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We study repeated independent Blackwell experiments; standard examples include 

drawing multiple samples from a population, or performing a measurement in different 

locations. In the baseline setting of a binary state of nature, we compare experiments in terms 

of their informativeness in large samples. Addressing a question due to Blackwell (1951), 

we show that generically an experiment is more informative than another in large samples if 

and only if it has higher Rényi divergences. 
We apply our analysis to the problem of measuring the degree of dissimilarity between 

distributions by means of divergences. A useful property of Rényi divergences is their 

additivity with respect to product distributions. Our characterization of Blackwell 

dominance in large samples implies that every additive divergence that satisfies the data 

processing inequality is an integral of Rényi divergences. 

KEYWORDS: Comparison of experiments, stochastic dominance, divergences. 

1. INTRODUCTION 

STATISTICAL EXPERIMENTS form a general framework for modeling information: Given a set 

Θ of parameters, an experiment P produces an observation distributed according to Pθ, given 

the true parameter value θ ∈ Θ. Blackwell’s celebrated theorem (Blackwell (1951)) provides a 

partial order for comparing experiments in terms of their informativeness. 

As is well known, requiring two experiments to be ranked in the 

Blackwell order is a demanding condition. Consider the problem of testing a 

binary hypothesis, based on random samples drawn from one of two experiments P or Q. 

According to Blackwell’s ordering, P is more informative than Q if, for every test performed 

based on observations produced by Q, there exists another test based on P that has lower 

probabilities of both 
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Type-I and Type-II errors (Blackwell and Girshick (1979)). This is a difficult condition to 

satisfy, especially in the case where only one sample is produced by each experiment. 

In many applications, an experiment does not consist of a single observation but of multiple 

i.i.d. samples. For example, a new vaccine is typically tested on multiple patients, and a 

randomized control trial assessing the effect of an intervention usually involves many subjects. 

We study a weakening of the Blackwell order that is appropriate for comparing experiments in 

terms of their large sample properties. Our starting point is the question, first posed by 

Blackwell (1951), of whether it is possible for n independent observations from an experiment 

P to be more informative than n observations from another experiment Q, even though P and Q 
are not comparable in the Blackwell order. The question was answered in the affirmative by 

Stein (1951), Torgersen (1970), and Azrieli (2014). 1  However, identifying the precise 

conditions under which this phenomenon occurs has remained an open problem. 

We say that P dominates Q in large samples if for every n large enough, n independent 

observations from P are more informative, in the Blackwell order, than n independent 

observations from Q. We focus on a binary set of parameters Θ, and show that generically P 

dominates Q in large samples if and only if the experiment P has higher Rényi divergences than 

Q (Theorem 1). Rényi divergences are a one-parameter family of measures of informativeness 

for experiments; introduced and characterized axiomatically in Rényi (1961), we show that 

they capture the informativeness of an experiment in large samples. For any two experiments 

comparable in terms of Rényi divergences, we also provide a simple bound on the sample size 

that ensures that larger samples of independent experiments are comparable in the Blackwell 

order (Theorem 4). 

The proof of this result crucially relies on two ingredients. First, we use techniques from 

large deviations theory to compare sums of i.i.d. random variables in terms of stochastic 

dominance. In addition, we provide and apply a new characterization of the Blackwell order: 

We associate to each experiment a new statistic, the perfected log-likelihood ratio, and show 

that the comparison of these statistics in terms of first-order stochastic dominance is in fact 

equivalent to the Blackwell order. 

We apply our characterization of Blackwell dominance in large samples to the problem of 

quantifying the extent to which two probability distributions are dissimilar. This is a common 

problem in econometrics and statistics, where formal measures quantifying the difference 

between distributions are referred to as divergences.2  Well-known examples include total 

variation distance, the Hellinger distance, the Kullback–Leibler divergence, Rényi divergences, 

and more general f-divergences. 

Rényi divergences satisfy two key properties. The first is additivity: Rényi divergences 

decompose into a sum when applied to pairs of product distributions. Additivity captures a 

 
1 Even though Stein (1951) is frequently cited in the literature for a first example of this type, we could not gain 

access to that paper. 
2 See, for example, Sawa (1978), White (1982), Critchley, Marriott, and Salmon (1996), Kitamura and Stutzer 

(1997), Hong and White (2005), Ullah (2002). See Kitamura, Otsu, and Evdokimov (2013) for a recent application 

of α-divergences, which are a reformulation of Rényi divergences. 

https://www.econometricsociety.org/
https://doi.org/10.3982/ECTA17548
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principle of noninteraction across independent domains, as the total divergence of two 

unrelated pairs does not change when they are considered together as a bundle. Additivity is a 

natural property, and in applications it is a crucial simplification for studying i.i.d. processes. 

