‘M) Check for updates

Econometrica, Vol. 89, No. 1 (January, 2021), 475-506
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We study repeated independent Blackwell experiments; standard examples include
drawing multiple samples from a population, or performing a measurement in different
locations. In the baseline setting of a binary state of nature, we compare experiments in terms
of their informativeness in large samples. Addressing a question due to Blackwell (1951),
we show that generically an experiment is more informative than another in large samples if
and only if it has higher Rényi divergences.

We apply our analysis to the problem of measuring the degree of dissimilarity between
distributions by means of divergences. A useful property of Rényi divergences is their
additivity with respect to product distributions. Our characterization of Blackwell
dominance in large samples implies that every additive divergence that satisfies the data
processing inequality is an integral of Rényi divergences.
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1. INTRODUCTION

STATISTICAL EXPERIMENTS form a general framework for modeling information: Given a set
O of parameters, an experiment P produces an observation distributed according to Pg, given
the true parameter value 8 € ©. Blackwell’s celebrated theorem (Blackwell (1951)) provides a
partial order for comparing experiments in terms of their informativeness.

As is well known, requiring two experiments to be ranked in the 6c0.1]
Blackwell order is a demanding condition. Consider the problem of testing ’ a
binary hypothesis, based on random samples drawn from one of two experiments P or Q.
According to Blackwell’s ordering, P is more informative than Q if, for every test performed
based on observations produced by Q, there exists another test based on P that has lower
probabilities of both
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Type-1 and Type-II errors (Blackwell and Girshick (1979)). This is a difficult condition to
satisfy, especially in the case where only one sample is produced by each experiment.

In many applications, an experiment does not consist of a single observation but of multiple
i.i.d. samples. For example, a new vaccine is typically tested on multiple patients, and a
randomized control trial assessing the effect of an intervention usually involves many subjects.
We study a weakening of the Blackwell order that is appropriate for comparing experiments in
terms of their large sample properties. Our starting point is the question, first posed by
Blackwell (1951), of whether it is possible for n independent observations from an experiment
P to be more informative than n observations from another experiment Q, even though P and Q
are not comparable in the Blackwell order. The question was answered in the affirmative by
Stein (1951), Torgersen (1970), and Azrieli (2014).' However, identifying the precise
conditions under which this phenomenon occurs has remained an open problem.

We say that P dominates Q in large samples if for every n large enough, n independent
observations from P are more informative, in the Blackwell order, than n independent
observations from Q. We focus on a binary set of parameters @, and show that generically P
dominates Q in large samples if and only if the experiment P has higher Rényi divergences than
Q (Theorem 1). Rényi divergences are a one-parameter family of measures of informativeness
for experiments; introduced and characterized axiomatically in Rényi (1961), we show that
they capture the informativeness of an experiment in large samples. For any two experiments
comparable in terms of Rényi divergences, we also provide a simple bound on the sample size
that ensures that larger samples of independent experiments are comparable in the Blackwell
order (Theorem 4).

The proof of this result crucially relies on two ingredients. First, we use techniques from
large deviations theory to compare sums of i.i.d. random variables in terms of stochastic
dominance. In addition, we provide and apply a new characterization of the Blackwell order:
We associate to each experiment a new statistic, the perfected log-likelihood ratio, and show
that the comparison of these statistics in terms of first-order stochastic dominance is in fact
equivalent to the Blackwell order.

We apply our characterization of Blackwell dominance in large samples to the problem of
quantifying the extent to which two probability distributions are dissimilar. This is a common
problem in econometrics and statistics, where formal measures quantifying the difference
between distributions are referred to as divergences.? Well-known examples include total
variation distance, the Hellinger distance, the Kullback—Leibler divergence, Rényi divergences,
and more general f-divergences.

Rényi divergences satisfy two key properties. The first is additivity: Rényi divergences
decompose into a sum when applied to pairs of product distributions. Additivity captures a

! Even though Stein (1951) is frequently cited in the literature for a first example of this type, we could not gain
access to that paper.

2 See, for example, Sawa (1978), White (1982), Critchley, Marriott, and Salmon (1996), Kitamura and Stutzer
(1997), Hong and White (2005), Ullah (2002). See Kitamura, Otsu, and Evdokimov (2013) for a recent application
of a-divergences, which are a reformulation of Rényi divergences.
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principle of noninteraction across independent domains, as the total divergence of two
unrelated pairs does not change when they are considered together as a bundle. Additivity is a
natural property, and in applications it is a crucial simplification for studying i.i.d. processes.
A second desirable property is described by the data-processing inequality, which stipulates
that the distributions of two random variables X and Y are at least as dissimilar as those of f(X)
and f(Y), for any transformation f. As we show, this property is closely related to monotonicity
with respect to the Blackwell order.

Using our main result, we show that every additive divergence that satisfies the
dataprocessing inequality and a mild finiteness condition is an integral (i.e., the limit of positive
linear combinations) of Rényi divergences (Theorem 2). This result is an improvement over
the original characterization of Rényi (1961), as well as more modern ones (Csiszar (2008)),
because it shows that additivity alone pins down a single class of divergences without making
any further assumptions on the functional form.

The study most closely related to ours is Moscarini and Smith (2002). In their order, an
experiment P dominates another experiment Q if for every finite decision problem, a large
enough sample of observations from an experiment P will achieve higher expected payoff than
a sample of the same size of observations from Q. In contrast to the order proposed by
Blackwell and analyzed in this paper, their definition allows for the critical sample size to
depend on the decision problem, and considers a restricted class of decision problems. We
provide a detailed discussion of this and other related work in Section 6.

The paper is organized as follows. In Section 2, we provide our main definitions. Section 3
contains the characterization of Blackwell dominance in large samples, with proof deferred to
Section 5. In Section 4, we characterize additive divergences. Finally, we further discuss our
results and their relation to the literature in Section 6.

2. MODEL
2.1. Statistical Experiments

A state of the world 8 can take two possible values, 0 or 1. A Blackwell-Le Cam experiment
P = (QPoP,) consists of a sample space Q, which we assume to be a Polish space, and a pair of
Borel probability measures (Fo, P1) defined over Q, with the 6 (0,1) interpretation that
Po(A) is the probability of observing A € Q in state. This framework is
commonly encountered in simple hypothesis tests as well as in information economics. In
Section 6, we discuss the case of experiments for more than two states: we obtain necessary
conditions for dominance in large samples and explain the obstacles to a full characterization.

Given two experiments P = (QPyP;) and Q = (=QoQi), we can form the product experiment P

&® Q given by

P® Q=(QxZPox QP x Qi)

where Pg x Qg, given, 0 €10, 1)

denotes the product of the two measures. Under the
experiment P @ Q the realizations produced by both P and Q are observed, and the two
observations are independent (conditional on the true state). For instance, if P and Q consist of
drawing samples from two different populations, then P @ Q consists of the joint experiment

where a sample from each population is drawn. We denote by
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the n-fold product experiment where n independent observations are generated according to
the experiment P.

Consider now a Bayesian decision maker whose prior belief assigns probability 1/2 to the
state being 1. [ To each experiment P = (QPoP;), we associate a Borel probability
measure no overthat represents the distribution over posterior beliefs induced by
the experiment. Formally, let p(w) be the posterior belief that the state is 1 given the realization
weQ:

dP(w)
p(w) = 1
+ 0 dp
(w) dP (w)

Furthermore, define
for every Borel set B
< [0,1]

me(B) = Pﬁ({w : plw) e B})

as the probability that the posterior belief will belong to B, given state 6. We then define it =
(To + 111)/2 as the unconditional measure over posterior beliefs.

Throughout the paper, we restrict our attention to experiments where the measures Popand P,
are mutually absolutely continuous, so that no signal realization w € Q perfectly reveals either
state. We say that P is trivial if Po = P1, and bounded if the derivative dP;/dP is bounded above

and bounded away from 0.

2.2. The Blackwell Order

We first review the main concepts behind Blackwell’s order over experiments (Bohnenblust,
Shapley, and Sherman (1949), Blackwell (1953)). Consider two experiments P and Q and their
induced distribution over posterior beliefs denoted by m and T, respectively. The experiment P
Blackwell dominates Q, denoted P Q, if

/n o= f{ v{p)dt(p) (1)

for every convex functionv: (0, 1) R Equivalently, P Qiftis a mean-preserving spread
of t. We write P Q if P Q and Q P. So, P Q if and only if (1) holds with a strict inequality
whenever v is strictly convex, that is, 1t is a mean-preserving spread of T and it =T

As is well known, each convex function v can be seen as the indirect utility induced by some
decision problem. That is, for each convex v there exists a set of actions A and a utility function
u defined on A x {01 } such that v(p) is the maximal expected payoff that a decision maker can

obtain in such a decision problem given a belief p. Hence, P Q if and only if in every decision
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problem, an agent can obtain a higher payoff by basing her action on the experiment P rather

than on Q.

Blackwell’s theorem shows that the order can be equivalently defined by “garbling”
operations: Intuitively, P Q if and only if the outcome of the experiment Q can be generated
from the experiment P by compounding the latter with additional noise, without adding further
information about the state.?

As discussed in the Introduction, we are interested in understanding the large sample
properties of the Blackwell order. This motivates the next definition.

