) ∈ P
such that (p, t) ≤ (p′, t′). The poset P ↑ (p, t), for any p ∈ R and t /∈ {0, 1}, has
two minimal elements: (p + εt, 0) and

(
p + ε(1 − t), 1

)
. For t ∈ {0, 1}, the poset

P ↑ (p, t) has one minimal element, namely (p, t). Let Ψ
(
(p, t)

)
:= limΦ|P↑(p,t). For

(p, t) ≤ (q, s), the poset P ↑ (q, s) is a subposet of P ↑ (p, t). This subposet relation
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Figure 2. An interval I = [p, q) is visualized as the point (p, q)
in the plane. The poset Dgm is therefore the set of points in the
plane on and above the diagonal. In this example, S = {s1 <
s2 < s3 < s4 < ∞} and Dgm(S) is its set of grid points. Given
an S-constructible persistence module F and an interval [s2, s3),

F̃
(
[s2, s3)

)
= dF

(
[s2, s3)

)
−dF

(
[s2, s4)

)
+dF

(
[s1, s4)

)
−dF

(
[s1, s3)

)
.

allows us to define the morphism Ψ
(
(p, t) ≤ (q, s)

)
as the universal morphism

between the two limits. Note that Ψ
(
(p, 0)

)
is isomorphic to F(p) and Ψ

(
(p, 1)

)
is

isomorphic to G(p).
We now argue that each persistence module Kt := Ψ(·, t) is constructible. As

we increase p while keeping t fixed, the limit Kt(p) changes only when one of the
two minimal objects of P ↑ (p, t) changes isomorphism type. Since F and G are
constructible, there are only finitely many such changes to the isomorphism type
of Kt(p). �

3. Persistence diagrams

Fix an abelian group G with a translation invariant partial ordering 
. That is,
for all a, b, c ∈ G, if a ≤ b, then a + c ≤ b + c. Roughly speaking, a persistence
diagram is the assignment to each interval of the real line an element of G. In our
setting, only finitely many intervals will have a nonzero value.

Definition 3.1. Let Dgm be the poset of intervals consisting of the following data:

• The objects of Dgm are intervals [p, q) ⊆ R̄ where p ≤ q.
• The ordering is inclusion [p2, q2) ⊆ [p1, q1).

Given a finite set S = {s1 < s2 < · · · < sk < ∞} ⊆ R̄, we use Dgm(S) to denote
the subposet of Dgm consisting of all intervals [p, q) with p, q ∈ S. The diagonal
Δ ⊆ Dgm is the subset of intervals of the form [p, p). See Figure 2.

Definition 3.2. A persistence diagram is a nonnegative map Y : Dgm → G with
finite support. That is, 0 
 Y (I) for all I ∈ Dgm and Y (I) 	= 0 for finitely many
I ∈ Dgm.

We now introduce the bottleneck distance between persistence diagrams.
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Definition 3.3. A matching between two persistence diagrams Y1, Y2 : Dgm → G
is a nonnegative map γ : Dgm× Dgm → G satisfying

Y1(I) =
∑

J∈Dgm

γ(I, J) for all I ∈ Dgm\Δ,

Y2(J) =
∑

I∈Dgm

γ(I, J) for all J ∈ Dgm\Δ.

The norm of a matching γ is

||γ|| := max{
I=[p1,q1),J=[p2,q2)

∣∣ γ(I,J) �=0
}

{
|p1 − p2|, |q1 − q2|

}
.

If both q1 = q2 = ∞, then |q1−q2| = 0. If just one of them is ∞, then |q1−q2| = ∞.
The bottleneck distance between two persistence diagrams Y1, Y2 : Dgm → G is

dB(Y1, Y2) := inf
γ

||γ||

over all matchings γ between Y1 and Y2. This infimum is attained since persistence
diagrams have finite support.

Example 3.4. Let Y1 : Dgm → Z be the persistence diagram Y1(0, 6) = 2,
Y1(4, 6) = 1, and zero elsewhere. Let Y2 : Dgm → Z be the persistence di-
gram Y2(1, 5) = 1, Y2(1, 4) = 1, and zero elsewhere. In this case, there is just
one matching γ that minimizes the norm: γ

(
(0, 6), (1, 5)

)
= 1, γ

(
(0, 6), (1, 4)

)
=

1, γ
(
(4, 6), (5, 5)

)
= 1, and zero elsewhere. The norm of γ is 2 and therefore

dB(Y1, Y2) = 2.

