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May’s theorem (1952), a celebrated result in social choice, provides the foundation for 

majority rule. May’s crucial assumption of symmetry, often thought of as a procedural equity 

requirement, is violated by many choice procedures that grant voters identical roles. We 

show that a weakening of May’s symmetry assumption allows for a far richer set of rules 

that still treat voters equally. We show that such rules can have minimal winning coalitions 

comprising a vanishing fraction of the population, but not less than the square root of the 

population size. Methodologically, we introduce techniques from group theory and illustrate 

their usefulness for the analysis of social choice questions. 
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1. INTRODUCTION 

LITERALLY TRANSLATED TO “power of the people,” democracy is commonly associated with 

two fundamental tenets: equity among individuals and responsiveness to their choices. May’s 

celebrated theorem provides foundation for voting systems satisfying these two restrictions 

(May (1952)). Focusing on two-candidate elections, May illustrated that majority rule is unique 

among voting rules that treat candidates identically and guarantee symmetry and 

responsiveness. 

Extensions of May’s original results are bountiful.1 However, what we view as a procedural 

equity restriction in his original treatment—often termed anonymity or symmetry— has 

remained largely unquestioned.2 This restriction requires that no two individuals can 
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1See, for example, Cantillon and Rangel (2002), Fey (2004), Goodin and List (2006), and references therein. 
2An exception is Packel (1980), who relaxes the symmetry restriction and adds two additional restrictions to 

generate a different characterization of majority rule than May’s. 
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4F5IGURE6}, and1.—A representative democracy voting rule. Voters are grouped into three counties{789}. Each 

county elects a representative by majority rule and the election is decided by ma-: {123}, 

{jority rule of the representatives. 

affect the collective outcome by swapping their votes. Motivated by various real-world voting 

systems, this paper focuses on a particular weakening of this restriction. While still capturing 

the idea that no voter carries a special role, our equity notion allows for a large spectrum of 

voting rules, some of which are used in practice, and some of which we introduce. We analyze 

winning coalitions of such equitable voting rules and show that they can comprise a vanishing 

fraction of the population, but not less than the square root of its size. Methodologically, we 

demonstrate how techniques from group theory can be useful for the analysis of fundamental 

questions in social choice. 

To illustrate our motivation, consider the stylized example of a representative democracy 

rule: m counties each have k residents. Each county selects, using majority rule, one of two 

representatives. Then, again using majority rule, the m representatives select one of two 

policies (see Figure 1 for the case m = k = 3). 

This rule does not satisfy May’s original symmetry restriction: individuals could swap their 

votes and change the outcome. In Figure 1, for example, suppose voters {12345 } vote for 

representatives supporting policy A, while voters {6789 } vote for representatives supporting 

policy B. With the original votes, policy A would win; but swapping voters 5 and 9 would 

cause policy B to win. 

Even though representative democracy rules do not satisfy May’s symmetry assumption, 

there certainly is an intuitive sense in which their fundamental characteristics “appear” 

equitable. Indeed, variations of these rules were chosen in good faith by many designers of 

modern democracies. Such rules are currently in use in France, India, the United Kingdom, and 

the United States, among others. 

Is there a formal sense in which a representative democracy rule is more equitable than a 

dictatorship? More generally, what makes a voting rule equitable? We suggest the following 

definition. In an equitable voting rule, for any two voters v and w, there is some permutation 

https://www.econometricsociety.org/
https://doi.org/10.3982/ECTA17032
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of the full set of voters such that: (i) the permutation sends v to w, and (ii) applying this 

permutation to any voting profile leaves the election result unchanged. 

In Section 2.4, we formalize the notion of “roles” in a voting body. For instance, in university 

committees there are often two distinct roles: a chair and a standard committee member; 

likewise, in juries, there is often a foreperson, who carries a special role, and several jury 

members, who all have the same role. We show that our notion of equity is tantamount to all 
agents in the electorate having the same role. 

Under our equity definition, representative democracy rules are indeed equitable, but 

dictatorships are not. For instance, in the case depicted in Figure 1, voters 1 and 2 play the 

 

FIGURE 2.—Cross Committee Consensus voting rule. The union of a row and a column is a winning coalition. 

same role, since the permutation that swaps them leaves any election result unchanged. But 1 

and 4 also play the same role: the permutation that swaps the first county with the second 

county also leaves outcomes unchanged. 

There is a large variety of equitable rules that are not representative democracy rules. An 

example is what we call Cross Committee Consensus (CCC) rules. In these, each voter is 

assigned to two committees: a “row committee” and a “column committee” (see Figure 2). If 

any row committee and any column committee both exhibit consensus, then their choice is 

adopted. Otherwise, majority rule is followed. For instance, suppose a university is divided into 

equally-sized departments, and each faculty member sits on one universitywide committee. 

CCC corresponds to a policy being accepted if there is a strong unanimous lobby from a 

department and from a university-wide committee, with majority rule governing decisions 

otherwise. This rule is equitable since each voter is a member of precisely one committee of 

each type, and all row (column) committees are interchangeable. 

We provide a number of further examples of equitable voting rules, showing the richness of 

this class and its versatility in allowing different segments of society—counties, university 

departments, etc.—to express their preferences. 

In order to characterize more generally the class of equitable voting rules, we focus on their 

winning coalitions, the sets of voters that decide the election when in agreement (Reiker 

(1962)). In majority rule, all winning coalitions include at least half of the population. We 

analyze how small winning coalitions can be in equitable voting rules. 
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Under representative democracy, winning coalitions have to comprise at least a quarter of 

the population.1 Much smaller winning coalitions are possible in what we call generalized 

representative democracy (GRD) voting rules, where voters are hierarchically divided into sets 

that are, in turn, divided into subsets, and so on. For each set, the outcome is given by majority 

rule over the decisions of the subsets.4 We show that equitable GRD rules for n voters can have 

winning coalitions as small as nlog3 2, or about n023, which is a vanishingly small fraction of the 

population.5 

When the number of voters n is a perfect square, and when committee sizes are 

taken to be √n, the CCC rule has a winning coalition of size 2 1. This is 

significantly smaller than nlog3 2, for n large enough. 

Our main result is that, for any n, there always exist simple equitable voting rules that have 

winning coalitions of size ≈ 2 √n. Conversely, we show that no equitable voting rule√ can have 

winning coalitions of size less than n. Methodologically, the proof utilizes techniques from 

group theory and suggests the potential usefulness of such tools for the analysis of collective 

choice. 

 
While √n accounts for a vanishing fraction of the voter population, we stress that it can be 

viewed as “large” in many contexts. While in a department of 100 faculty, 10 members would 

need to coordinate to sway a decision one way or the other, in a presidential election with, say, 

140 million voters, coordination between nearly 12,000 voters would be necessary to impact 

outcomes.6 

For instance, even under majority rule, if each voter is equally likely to vote for either of two 

alternatives, the central limit theorem suggests that a coalition of order √n can control the vote 

with high probability. 

Certainly, beyond equity, another important aspect of voting rules is their susceptibility to 

manipulation. For instance, with information on voters’ preferences, representative democracy 

rules are sensitive to gerrymandering (McGann, Smith, Latner, and Keena (2016)). We view 

the question of manipulability as distinct from that of equity. It would be interesting to 

formulate a notion of nonmanipulability, independent of equity, and to understand how these 

notions interact. The breadth of equitable voting rules allows for further consideration of 

various objectives, such as nonmanipulability, when designing institutions. 