DEFINITION 1—Large Sample Order: An experiment P dominates an experiment Q in large
samples if there exists an no € N such that

P® Q®"  forevery n>ng )

measurable  kernel  (also  known as  “garbling”)’Formally, given  two  experiments P
= (12, Py, P) and Q = (5, Qo, Q1), P Qifand only if there is a
o : £} - A(F), where A(Z) is the set of probability measures

over =, such that for every 6 and every measurable ACE, Qy(A) = [ o(w)(A)dPy(w) 14 other terms, there is a
(perhaps randomly chosen) measurable map f with the property that for both 8 =0 and 6 = 1, if X is a random quantity
distributed according to Pethen Y = f(X) is distributed according to Qe.

This order was first defined by Azrieli (2014) under the terminology of eventual sufficiency.
The definition captures the informal notion that a large sample drawn from P is more
informative than an equally large sample drawn from Q. Consider, for instance, the case of
hypothesis testing. The experiment P dominates Q in the Blackwell order if and only if for every
test based on Q there exists a test based on P that has weakly lower probabilities of both Type-
I and Type-II errors. Definition 1 extends this notion to large samples, in line with the standard
paradigm of asymptotic statistics: P dominates Q if every test based on n i.i.d. realizations of Q
is dominated by another test based on n i.i.d. realizations of P, for sufficiently large n. When
the two experiments are statistics of a common experiment, dominance in the large sample
order implies that one statistic will eventually contain all the information captured by the other.

As shown by Blackwell (1951, Theorem 12), dominance of P over Q implies dominance of
P®" over Q®", for every n. So dominance in large samples is an extension of the Blackwell
order. This extension is strict, as shown by examples in Torgersen (1970) and Azrieli (2014).

2.3. Rényi Divergence and the Rényi Order

Our main result relates Blackwell dominance in large samples to a well-established notion
of informativeness due to Rényi (1961). Given two probability measures |, v on a measurable
space Q and a parameter t > 0, the Rényi t-divergence is given by

dup
(ullv) —110g ”(a(w))=t

3

] t-1

- Redu(w)
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when t= 1, and, ensuring continuity,

du
=f10g(—(m))
Rifwv) Jo " \dv " /dp(w) @)

Equivalently, Ri(p v) is the Kullback—Leibler divergence between the measures p and v.

As t increases, the value of Riincreases and is continuous whenever it is finite. The limit value

as | - oo, which we denote by Rw(“ v), is the essential maximum of log(‘_4*, ), the logarithm

of the ratio between the two densities.
As a binary experiment precisely consists of a pair of probability measures, we can apply

this definition straightforwardly to experiments. Given an experiment P = (QPoP;), a state O,

and parameter t > 0, the Rényi t-divergence of P under 0 is

R®(t) = Re(Po Pj-0) Q)

Intuitively, observing a sample realization for which the likelihood ratio dPg/dP;-e is high
constitutes evidence that favors state 8 over 1 — 6. For instance, in the case of t = 2, a higher
value of R%(2) describes an experiment that, in expectation, more strongly produces evidence
in favor of the state 8 when this is the correct state. Varying the parameter t allows to consider
different moments for the distribution of likelihood ratios. Rényi divergences have found
applications to statistics and information theory (Liese and Vajda (2006), Csiszar (2008)),
machine learning (P6czos, Xiong, and Schneider (2012), Krishnamurthy, Kandasamy, Poczos,
and Wasserman (2014)), computer science (Fritz (2017)), and quantum information
(Horodecki, Horodecki, Horodecki, and Horodecki (2009), Jensen (2019)). The Hellinger
transform (Torgersen (1991, p. 39)), another well-known measure of informativeness, is a
monotone transformation of the Rényi divergences of an experiment.

The two Rényi divergences R'pand R% of an experiment are related by the identity

t
1 R > 1) _
R”“) - :R”(] t) (6)

Hence the values of R%(t) for © [0,1/2] tare determined by the values of R'p™®(t) on the
interval [ 1/21 ] . Thus, it suffices to consider values of t in [1/2, 00],

DEFINITION 2—R¢ényi Order: An experiment P dominates an experiment Q in the Rényi order
if it holds that for all @ € {0, 1} and all t > 0

R%(t) > R%(t)

The Rényi order is a extension of the (strict) Blackwell order. In the proof of Theorem 1
below, we explicitly construct a one-parameter family of decision problems with the property
that dominance in the Rényi order is equivalent to higher expected payoff with respect to each
decision problem in this family. See Section 5.1 for details.

A simple calculation shows that if P =S &) T is the product of two experiments, then for every

state O,
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Rr =Ry + R}

A key implication is that P dominates Q in the Rényi order if and only if the same relation holds
for their nth fold repetitions P®" and Q®", for any n. Hence, the Rényi order compares
experiments in terms of properties that are unaffected by the number of samples. Because, in
turn, the Rényi order extends the Blackwell order, it follows that dominance in the Rényi order

is a necessary condition for dominance in large samples.
As a final remark on the definition of the Rényi order, it is important to require the

comparison for both states 8 = 0 and 0 = 1, as there exist pairs of experiments P and Q such that

R'p(t) > Rlq(t) for every t, but R%(t) < R%|(t) for some t.3

3. CHARACTERIZATION OF THE LARGE SAMPLE ORDER

We say two bounded experiments P and Q form a generic pair if the essential maxima

of the log-likelihood ratios log 4"s'o and log %®q'o are different, and if their essential minima
are also different. This holds, for example, if for each of the two experiments the set of signal
realizations is finite, and there is no posterior beliefs that can be induced by both experiments.

THEOREM 1: For a generic pair of bounded experiments P and Q, the following are
equivalent:

(i) P dominates Q in large samples.

(i1) P dominates Q in the Rényi order.

That (ii) implies (i) means that for every two experiments P and Q that are ranked in the
Rényi order, there exists a sample size n such that n or more independent samples of P and Q
are ranked in the Blackwell order. The proof of the theorem also establishes an upper bound on
n; however, as stating this bound requires several additional concepts we defer this result to
Theorem 4 in Section 5.7. The complete proof of Theorem 1 appears in Section 5 below.

We mention that Theorem 1 remains true so long as the dominated experiment Q is bounded
(whereas P need not be bounded); see Section J in the Appendix in the Online Supplementary
Material (Mu, Pomatto, Strack, and Tamuz (2021)) for discussion of this and another
generalization. On the other hand, the theorem does not remain true if we remove the genericity
assumption. In Section I, in the Appendix we discuss the knife-edge case where the maxima or
the minima of the log-likelihood ratios are equal. We demonstrate a nongeneric pair of

3 A simple example involves the following pair of binary experiments:

w w

Po1/32/3

Pi12/31/3

w w

Qu6/93/9
Qi8/91/9

where the entries represent conditional probabilities. Direct computation shows that R's(t) > R'q(t) for every t >0,

while R%(t) < R%(t) for t > 2.
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experiments P and Q such that P dominates Q in the Rényi order, but P does not dominate Q in
large samples. Given this example, it seems difficult to obtain an applicable characterization of
large sample dominance without imposing some genericity condition.

A natural alternative definition of “Blackwell dominance in large samples” would require
P@" Q®"to hold for some n, but the resulting order is in fact equivalent pem » oLkl
under our genericity assumption. This is a consequence of Theorem 1, o o
becausefor any ng implies P dominates Q in the Rényi order, which in turn implies P Q for all

large n.#

3.1. Examples

In this section, we illustrate Theorem 1 by means of two examples of pairs of experiments
that are not Blackwell ranked, but are ranked in large samples.

EXAMPLE 1: We first introduce a new example of two such experiments P and Q. The first
experiment P appears in Smith and Serensen (2000). The signal space is the interval [ 01 ], and
the measures Py and P; are absolutely continuous with densities fo(s) = 1 and fi(s) = 1/2 +s. Our
second experiment Q is binary, with signal space {01 }. The measure Qo assigns probability 1/2
to both signals, while the other measure is Qi(1) = p and Qi(0) = 1 - p.

For p =0 625, P Blackwell dominates Q, as witnessed by the garbling from [ 01 ] to {01 } that

maps all signal realizations above 1/2 to 1 and all realizations below 1/2 to 0. For larger p, P
is no longer Blackwell dominant. To see this, consider the decision problem in which the prior
belief is uniform, the set of actions is the set of states, and the payoff'is one if the action matches
the state and zero otherwise. It is easy to check that for p > 0 625, the experiment Q yields a

larger expected payoff.

05
0.4+
0.3

0.2 -

011 /

B =0. 4 However, it is not true thatl in Example 2 below provides an example whereP@no Qano for some no
impliesP®2PBlackwell dominates@n Qen for all n 2 noQ. The case of®2, but Pesa = (). does not305,

dominate Q®3.
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The Rényi divergences

FIGURE1™ R% (solid line), and R%(dashed line) for P = 0 63 in Example 1. The comparison

between Ripand Riqyields a similar graph.

Nevertheless, if we choose p = 0 63, then as Figure 1 suggests, P dominates Q in the Rényi
order even though the two experiments are not Blackwell ranked.® Thus, by Theorem 1, there
is some n so that n independent samples from P Blackwell dominate n independent samples
from Q.

The next proposition generalizes the example, showing that a binary experiment Q with the
same properties can be constructed for (almost) any experiment P.

PROPOSITION 1: Let P be a bounded experiment with induced distribution over posteriors .
Assume that the support of m has cardinality at least 3. Then there is a binary experiment Q
such that P and Q are not Blackwell ranked, and P dominates Q in large samples.

The proof of this proposition crucially relies on Theorem 1.