4. Diagram of a module

We now describe the construction of a persistence diagram from a constructible
persistence module. Fix a skeletally small abelian category C.

Definition 4.1. The Grothendieck group G(C) of C is the abelian group with one
generator for each isomorphism class [a] of objects a ∈ ob C and one relation
[b] = [a] + [c] for each short exact sequence 0 → a → b → c → 0. The Grothendieck
group has a natural translation invariant partial ordering where [a] 
 [b] if there is
an object c ∈ C such that [b]− [a] = [c]. For each a ↪→ b, we have a⊕ c ↪→ b⊕ c for
any object c in C. This makes 
 a translation invariant partial ordering.

Example 4.2. Here are three examples of C with their Grothendieck groups.

• Let Vec be the category of finite dimensional k-vector spaces for some fixed
field k. Every finite dimensional k-vector space is isomorphic to kn for some
natural number n ≥ 0. This means that the free abelian group generated
by the set of isomorphism classes in Vec is

⊕
n Z over all n ≥ 0. Since

every short exact sequence in Vec splits, the only relations are of the form
[A] + [B] = [C] whenever A ⊕ B ∼= C. Therefore G(Vec) ∼= Z where the
translation invariant partial ordering 
 is the usual total ordering on the
integers.

• Let FinAb be the category of finite abelian groups. A finite abelian group
is isomorphic to

Z

pn1
1 Z

⊕ · · · ⊕ Z

pnk

k Z
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where each pi is prime. The free abelian group generated by the set of
isomorphism classes in FinAb is

⊕
(p,n) Z over all pairs (p, n) where p is

prime and n ≥ 0 a natural number. Every primary cyclic group Z

pnZ
fits

into a short exact sequence

0
Z

pn−1Z

Z

pnZ

Z

pZ
0

×p /

giving rise to a relation
[

Z

pnZ

]
=

[
Z

pn−1Z

]
+

[
Z

pZ

]
. By induction,

[
Z

pnZ

]
=

n
[

Z

pZ

]
. Therefore G(FinAb) ∼=

⊕
p Z where p is prime. For two elements

[a], [b] ∈ G(FinAb), [a] 
 [b] if the multiplicity of each prime factor of [a] is
at most the multiplicity of each prime factor of [b].

• Let Ab be the category of finitely generated abelian groups. A finitely
generated abelian group is isomorphic to

Z
m ⊕ Z

pn1
1 Z

⊕ · · · ⊕ Z

pnk

k Z

where each pi is prime. The free abelian group generated by the set of
isomorphism classes in Ab is

⊕
m Z ⊕

⊕
(p,n) Z over all natural numbers

m ≥ 0 and over all pairs (p, n) where p is prime and n ≥ 0 a natural
number. In addition to the short exact sequences in FinAb, we have

0 Z Z
Z

pZ 0

0 Z
m

Z
m+n

Z
n 0

×p /

giving rise to the relations
[

Z

pZ

]
= [0] and [Zm] + [Zn] = [Zm+n]. Therefore

G(Ab) ∼= Z where 
 is the usual total ordering on the integers. Unfortu-
nately all torsion is lost.

Given a constructible persistence module, we now record the images of all its
maps as elements of the Grothendieck group.

Definition 4.3. Let S = {s1 < · · · < sk < ∞} be a finite set and let F be an
S-constructible persistence module valued in C. The rank function of F is the map
dF : Dgm → G(C) defined as follows:

• For I = [p, si) where p 	= si, let dF(I) :=
[
im F(p ≤ si − δ)

]
for some

sufficiently small δ > 0.
• For I = [p,∞), let dF(I) :=

[
im F(p ≤ sk)

]
.

• For all other I = [p, q), let dF(I) :=
[
im F(p ≤ q)

]
.

Note that for any [p, q) ∈ Dgm, dF
(
[p, q)

)
equals dF(I) where I is the smallest

interval in Dgm(S) containing [p, q). This means that dF is uniquely determined
by its value on Dgm(S).