In the next part of the paper, we explore a stronger notion of equity. We consider kequitable 

voting rules in which every coalition of k voters plays the same role. These are increasingly 

stringent conditions that interpolate between our equity notion, when k = 1, and May’s 

symmetry, when k = n. The analysis of k-equitable rules is delicate, due to group- and number-

 
1  A winning coalition under representative democracy must include support from half the counties, which 

translates to half of the population in those counties, or one quarter of the entire population. 
2 Interestingly, rules that give decisive power to minorities of size √n appear in other contexts of collective choice 

and have been proposed for apportioning representation in the United Nations Parliamentary Assembly, and for 

voting in the Council of the European Union; see Zyczkowski and Słomczy˙ nski´ (2014). These proposed rules relied 

on the Penrose Method (Penrose (1946)), which suggests the vote weight of any representative should be the square 

root of the size of the population she represents, when majority rule governs decisions. Penrose argued that this rule 

assures equal voting powers among individuals. 
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theoretical phenomena. There do exist, for arbitrarily large population sizes n, voting rules that 

are 2- and 3-equitable, and have winning coalitions as small as √ n. However, for “most” 

sufficiently large values of n, and for any k ≥ 2, the only k-equitable, neutral, and responsive 

voting rule is majority. Thus, while equity across individuals allows for a broad spectrum of 

voting rules, equity among arbitrary fixed-size coalitions usually places the restrictions May 

had suggested. While k-equity is arguably a 

 
4These rules have been studied under the name recursive majority in the probability literature (see, e.g., Mossel 

and O’Donnell (1998)). 
5For an example of a nonequitable GRD with a small winning coalition, consider voters  and assume 

three counties divide the population into three sets of voters: { } is a winning 

coalition. The value log  63 is the Hausdorff dimension of the Cantor set. As it turns out, there is a connection 

between equitable GRD’s that achieve the smallest winning coalitions and the Cantor set. 

strong restriction, it is still far weaker than May’s original symmetry requirement. In that 

respect, our results here provide a strengthening of May’s conclusions. 

2. THE MODEL 

2.1. Voting Rules 

Let V be a finite set of voters. We denote V = {1n } so that n is the number of 

voters. Each voter has preferences over alternatives in 

the set Y. We identify the possible preferences over Y with elements of X, where −1 represents 

a strict preference for −1 over 1, 1 represents a strict preference for 1 overV −1, and 0 represents 

indifference between −1 and 1. We denote by  = X the set of voting profiles; that is,  is the set 

of all functions from the set of voters V to the set of possible preferences X. 

A voting rule is a function f :  → X. 

An important example is majority voting rule m :  → X, which is given by 

 ⎧⎪1 if 

m 

 0 otherwise 

A vote of 0 can be interpreted as abstention or indifference. 

2.2. May’s Theorem 

We now define several properties of voting rules. Following May (1952), we say that a voting 

rule f is neutral if f(−φ) = −f(φ). Neutrality implies that both alternatives −1 and 1 are treated 

symmetrically: if each individual flips her vote, the final outcome is also flipped. 
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Again following May (1952), we say that a voting rule f is positively responsive if increased 

support for one alternative makes it more likely to be selected. Formally, f is positively 

responsive if f(φ) = 1 whenever there exists a voting profile φ satisfying the following: 

 1. 0 or 1. 

2.for all v ∈ V . 

3.  for some v0 ∈ V . 

Thus,  coordinatewise, and if f(φ) = 0 then any change of φ breaks the 

tie. 

We now turn to the symmetry between voters. Several group-theoretic concepts will prove 

useful for the description and comparison of May’s and our notions. Denote by Sn the set of 

permutations of the n voters. Any permutation of the voters can be associated with a 

permutation of the set of voting profiles : given a permutationσ σσ∈ Sn, the associ-1 ated 

permutation on the voting profiles maps φ to φ , which is given by φ (v) = φ(σ− v). The 

automorphism group of the voting rule f is given by 

Autf  

That is, Autf is the set of permutations of the voters that leave election results unchanged, for 

every voting profile. 

We can interpret a permutation σ as a scheme in which each voter v, instead of casting her 

own vote, gets to decide how some other voter w = σ(v) will vote. A permutation σ is in Autf if 

applying this scheme never changes the outcome: when each w = σ(v) votes as v would have, 

the result is the same as when each player v votes for herself. 

The automorphism group Autf has natural implications for pivotality, or the Shapley– Shubik 

and Banzhaf indices of players in simple games; see Dubey and Shapley (1979). Consider a 

setting in which all voters choose their votes identically and independently at random. Given 

such a distribution, we can consider the probability ηv that a voter v is pivotal.3 It is easy to see 

that if there is some σ ∈ Autf that maps v to w, then ηv = ηw, implying that v and w have the same 

Banzhaf index. In fact, when there exists σ ∈ Autf that maps v to w, any statistic associated with 

a voter that treats other voters identically— the probability the outcome coincides with voter 

v’s vote, the probability that voter v and another voter are pivotal, etc.—would be the same for 

voters v and w. Hence, in an equitable rule, all the voters’ Banzhaf indices will be equal.4 

May’s (1952) notion of equity, often termed symmetry or anonymity, requires that swapping 

the votes of any two voters will not affect the collective outcome. It can be succinctly stated as 

Autf = Sn. 

MAY’S THEOREM: Majority rule is the unique symmetric, neutral, and positively responsive 

voting rule. 

 
3 A voter v is pivotal at a particular voting profile if a change in her vote can affect the outcome under f. 

4 In a recent follow-up paper to this paper, Bhatnagar (2020) showed that the converse does not hold: there are 

rules that are not equitable, but for which the same holds. 
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Perhaps surprisingly, the requirement of symmetry is stronger than what is needed for May’s 

conclusions. As it turns out, a weaker requirement that Autf be restricted to only even 

permutations would suffice for his results; see Lemma 3 in the Appendix.5 In Theorem 5 

below, we show that, in fact, a far weaker requirement suffices. 

2.3. Equitable Voting Rules 

As we have already seen, the requirement that Autf includes all permutations, or all even 

permutations, precludes many examples of voting rules that “appear” equitable. What makes a 

voting rule appear equitable? Our view is that, in an equitable voting rule, ex-ante, all voters 

carry the same “role.” We propose the following definition and discuss in the next section the 

sense in which it formalizes this view. 

DEFINITION 1: A voting rule f is equitable if, for every vw ∈ V , there is a σ ∈ Autf such that 

σ(v) = w. 

In words, a voting rule is equitable if, for any two voters v and w, there is some 

permutation of the population that relabels v as w such that, regardless of voters’ preferences, 

the outcome is unchanged relative to the original voter labeling. 

In group-theoretic terms, f is equitable if and only if the group Autf acts transitively on the 

voters. 6  Insights from group theory related to the characteristics of transitive groups are 

therefore at the heart of our main results. Appendix A contains a short primer on the basic group 

theoretical background that is needed for our analysis.7 

2.4. Equity as Role Equivalence 

May noted the strong link between anonymity and equality, stating that “This condition 

might well be termed anonymity... A more usual label is equality” (May (1952, p. 681)). Are 

anonymity and equality inherently one and the same? In this section, we formalize this question 

in terms of roles. This allows for a natural distinction between May’s symmetry or anonymity 

condition and our equity notion. In particular, we formalize our motivating idea that equity 

corresponds to all voters carrying the same role. 

Even though we defined voting rules with respect to a given set of voters, the design of voting 

rules is often carried out without a particular group of people in mind; rather, collective 

institutions are often designed in the abstract. For example, hiring protocols in university 

departments might be specified prior to any specific search. One such protocol might be that a 

committee chair decides dictatorially whom to hire, unless indifferent, in which case the 

 
5 A permutation σ is even if the number of pairs (vw) such that v < w and σ(v) > σ(w) is even. Put another way, 

define a transposition to be a permutation that only switches two elements, leaving the rest unchanged. A permutation 

is even if it is the composition of an even number of transpositions. 
6 It turns out our equity restriction is effectively the definition of transitivity. The notion of transitive groups is not 

directly related to transitivity of relations often considered in economics. 
7 Isbell (1960) studied a notion equivalent to our equity notion and considered its implications, combined with rule 

neutrality, in a setting in which preferences must be strict, so that tie breaking must also be equitable. When n is odd, 

majority is equitable and neutral. Isbell showed that for some even n such rules exist, while for other even n they do 

not. 
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committee decides by majority rule. Under such an abstract rule, the dictatorial privilege is not 

assigned to a particular Prof. X, but to an abstract role called “chair.” Later, when a committee 

is formed, the role of chair is assigned to some particular faculty member. The same applies, at 

least in aspiration, to countries’ election rules, jury decision protocols, etc. Indeed, historical 

cases in which laws were written with particular individuals specified or implied are often not 

benevolent examples of institution building. 

To capture this idea, we introduce abstract voting rules. Recall that we define (nonabstract) 

voting rules as functions from XV to X in the context of a particular voter set V . An abstract 

voting rule is a map f : XR → X for a set of roles R. Of course, mathematically, these objects are 

identical, and so we can speak of abstract voting rules as being anonymous, equitable, etc. In 

the above example of the committee, the set of roles would be R = {CM2Mn } , where C stands 

for “chair” and Mi is member i. 