EXAMPLE 2 AND A CONJECTURE BY AZRIELI (2014): We next apply Theorem 1 to revisit an
example due to Azrieli (2014) and to complete his analysis. The example provides a simple
instance of two experiments that are not ranked in Blackwell order but become so in large
samples. Despite its simplicity, the analysis of this example is not straightforward, as shown
by Azrieli (2014). We will show that applying the Rényi order greatly simplifies the analysis
and elucidates the logic behind the example.

Consider the following two experiments P and Q, parametrized by 8 and a, respectively. In
each matrix, entries are the probabilities of observing each signal realization

The Rényi divergences as defined in (5) are computed to be

) 1 ((3/2)2—1_(1/2)1—1) | 1 ((3/2)1+l 7(1/2)14-])
, = — B S — ) e 0 [ S —
RI([) —1 % 21 . R’(I) e (+1
and
1 log(Z_“'(pl_'+(1 _p)]—{}) (I): 1
R t—1 ; Ria t—1
given the state 6:

(1) = log(27" - (p' +(1— p)))
0Q

0 X1 X2 X3 0 yi y2
0 B % %—ﬁ 0 o l -«
p. 1 %—,8 3 B Q: 1 1-a @

The parameters satisfy 0 < < 1/4 and 0 < a < 1/2. The experiment Q is a symmetric, binary
experiment. The experiment P with probability 1/2 yields a completely uninformative signal
realization x», and with probability 1/2 yields an observation from another symmetric binary
experiment. As shown by Azrieli (2014, Claim 1), the experiments P and Q are not ranked in
the Blackwell order for parameter values 2B < o< 1/4 + B.
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Azrieli (2014) points out that a necessary condition for P to dominate Q in large samples is
that the Rényi divergences are ranked at 1/2, that is, R'p(1/2) > R'q(1/2).” In addition, he
conjectures it is also a sufficient condition, and proves it in the special case of B = 0. We show
that for the experiments in the example, the fact that the Rényi divergences are ranked at 1/2 is
enough to imply dominance in the Rényi order and, therefore, by Theorem 1, dominance in
large samples. This settles the above conjecture in the affirmative.

PROPOSITION 2: In this example, suppose R'p(1/2) > R'q(1/2). Then R'p(t) > R'q(t) for all t > 0

and by symmetry R%(t) > R%(t), hence P dominates Q in large samples.

3.2. A Quantification of Blackwell Dominance in Large Samples

The characterization in Theorem 1 makes it possible to quantify the extent to which one
experiment Blackwell dominates another in large samples. We start with the observation that
any two experiments, even if not ranked according to dominance in large samples, can be
compared by applying different samples sizes. For example, suppose P and Q are not
comparable, but P® Blackwell dominates Q®'®°. Then 50 samples from P are more
informative than 100 from Q, and thus, in an intuitive sense, P is at least twice as informative
as Q, for large enough samples.

Our formal definition is based on the fact that for any two bounded nontrivial experiments P
and Q, there exist positive integers n, m such that P®" Blackwell dominates Q®™. Reasoning as
above, P will be at least m/n times as informative as Q in large samples. We can then consider
the largest ratio m/n for which this comparison holds. This leads to a well-defined measure of
dominance, which we refer to as the dominance ratio P/Q of P with respect to Q:

:s.up{ﬂ Y Q®m}
P/Q n

"As in his paper, this condition can be written in terms of the parameter values as

Vea(l—a) > {B(%*B)+%

Thus, when a =0 1 and B = 0 for example, the experiment P does not Blackwell dominate Q but does dominate it in

large samples, as shown by Azrieli (2014).

Thus, in large samples, each observation from P contributes at least as much as P/Q
observations from Q.

An immediate consequence of Theorem 1 is the following characterization of P/Q in terms
of the Rényi divergences of the two experiments.

PROPOSITION 3: Let P and Q be nontrivial, bounded experiments. Then

defo,1y RY
Ros(t) "5 Rogy)

P/Q =inf
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Furthermore, the dominance ratio P/Q is always positive.>

As discussed, P/Q can be interpreted as an asymptotic lower bound on the information
produced by one observation from P relative to Q. On the other hand, we also have the
asymptotic upper bound (Q/P)~!, where Q/P is the dominance ratio of Q with respect to P. We
remark that the two bounds are in general (in fact, generically) not equal. However, Proposition
3 shows that P/Q < (Q/P) ! always holds.

3.3. The Blackwell Order in the Presence of Additional Information

The large sample order compares the informativeness of repeated experiments. A related
problem is to compare the informativeness of one-shot experiments when additional
independent sources of information may be present.

Consider a decision maker choosing which of two experiments P and Q to conduct, on top of
an independent source of information R. The resulting choice is between the compound
experiments P @ R and Q ® R. It is intuitive, and immediate from Blackwell’s garbling
characterization, that if P dominates Q in the Blackwell order, then the same relation must hold
between the two compound experiments.

One might expect that if P and Q are incomparable, then no additional independent
experiment R can make the compound experiments comparable. Instead, we show that P @ R
can dominate Q @ R even though the two original experiments P and Q were not comparable.
Moreover, for generic experiments, this occurs precisely when P has higher Rényi divergences
than Q.

PROPOSITION 4: Let P and Q be a generic pair of bounded experiments. Then the following
are equivalent:
(i) There exists a bounded experiment R such that P @ R Q @ R. (ii) P

dominates Q in the Rényi order.

Proposition 4 suggests that in general, whether two experiments are Blackwell ordered
depends on what additional sources of information are available. We note that whenever an
experiment R makes P dominant over Q (when each is combined with R), then the same holds
for any experiment R that is more informative than R. It is an interesting question for future
work to fully characterize the set of experiments R that make P dominant.

Proposition 4 follows by combining the characterization in Theorem 1 together with the
observation that if P dominates Q in the large sample order, then there exists an R such that P
&® R Blackwell dominates Q @ R. The latter fact is a consequence of an order-theoretic result

5 This characterization, together with Theorem 1, implies that the following natural alternative definition of P/Q
is equivalent:

J— . pen @[
=sup{a>0: };’/Q;‘ gr all n large enough

where an denotes the smallest integer greater than or equal to an.
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from the quantum information literature (Duan, Feng, Li, and Ying (2005), Fritz (2017), see
Lemma 4 in the Appendix).

4. A CHARACTERIZATION OF ADDITIVE DIVERGENCES

In this section, we apply the characterization of Blackwell dominance in large samples to
study measures for quantifying the degree of dissimilarity between distributions, also known
as divergences. Examples of divergences include total variation distance, the Hellinger
distance, the Kullback-Leibler divergence, Rényi divergences, and more general f-divergences.

A key property of Rényi divergences is additivity. Consider two domains Q; and Q», a pair
of measures i, vi defined on Qy, and a pair of measures [, v> on Qo. Additivity states that when
the two domains are considered in conjunction, the divergence between the product measures
M1 x pz and vi x v2, which are both defined on Qi x Q», is the sum of the divergences of the two
pairs. In words, this condition says that the total divergence of two unrelated pairs should not
change when they are considered together as a bundle.

Another property of Rényi divergences, which it in fact shares with all the above examples
of divergences, is the data processing inequality, which captures the idea that discarding
some information decreases dissimilarity.

We show that every additive divergence that satisfies the data-processing inequality is an
integral of Rényi divergences. The proof relies on the characterization of the large sample order
together with functional analytic techniques. Since this result does not assume any functional
form of the divergence, it improves over the existing characterizations such as in Rényi (1961)
and Csiszar (2008).

The result has potential applications for modeling experiments as economic commodities. In
recent years, there has been growing interest in modeling the cost and pricing of information.
By interpreting a divergence as a cost function over experiments, additivity reflects an
assumption of constant marginal costs in information production (an assumption discussed in
detail in Pomatto, Strack, and Tamuz (2018)). By interpreting a divergence as a pricing function
over experiments, additivity captures a notion of linearity, appropriate for pricing information
in competitive markets.

4.1. Additive Divergences

Given a Polish space Q, we denote by B(Q) its Borel o-algebra and by (Q) the collection of
Borel probability measures on B(Q). Given another Polish space =, a measurable function f : Q
- = and a probability measure & € A(D) we denote by f.(u) the push-forward probability
measure in (=) defined as [ f+(u)](E) = u(f “1(E)) for all E € B(=).

Consider, for each Q, a map

Da: A1) x A(2) — R, U {+00}

and let D = (Dq) be the collection obtained by varying Q. We say D is a divergence if

Da(p) = 0 for all Q and all 4 € A(L2),
A divergence satisfies the data processing inequality if for any measurable f : Q - = it holds

that
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DE(f*(M); f*(V)) = D.()(uv)

The data processing inequality captures the idea that the distributions of two random variables
X and Y are at least as dissimilar as those of f(X) and f(Y); applying a common deterministic
mapping f can only make the distributions more similar.®It is a natural concept in signal
processing and information theory, and closely related to the Blackwell order over experiments.
Indeed, we can see a pair of probability measures as an experiment (PoPi), and hence a
divergence D as a functional over experiments. The data-processing inequality states that the
value of D decreases when applying a deterministic garbling.
We say that the divergence D is additive if

Daxz(p1 X Havi X v2) = Da(pivi) + Dz(pava)

We will henceforth drop the subscript from Dq(pv), and write D(uv) whenever there is no risk
of confusion.
We call a pair p, v of measures as bounded if there exists an M > 0 such that for any

measurable A € Q, v(A) > u(A)/M and p(A) = v(A)/M. Equivalently, du/dv is supported on [
1/MM ], and hence bounded from above and bounded away from 0. We will restrict our

attention to divergences that take finite values on bounded pairs of experiments.