A second desirable property is described by the data-processing inequality, which stipulates 

that the distributions of two random variables X and Y are at least as dissimilar as those of f(X) 

and f(Y), for any transformation f. As we show, this property is closely related to monotonicity 

with respect to the Blackwell order. 

Using our main result, we show that every additive divergence that satisfies the 

dataprocessing inequality and a mild finiteness condition is an integral (i.e., the limit of positive 

linear combinations) of Rényi divergences (Theorem 2). This result is an improvement over 

the original characterization of Rényi (1961), as well as more modern ones (Csiszár (2008)), 

because it shows that additivity alone pins down a single class of divergences without making 

any further assumptions on the functional form. 

The study most closely related to ours is Moscarini and Smith (2002). In their order, an 

experiment P dominates another experiment Q if for every finite decision problem, a large 

enough sample of observations from an experiment P will achieve higher expected payoff than 

a sample of the same size of observations from Q. In contrast to the order proposed by 

Blackwell and analyzed in this paper, their definition allows for the critical sample size to 

depend on the decision problem, and considers a restricted class of decision problems. We 

provide a detailed discussion of this and other related work in Section 6. 

The paper is organized as follows. In Section 2, we provide our main definitions. Section 3 

contains the characterization of Blackwell dominance in large samples, with proof deferred to 

Section 5. In Section 4, we characterize additive divergences. Finally, we further discuss our 

results and their relation to the literature in Section 6. 

2. MODEL 

2.1. Statistical Experiments 

A state of the world θ can take two possible values, 0 or 1. A Blackwell–Le Cam experiment 
P = (ΩP0P1) consists of a sample space Ω, which we assume to be a Polish space, and a pair of 

Borel probability measures  defined over Ω, with the interpretation that 

Pθ(A) is the probability of observing A ⊆ Ω in state. This framework is 

commonly encountered in simple hypothesis tests as well as in information economics. In 

Section 6, we discuss the case of experiments for more than two states: we obtain necessary 

conditions for dominance in large samples and explain the obstacles to a full characterization. 

Given two experiments P = (ΩP0P1) and Q = (ΞQ0Q1), we can form the product experiment P 

⊗ Q given by 

P ⊗ Q = (Ω × ΞP0 × Q0P1 × Q1) 

where Pθ × Qθ, given, denotes the product of the two measures. Under the 

experiment P ⊗ Q the realizations produced by both P and Q are observed, and the two 

observations are independent (conditional on the true state). For instance, if P and Q consist of 

drawing samples from two different populations, then P ⊗ Q consists of the joint experiment 

where a sample from each population is drawn. We denote by 
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 P⊗n = P ⊗ · · · ⊗ P 

the n-fold product experiment where n independent observations are generated according to 

the experiment P. 

Consider now a Bayesian decision maker whose prior belief assigns probability 1/2 to the 

To each experiment P = (ΩP0P1), we associate a Borel probability state being 1. 

measure π overthat represents the distribution over posterior beliefs induced by 

the experiment. Formally, let p(ω) be the posterior belief that the state is 1 given the realization 

ω ∈ Ω: 

dP1(ω) 

p(ω) = 1

 + 0  dP 

(ω) dP (ω) 

Furthermore, define 

for every Borel set B

 

 

as the probability that the posterior belief will belong to B, given state θ. We then define π = 

(π0 + π1)/2 as the unconditional measure over posterior beliefs. 

Throughout the paper, we restrict our attention to experiments where the measures P0 and P1 

are mutually absolutely continuous, so that no signal realization ω ∈ Ω perfectly reveals either 

state. We say that P is trivial if P0 = P1, and bounded if the derivative dP1/dP0 is bounded above 

and bounded away from 0. 

2.2. The Blackwell Order 

We first review the main concepts behind Blackwell’s order over experiments (Bohnenblust, 

Shapley, and Sherman (1949), Blackwell (1953)). Consider two experiments P and Q and their 

induced distribution over posterior beliefs denoted by π and τ, respectively. The experiment P 
Blackwell dominates Q, denoted P  Q, if 

 v(p)d v(p)dτ(p) (1) 

for every convex function v : → . Equivalently, P  Q if π is a mean-preserving spread 

of τ. We write P  Q if P  Q and Q  P. So, P  Q if and only if (1) holds with a strict inequality 

whenever v is strictly convex, that is, π is a mean-preserving spread of τ and π = τ. 