The conceptual difference between voters and roles is that voters have preferences and vote, 

whereas roles do not. Therefore, for a vote to take place, voters need to be assigned to roles. 

Accordingly, given a group of voters V equal in size to R, we call a bijection a : V → R a role 

assignment. Given an abstract voting ruleV f : XR → X, a role assignment a defines a (nonabstract) 

voting rule fa : X → X in the obvious way, via fa(φ) = f(φ ◦ a−
1). In our university committee 

example, if V = {AlexBailey} , an assignment a that satisfies a(Alex) = C and a(Bailey) = M7 

assigns Alex the role of chair, and Bailey the role of member 7. Hence, the voting rule fa is a 

dictatorship of Alex. A different assignment b with b(Bailey) = C and b(Alex) = M7 results in 

the voting rule fb in which Bailey is the dictator. Any assignment c that also assigns c(Bailey) = 

C results in the same voting rule as b, even if, say, c(Alex) = M8: fb(φ) = fc(φ) for any voting 

profile φ. In the context of an abstract voting rule f, we say that two assignments are equivalent 

if they lead to the same voting rule: a and b are equivalent under f if fa = fb. The next proposition 

captures a sense in which symmetry is a form of equality. 

PROPOSITION 1A: An abstract voting rule f : XR → X is symmetric if and only if all assignments 

are equivalent under f. 

Thus, symmetry means that assignments do not matter, or that voters are completely 

indifferent between assignments. Given any voting profile φ and given f, voters do not care 

which role they have; moreover, voters do not care which roles other voters have. 

We now turn to the interpretation of our equity notion in terms of roles. In the university 

committee example, certainly “chair” is a distinguished role. Likewise, it is clear that if we 

view the representative democracy example of Figure 1 as an abstract voting rule, no role is 

distinguished. Of course, once we assign roles to voters with particular preferences, some 

voters may be disadvantaged, and prefer a different assignment ex-post. In that respect, in the 

abstract representative democracy rule, all roles are ex-ante identical. 

We say that roles r R are equivalent under an abstract voting rule f : XR → X if, for any 

voter v and assignment a such that a(v) = r1, there is an assignment b with b(v) = r2 such that fa 

= fb. That is, roles r1 and r2 are equivalent if, for any voter, it is impossible to determine whether 
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they are assigned the role of r1 or r2 from the entire mapping from vote profiles to chosen 

alternatives. In the university committee example, Mi and Mj are equivalent, but C is not 

equivalent to any other role. If a(v) = C, then clearly this can be determined from fa, but not if 

a(v)  = C; in the latter case one can find an assignment b such that b(v)  = a(v), but fa = fb, since 

it is impossible to tell whether a voter has role Mi or Mj. In the representative democracy 

example of Figure 1, it is impossible to determine from fa the role of any given voter v. 

Given this definition of equivalent roles, the next proposition is a sharp characterization of 

equity. 

PROPOSITION 1B: An abstract voting rule f : XR → X is equitable if and only if all roles are 

equivalent under f. 

Therefore, while symmetry means that voters are indifferent between assignments, equity 

implies that voters are indifferent between roles. Indeed, Proposition 1B implies that, given an 

abstract voting rule f, and given any two roles r1, r2, if a voter had to choose between (i) any 

assignment in which she had role r1, or (ii) any assignment in which she had role r2, she would 

be indifferent. Both would allow her to select the same voting rule fa. Likewise, if the voter had 

to choose between roles r1 and r2 knowing that an adversary would get to choose the rest of the 

assignment, she would be indifferent. 

The following highlights the idea that equity captures indifference between roles. 

PROPOSITION 2A: An abstract voting rule f : XR → X is equitable if and only if there is a set of 

assignments A such that: 

1. fa = fb for all ab ∈ A, and 

2. for each role r ∈ R and voter v ∈ V there is an a ∈ A with a(v) = r. 

Thus, there is a menu of assignments that all induce the same voting rule, but allow v to 

choose any role. 

2.5. Winning Coalitions 

One way to describe a voting rule is through its winning coalitions: the sets of individuals 

whose consensual vote determines the alternative chosen. Formally, we say that a subset S ⊆ V 

is a winning coalition with respect to the voting rule f if, for every 

voting profile φ x for all v ∈ S implies f(φ) = x. 

Note that no two winning coalitions of f can be disjoint. Indeed, suppose that MM ⊆ V are 

two disjoint winning coalitions. We can then have a profile under which members of M vote 

unanimously for −1 and members of M vote for 1. In such cases, f would not be well-defined. 

The following lemma illustrates a version of the converse. 
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LEMMA 1: Let W be a collection of subsets of V such that every pair of subsets in W has a 

nonempty intersection. Then there is a neutral, positively responsive voting rule for V for which 

every set in W is a winning coalition. 

Intuitively, the construction underlying Lemma 1 is as follows. First, for any vote profile in 

which a subset W ∈ W votes for 1 (or −1) in consensus, we specify the voting rule to also take 

the value of 1 (or −1). For any profile in which no W ∈ W votes in consensus, we define the 

voting rule to follow majority rule. By definition, the winning coalitions of this voting rule 

contain the sets in W. As we show, it is also neutral and positively responsive. 

This lemma will allow us to discuss neutral and positive-responsive equitable voting rules 

through the restrictions they impose on winning coalitions. 

3. WINNING COALITIONS FOR EQUITABLE VOTING RULES 

In this section, we provide bounds on the size of winning coalitions in general equitable 

voting rules. We then restrict attention to the special class of equitable voting rules that 

generalize representative democracy rules and characterize the size of winning coalitions for 

those. 

 
3.1. Winning Coalitions of Order √n 

We first show that for any population size, there always exist equitable voting rules that have 

winning coalitions that are of order . 

THEOREM 1: For every n, there exists a neutral, positively responsive equitable voting rule 

with winning coalitions of size  

An important implication of this theorem is that, under an equitable voting rule, winning 

coalitions can account for a vanishing fraction of the population. Nevertheless, √n is arguably 

a large number of voters in some contexts. For example, in a majority vote, 

suppose all voters vote for each ofindependently with probability one-half. A 

manipulator who wants to guarantee an outcome with high probability would need to 

control an order of √ n of the votes. This is a consequence of the fact that the standard deviation 

of the number of voters who vote 1 is of order . 

The CCC rule described in the introduction is an example of an equitable voting 

rule in which winning coalitions are O(√n). Nevertheless, there is an algebraic subtlety—the 

construction of that rule relies on n being an integer squared. Certainly, an analogous 

construction can be made for any n that can be described as n = k · m for some integers k and 

m by considering some committees to be of size k and others to be of size m. Such 

constructions, however, would not necessarily generate voting rules with winning coalitions of 

size close to √n. We prove Theorem 1 by constructing a simple, related rule that applies to 

every n, called the longest-run rule.8 

 
8 We thank Elchanan Mossel for suggesting this improvement to a previous construction. 
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FIGURE 3.—The longest-run voting rule. The set depicted in blue is a winning coalition of size . 

Identify the set of voters withn − 1 } , and place them along a cycle, as in Figure 3. 

Given a voting profile φ, a run is a contiguous block of voters 

either −1 or 1. Formally, a set of voters W ⊆ V is a run voting identically for 

iffor all ww ∈ W , and if Wi + k} modulo n. 

Given a voting profile φ, we say that W is the longest-run if it is a run that is strictly longer 

than all other runs. The longest-run voting rule  is defined as follows: if there is a longest-run 

in φ, then (φ) is the vote cast by the members of this run. Otherwise, , where 

m is majority rule. 

The longest-run rule is equitable, since the group of rotations maps any voter to any voter. 

: these include a run of length √n, Furthermore, it admits winning coalitions of size 

together with √n agents spaced √n apart, thus preventing the creation of longer runs; see Figure 

3. 

We now offer a counterpart for Theorem 1 that provides a lower bound on the size of minimal 

coalitions in equitable voting rules. 

THEOREM 2: Every winning coalition of an equitable voting rule has size at least . 