4.2. Representation Theorem

Our representation theorem shows that all additive divergences that are finite on bounded
experiments arise from linear combinations of Rényi divergences.

THEOREM 2: Let D be an additive divergence that satisfies the data processing inequality
and is finite on bounded experiments. Then there exist two finite Borel measures mo, m; on
[1/2, 00l sych that for every bounded pair u, v it holds that

= f olf) + f
D(uv) [1/2.00IR¢ (L v)dm [1/2,00Re(v p)dmi(t) @)
with Regiven by (3) and (4).

Varying the two measures mo and m; leads to some important special cases. When both are
finitely supported, D is a linear combination of Rényi divergences. Any additive divergence D
(finite on bounded experiments) is hence a limit of such combinations. When mo and m; are
Dirac probability measures concentrated on 1, D reduces to twice the Jensen—Shannon
divergence, which is the symmetric counterpart of the Kullback—Leibler divergence. When
instead mo is a Dirac probability measure concentrated on 1 and m; is set to have total mass
zero, D reduces to the Kullback—Leibler divergence.

Note that the lower integration bound in (7) is 1/2. This is because, as discussed, the values

of Re(p v) are related to the values of Ri-¢(v W). Hence it suffices to consider values of t above
1/2.

¢ Note that the data processing inequality implies that D is invariant to measurable isomorphisms: If f is a bijection,
then D=(/s(), fu(#)) =Da(w,¥). Thus the dissimilarity between measures does not depend on the particular
labeling of the domain.
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PROOF SKETCH OF THEOREM 2: The first key idea is to see a bounded pair of probability
measures as a bounded experiment (PoP1), and hence see a divergence D as a functional over
experiments. When D is additive, the data processing inequality implies monotonicity with
respect to the Blackwell order.

The next crucial step is to leverage Theorem 1 to show that additivity renders D monotone in
the Rényi order. Indeed, if (PoPi) dominates (QoQi) in the Rényi order, then, by Theorem 1,
there exists a number n of repetitions such that (Po"P;") dominates (Qo"Q;") in the Blackwell
order. Hence, by combining Blackwell monotonicity and additivity, we obtain that D must
satisfy

nD(P"’ pP) = D(PS’ PI’) = D( 0 Q'l‘) = nD(QoQy)

Hence, D is monotone in the Rényi order.

We deduce from this that D is a monotone functional F(R%R's) of the Rényi divergences of
the experiment. Additivity of D implies F is also additive. We then use tools from functional
analysis to show that F extends to a positive linear functional, leading to the integral
representation of Theorem 2. Q.E.D.

5. PROOF OF THEOREM 1

The proof of Theorem 1 is organized as follows. In Section 5.1 we first show that the Rényi
order is necessary for the large sample order. The remaining subsections demonstrate
sufficiency. In Section 5.3, we provide a novel characterization of Blackwell dominance,
showing that it is equivalent to first-order stochastic dominance of appropriate statistics of the
two experiments. Section 5.5 applies this observation, together with techniques from large
deviations theory. Omitted proofs are deferred to the Appendix.

5.1. Dominance in Large Samples Implies Dominance in the Rényi Order

As discussed above, the comparison of Rényi divergences between two experiments is
independent of the number of samples. Thus it suffices to show that the Rényi order extends
the strict Blackwell order.” We do this by constructing decision problems with the property that
higher expected payoftf in these problems translates into higher Rényi divergences.

For each t > 1, the function vi(p) = 2pt(1 - p)'~t defined for P € 0,1) s strictly convex,

because its second derivative in p is 2t(t — 1)p*2(1 - p)~'"%. Thus vi(p) is the indirect utility

function induced by some decision problem. Moreover, we have that

! dP.(w))
d -
ﬂw(p) T(p) fﬁ(dPu(w')
t-1

dpi (@) = e DRHO (8)

To see this, recall that me is the distribution over posteriors induced by P, conditional on state
0 € {0, ]}, and that

wp) -(7(p)  7(p) 1 P

7 Since by assumption the two experiments P and Q form a generic pair, Blackwell dominance of P®" over Q®"
necessarily implies strict Blackwell dominance.
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d = d; +do and dm(p)= - dmo(p) )
2 I p

1
Thus dw(p V=12 dm(p ), which allows us to write

] . 1 L t-1
d = 2p1-p)t" —d =f (_)
ﬁ vi(p)dm(p) ﬂ p(l=p) 2p m(P) o \1—p dru(p)

The first equality in (8) then follows from a change of variable from signal realizations w to
_ dP)(w)

posterior beliefs p — dPi(w)+dPye) (with the probability measure changing from P to iy, holding
fixed the true state 6 = 1).

The second equality in (8) follows from the definition of Rényi divergences. Thus (8) holds,
which shows that in the decision problem with indirect utility function vi(p), the ex ante
expected payoff is a monotone transformation of the Rényi divergence R'p(t). Hence,
experiment P yields higher expected payoff in this decision problem than Q if and only if R'p(t)
> RIQ(t).

Similarly, for t€ (0, 1) we consider the indirect utility function va(p) = -2p¥(1 - p)'~, which
is now strictly convex due to the negative sign (its second derivative is 2t(1 — t) x pe2(1 — p)-1-¢).

Then
1
[ va(p)dar(p) = —e~ VRO
0

is again a monotone transformation of the Rényi divergence. So P yields higher expected payoff
in this decision problem only if R'p(t) > R'q(t).

For t = 1, we consider the indirect utility function vs(p) = 2plog(i—-Pp), which is strictly

convex with a second derivative of 2p7i(] - p)-2. We have

1 1
_ P _ dPl(w) _ 1
’/; vx(p)dw(p)_ﬁ l()g(—1 p)dﬂ'](p)_f”log(dpu(w))dP.(w)_RP(I)

Thus P yields higher expected payoff in this problem if and only if R}’(l) = Ré(l) .

Summarizing, the above family of decision problems shows that P strictly Blackwell
dominates Q only if R'p(t) > Rlq(t) for all t > 0. Since the two states are symmetric, another set
of necessary conditions is that R%(t) > R%(t) for all t > 0. Hence dominance in the Rényi order
is necessary for Blackwell dominance and (due to additivity of Rényi divergences) also for
dominance in large samples.

5.2. Repeated Experiments and log-Likelihood Ratios

We turn to the proof that dominance in the Rényi order is (generically) sufficient for
dominance in large samples. Recall that P®" Blackwell dominates Q®¥"if and only if the former
induces a distribution over posterior beliefs that is a mean-preserving spread of the latter.
However, the distribution over posteriors induced by a product experiment can be difficult to
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analyze directly. A more suitable approach consists in studying the distribution of the induced
log-likelihood ratio

dp®

lo
g ®n — (QH’ P{i;, P{l)

dP;-e
As is well known, given a repeated experiment P, its log-likelihood ratio satisfies, for every
realization w = (W; wy) in Q",

dPln n dP

()= log—— (wi

log) dp

Moreover, the random variables

dp 1 .
= ]O _— i I = 1
Xi(w) n 5 dpy (@)

are 1.i.d. under Pg", for. 90,1} Focusing on the distributions of log-likelihood ratios will
allow us to transform the study of repeated experiments to the study of sums of i.i.d. random
variables.

5.3. From Blackwell Dominance to First-Order Stochastic Dominance

Expressing posterior beliefs in terms of log-likelihood ratios simplifies the analysis of
repeated experiments. However, it is not obvious that the Blackwell order admits a simple
interpretation in this domain.

We provide a novel characterization of the Blackwell order, expressed in terms of the
distributions of the log-likelihood ratios. Given two experiments P = (QPoP;) and Q =

(2QoQ) we denote by Fgand Ge, respectively, the cumulative distribution function of the log-
likelihood ratios conditional on state 6. That is,

dPH
(a)=P ({log Sa})
Fﬁ ’ dPi_g for all a€ R, 6 € {0, 1} (10)

The c.d.f. Geis defined analogously using Qg.

We associate to P a new quantity, which we call the perfected log-likelihood ratio of the
experiment. Define

dp!
L"i=log_—_ -E
dPy

where E is a random variable that, under Py, is independent from log %' and distributed
according to an exponential distribution with support R+and cumulative distribution function 1
- e™for all x 2 0. We denote by F~ 1 the cumulative distribution function of L™ 1 under P;. That

is, F~ 1(a) =P1({L” 1< a}) for all a € R.
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More explicitly, F™ 1 is the convolution of the distribution F; with the distribution of -E, and

thus can be defined as

(@) =fP1({—Esa — w))dF,(w) = Fy(a) +cﬂf
F~ R (a,00) e_udFl(U) (11)

The next result shows that the Blackwell order over experiments can be reduced to firstorder
stochastic dominance of the corresponding perfected log-likelihood ratios.