Proposition 4.4. Let F be a constructible persistence module valued in a skeletally
small abelian category C. Then its rank function dF : Dgm → G(C) is a poset
reversing map. That is, for any pair of intervals [p2, q2) ⊆ [p1, q1), dF

(
[p1, q1)

)



dF
(
[p2, q2)

)
.
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Proof. Suppose F is S = {s1 < · · · < sk < ∞}-constructible. Consider the following
commutative diagram:

F(p1)

h:=F(p1≤q1)

��

e:=F(p1≤p2)
�� F(p2)

f :=F(p2≤q2)

��

F(q1) F(q2).
g:=F(q2≤q1)

��

We may assume q1, q2 /∈ S. If this is not the case, replace q1 and/or q2 in the
above diagram with q1 − δ and q2 − δ for some sufficiently small δ > 0. We have
dF

(
[p1, q1)

)
= [imh] and dF

(
[p2, q2)

)
= [im f ]. Let I := im (f ◦e) and K := I∩ker g.

Then K ↪→ I ↪→ im f and imh ∼= I/K. This means [I] 
 [im f ] and [im h] = [I]− [K]
implying [im h] 
 [I]. Therefore dF

(
[p1, q1)

)

 dF

(
[p2, q2)

)
. �

Given the rank function dF : Dgm → G(C) of an S-constructible persistence

module F, there is a unique map F̃ : Dgm → G such that

(2) dF(I) =
∑

J∈Dgm:J⊇I

F̃(J)

for each I ∈ Dgm. This equation is the Möbius inversion formula. For each
I = [si, sj) in Dgm(S),

(3) F̃(I) = dF
(
[si, sj)

)
− dF

(
[si, sj+1)

)
+ dF

(
[si−1, sj+1)

)
− dF

(
[si−1, sj)

)
.

For each I = [si,∞) in Dgm(S),

(4) F̃(I) = dF
(
[si,∞)

)
− dF

(
[si−1,∞)

)
.

For all other I ∈ Dgm, F̃(I) = 0. Here we have to be careful with our indices. It is
possible sj+1 or si−1 is not in S. If sj+1 is not in S, let sj+1 = ∞. If si−1 is not in

S, let si−1 be any value strictly less than s1. We call F̃ the Möbius inversion of dF.

Definition 4.5. The persistence diagram of a constructible persistence module F
is the Möbius inversion F̃ of its rank function dF.

The Grothendieck group of C has one relation for each short exact sequence in
C. These relations ensure that the persistence diagram of a persistence module is
positive which plays a key role in the proof of Lemma 5.3.

Proposition 4.6 (Positivity [Pat18]). Let F be a constructible persistence module
valued in a skeletally small abelian category C. Then for any I ∈ Dgm, we have [0] 

F̃(I).

5. Stability

We now begin the task of proving bottleneck stability. Throughout this section,
persistence modules are valued in a fixed skeletally small abelian category C.
Definition 5.1. For an interval I = [p, q) in Dgm and a value ε ≥ 0, let

�εI :=
{
[r, s) ∈ Dgm

∣∣ p− ε < r ≤ p+ ε and q − ε ≤ s < q + ε
}

be the subposet of Dgm consisting of intervals ε-close to I. If I is too close to the
diagonal, that is, if q− ε ≤ p+ ε, then we let �εI be empty. We call �εI the ε-box
around I. See Figure 3. Note that if q = ∞, then �εI =

{
[r,∞)

∣∣ p−ε < r ≤ p+ε
}
.
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Figure 3. The shaded area is the box �εI where I is the circle.
Note that �εI is closed on the bottom and right, and it is open on
the top and left.

Lemma 5.2. Let F be an S-constructible persistence module, I = [p, q), and ε > 0.
If �εI is nonempty, then
∑

J∈�εI

F̃ (J) = dF
(
[p+ε, q−ε)

)
−dF

(
[p+ε, q+ε)

)
+dF

(
[p−ε, q+ε)

)
−dF

(
[p−ε, q−ε)

)

whenever q 	= ∞ and
∑

J∈�εI

F̃ (J) = dF
(
[p+ ε,∞)

)
− dF

(
[p− ε,∞)

)

whenever q = ∞.

Proof. Both equalities follow easily from the Möbius inversion formula; see equa-
tion (2). If q 	= ∞, then
∑

J∈�εI

F̃(J)

=
∑

J∈Dgm:
J⊇[p+ε,q−ε)

F̃(J)−
∑

J∈Dgm:
J⊇[p+ε,q+ε)

F̃(J) +
∑

J∈Dgm:
J⊇[p−ε,q+ε)

F̃(J)−
∑

J∈Dgm:
J⊇[p−ε,q−ε)

F̃(J)

= dF
(
[p+ ε, q − ε)

)
−dF

(
[p+ ε, q + ε)

)
−dF

(
[p− ε, q + ε)

)
+dF

(
[p− ε, q − ε)

)
.