The proof of Theorem 2 relies on group-theoretic results described in Appendix A. To gain 

some intuition for the bound, suppose, as in the longest-run voting rule above, that voters are 

located on a circle and that Autf includes all rotations. These are the permutations of the form 

σ(i) = i + k mod n. We know that two winning coalitions cannot be disjoint. Take, then, any 

winning coalition S and denote by S + k the winning coalition that is derived by adding k (again, 

modulo n) to the label of each member. It follows that S and S + k must have a nonempty 

intersection, or that there are some ij ∈ S with i − j = k. Therefore, if we look at all the differences 

between two elements of S (i.e., expressions of the form i − j, where ij ∈ S), they encompass all 
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n rotations. In particular, the cardinality of these differences is n. On the other hand, the number 

of such differences is certainly bounded by the number of ordered pairs of members in2

 S, which is |S |2. It follows that |S | ≥ n, generating our bound. 

 

FIGURE 4.—Generalized representative democracy voting rule. The leafs of the tree (at the bottom) represent the 

voters. At each intermediate node, the results of the three nodes below are aggregated by majority. 

3.2. Generalized Representative Democracy Rules 

As already discussed, voting rules mimicking representative democracy are equitable, if not 

symmetric à la May (1952). We now consider a class of equitable voting rules that generalize 

representative democracy rules. These capture the flavor of various hierarchical voting 

structures that contain more than two layers. For example, voters may belong to counties, which 

comprise states, which constitute a country. As we show, these sorts of hierarchical decision 

rules are associated with far smaller winning coalitions than n/2, but still substantially larger 

than . 

A voting rule f :  → X is a generalized representative democracy (GRD) if the following hold: 

• If V = {v } is a singleton, then f(φ) = φ(v). 

• If V is not a singleton, there exists a partition {V1Vd } of V into d sets such that 

 )fd |  

where each fi : XVi → X is some generalized representative democracy rule, φ|Vi is φ 

restricted to Vi, and m is majority rule. 

Any GRD rule is associated with a rooted tree that captures voters’ hierarchical structure (as 

in Figure 4 for the case of d = 3). A GRD voting rule is equitable if, in the induced tree, the 

vertices in each level have the same degree.13 

The following result characterizes the size of winning coalitions in GRD voting rules. 

THEOREM 3: If f is an equitable generalized representative democracy rule for n voters, then 

a winning coalition must have size at least nlog3 2. Conversely, for arbitrarily large n, there exist 

equitable generalized representative democracy voting rules with winning coalitions of size 

nlog3 2. 
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There is an intriguing connection between this characterization and the so-called Hausdorff 

dimension of the Cantor set, which is log  The connection arises from the 

 
13Intuitively, the permutations required to shift one voter’s role into another require the shift of that voter’s entire 

“county” into the target role’s “county,” which can be done only when their sizes coincide. 
14The Cantor set can be constructed by starting from, say, the unit interval and iteratively deleting the open middle 

third of any subinterval remaining. That is, in the first iteration we are left with , in the second 

iteration we are left with , etc. The fractal or Hausdorff dimension is a 

measure of “roughness” of a set. See Peitgen, Jürgens, and Saupe (1993) and references therein. 

fact that GRD rules with the smallest winning coalitions are those in which, at each level, the 

subdivision is into three groups. In such rules, to construct a winning coalition, two of the three 

top “representatives” need to agree. Then, two of the voters of these representatives need to 

agree, and so on recursively. This precisely mimics the classical construction of the Cantor set. 

4. k-EQUITABLE VOTING RULES 

So far, we have focused on voting rules in which individuals are indifferent between roles. 

Naturally, one could extend the notion and contemplate rules that are robust to larger coalitions 

of voters changing their roles in the population. This section analyzes such rules for arbitrary 

size k of coalitions. With these harsher restrictions on collectivechoice procedures, results 

similar to May’s reemerge, although with important caveats. 

DEFINITION 2: A voting rule is k-equitable for k ≥ 1 if, for every pair of ordered ktuples (v1vk) 

and (w1wk) (with vi  = vj and wi  = wj for all i  = j), there is a permutation σ ∈ Autf such that σ(vi) 

= wi for i = 1k. 

Intuitively, k-equitable voting rules are ones in which every group of k voters has the same 

“joint role” in the election. This restriction is certainly harsher than that imposed for equitable 

rules. Indeed, consider the representative democracy example of Figure 1. Suppose Alex is 

assigned the role of 1, while Bailey is assigned the role of 2. The implication of 2-equity is that 

the pair (Alex, Bailey) could potentially be associated with any pair (ij). But this is clearly not 

true here, since Alex and Bailey are in the same county, and thus it is impossible to associate 

them with, for example, the roles of 1 and 4.9 

In terms of roles and abstract voting rules, k-equity admits the following generalization of 

Proposition 2A. 

PROPOSITION 2B: An abstract voting rule f : XR → X is k-equitable if and only if there is a set 

of assignments A such that: 

1. fa = fb for all ab ∈ A. 

 
9 In group-theoretic terms, f is k-equitable if and only if the group Autf is k-transitive. 
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2. For each set of k roles {r1rk } ⊆ R and k voters {v1vk } ⊂ V , there is an a ∈ A with a(vi) = ri 

for i ∈ {1k} . 

Thus, there is a menu of assignments that all yield the same rule, but that places no 

restrictions on which roles a coalition of k voters takes. A perhaps illuminating analogy would 

be to think of equity as corresponding to strategy-proofness, and to think of kequity as 

corresponding to strategy-proofness for coalitions of size k. Alternatively, kequity is 

reminiscent of group-envy-freeness notions considered in allocation problems (see, e.g., Varian 

(1974)). In a sense, k is a parameter that interpolates between equity, corresponding to k = 1, 

and May’s symmetry, corresponding to k = n. 

We begin by examining 2-equitable rules. Certainly, majority rule is 2-equitable. As can be 

easily verified, none of the voting rule examples mentioned so far, other than majority, is 2-

equitable. As it turns out, for most population sizes, winning coalitions of size at least n/2 are 

endemic to 2-equitable voting rules. 

We say that almost every natural number satisfies a property P if the subset NP ⊆ N of the 

natural numbers that have property P satisfies 

 lim  = 1 

 n
→∞ n 

THEOREM 4: For almost every natural number n, every 2-equitable voting rule for n voters 

has no winning coalitions of size less than n/2. In particular, for almost all n, the only 

2equitable, neutral, positively responsive voting rule is majority. 

Thus, for almost all n, the assumption of symmetry in May’s theorem can be substituted with 

the much weaker assumption of 2-equity. 

The proof of Theorem 4 relies on modern group-theoretical results that were not available 

when May’s theorem was introduced (Cameron, Neumann, and Teague (1982)). As it turns 

out, there is a vanishing share of integers for which there exist 2-transitive groups that are 

neither the set of all permutations nor the set of even permutations. We show in Lemma 3 in 

the Appendix that those latter groups yield winning coalitions of size at least n/2, implying the 

result. 

Theorem 4 states that for most population sizes, 2-equitable rules imply large winning 

coalitions. This notably does not hold for all population sizes. In Appendix C, we construct 2-

equitable and 3-equitable voting rules with small winning coalitions, which apply to arbitrarily 

large population sizes. 

When considering more stringent equity restrictions, results are much starker and 

conclusions hold for all population sizes. 

THEOREM 5: Every 6-equitable voting rule has no winning coalitions of size less than n/2. In 

particular, the only 6-equitable, neutral, positively responsive voting rule is majority.10 

 
10 Furthermore, if n > 24, the same conclusions follow from the weaker assumption of 4-equity. 
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The proof of Theorem 5 relies on discoveries from the 1980s and 1990s that showed that, for 

any n, the only 6-transitive groups are the group of all permutations and the group of even 

permutations. These results are a consequence of the successful completion of a large project, 

involving thousands of papers and hundreds of authors, called the Classification of Finite Simple 

Groups; see Aschbacher, Lyons, Smith, and Solomon (2011). 

We stress that k-equity is a strong restriction. Nonetheless, for any fixed k, k-equity is a far 

weaker restriction than May’s symmetry. In that respect, Theorem 5, like Theorem 4, offers a 

strengthening of May’s original result. 

5. TOWARDS A CHARACTERIZATION OF EQUITABLE VOTING RULES 

As our examples throughout illustrate, the set of equitable voting rules is broad and does not 

admit a simple universal procedural description. Their full characterization would be as 

complex as the full classification of finite simple groups alluded to above, and is beyond the 

scope of this paper. 