THEOREM 3: Let P and Q be two experiments, and let F~ 1 and G™ 1, respectively, be the

associated distributions of perfected log-likelihood ratios. Then

P Q ifandonlyif F 1(a)<G™1(a) foralla€R

PROOF: Let m and t be the distributions over posterior beliefs induced by P and Q,
respectively. As is well known, Blackwell dominance is equivalent to the requirement that rt is
a mean-preserving spread of T. Equivalently the functions defined as

Ap={ - ap=[ -
[0, p) g)dn(g) and 10, p] qg)dt(q) (12)

must satisfy Ax(p) = Ac(p) for every p€ (0, 1),

We now express (12) in terms of the distributions of log-likelihood ratios F; and Gi. We have

Aﬁ(p)zp(l—f 1d7r(q))—[
(71 0, pigdrt(q) (13)

To transform the relevant integrals into those that condition on state 1, we recall that (9) implies
=1
d™(@ = 2, 4T(4) e then obtain from (13) that

1
ZAW(p):p(Z—f —dm(CI)) —f
TR 0.71 drty(q)

Next, we change variable from posterior beliefs to log-likelihood ratios. Letting a = log 1—_-Pp
and accordingly u = log 1—-9, we N . have
(2 —f —”dFl(u)) -r 'c
ea € (a,00)
2A.(p) =
(P) 1+e* (a) (14)
Since
‘l eH
f :ﬂ dF|(LI)=f e VdFi(u)+1-F(a)
(a,00)

(a=)

(14) leads to
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= ¥ Fi(a) e’ - e’ ﬁlga;
2N\n - dF = -
(p) e? 1 +¢° @ m)e I(U) 1+ ¢? 1+¢°
a— +
le 1

where the final equality follows from (11). It then follows that Ax(p) = Ax(p) if and only if F~
— log -2
1(a) £G™ 1(a) fora — log T-». Requiring this for all p€ (0, 1) yields the theorem.

Q.E.D.

Intuitively, transferring probability mass from lower to higher values of log(dPs/dP;-6) leads
to an experiment that, conditional on the state being 6, is more likely to shift the decision
maker’s beliefs towards the correct state. Hence, one might conjecture that Blackwell
dominance of the experiments P and Q is related to stochastic dominance of the distributions
Fe and Ge. However, since the likelihood ratio dP;/dPo must satisfy the change of measure
identity / SLP? d, ~1, the distribution Fy must satisfy

fe”dF.(u) =1
R

Because the function e™ is strictly decreasing and convex, and the same identity must hold for
Gy, it is impossible for Fi to stochastically dominate G;. Theorem 3 shows that a more useful
comparison is between the perfected log-likelihood ratios.?

The next lemma simplifies the study of perfected log-likelihood ratios, by showing that their
first-order stochastic dominance can be deduced from comparisons of the original distributions
Feand Ge over subintervals.

LEMMA 1: Consider two experiments P and Q. Let Fgand Ge, respectively, be the distributions
of the corresponding log-likelihood ratios, and F~ 1 and G~ 1 be the distributions of the

perfected log-likelihood ratios. The following holds:
(1) If Fi(a) £ Gi(a) foralla= 0, then F~ 1(a) £ G™ 1(a) for alla = 0. (ii) If Fo(a)

< Go(a) foralla=0, then F~ 1(a) <G~ 1(a) foralla < 0.

5.4. Large Deviations

The main step in the proof of Theorem 1 relies on the theory of large deviations. Large
deviations theory studies low probability events, and in particular the odds with which an i.i.d.
sum deviates from its expectation. The law of large numbers implies that for a random variable
X, the probability of the event {X; + - - - + Xn> na} is low for a > E[ X ] and large n, where X; Xn
are i.1.d. copies of X. A crucial insight due to Cramér (1938) is that the order of magnitude of

8 It might appear puzzling that two distributions Fi and G that are not ranked by stochastic dominance become
ranked after the addition of the same independent random variable. In a different context and under different
assumptions, the same phenomenon is studied by Pomatto, Strack, and Tamuz (2019).
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the probability of this event is determined by the cumulant generating function of X, defined
as

k(1) =logE[e']
for every t €R.
As is well known, Kx s strictly convex whenever X is not a constant. We denote by
(a)=supt-a—
Kx* el Kx(t) a€ER (15)

its Fenchel conjugate. Two facts we will repeatedly apply are that for every a € the problem

(min[X], max[X]) (15) has a unique solution t € R, and such t is nonnegative
if and only if a 2 E[ X ] . Moreover, Kx*2 0 - a - Kx(0) = 0 is nonnegative.

Cramér’s theorem establishes that for each threshold a > E[ X ], the exponential rate at which
the probability of the event {X; + - - - + Xn > na} vanishes with n is equal to the value Kx* (a) taken
by the Fenchel conjugate at a. In this paper, we are interested in comparing the probabilities of
large deviations across different random variables. Consider, to this end, two random variables

X and Y and a threshold a strictly greater than E[ X ] and

E[Y].If

Ky* (a) > Kx* (a)
then the probability of the event {X; + - - - + X, > na} vanishes more slowly than the probability
of the event {Y{ + - - - + Y, > na} . Thus there exists n sufficiently large such that P[ Xi+ - - - + Xn
>nal2P[Yi+:--+Yn>na]
The next proposition establishes a general version of this fact, while also providing a specific

number of repetitions sufficient to rank the probability of the two events.

PROPOSITION 5: Let X and Y be random variables taking values inand let [, D] X1 Xn,
Y: Ynbe iid. copies of X and Y, respectively. Suppose a 2 E[ Y ], and n > 0 satisfies Ky*
(@) —m > K3 (a+m) Then for all n > 4b>(1 + n)ns, it holds that

P[Xi+ --+ +Xa>na] 2P[Yi+ -+ +Yn>nal (16)

The condition Kv (@) - > K5(a 4 n) ensures that the rate at which the probability of the
events {Y1 + - - - + Yo > na} vanish with n is larger by a factor of at least n than the rate of the
events {Xi+ - - - + Xn>n(a + n)} . Larger values of n make this condition more demanding, and

imply that a smaller number of repetitions is sufficient to guarantee (16) to hold.
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5.5. Application to the Rényi Order

Now consider two experiments P = (QPoP;) and Q = (=QoQ;). Denote the cor-

responding log-likelihood ratios

[¢] dPS ] dQe
X =log and Y=log — 1 dPie

dQ -e

defined over the probability spaces (QPg) and (ZQg), respectively. Thus, for instance, X' is the
log-likelihood ratio of state 1 to state 0, distributed conditional on state 1, and X’ is the log-
likelihood ratio of state O to 1, distributed conditional on state 0.

The cumulant generating function of the log-likelihood ratio is a simple transformation of
the Rényi divergences, as defined in (3), (4), and (5):

Kxe(t) =t - RO(t + 1) 17

Likewise, Kye(t) = t - R%(t + 1). Hence, if P dominates Q in the Rényi order then the following
relation must hold between the cumulant generating functions:
Kxe(t) > Kye(t) fort>0 (18)

Kxe(t) < KYG(t) for-1<t<0 (19)

Att=0, we have Kxe(0) = Kye(0) = 0, but Kx#(0) > K34 (0) myst hold by (17) and the assumption

that RP(1) > R?J(l). It is well known that Kxo(0) :E[Xﬁl, which by definition is the
Kullback-Leibler divergence between P® and P!-®. Hence we also have
IE[X"’] > IE[YG] >0."

The Fenchel conjugate is an order-reversing operation: From (15), we see that if Kx >

Ky pointwise, then the corresponding conjugates satisfy Ky*= K% pointwise. The relation

12Throughout the proof, we assumes 1 6 Q is a nontrivial experiment, so that E[Ye] being the Kullback—Leibler
divergence between Q and Q - is strictly positive. This is without loss, as P clearly dominates Q (in large samples) in
case Qs trivial.

between Kxeand Kyeestablished in (18) and (19) is more complicated, and implies the following
ranking of their conjugates:

Ky*o(a) > Kx*o(a) for]E[XU] =a= maX[Y”]
Ke'ola) < Kx'ola)  for 0= <E[Y’]

This is the content of the next lemma, which in addition shows that the differences between the
Fenchel conjugates admit a uniform bound.

LEMMA 2: Suppose P and Q are a generic pair of bounded experiments such that P
dominates Q.in the Rényi order. Let (X®) and (Y ®) be the corresponding log-likelihood ratios.
Then there exists M € (0, 1) such that in both states f € {0, 1}
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o (@) —n>Ky(a+m) g B[X"] —n <a<max[Y’]
Kola—m) <Kyo(@) —m  for0<a <E[Y"] 4

These estimates will allow us to apply the previous ) ;
Proposition 5 and make uniform comparisons of large deviation € (E[Y"] + n, E[XT] —n)
probabilities. In the range a that is not covered by Lemma 2, large deviation techniques are not
necessary and it will be sufficient to apply more elementary estimates.

5.6. Rényi Order Implies Large Sample Order

We now complete the proof of Theorem 1 and show that if two experiments are ranked in
the Rényi order then they are also ranked in the large sample order. By Theorem 3, we need to
show that there exists a sample size ng such that for all n > no, the perfected loglikelihood ratios
of n independent draws from P and Q are ordered in terms of first-order stochastic dominance.