If q = ∞, then
∑

J∈�εI

F̃(J) =
∑

J∈Dgm:
J⊇[p+ε,∞)

F̃(J)−
∑

J∈Dgm:
J⊇[p−ε,∞)

F̃(J)

= dF
(
[p+ ε,∞)

)
− dF

(
[p− ε,∞)

)
.

�
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Lemma 5.3 (Box lemma). Let F and G be two ε-interleaved constructible persis-
tence modules, I ∈ Dgm, and μ > 0. Then

∑
J∈�μI

F̃(J) 

∑

J∈�μ+εI

G̃(J)

whenever �μ+εI is nonempty.

Proof. Suppose F and G are ε-interleaved by Φ in Diagram 1. Define ϕr : F(r) →
G(r + ε) as Φ

(
(r, 0) ≤ (r + ε, 1)

)
and define ψr : G(r) → F(r + ε) as Φ

(
(r, 1) ≤

(r + ε, 0)
)
.

Suppose I = [p, q) where q 	= ∞. By Lemma 5.2,
∑

J∈�μI

F̃ (J) = dF
(
[p+ μ, q − μ)

)
− dF

(
[p+ μ, q + μ)

)

+ dF
(
[p− μ, q + μ)

)
− dF

(
[p− μ, q − μ)

)
,

∑
J∈�μ+εI

G̃(J) = dG
(
[p+ μ+ ε, q − μ− ε)

)
− dG

(
[p+ μ+ ε, q + μ+ ε)

)

+ dG
(
[p− μ− ε, q + μ+ ε)

)
− dG

(
[p− μ− ε, q − μ− ε)

)
.

Choose a sufficiently small δ > 0 so that we have the following equalities:

dF
(
[p+ μ, q − μ)

)
=

[
im F(p+ μ < q − μ− δ)

]
,

dF
(
[p+ μ, q + μ)

)
=

[
im F(p+ μ < q + μ− δ)

]
,

dF
(
[p− μ, q + μ)

)
=

[
im F(p− μ < q + μ− δ)

]
,

dF
(
[p− μ, q − μ)

)
=

[
im F(p− μ < q − μ− δ)

]
,

dG
(
[p+ μ+ ε, q − μ− ε)

)
=

[
im G(p+ μ+ ε < q − μ− ε− δ)

]
,

dG
(
[p+ μ+ ε, q + μ+ ε)

)
=

[
im G(p+ μ+ ε < q + μ+ ε− δ)

]
,

dG
(
[p− μ− ε, q + μ+ ε)

)
=

[
im G(p− μ− ε < q + μ+ ε− δ)

]
,

dG
(
[p− μ− ε, q − μ− ε)

)
=

[
im F(p− μ− ε < q − μ− ε− δ)

]
.

Consider the following commutative diagram where the horizontal and vertical ar-
rows are the appropriate morphisms from F and G:

G(p− μ− ε) G(p+ μ+ ε)

F(p− μ) F(p+ μ)

F(q + μ− δ) F(q − μ− δ)

G(q + μ+ ε− δ) G(q − μ− ε− δ).

ψp−μ−ε ϕp+μ

ϕq+μ−δ ψq−μ−ε−δ

Choose two values a < b such that a+ μ+ ε < b− μ− ε and let

T := {a−μ−ε < a−μ < a+μ < a+μ+ε < c < b−μ−ε < b−μ < b+μ < ∞} ⊆ R̄.
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Let H : R → C be the T -constructible persistence module determined by the fol-
lowing diagram:

H(a− μ− ε) = G(p− μ− ε) �� H(a− μ) = F(p− μ) �� H(a+ μ) = F(p+ μ)

��

H(b− μ− ε) = F(q − μ− δ)

��

H(c) = G(q − μ− ε− δ)�� H(a+ μ+ ε) = G(p+ μ+ ε)��

H(b− μ) = F(q + μ− δ) �� H(b+ μ) = G(q + μ+ ε− δ).