We start here by classifying the equitable voting rules for electorate sizes of the form n = p 
and n = p2 with p a prime. We do so for two reasons. First, these cases are easier to handle, 

while still illustrating some of the complexities entailed in the general characterization of 

equitable voting rules. To gain some intuition for why these cases are easier, consider the 

representative democracy rule. When n = p, the only representative democracy rule is majority, 

since there is no way to divide the voters into nonsingleton counties of equal size. In particular, 

the class of equitable rules for n = p is drastically restricted. The second reason we focus on 

these cases is that they allow us to contemplate general voting rules that can be applied for all 

electorate sizes n. 

For our classification, it will be useful to define cyclic voting rules and 2-cyclic voting rules. 

A voting rule f for n voters is said to be cyclic if one can identify the voters with the set {0n 

− 1 } in such a way that the permutation σ : {0n − 1 } → {0n − 1 } given by σ(i) = i + 1 mod n is 

an automorphism of f. Intuitively, a voting rule is cyclic if the voters can be arranged on a circle 

in such a way that rotating, or shifting all voters one space to the right—tantamount to an 

application of σ—does not affect the outcome. An example of a cyclic voting rule is the longest-

run rule described in Section 3. A perhaps less obvious example is that of the representative 

democracy rule; the arrangement on the cycle entails positioning members of the same county 

equidistantly along the cycle. In the example of Figure 2 in which voters {129 } are arranged in 

counties {{123 } {456 } {789 }} , if we arrange the voters along the cycle by the order 

(147258369), then applying σ results in the order (472583691), and so the first county is 

mapped to the second, the second is mapped to the third, and the third back to the first. Thus, 

the voting rule is unchanged by σ, and hence cyclic. 

A voting rule f for n = n1 × n2 voters is said to be 2-cyclic if one can identify the voters with 

the set {0n1 − 1 } × {0n2 − 1 } in such a way that the permutations σ1 and σ2 given by 

σ1(i1i2) = (i1 + 1 mod n1i2) σ2(i1i2) = (i1i2 + 1 

mod n2) 

are automorphisms of f. Intuitively, a voting rule is 2-cyclic if one can arrange the voters on an 

n1 × n2 grid such that shifting all voters to the right (and wrapping the rightmost ones back to 
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the left) or shifting all voters up (and again, wrapping the topmost ones to the bottom) does not 

affect the outcome. It is easy to see that the CCC rule is an example of such a rule, as is the 

representative democracy rule. 

PROPOSITION 3: Let f : XV → X be an equitable voting rule, and let p be prime. If n = p, then f 

is cyclic. If n = p2, then f is either cyclic, or 2-cyclic, or both. 

The generalization to n = pd for d > 2 is more intricate, and is not a straightforward extension 

to higher dimensional d-cyclic rules. See our discussion in Appendix B.7. 

This proposition has an important implication to the design of simple, equitable voting rules 

that are not tailored to particular electorate sizes. Majority rule is one such rule— one only 

needs to tally the votes and consider the difference between the number of supporters of one 

alternative relative to the other. The longest-run voting rule is another such example. In fact, 

any such rule must also work for electorates comprised of a prime number of voters, and in 

particular must be cyclic. It would be interesting to understand whether a far larger class of 

rules than cyclic voting rules can work for almost all electorate sizes. 

6. CONCLUSIONS 

In this paper, we study equity, a notion of procedural fairness that captures equality between 

different voters’ roles. 

The voting rules that satisfy May’s symmetry axiom admit a simple description: a voting 

rule is symmetric, or anonymous, if and only if the outcome depends only on the number of 

voters who choose each possible vote. In contrast, the set of equitable voting rules is much 

richer, and its complexity is intimately linked to frontier problems in mathematics; in particular, 

the classification of finite simple groups. This paper includes a number of diverse examples, 

but the class of all equitable rules is larger yet. Understanding which equitable rules satisfy 

different desirable conditions—nonmalleability, inclusiveness, etc.— could be an interesting 

avenue for future research. 

We believe the approach taken here could potentially be useful for various other contexts. 

For example, symmetric games are often thought of as ones in which any permutation of 

players’ identities does not affect individual payoffs (e.g., Dasgupta and Maskin (1986, p. 18)). 

As is well known, such finite games have symmetric equilibria. Interestingly, in his original 

treatise on games, Nash took an approach to symmetry that is similar to ours, studying the 

automorphism group of the game. He showed that equity, analogously defined for games, 

suffices for the existence of symmetric equilibria: that is, it suffices that, for every two players 

v and w, there is an automorphism of the game that maps v to w (Nash (1951, p. 289)).11 It 

 
11 Theorem 2 in Nash (1951) states that “Any finite game has a symmetric equilibrium point.” Now, Nash’s 

definition of a symmetric equilibrium is a strategy profilewhere all players use the same strategy, it suffices for there 

to be a transitive automorphism group, that is, oneχ of the game with χ(i) = j. In particular, for there to be a symmetric 

strategy in the sense we usually consider,s such that si = sj whenever there is an automorphism 

in which, for every i, j, there is an automorphism χ with χ(i) = j. 
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would be interesting to explore further the consequences of equity so defined in more general 

strategic interactions. 

APPENDIX A: A PRIMER ON FINITE GROUPS 

This section contains what is essentially a condensed first chapter of a book on finite groups 

(see, e.g., Rotman (2012)), and is provided for the benefit of readers who are not familiar with 

the topic. The terms and results covered here suffice to prove the main results of this paper. 

Let N = {1n} . A permutation of N is a bijection g : N → N. The inverse of a permutation g is 

denoted by g−1 (so g−1(g(i)) = i), and the composition of two permutations g and h is simply gh; 

that is, if k = gh then k(i) = g(h(i)). 

A group—for our purposes—will be a nonempty set of permutations that (1) contains g−1 

whenever it contains g, and (2) contains gh whenever it contains both g and h. It follows from 

this definition that every group must include the trivial, identity permutation e that satisfies e(i) 
= i for all i. 

Groups often appear as sets of permutations that preserve some invariant. In our case, 

Autf is the group of permutations of the voters that preserves every outcome of f. It is easy to 

see that Autf is indeed a group. 

A subgroup H of G is simply a subset of G that is also a group. Given g ∈ G, we denote gH = 

{gh ∈ G : h ∈ H } 

The sets gH are in general not subgroups, and are called the left cosets of H (the right cosets are 

of the form Hg). It is easy to verify that all left cosets are disjoint, and that each has the same 

size as H. It follows that the size of G is divisible by the size of H. 

Given an element i ∈ N, we denote by Gi the set of permutations that fix i. That is, g ∈ Gi if 

g(i) = i. Gi is a subgroup of G. It is called the stabilizer of i. 

The G-orbit of i ∈ N is the set of j ∈ N such that j = g(i) for some g ∈ G, and is denoted by Gi. 

As it turns out, if j is in the orbit of i then the set of g ∈ G such that g(i) = j is a coset of the 

stabilizer Gi. It follows that there is a bijection between the orbit Gi and the cosets of Gi. This is 

called the orbit-stabilizer theorem. 

Recall that G is transitive if, for all i and j, there is a g ∈ G such that g(i) = j. This is equivalent 

to there existing only a single G-orbit, or that j is in the orbit of i for every i, j. Therefore, if G 

is transitive, the orbit Gi is of size n, and since we can identify this orbit with the cosets of Gi, 

there are n such cosets. Since they are all the same size as Gi, and since they form a partition of 

G, each coset of Gi must be of size |G|/n. We will use this fact in the proof of Theorem 2. 

APPENDIX B: PROOFS 
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B.1. Proofs of Propositions 1A, 1B, 2A, and 2B 

PROOF OF PROPOSITION 1A: We begin by showing that if f is anonymous, then all 

assignments are equivalent under f. 

Assume that f is symmetric, and let a and b be two assignments. Define σ = b ◦ a−1. Then, by 

definition of symmetry, for every φ ∈ XV , 

fa  

and hence a and b are equivalent. Since a and b were chosen arbitrarily, it follows that all 

assignments are equivalent under f. 

Conversely, suppose that all assignments are equivalent under f. We need to show that for 

any σ ∈ S(R) and any φ ∈ XR, f(φ) = f(φσ). Fix σ and φ, let a be any assignment, and let b = σ ◦ 

a. Then since a and b are equivalent, 

  ◦ a) ◦ a a) 

 

Since σ and φ were arbitrary, it follows that f is symmetric. Q.E.D. 