More concretely, consider the log-likelihood ratios X®and Y ® (for a single sample) as defined
above, with distributions Fgand Gg conditional on state 8. Let Fg*" be the nth convolution power
of Fe, which represents the distribution of log-likelihood ratios under the product experiment
P®n; similarly define G*¢". By Lemma 1, it suffices to show that for n > ng it holds that

F(na) =G'(na)  forallaz0 (20)
and

Fo (na) <Gy"(na)  forallaz0 (21)

Below we show (20); the argument for (21) is identical after relabeling the states.
Assume that X! and Y! take values in . > We will set no=8b2n3, where 1 € (0, 1) is as

given in Lemma 2. For future use, we note that E[ X! ] -n>E[Y'] .
Let X;' Xn'be i.i.d. copies of X'and Y1! Y,!be i.i.d. copies of Y'. We can restate (20) as
PIX]+ -+ X, <nal <P[Y/ +--+ Y <na]l  poralaso0 22)

To prove this, we divide into four ranges of values of a:
Case 1: a>max[Y']. In this case the right-hand side of (22) is 1, and hence the result

follows trivially.

Case 2: E[X']-n<a<max[Y']. From Lemma 2, we have that

% Otherwise, the first part of Lemma 2 would apply to a = E[Y'], leading to 0 ~ 7 =~ Kila+0) hisis impossible
as K*is nonnegative.
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Ky*i(a) - n>Kx"i(a+n)

Asaz E[ X' -n> E[ Y'], we can directly apply Propositions 5 and conclude that (2

3 22) holds for all n 24b (1 + n)n~. Since n < 1, it holds for all n 2 np=8b n".

Case 3:E[Y'] +n<a<E[X'] -n. By the Chebyshev inequality,

X' +.. .+ X!
P[X]1+-..+X,:Ena]SIP’[X:_'_____'_X,IISH(E[X|]_n)]<Val‘( i+ + ”)

= 7
Since Var(X| +---+ X)) =nVar(X') <nb’ e have that
l 1 b2
P[X]+-- + X! <na] < oy
By a similar argument,
. . b2
PlY) + -+ Y, <na]>1- 2
—_nn
Hence for all n > 2b?n2 we have
P[X|+--+X) <na| <P[Y +---+ Y, <na]
As no=8b?n~3is bigger, (22) holds for n > ny.
Case4:0<a<E[Y'] +n. By Lemma 2, we have that
K;l(a’) -n>Kj(a ~n)
For any random variable Z, we have K-z(t) = logE[ et2] = logE[ e™2] = Ky-t), and
K-*2(a) = supert - @ = Kz(t) = supier(-t) - (-a) = Kz(-t) = Kz* (-a). Therefore,
Ki)(l (_a) - TI = Kiyl (_a +|’])
We can now apply Proposition! I'5 to the random variables -Y' and

-X!, and the threshold
-a>-E[Y] -n>E[-X]. This yields
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for all n

>4 14+ -
22) forall a >
P[-Y! — -~ Y > —na] = P[-X! — - — X! > —na]
b? 3. Hence ( n 1 ( nn 22)
holds for > no.
This proves ( 0 and completes the proof of Theorem 1.

14The cornparisonJP)[X|l +o+ X, <nal <PLY{ +---+ Y} <nal for all ain this range implies the desired
resultPIX| +---+ X, <nal <P[Y] +.--+ Y, < nal by a standard limit argument.
5.7. Number of Samples Required

The proof of Theorem 1 establishes a stronger statement, and in fact provides an explicit
bound on the number of repetitions sufficient to achieve large sample dominance.

THEOREM 4: Let P b b and Q be a generic pair of bounded experiments, with log-
likelihood ratios [=b, D] taking values in . Assume P dominates Q in the Rényi order,
and let 1 € (0, Dpe provided by Lemma 2. Then P®" Blackwell dominates Q®" for all n > no =
8b2n3.

The constant ng is decreasing in the parameter n. This fact follows from a logic analogous to
the one behind Proposition 5: Larger values of n imply that the probability of unlikely, but very
informative, signal realizations decreases at a much slower rate under the experiment P®" than
under Q®", as the sample size n becomes large.

While simple, the constant ng is far from being tight. For example, our proof of Proposition
5 uses the Chebyshev inequality, which may be improved by a suitable application of the
Berry—Esseen theorem, at the cost of a more complex bound. It remains an open problem to
develop more precise estimates.

6. DISCUSSION AND RELATED LITERATURE

Comparison of Experiments. Blackwell (1951, p. 101) posed the question of whether
dominance of two experiments is equivalent to dominance of their n-fold repetitions. Stein
(1951) and Torgersen (1970) provide early examples of two experiments that are not
comparable in the Blackwell order, but are comparable in large samples.

Moscarini and Smith (2002) proposed an alternative criterion for comparing repeated
experiments. According to their notion, an experiment P dominates an experiment Q if for every
decision problem with finitely many actions, there exists some ng such that the expected payoff
achievable from observing P®" is higher than that from observing Q®" whenever n > no. This
order is characterized by the efficiency index of an experiment, de-o fined, in our notation, as
the minimum over t€ (0, 1) of the function e=DR,® (where a smaller index means a better
experiment). There are two conceptual differences between the order studied in Moscarini and
Smith and the large sample order that we characterize:

(i) While in Moscarini and Smith the number ng of repetitions is allowed to depend on the

decision problem, dominance in large samples is a criterion for comparing experiments
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uniformly over decision problems, for fixed sample sizes. Thus the large sample order
is conceptually closer to Blackwell dominance.'”
(i1) The order proposed in Moscarini and Smith restricts attention to decision problems with
finitely many actions, while dominance in the large sample order implies that observing
P®nis better that observing Q®" for every decision problem.

Related to (ii), Azrieli (2014) showed that the Moscarini—Smith order is a strict extension of
dominance in large samples. Perhaps surprisingly, this conclusion is reversed under a
modification of their definition: It follows from our results that when extended to consider all
decision problems, including problems with infinitely many actions, the Moscarini—Smith
order over experiments (generically) coincides with the large sample order.!!

Our notion of dominance in large samples is prior-free. In contrast, several authors (Kelly
(1956), Lindley (1956), Cabrales, Gossner, and Serrano (2013)) have studied a complete
ordering of experiments, indexed by the expected reduction of entropy from prior to posterior
beliefs (i.e., mutual information between states and signals). We note that unlike Blackwell
dominance, dominance in large samples does not guarantee a higher reduction of uncertainty
given any prior belief.!?

Majorization and Quantum Information. Our work is related to the study of majorization in
the quantum information literature. Majorization is a stochastic order commonly defined for
distributions on countable sets. For distributions with a given support size, this order is closely
related to the Blackwell order. Let P = (QPoP1) and Q = (=QoQ1) be two experiments such that Q
and = are finite and of the same size, and Po and Qg are the uniform distributions on Q and =.
Then P Blackwell dominates Q if and only if P; majorizes Qi (see Torgersen (1985, p. 264)).
This no longer holds when Q and = are of different sizes.

Motivated by questions in quantum information, Jensen (2019) asked the following question:
Given two finitely supported distributions p and v, when does the n-fold product "= x - - -
x umajorize v*" for all large n? He shows that for the case that p and v have different support
sizes, the answer is given by the ranking of their Rényi entropies.'® For the case of equal support
size, Theorem 1 implies a similar result, which Jensen (2019, Remark 3.9) conjectures to be
true. We prove his conjecture in Section L in the Appendix.

Fritz (2018) used an abstract algebraic approach to prove a result that is complementary to
Proposition 5. While Fritz’s theorem does not require our genericity condition, the comparison
of distributions is stated in terms of a notion of approximate stochastic dominance. A result
similar to Proposition 5 (but without the n and the quantitative bound on n) appears as Lemma
2 in Aubrun and Nechita (2008), also in the context of majorization and quantum information
theory.

Both Fritz (2018) and Jensen (2019), in their respective settings, asked a question in the spirit
of our dominance ratio, and proved results that are similar to Proposition 3.

Experiments for Many States and Unbounded Experiments. Our analysis leaves open a
number of questions. The most salient is the extension of Theorem 1, our characterization of
dominance in large samples, to experiments with more than two states. In Section K in the
Appendix, we identify a set of necessary conditions for large sample dominance. These

10 Recent work by Hellman and Lehrer (2019) generalizes the Moscarini-Smith order to Markov (rather than i.i.d.)
sequences of experiments.

! Consider the following variant of the Moscarini—Smith order: Say that P dominates Q if for every decision
problem (with possibly infinitely many actions) there exists an nosuch that the expected payoff achievable from
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conditions are expressed in terms of the moment generating function of the log-likelihood
ratios—which generalizes the ranking of Rényi divergences in the two state case. While we
conjecture this set of conditions to be also sufficient, our proof technique for sufficiency does
not straightforwardly extend to more than two states. In particular, we do not

P®nis higher than that from Q®" whenever n > no. Each Rényi divergence R®%(t) corresponds to the expected payoff
in some decision problem (see Section 5.1), and for such decision problems the ranking over repeated experiments is
independent of the sample size n. Thus P dominates Q in this order only if P dominates Q in the Rényi order. By
Theorem 1, P must then dominate Q in large samples.

"To see this, consider Example 2 above with parameters a = 0 1 and B = 0. Then Proposition 2 ensures that the
experiment P dominates Q in large samples. However, given a uniform prior, the residual uncertainty under P is
calculated as the expected entropy of posterior beliefs, which is % 10g(2) 7 0.346. The residual uncertainty under Q
is —aloga — (1 —a)log(l — a) = 0.325 which is lower.