Here the value of H is given on each value in T and morphisms between adjacent
objects are the dashed arrows in the above commutative diagram. For example, for
all a+μ+ε ≤ r < c, H(r) = G(p+μ+ε) and H(a+μ+ε ≤ r) = id. The morphism
H(c ≤ b− μ− ε) is ψq−μ−ε−δ. We have the following equalities:

[
im F(p+ μ < q − μ− δ)

]
= dH

(
[a+ μ, b− μ)

)
,[

im F(p+ μ < q + μ− δ)
]
= dH

(
[a+ μ, b+ μ)

)
,[

im F(p− μ < q + μ− δ)
]
= dH

(
[a− μ, b+ μ)

)
,[

im F(p− μ < q − μ− δ)
]
= dH

(
[a− μ, b− μ)

)
,[

im G(p+ μ+ ε < q − μ− ε− δ)
]
= dH

(
[a+ μ+ ε, b− μ− ε)

)
,[

im G(p+ μ+ ε < q + μ+ ε− δ)
]
= dH

(
[a+ μ+ ε, b+ μ+ ε)

)
,[

im G(p− μ− ε < q + μ+ ε− δ)
]
= dH

(
[a− μ− ε, b+ μ+ ε)

)
,[

im G(p− μ− ε < q − μ− ε− δ)
]
= dH

(
[a− μ− ε, b− μ− ε)

)
.

By Lemma 5.2 along with the above substitutions, we have

∑
J∈�μ[a,b)

H̃(J) =
∑

J∈�μI

F̃(J),

∑
J∈�μ+ε[a,b)

H̃(J) =
∑

J∈�μ+εI

G̃(J).

By the inclusion �μ[a, b) ⊆ �μ+ε[a, b) along with Proposition 4.6, we have

∑
J∈�μ[a,b)

H̃(J) 

∑

J∈�μ+ε[a,b)

H̃(J).

This proves the statement.
Suppose I = [p,∞) and assume F and G are both {s1 < · · · < sk < ∞}-

constructible. By Lemma 5.2,

∑
J∈�μI

F̃ (J) = dF
(
[p+ μ,∞)

)
− dF

(
[p− μ,∞)

)
,

∑
J∈�μ+εI

G̃(J) = dG
(
[p+ μ+ ε,∞)

)
− dG

(
[p− μ− ε,∞)

)
.
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Choose a z ∈ R sufficiently large. We have the following equalities:

dF
(
[p+ μ,∞)

)
=

[
im F(p+ μ ≤ z)

]
,

dF
(
[p− μ,∞)

)
=

[
im F(p− μ ≤ z)

]
,

dG
(
[p+ μ+ ε,∞)

)
=

[
im G(p+ μ+ ε ≤ z)

]
,

dG
(
[p− μ− ε,∞)

)
=

[
im G(p− μ− ε ≤ z)

]
.

Consider the following commutative diagram where the vertical and horizontal ar-
rows are the appropriate morphisms from F and G:

G(p− μ− ε) F(p− μ) F(p+ μ) G(p+ μ+ ε)

F(z + ε) G(z).

ψp−μ−ε ϕp+μ

ψz

∼=

Note that ψz is an isomorphism. Let

T := {−μ− ε < −μ < μ < μ+ ε < z < ∞} ⊆ R̄.

Let H : R → C be the T -constructible persistence module determined by the fol-
lowing diagram:

H(−μ− ε) = G(p− μ− ε) �� H(−μ) = F(p− μ) �� H(μ) = F(p+ μ)

��

H(z) = F(z + ε) H(μ+ε) = G(p+ μ+ε).��

Here the value of H is given on each value in T and morphisms between adjacent
objects are the dashed arrows in the above commutative diagram. We have the
following equalities:

[
im F(p+ μ ≤ z)

]
= dH

(
[μ,∞)

)
,[

im F(p− μ ≤ z)
]
= dH

(
[−μ,∞)

)
,[

im G(p+ μ+ ε ≤ z)
]
= dH

(
[μ+ ε,∞)

)
,[

im G(p− μ− ε ≤ z)
]
= dH

(
[−μ− ε,∞)

)
.

By Lemma 5.2 along with the above substitutions, we have
∑

J∈�μ[0,∞)

H̃(J) =
∑

J∈�μI

F̃(J),

∑
J∈�μ+ε[0,∞)

H̃(J) =
∑

J∈�μ+εI

G̃(J).

By the inclusion �μ[0,∞) ⊆ �μ+ε[0,∞) along with Proposition 4.6, we have
∑

J∈�μ[0,∞)

H̃(J) 

∑

J∈�μ+ε[0,∞)

H̃(J).

This proves the statement. �
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Definition 5.4. The injectivity radius of a finite set S = {s1 < s2 < · · · < sk < ∞}
is

ρ := min
1<i≤k

si − si−1

2
.

Note that if a persistence module F is S-constructible and I ∈ Dgm(S), then

F̃(I) =
∑

J∈�ρI

F̃(J).