In analogy with the notion of equivalence of roles given in Section 2.4, say that two k-tuples 

of roles r and s are equivalent if there is a k-tuple v of voters and a pair of assignments a and b 

such that fa = fb, a(v) = r, and b(v) = s. Proposition 1B then follows from the next proposition by 

setting k to 1. 

PROPOSITION 3: An abstract voting rule f : XR → X is k-equitable if and only if all ktuples of 

roles are equivalent under f. 

PROOF: Fix an assignment a. The rule f is k-equitable if and only if fa is k-equitable, which 

holds if and only if, for every pair of k-tuples (v1vk) and (w1wk) of voters, there is a σ ∈ S(V ) 

such that σ((v1vk)) = (w1wk) and, for all φ ∈ XV , fa(φ) = fa(φσ). Since 

fa  

= fa◦σ(φ) 

it follows that f is k-equitable if and only if for every pair of k-tuples (v1vk) and (w1wk) of voters 

there is a σ ∈ S(V ) such that σ((v1vk)) = (w1wk) and fa = fa◦σ. 

Now, this holds if and only if for every pair of k-tuples (r1rk) and (s1sk) of roles, there is a 
σ 

∈ S(V ) such that σ(a−1(r1rk)) = a−1(s1sk) and fa = fa◦σ. But this holds if and only if for every such 
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pair of k-tuples of roles, there is a σ ∈ S(V ) and a k-tuple of voters (v1vk) such that fa = fa◦σ, 

a((v1vk)) = (r1rk), (a ◦ σ)((v1vk)) = (s1sk), which holds if and only if every pair of k-tuples of roles 

is equivalent under f. Q.E.D. 

We now prove Proposition 2B. Proposition 2A then follows directly by setting k to 1. 

PROOF OF PROPOSITION 2B: We first show that if f is k-equitable, then there is a set A as 

above. 

Assume f is k-equitable. Fix an assignment a, and let 

 A = {b an assignment s.t. fa = fb } 

(1) is immediate from the definition of A. To see that (2) holds, note that for any k-tuple of roles 

(r1rk) and any k-tuple of voters (v1vk), it follows from a result analogous to Proposition 3 that 

since f is k- equitable, there are assignments c and d such that 

= a((v1vk)), and fc = fd. Now, fc = fd implies that, for all 
φ ∈ c((v1vk))k), d((v1vk)) 

XV , fc
(φ) = fd(φ), which implies that, for all 

φ ∈ XV , fc
(φ ◦ (a−1 ◦ d)) = fd

(φ ◦ (a−1 ◦ d)). It follows 

that, for all 
φ ∈ XV , 

fc◦d  

= fa(φ) 

and hence= f1
c(◦a((vd−1◦a1=vfa. But this implies thatk)))) = c((v1vkc))◦=d−(r1

1◦ra ∈ Ak). Since, (2) 

then follows.(c ◦ d−1 ◦ a)((v1 vk)) c(d− 

We now show that if there is a set A as above, then f is k-equitable. 

Assume there is such an A. By a result analogous to Proposition 3, it is sufficient to show 

that all k-tuples of roles are equivalent under f. But this follows immediately from 

(2) and the definition of equivalence of k-tuples of roles. Q.E.D. 

B.2. Proof of Lemma 1 

PROOF OF LEMMA 1: Let f be the voting rule defined as follows. For a voting profile φ, if 

there is a set W ∈ W such that φ(w) = 1 for all w ∈ W , then f(φ) = 1, and similarly, if there is a 

set W ∈ W such that φ(w) = −1 for all w ∈ W , then f(φ) = −1. This is well-defined, since if there 
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are two such sets W , they must agree because they intersect. If there are no such sets, then f(φ) 

is determined by majority. 

That f is neutral follows immediately from the symmetry in the definition of f when some W 

∈ W agrees on either 1 or −1 and the fact that 

majority is neutral. To see that f is positively responsive, 

suppose that ∈ { φ(x) for all x ∈ V , and  

φ(y) for some y ∈ V . Since f(φ)  = −W such that φ(x) = −1 for all x ∈ W , hence the same is true 

for φ. If there is some set W ∈ W such that  

for all x ∈ W , then f(φ) 1. If not, then the same is true of φ, and hence by 

positive responsiveness of majority, 

Finally, it is immediate from the definition of f that every W ∈ W is a winning coalition. 

Q.E.D. 

B.3. Proof of Theorem 1 

PROOF OF THEOREM 1: The longest-run voting rule is equitable since any rotation of the cycle 

is an automorphism. That is, for every k, the map σ : V → V defined by σ(i) = i + k mod n leaves 

the outcome unchanged. Furthermore, for every pair of voters i, j, if we set k = i − j, then σ(i) = 

j. V 

every, we claim that the longest-run rule  : X → X has winning For 

coalitions of size 2 

Let 

W   

Any run that is disjoint from W is of length at most 1 since the second set in the 

definition of W is comprised of voters who are at most   apart. However, the first set is a 

contiguous block of length   . Hence, if all w ∈ W vote identically in {−11 } , the longest run 

will be a subset of w, and hence the outcome will be the vote cast by all members of W . It then 

follows that W is a winning coalition. 

Finally, 

 |W |=  

 
Since every superset of a winning coalition is again a winning coalition, the result follows. 

Q.E.D. 
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B.4. Proof of Theorem 2 

Readers who are not familiar with the theory of finite groups are encouraged to read Section 

A before reading this proof. 

Recall that the group of all permutations of a set of size n is denoted by Sn. 

The next lemma shows that if a group G acts transitively on , then any set S that 

intersects all of its translates (i.e., sets of the form√ gS for g ∈ G) must be of size at 

 
least n. The proof of the theorem will apply this lemma to a winning coalition S. 

LEMMA 2: Let G ⊂ S√n be transitive, and suppose that S ⊆ V is such that, for all g ∈ G, gS ∩ S  

= ∅ . Then |S | ≥ n. 

PROOF: For any vw ∈ V , define  vw = {g ∈ G : g(v) = w } . Then  vw is a left coset of the stabilizer 

of v. Hence, and since the action is transitive, it follows from the orbitstabilizer theorem that | 

vw | = |G
n

| . If gS ∩ S  = ∅ for all g ∈ G, then for any g ∈ G, there exists vw ∈ S such that g(v) = w, 

and hence 

  vw = G 

vw∈S 

Thus, 

|G| =

 
| vw 

|
 
=
 
|S 
|2 

||  
G n 

and we conclude that |S  | ≥ .

 Q.E.D. 

Our lower bound (Theorem 2) is an immediate corollary of this claim. 

PROOF OF THEOREM 2: Let f be an equitable voting rule for the voter set V . Suppose that W 

⊆ V is a winning coalition for f. Then, for every σ ∈ Autf , it must be the case 

that 

(otherwise, f would not be well-defined). Hence, it follows from Lemma 2 

 | | ≥ Q.E.D. 
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B.5. Proof of Theorem 3 

PROOF OF THEOREM 3: Define C(n) to be the smallest size of any winning coalition in any 

generalized representative democracy rule for n voters. We show, by induction, that 

C(n) ≥ nlog3 2. log3 2 

 If n = 1, a winning coalition must be of size 1, which is ≥ 1 . 

If n > 1, any generalized voting rule f is of the form ) fd(φ|Vd)). 

Because the voting rule is equitable, the functions fi are all isomorphic, and so have minimal 

winning coalitions of the same size. A minimal winning coalition for f would 

then need to include a strict majority of these, which is of size at least d+
2
1 . Therefore,12 

 C(n)C(n/d)

 (1) 

2 

Assume, by the induction hypothesis, that C(m) ≥ mlog3 2 for all m < n. Then, for d |n, 

 d + 1  d log3 2 

· C(n/d) ≥d−  

2 

Denote h(d) = d+
2
1 · d−log3 2, so that 

 d + 1 ≥ log3 2 

 C(n/d) n h(d) 

2 

Note that h(d) ≥ 1. To see this, observe that h(3) = 1, and 

d  

 h(d) = 
2 

> 0 

2log3 

for d ≥ 3, and so h(d) ≥ 1 for d ≥ 3. We 

have thus shown that 

 d + 1 ≥ log3 2 

 C(n/d) n  

2 

and so by (1), C(n) ≥ nlog
log

3
3
2

2. 