18As discussed above, majorization with different support sizes does not imply Blackwell dominance. Indeed, the

ranking based on Rényi entropies is distinct from our ranking based on Rényi divergences unless the support sizes
are equal. See Section L in the Appendix for details.

know how to extend the reduction of Blackwell dominance to first-order stochastic dominance
(Theorem 3).!> With binary states, we have been able to derive this simplification because one-
dimensional convex (indirect utility) functions admit an one-parameter family of extremal rays.
Going to higher dimensions, the difficulty is that “the extremal rays are too complex to be of
service” (Jewitt (2007)).

Another extension for future work is to experiments with unbounded likelihood ratios. As
we demonstrate in Section J in the Appendix, our characterization of the large sample order
remains valid if the dominant experiment P is unbounded whereas the dominated experiment
Q is bounded. The result also extends, under an additional assumption, to pairs of unbounded
experiments whose Rényi divergences are finite. However, we do not know whether and how
our result would generalize to the case of infinite Rényi divergences. The technical challenge
is that large deviation estimates that are uniform across different thresholds typically require
the moment generating function to be finite (socalled “Cramér’s condition”)."?

APPENDIX

The structure of the Appendix follows that of the paper. After reviewing large deviations
theory, we complete the proof of Theorem 1 by supplying the proofs of Proposition 5, Lemma
1, and Lemma 2. We then provide proofs for our other results in the order in which they
appeared.

APPENDIX A: LARGE DEVIATIONS

12 If such a reduction could be obtained, the remaining obstacle would be the characterization of first-order
stochastic dominance between large i.i.d. sums of random vectors. This would require the development of large
deviation estimates in higher dimensions (generalizing Lemma 3 in the Appendix).

13 Although Cramér’s result that logP[X' + -+ + X"> na] ~ —-n-K**(a) remains true even when KX(t) can be infinite, as
far as we know the proofs of this generalization do not deliver a quantitative lower bound similar to our Lemma 3.
As a consequence, Cramér’s approximation is not uniform across a.
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For every bounded random variable X that is not a constant, we denote by Mx(t) = logE[ e ]

and Kx(t) = logMx(t) the moment and cumulant generating functions of X. As is well known, My

and Kyxare strictly convex. We denote by

(a)=supt-a—
K« el KX(t)

the Fenchel conjugate of Kx. For a, © (min[X], max[X1)  the maximization problem has a
unique solution, achieved at (0) =0, K}(a) >0-a — Kx(0) = some t € R. This
solution t is nonnegative if and only if a 2 E[ X ] . In addition, as Kx O is nonnegative. The
function Kx* (a) is continuous (in fact, analytic) wherever it is finite.
The well-known Chernoff bound states that if XX; X, are an i.i.d. sequence, then
PIX, + -+ X, >nal <e¢ " % forallazE[X]

The next proposition gives a lower bound for this probability.

LEMMA 3: Let XX1 Xnbe an i.i.d. sequence taking values in. For all [—b, D]
min[ X ] max[ X] - n) and n 2 1, jt holds that

n>0a€e]

—n-K% (a+m) 4b2
PIXi+ -+ X,>nal=e "x""] - —
nn’
PROOF: We first consider the case where a>E[ X] - n/2. Define t by

Kx(t)=a+n/2

so that Kx* +271/ 2) - (;l(-i' n/2)-t— (aKx(t). Such a t is a nonnegative finite number, since
EX. a n/2 <max X .

[T+ [ ]

Denote by v the distribution of X, and let X™ be a real random variable whose distribution v*

is given by
\"/ etx
—_— (x) = E o —3 d tx
v e Kx(t) € -
d

This construction ensures that v” is also a probability measure, so that X" is a well-defined

random variable. Note that

=15 S T il NP
= — = da
E[e.‘X] X n/z

and that the cumulant generating function of X" is
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() = 02 E[e] = log E[e "+ eX] = Ky (s + 1) — Ky

Now let X" 1 X" nbe i.i.d. copies of X" . Denote Sh=X;+ - -+ Xnand S" n=X"1+-- -+ X" n.

The cumulant generating function of S™ nis
K (8) =K () =n(Kx (s +1) = Kx (1)) = Ks, (s + 1) — Ksu)

and so the Radon-Nikodym derivative between the distributions of S™ nand S, is e®* s,V =

ew nkx(t). Hence

]P[Srz > na] = E[]l{.s‘,pna}]

— E[e r.;',, } ”KX“)]I .

{Sp=>na)

— C”KX“) . E[C—rs‘,,ﬂ .

{8p>na)
The event {S” n> na} contains the event {n(a + n) >S" n>na}, and so
P[S, > na] = e"*x" . E[e~*1
1K x (1)~ tn(a+n) A
= ety R E[ﬂljr(¢l+n)>5,,>im}]

= g Kx(—mn(atn) -P[n(a +m)>S,> na]

{n(a+ 11)>.§">Hﬂ]]

where the second inequality uses t 2 0 and S” n< n(a + n) whenever 1ina+n)>s*n>nat> 0.
Now, S™ nhas expectation nE[ X" ] = n(a + n/2). Its variance is nVar[ X"

] <nE[X" 2] < nb?, since X" has the same support of X by construction. Therefore,

by the Chebyshev inequal-

ity,
|
- nb__ . 4p*
. . . nm
Pla(a+m) > S, >na] =1—"P[|S, —E[S,]' =
2 nn/2 (nn/2)* 2

We have thus shown that

2
P[S, > na) > e_”“‘“”)_"""“”(l - ﬂ)

Now, by definition Kx (@ + 1) = f(a+m) — Kx(?), Hence we arrive at

. 4p?
P[S, > na] = e K@ (1 a )
nn’
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We turn to the case where a < E[ X ] - n/2. In this case, we can directly apply the Chebyshev

inequality and obtain

IP[SH S na] S H:D[Sn - E[Su] S _nn/2:|

- Var[S,,]2 _ nVar[XZ] - 4b>
(nm/2)°  (nn/2)
nn?
Hence
4b2
P[Sa>na] 21-__»
nn

Since Kx* is nonnegative, we again have

. 4p*
P[S, > na] > ¢ "Fx(@m (1 a )
nn’

This proves the lemma. Q.E.D.

A.1. Proof of Proposition 5
If a<min[ X], then the statement holds since in (16) the LHS is equal to 1. Below we assume
a2min[ X ] . By assumption, Kx* (a + n) is finite, and hence a + n < max[ X]. We can thus apply
Lemma 3 to X and conclude that for every n2 1,
PIX,+ -+ X, > nal > e"K}“”’”(l - :—bi)
By assumption, we have that Ky (@) — 1 = K5 (@ + 1), and so !

—n-K%(a) on 4b2
PIX i+ +X,>nal=e ""v' e 1 - —
nn-

. 4p*

Hence, for n 2 4b%(1 + n)n=73,

P[ Xi+ -+ +Xn> na] 2 €-nKv« (a)

On the other hand, since a 2 E[ Y ] by assumption, we have the Chernoff bound

P[ Yi+ --- +Yn> na] < €-nKv+(a)
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This proves the desired result (16).

APPENDIX B: PROOF OF LEMMA 1
An exponential distribution has probability density function that vanishes for negative u and

equals e™ for positive u. Thus F~ 1and G 1 can be written as

o0

l(a):f Fi(a+ue 1(a)=f Gila+ue
0 Ydu G~ 0 u

du

and likewise
Consider the first part of the lemma. Suppose a 2 0, then by assumption Fi(a + u) < Gi(a + u)

for all u 2 0, which implies F~ 1(a) £ G~ i(a).

For the second part of the lemma, we will establish the following identities:

F~1(a) B f_a Fo(vle¥dv and G 1i(a) B f_u Go(v)e™dv (23)
Given this, the result would follow easily: If Fo(v) < Go(v) for all v > 0, then the above implies
F”1(a) £G™ 1(a) forall a< 0.

To show (23), we recall (11) and write

1(a)=f dFl(u)-l-e”f
E~ o a €YdFi(u) (24)

The key observation is that dFi(u) = —e" dFo(-u). Indeed, dF;(u) is the density under state 1 that
the log-likelihood ratio log(dP:/dPo) is equal to u, which is also the density under state 1 that
the opposite log-likelihood ratio log(dPo/dP1) is equal to —u. By definition of the log-likelihood
ratio, this density is scaled by a factor of e"uwhen we change measure from state 1 to state 0.

Substituting dFi(u) =  -e"dFo(-u) into (24), we have

1(a)=f - n(—u)‘i'euf- —dFy(—
F~ - eYdF a u)

= f e dFy(v) +e“Fo(—

a a

where the second equality uses change of variable from uto v = -u. Integration by parts

then yields (23) and completes the proof.

APPENDIX C: PROOF OF LEMMA 2
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Fix 0, we will show the result holds for all sufficiently small positive n. Because P dominates
Qin the Rényi order, and the pair of experiments is generic, the two log-likelihood ratios satisfy
0<E[Y®]<E[X®] and max[Y®] < max[ X®].