Also if F̃
(
[p, q)

)
	= 0, then |p− q| ≥ 2ρ.

Lemma 5.5 (Easy bijection). Let F be an S-constructible persistence module and
let ρ > 0 be the injectivity radius of S. If G is a second constructible persistence
module such that dI(F,G) < ρ/2, then dB(F̃, G̃) ≤ dI(F,G).

Proof. Let ε = dI(F,G). Choose a sufficiently small μ > 0 such that 2μ + 2ε < ρ.
We construct a matching γμ : Dgm× Dgm → G(C) such that

F̃(I) =
∑

J∈Dgm

γμ(I, J) for all I ∈ Dgm\Δ,(5)

G̃(J) =
∑

I∈Dgm

γμ(I, J) for all J ∈ Dgm\Δ.(6)

Fix an I ∈ Dgm(S) \Δ. By Lemma 5.3,

F̃(I) =
∑

J∈�μI

F̃(J) 

∑

J∈�μ+εI

G̃(J) 

∑

J∈�μ+2εI

F̃(J) = F̃(I).

Let γμ(I, J) := G̃(J) for all J ∈ �μ+ε(I). Repeat for all I ∈ Dgm(S). Equation (5)
is satisfied.

We now check that γμ satisfies equation (6). Fix an interval J = [p, q) and

suppose G̃(J) 	= 0. If q−p
2 > μ+ ε, then by Lemma 5.3

G̃(J) 

∑

I∈�μJ

G̃(I) 

∑

I∈�μ+εJ

F̃(I).

This means γμ(I, J) 	= 0 for some I ∈ �μ+εJ . If
q−p
2 ≤ μ+ ε, then it must be that

γμ
(
I, [p, q)

)
= 0 for all I ∈ Dgm \Δ for the following reason. Suppose I = [p′, q′),

where p′ 	= q′, and γμ
(
[p′, q′), [p, q)

)
	= 0. Then max{|p′ − p|, |q′ − q|} ≤ μ + ε

and therefore |p′ − q′| ≤ 3μ + 3ε which is less than twice the injectivity radius ρ.
This means J is unmatched and we may match it to the diagonal. That is, we let
γμ

([
q−p
2 , q−p

2

)
, J

)
:= G̃(J).

By construction, ||γμ|| ≤ μ + ε for all μ > 0 sufficiently small. Therefore

dB(F̃, G̃) ≤ ε = dI(F̃, G̃). �

We are now ready to prove our main result.

Theorem 5.6 (Bottleneck stability). Let C be a skeletally small abelian category

and let F,G : R → C be two constructible persistence modules. Then dB
(
F̃, G̃

)
≤

dI(F,G) where F̃ and G̃ are the persistence diagrams of F and G, respectively.

Proof. Let ε = dI(F,G). By Proposition 2.3, there is a one-parameter family of
constructible persistence modules {Kt}t∈[0,1] such that dI(Kt,Ks) ≤ ε|t−s|, K0

∼= F,
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and K1
∼= G. Each Kt is constructible with respect to some set St, and each set St

has an injectivity radius ρt > 0. For each time t ∈ [0, 1], consider the open interval

U(t) = (t− ρt/4ε, t+ ρt/4ε) ∩ [0, 1].

By compactness of [0, 1], there is a finite set Q = {0 = t0 < t1 < · · · < tn = 1} such
that

⋃n
i=0 U(ti) = [0, 1]. We assume that Q is minimal, that is, there does not exist

a pair ti, tj ∈ Q such that U(ti) ⊆ U(tj). If this is not the case, simply throw away
U(ti) and we still have a covering of [0, 1]. As a consequence, for any consecutive
pair ti < ti+1, we have U(ti) ∩ U(ti+1) 	= ∅. This means

ti+1 − ti ≤
1

4ε
(ρti+1

+ ρti) ≤
1

2ε
max{ρti+1

, ρti}

and therefore dI(Kti ,Kti+1
) ≤ 1

2 max{ρti , ρti+1
}. By Lemma 5.5,

dB
(
K̃ti , K̃ti+1

)
≤ dI

(
Kti ,Kti+1

)

for all 0 ≤ i ≤ n− 1. Therefore

dB(F̃, G̃
)
≤

n−1∑
i=0

dB
(
K̃ti , K̃ti+1

)
≤

n−1∑
i=0

dI
(
Kti ,Kti+1

) ≤ ε.

�
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