 
12 Here and below, d|n denotes that d is a divisor of n. 

  

 
 
   

 

 
  2 

  
  2  

  1 

2 
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To see that C(n) = n for arbitrarily large n, consider the following GRD rule (see Figure 4). 

Take n to be a power of 3, and let f be defined recursively by partitioning at each level into 

three sets  of equal size. A simple recursive calculation shows 

of(e.g., V1 and V3, as in Figure 4), is that the winning coalitions of any two 

of size nlog3 2.Q.E.D. 

The construction of small winning coalitions in the last part of the proof mimics the 

construction of the Cantor set. 

B.6. Proof of Theorems 4 and 5 

The group of all even permutations is called the alternating group and is denoted An. 

LEMMA 3: Let f be a voting rule for n voters. If Autf is either Sn or An, then every winning 

coalition for f has size of at least n/2. 

PROOF: Suppose W ⊆ V is a winning coalition for f with |W | = k < n/2. 

Label the voters V by 1n such that W, and let π be the permutation of V 

given by π(i) = n + 1 − i for i = 1n. If is odd, let π be the map above composed with the map that 

exchanges 1 and 2. It follows that π is in the alternating group, and hence π ∈ Autf . However, 

π(W ) ∩ W = ∅ since k < n + 1 − k, contradicting the assumption that 

W is a winning coalition. Q.E.D. 

PROOF OF THEOREM 4: Denote by η(n) the number of positive integers m ≤ n for which there 

is no 2-transitive group action on a set of m elements except for Sm and Am. It follows from the 

main theorem in Cameron, Neumann, and Teague (1982) that n − η(n) is at most 3n/log(n) for 

all n large enough. Since 

 
n

→∞ 

it follows that 

η(n) 

lim   n→∞ n 

and so the claim follows from Lemma 3. Q.E.D. 

PROOF OF THEOREM 5: The only 4- or 5-transitive finite groups aside from the alternating 

and symmetric groups are the Mathieu groups, with the largest action on a set of size 24 (Dixon 

and Mortimer (1996)). Hence, for n > 24, every 4- or 5-transitive voting rule must have either 

Sn or An as an automorphism group. Furthermore, the only 6-transitive groups are Sn or An (again, 

see Dixon and Mortimer (1996)). Hence, the result follows immediately from Lemma 3. Q.E.D. 
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B.7. Proof of Proposition 3 

This proposition’s proof follows directly from group theory results that are classical, but that 

are not covered in our primer in Section A, and which we now review briefly. 

Let G be a group. Then order of G is simply its size. The order of g ∈ G is the smallest n such 

that g is the identity. Given a prime p, we say that a group P is a p-group if the orders of all of 

its elements are equal to powers of p. We assume for the remainder of this section that p is 

prime. 

Let G be a finite group with |G| = pd · m, where d ≥ 1, and m is not divisible by pd. Sylow 

(1872) proved that, in this case, G has a subgroup P that is a p-group of order p . Such groups 

are called Sylow p-groups in his honor. The following lemma states an important and well-

known fact (see, e.g., Wielandt (2014, Theorem 3.4)) regarding Sylow p-groups. 

LEMMA 4: Let G act transitively on a set V of size n = pd, for some d ≥ 1. Any Sylow p-subgroup 

of G acts transitively on V . 

PROOF: Since the order of G is divisible by the size of V 
, 

|G| = pd+ 
d· m for some  ≥ 0 and m 

not divisible by p. Let P be a Sylow p-subgroup, so thatd |P | = p + . d 

For any i ∈ V , the size of the P-orbit Pi divides |P | = p + , and so is equal to ap −a for some a 

≥ 0. Now, the size of the stabilizers Pi and Gi is |Pi | = |P |/|Pi | = p +
d and |Gi | =  m. Since 

Pi is a subgroup of Gi, |Pi | divides |Gi | , and so a = 0, |Pi | = p = n, and P acts transitively on V 

. Q.E.D. 

The center of a group is the collection of all of its elements that commute with all the group 

elements: {g ∈ G : gh = hg for all h ∈ G} . This is easily seen to also be a subgroup of G. 

LEMMA 5: Every nontrivial p-group has a nontrivial center. 

For a proof, see Theorem 6.5 in Lang (2002). Here and below, a nontrivial group is a group 

of order larger than 1. 

Let G be a group that acts transitively on a set V , and let Z be the center of G. Denote by G/Z 

the set of left cosets of Z, and let Vˆ be the set of Z-orbits of V . If vw ∈ V are in the same Z-orbit, 

then g(v) and g(w) are also in the same Z-orbit, since if z(v) = w then z(g(v)) = g(z(v)) = g(w). 

Hence, each g ∈ G induces a permutation on Vˆ . Note that gh ∈ G induce the same permutation 

on Vˆ if they are in the same element of G/Z. Hence, we can think of G/Z as a group of 

permutations of Vˆ . This group must act transitively on Vˆ since G acts transitively on V . 
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Furthermore, if a subgroup of G/Z acts transitively on Vˆ , then the union of the cosets it includes 

is a subgroup of G that acts transitively on V . 

LEMMA 6: Let G be a group acting transitively on a setd V of size pd, for some d ≥ 1. There 

exists a p-subgroup R of G of size p acting transitively on V with trivial stabilizers. 

PROOF: Let P denote a Sylow p-subgroup of G. By Lemma 4, the action of P on V is also 

transitive. 

Let Z denote the center of P. Since P is nontrivial, by Lemma 5, Z is nontrivial. We claim that 

the Z action on V has trivial stabilizers. To see this, assume that h(v) = v for some v, and choose 

any w ∈ V . Since P acts transitively, there is some g ∈ P such that g(v) = w. Since h commutes 

with g, 

h(w)  g(v) = w 

and so, since w was arbitrary, h is the identity. Hence, Zv = {e} for every v ∈ V . Note that by the 

orbit-stabilizer theorem, this implies that each Z orbit is equal in size to Z. 

If the action of Z is also transitive, we are done, since we can take R = Z. Finally, 

consider the case that Z does not act transitively. 

In this case, P = P/Z acts transitively on Vˆ , the set of the Z-orbits of V . By induction, P has a 

subgroup Z which acts transitively with trivial stabilizers on Vˆ , and hence has size |Vˆ | . Note 

that since the action ofd Z has trivial stabilizers, every Z-orbit has size |Z | , and so |Vˆ | = |V 

|/|Z | = p /|Z | . Thus, taking R to be the union of the cosets in P/Z that comprised Z, R acts 

transitively on V . Finally, since this subgroup has size |Z | · |Z | = p = |V | , it follows that the 

action of R has trivial stabilizers. Q.E.D. 

A group is said to be abelian if all of its elements commute: gh = hg for all gh ∈ G. Note that 

the center of every group is abelian by definition. The structure of abelian groups is simple and 

well understood: Kronecker’s theorem (Kronecker (1870), Stillwell (2012, Theorem 5.2.2)) 

states that every abelian group is a product of cycles of prime powers. That is, if G is an abelian 

group of permutations of a set V —and assuming without loss of generality that no element of 

V is fixed by all elements of G—then there is a way to identify V with13  ni − 1 } , with 

each ni a prime power, so that G is generated by permutations of the form 

 
13 A group is said to be generated by a set S of permutations if it includes precisely those permutations that can be 

constructed by composing permutations in S. 
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σk(i1im) = (i1ik−1ik + 1 mod nkik+1im) 

As is also well known, every group of order p or p2 is abelian, see Netto (1892, p. 148). The 

next lemma follows. 

LEMMA 7: Let R be a group of order p or p2, acting transitively on a set V . In the former 

case, we can identify V with {0p − 1 } so that R is generated by 

σ(i) = i + 1 mod p 

In the latter case, we can either identify V with {0p2 − 1 } so that R is generated by 

σ(i) = i + 1 mod p2 

or else we can identify V with {0p − 1 }2, so that R is generated by 

σ1(i1i2) = (i1 + 1 mod pi2) σ2(i1i2) = (i1i2 + 1 

mod p) 

Hence, if R is a subgroup of the automorphism group of a voting rule f, then this rule is cyclic 

if n = p, and is either cyclic, 2-cyclic, or both if n = p2. 