— c] . ]
For the first part of the lemma, consider the interval A. If it — [E[XT], max[ Y]] is
empty (i.e., E[ X®] > max[ Y 8] ), the result trivially holds by choosinge n small. Otherwise,

consider any point a € A. Since a is above the expectation of X,

ola)=supta —
Kx* =0 Kxe(t)

And because a < max[ X ] the supremum is achieved at some finite t* 2 0. Dominance in the
Rényi order implies, by (18),

Kyt o (@) = fa—Kyo(i) <ta— Kyo(l) fK;,,(a)

The first inequality can only hold equal if t* = 0 and a = E[ X®] , but in that case thee second
inequality is strict because a is strictly above the expectation of Y . Hence Kyv*o(a) > Kx* o(a) for
all a in A. Since A is compact and the two Fenchel transforms are continuous, we can find €,

)

positive such that Ky* ofa’ —&1> KX* o(a) over all @ € A. Choosing positive €, sufficiently small,

we in fact (g4 7)) — Kt (a) <2 have Ky* e(a) -€> KX* o(a) for all a in the slightly bigger

interval [E[X°] — &, max[Y’]]. By uniform continuity, any
small positive n satisfies Kx*for all a in this interval. If in addition n < min{ %'e, },

then
(@ =1 > K (@) =&+ 2 > K (@) + = > K y(a+m)
X
Y 2 5 )
for all € [E[X’] — &, max[Y*]]
yields the desired result.

a, and thus ClEIX"T—m, max[Y°ll g0 5 This

J]
As for the second half, consider a point®4a. < [0, EIY"Il ginceas< E[Y®] and a > 0 > min[
Y ], there exists a finite t™ < O such that Ky =la — (a) Kve(t)™ . This t~ satisfies
Kye(t)” =a. 6 10

We now show that t >™ —1. The cumulant generating functions of Y and Y ~satisfy for all t €
R the relation

Kye(t) = Kyi_e(-t — 1)

and hence Kyf‘(_l) =—K},,(0) = —E[y'] =0. Since Kye(t)” =a >0, and Kyeis increasing,
we have t”€ (—1, 0]. Dominance in the Rényi order then implies, by (19),

!4 The latter holds because max[Y!-€] > E[Y!-®] > 0, and by definition min[Y®] = -max[Y'-€].
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K; (a):fa—K n(E)SEa—K n(?)fK}e v X o(a)
Similar to before, the first inequality can only hold equal if t~ = 0 and a = E[ Y®], but in that
case the second inequality is € [0, E[Y"]] strict because a is strictly below the
expectation  of + (5 _ p) < g+ u(ﬂ’) _q X®. Hence Ky o(a) < Kx2(@) for all a . Using
continuity as | X before, any sufficiently small n makes Khold

for all a in the slightly bigger interval
[0, E[Y"] + 7). Hence the lemma holds.

APPENDIX D: PROOF OF PROPOSITION 1

Let pi1 (resp., p3) be the essential minimum (resp., maximum) of the distribution m of posterior
beliefs induced by P. Since the support of 1t has at least 3 points, we can find p2 € (P15 P3) such

that t([ p1p2]) > nt({p: }) and ([ p2p3]) > mt({ps }).

We use this p, to construct an experiment Q which has signal space {01 }, and which is a
garbling of P. Specifically, if a signal realization under P leads to posterior belief below p., the
garbled signal is 0. If the posterior belief under P is above p», the garbled signal is 1. Finally, if
the posterior belief is exactly p2, we let the garbled signal be 0 or 1 with equal probabilities.

Since it([ pip2]) > n({p1}), the signal realization “0” under experiment Q induces a posterior
belief that is strictly bigger than pi, and smaller than p,. Likewise, the signal realization “1”
induces a belief strictly smaller than p3, and bigger than p,. Thus P and Q form a generic pair,
and the distribution T of posterior beliefs under Q is a strict meanpreserving contraction of .
We now recall that the Rényi divergences are derived from strictly convex indirect utility
functions u(p) = -p*(1 - p)'*forO<t<landv(p)= gc{0,1} p(1 - p)'*for t > 1. Thus,

Res(t) > Ro(!) for all and t > 0.

We will perturb Q to be a slightly more informative experiment Q, such that P still dominates
Qin the Rényi order but not in the Blackwell order. For this, suppose that under Q the posterior
belief equals qi € (21> P2) with some probability A, and equals g2 € (P2, P3) with remaining
probability. Choose any small positive number €, and let Qbe another binary experiment
inducing the posterior belief q; - €(1 - A) with probability A, and inducing the posterior belief
g2 + €\ otherwise. Such an experiment exists, because the expected posterior belief is
unchanged. By continuity, R%(t) > R®(t) still holds when ¢ is sufficiently small.! Since P and
Qalso form a generic pair, Theorem 1 shows that P dominates Q in large samples.

It remains to prove that P does not dominate Q according to Blackwell. Consider a decision
problem where the prior is uniform, the set of actions is {01 }, and payoffs are given by u(6 =
a=0)=p,u@=a=1)=1-prandu(® =a)=0.Theindirect utility function is v(p) = max{(1

- p)p2 p(1 = p2)}, which is piece-wise linear on [ Op> ] and [ p21 ] but convex at p>. Recall that

Av(gr—e(1=M))+ (1 —A)-viga+eA) = A-vig) +{1—A) - vig

f o
15 Using the relation between R%(t) and Rp(1 — t), it suffices to show R%(t) > re() for 6. (0.1} 4 ¢ > 1/2.

0 0
Fixing a large T, then by uniform continuity, re(t) > RQ({) implies ReP(t) > Ree’ (1) I@’[i 12 for t / T] when € is
small. This also holds for t large, because as t - o the growth rate of the Rényi divergences are governed by the
maximum of likelihood ratios, which is larger under P than under Q.
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in constructing the garbling from P to Q, those posterior beliefs under P that are below p; are

“averaged” into the single posterior belief q; under Q, and those above p; are averaged into the
belief . Thus Q achieves the same expected utility in this decision problem as P (despite being
a garbling). Nevertheless, observe that Q achieves higher expected utility in this decision
problem than Q.'® Hence Q achieves higher expected utility than P, implying that it is not
Blackwell dominated.

APPENDIX E: PROOF OF PROPOSITION 2

It is easily checked that the condition R;“(lf 2)>R,(1/2) reduces to

Jal—a) > ‘/B(% —B) +7
25)

Since the experiments form a generic pair, by Theorem 1, we just need to check dominance in
the Rényi order. Equivalently, we need to show

.l r . .l 1-r . 1
(E_B)B +(§_B) ﬁ+§

<(l-a)a"""+(1—a) e, Yo<r<l

o))
2 2 2 ; (26)
>s(l—a)a"""+(1—-a)"a", Vr<
B
B-ln( & )+(13)-1n 2__
VRS B
2 Oorr>1; 27

>ae-ln( ¢ )-}-(l—a)-]n(l_a)
l—« «@ (28)

To prove these, it suffices to consider the a that makes (25) hold with equality.!” We will

1
show that the above inequalities hold for this particular a, except that (26) holds equal at r = 2.
Let us define the following function:

16 Formally, since qi - e(1 -\ <qi<pz2and g2+ €\ > g2 > pa, it holds that

171t is clear that the inequalities are easier to satisfy when a increases in the range. >This follows
from Rolle’s theorem and an induction argument.
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1 ' 1—r 1 o r 1 r _l—r 1—r
" (5_18)18 +(§—‘B) B+§—(1—C€)ﬂ‘ —(l-—a) '™
r):=

r

When (25) holds with equality, we have (0) — AG)=A) ~0. Thus hasroots at 0, 1 as well
1

as a double-root at 2. But since is a weighted sum of 4 exponential functions plus a constant,
it has at most 4 roots (counting multiplicity).?> Hence these are the only roots, and (—00,0)
we deduce that the function has constant sign on each of the intervals, ’

0,1), (3, 1), (1,00)
128 _ 1-a
Now observe that since 28 <@ = %, itholdsthat~ 8 ~ “« ~1.Itis then easy to check that
(r) > oo asr > oo . Thus (r) is strictly positive for r€ (1,00). As (1) = 0, its derivative is weakly
positive. But recall that we have enumerated the 4 roots of . So cannot have a double-root at r
=1, and it follows that (1) is strictly positive. Hence (28) holds.

1
Note that (1) >0 and (1) =0 also implies (1 —€) <0. Thus is negative on (21). A symmetric

argument shows that is positive on (-==0) and negative on (0 %). Hence (26) and (27) both hold,

completing the proof.

APPENDIX F: PROOF OF PROPOSITION 3

= inf,, 22— °w
Denote r. We would like to show that P/Q = r. Let n, m be such that

Ra(t)
P®" Q®m. Then, since ranking of the Rényi divergences is a necessary
- . “R4(1) = m-Rz,(t)
6 € {0,1) condition for Blackwell dominance, and by the
additivity of Rényi divergences, nfor alland t > 0. Thus any such m/n is bounded above by r,
and so P/Q <.
In the other direction, take any rational number m/n < r. Then, again by the additivity of the
Rényi divergences, P®" dominates Q®™ in the Rényi order. Furthermore, the fact
T Ro () "that limtse P > m/n implies the pair
Q
p® and Q®™is generic. Therefore, by Theorem 1, we have that for
some k large enough, P& Q®™k Thus P/Q = mk/nk = m/n. Since this holds for every rational
m/n that is less than r, we can conclude that P/Q 2 r. Finally, note that each of the functions

R% and RO are positive, increasing and bounded on (0, 00). Furthermore, using

Rer(t) Rir-e(1 —t) Req = 1-8(1 - t)

(t) Ra

for t€ (0, 1), we can rewrite
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RO(t) RO(t) (t)
= P _ e . .
P/Q o0 RO(1) 601 RY 1n'f' inf ' .
Recall that R®(t), R8q(t) are t>0 4 . positive, continuous in t

and approach max[ X®] and max[ Y ®] as t > o= . Thus a compactness argument shows that P/Q

is always positive.
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