PROOF OF PROPOSITION 3: By Lemma 6, Autf has a p-subgroup R of order n that acts 

transitively on V . The claim now follows immediately from Lemma 7. Q.E.D. 

When n = pd, with d > 2, this proof fails since the group R is no longer necessarily abelian. 

Non-abelian groups do not have a cyclic structure, and thus voting rules for which this group 

R is not abelian will not be cyclic, 2-cyclic, or higher-dimensional cyclic. We conjecture that 

such equitable voting rules do indeed exist. 

APPENDIX C: 2-EQUITABLE AND 3-EQUITABLE RULES 

In this section, we construct 2-equitable and 3-equitable rules with small winning coalitions 

that apply to arbitrarily large population sizes. This construction is rather technically involved 

and uses finite vector spaces. To glean some intuition, we first explain an analogous 

construction using standard vector spaces and assuming a continuum of voters. 

Suppose voters are identified with the set of one-dimensional subspaces of R3: that is, each 

voter is identified with a line that passes through the origin. Now suppose winning coalitions 

are the two-dimensional subspaces: if all voters on a plane agree, that is the election outcome; 

otherwise, the election is undecided.14 Clearly, the winning coalitions are much smaller than 

the electorate (or of “half of the voters”) in the sense that they have a smaller dimension. 

 
14 This rule is well-defined since every pair of two-dimensional subspaces intersects, and so no two winning 

coalitions are disjoint. 



 EQUITABLE VOTING RULES 589 

Invertible linear transformations of R3 permute the one-dimensional subspaces, and the two-

dimensional subspaces, and so constitute automorphisms of this voting rule. Equity follows 

since for any two nonzero vectors v and u, we can find some invertible linear transformation 

that maps v to u. Moreover, the voting rule is also 2-equitable—given a pair of distinct voters 

(v1v2), and given another such pair (u1u2), we can find some invertible linear transformation 

that maps the former to the latter. Thus, every pair of voters plays the same role. 

In Theorem 6 below, we construct 2-equitable voting rules for finite sets of voters, using 

finite vector spaces instead of R3. Figure 5 shows a 2-equitable voting rule constructed in this 

way for 7 voters. In the figure, every three colinear nodes form a winning coalition, as well as 

the three nodes on the circle.15 In this construction, the size of the winning coalition is exactly

 (rounded up to the nearest integer), which matches the lower bound of √ n  in Theorem 2. 

 THEOREM 6: Let the set of voters be of size n = q2 + q + 1, for prime√ q. Then there is a 

 
2-equitable voting rule with a winning coalition of size exactly equal to n, rounded up to 

the nearest integer. 

 

FIGURE 5.—Every three colinear points form a winning coalition, as well as the three points on the circle (marked 

in blue). This voting rule is 2-equitable. 

More generally, a similar statement holds when n = q2 + q + 1 and q = pk, for some k ≥ 1 and 

p prime. The example in Figure 5 corresponds to the case q = 2. 

PROOF: Let Fq denote the finite field with q elements.16 

Given a positive integer m, Fm
q is a vector space, where the scalars take values in Fq: it 

satisfies all the axioms that (say) R3 satisfies, but for scalars that are in Fq instead of R. Indeed, 

 
15 Figure 5 depicts what is commonly referred to as a Fano plane in finite geometry. It is the finite projective 

plane of order 2. 
16 Fq is the set q − 1}, equipped with the operations of addition and multiplication modulo q. The primality of 

q is required to make multiplication invertible. 
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much of the standard theory of linear algebra of Rm applies in this finite setting, and we will 

make use of it here. 

In particular, we will make use of GL(mq), the group of invertible, m × m matrices with 

entries in Fq. Here, again, the product of two matrices is calculated as usual, but addition and 

multiplication are taken modulo q. Since Fm
q is finite, each matrix in GL(mq) corresponds to a 

permutation of Fm
q . As in the case of matrix multiplication on Rm, these permutations preserve 

the 1-dimensional and 2-dimensional subspaces. Moreover, this group acts 2-transitively on 

the 1-dimensional subspaces, as any two non-colinear vectors (uv) can be completed to a basis 

of Fm
q ; then any basis can be carried by an invertible matrix to any other basis. 

We identify the set of voters with the set of 1-dimensional subspaces of . For each 

2dimensional subspace U of , define the set SU of 1-dimensional subspaces (i.e., voters) 

contained in U. Let W be the collection of all such sets SU, and define, using Lemma 1, a voting 

rule f in which the sets SU are winning coalitions. We need to verify that any two winning 

coalitions SU and SU are nondisjoint. This simply follows from the fact that every pair of 2-

dimensional subspaces intersects in some 1-dimensional subspace, and so it follows that each 

pair of such winning coalitions will have exactly one voter in common.17 

A simple calculation shows that the winning coalitions are of size q + 1. Since q 

1, the claim follows. Q.E.D. 

To construct 3-equitable rules, we need the following lemma. It allows us to show, using the 

probabilistic method, that for small automorphism groups we can construct voting rules with 

small winning coalitions. 

LEMMA 8: Let G be a group of m permutations of {1n } . Then there is a neutral and positively 

responsive voting rule f such that G is a subgroup of Autf , and f has winning coalitions of size 

at most  

We use this lemma to prove our theorem illustrating the existence of 3-equitable rules with 

small winning coalitions for arbitrarily large voter populations. We then return to prove the 

lemma. 

THEOREM 7: For n such that n − 1 is a prime power, there is a 3-equitable voting rule with a 

winning coalition of size at most . 

PROOF: For n such that n − 1 is the power of some prime, there is a 3-transitive group3 
18of 

permutations of {1n} that is of size m < n . Hence, by Lemma 8, there is a 3equitable voting rule 

for n (i.e., a rule with a 3-transitive automorphism group) with a winning coalition of size at 

most 2 . Q.E.D. 

It is natural to conjecture that this probabilistic construction is not optimal, and that there 

exist 3-equitable rules with winning coalitions of size O( . 

 
17 This is the reason that the winning coalitions of this rule are so small and provide a tight match to the lower 

bound. 
18 The group3 PGL(2n− 1) acts 3-transitively on the projective line over the field Fn−1, and is of size n(n− 1)(n− 2) < 

n . 
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The heart of Lemma 8 is the following group-theoretic claim, which states that when G is 

small, we can find a small set S such that gS and S are nondisjoint for every g ∈ G. These sets 

gS will be the winning coalitions used to prove Lemma 8. The proof of this proposition uses 

the probabilistic method: we choose S at random from some distribution, and show that, with 

positive probability, it has the desired property. This proves that there exists a deterministic S 
with the desired property. 

PROPOSITION 4: Let G be a group of m > 2 permutations of {1n } . Then there exists a set S ⊆ 

{1n } with |S  such that ∀g ∈ G we have gS ∩ S  = ∅ . 

PROOF: To prove this, we choose S at random, and prove that it has the desired properties 

with positive probability. Let  √ |G|  . Let S = S1 ∪ S2, where S1 is any subset of X of 

size , and S2 is the union of  elements of X, chosen independently from the uniform distribution. 

Hence, S includes at most 2 ≤ 2 √nlog |G| + 2 elements. 

We now show that P(∀g ∈ G : gS ∩ S  = ∅) > 0, and thus there is some set S with the desired 

property. Note that, for any particular g ∈ G, the distribution of gS2 is identical to the distribution 

of S2. Therefore, 

 P(gS ∩ S = ∅) ≤ P(gS2 ∩ S1 = ∅) 

 = P(S2 ∩ S1 = ∅) 

 

≤ e−2/n 

≤ e−(logm)2 

Thus, the probability that there is some g ∈ G for which gS ∩ S = ∅ is, by taking a union bound, 

at most 

me−(log|G|)2 

which is strictly less than 1 for m > 2. Q.E.D. 

We are finally ready to prove Lemma 8. 

PROOF OF LEMMA 8: Let S be the subset ofgiven by Proposition 4. Let 

W be the collection of sets of the form gS, where g ∈ G. This is a collection 

of pairwise nondisjoint sets, since if gS and hS intersect then so do h−1gS and 
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S, which is impossible by the defining property of S. Since |S | = 2 the claim follows from 

Lemma 1. 

Q.E.D. 
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