As is well known, each convex function v can be seen as the indirect utility induced by some 

decision problem. That is, for each convex v there exists a set of actions A and a utility function 

u defined on A × {01 } such that v(p) is the maximal expected payoff that a decision maker can 

obtain in such a decision problem given a belief p. Hence, P  Q if and only if in every decision 
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problem, an agent can obtain a higher payoff by basing her action on the experiment P rather 

than on Q. 

Blackwell’s theorem shows that the order  can be equivalently defined by “garbling” 

operations: Intuitively, P  Q if and only if the outcome of the experiment Q can be generated 

from the experiment P by compounding the latter with additional noise, without adding further 

information about the state.3 

As discussed in the Introduction, we are interested in understanding the large sample 

properties of the Blackwell order. This motivates the next definition. 

DEFINITION 1—Large Sample Order: An experiment P dominates an experiment Q in large 
samples if there exists an n0 ∈ N such that 

 P⊗n  Q⊗n for every n ≥ n0  (2) 

 
measurable kernel (also known as “garbling”)3Formally, given two experiments P 

, P  Q if and only if there is a 

 is the set of probability measures 

over Ξ, such that for every θ and every measurable . In other terms, there is a 

(perhaps randomly chosen) measurable map f with the property that for both θ = 0 and θ = 1, if X is a random quantity 

distributed according to Pθ then Y = f(X) is distributed according to Qθ. 

This order was first defined by Azrieli (2014) under the terminology of eventual sufficiency. 

The definition captures the informal notion that a large sample drawn from P is more 

informative than an equally large sample drawn from Q. Consider, for instance, the case of 

hypothesis testing. The experiment P dominates Q in the Blackwell order if and only if for every 

test based on Q there exists a test based on P that has weakly lower probabilities of both Type-

I and Type-II errors. Definition 1 extends this notion to large samples, in line with the standard 

paradigm of asymptotic statistics: P dominates Q if every test based on n i.i.d. realizations of Q 

is dominated by another test based on n i.i.d. realizations of P, for sufficiently large n. When 

the two experiments are statistics of a common experiment, dominance in the large sample 

order implies that one statistic will eventually contain all the information captured by the other. 

As shown by Blackwell (1951, Theorem 12), dominance of P over Q implies dominance of 

P⊗n over Q⊗n, for every n. So dominance in large samples is an extension of the Blackwell 

order. This extension is strict, as shown by examples in Torgersen (1970) and Azrieli (2014). 

2.3. Rényi Divergence and the Rényi Order 

Our main result relates Blackwell dominance in large samples to a well-established notion 

of informativeness due to Rényi (1961). Given two probability measures μ, ν on a measurable 

space Ω and a parameter t > 0, the Rényi t-divergence is given by 

t−1 

 Rtdμ(ω)

 (3) 
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when t= 1, and, ensuring continuity, 

 R1(μ ν) dμ(ω)  (4) 

Equivalently, R1(μ ν) is the Kullback–Leibler divergence between the measures μ and ν. 

As t increases, the value of Rt increases and is continuous whenever it is finite. The limit value 

as 
t → ∞ , which we denote by 

R
∞

(μ ν), is the essential maximum of log(d
d

μ
ν ), the logarithm 

of the ratio between the two densities. 

As a binary experiment precisely consists of a pair of probability measures, we can apply 

this definition straightforwardly to experiments. Given an experiment P = (ΩP0P1), a state θ, 

and parameter t > 0, the Rényi t-divergence of P under θ is 

 Rθ
P(t) = Rt(Pθ  P1−θ)  (5) 

Intuitively, observing a sample realization for which the likelihood ratio dPθ/dP1−θ is high 

constitutes evidence that favors state θ over 1 − θ. For instance, in the case of t = 2, a higher 

value of Rθ
P(2) describes an experiment that, in expectation, more strongly produces evidence 

in favor of the state θ when this is the correct state. Varying the parameter t allows to consider 

different moments for the distribution of likelihood ratios. Rényi divergences have found 

applications to statistics and information theory (Liese and Vajda (2006), Csiszár (2008)), 

machine learning (Póczos, Xiong, and Schneider (2012), Krishnamurthy, Kandasamy, Poczos, 

and Wasserman (2014)), computer science (Fritz (2017)), and quantum information 

(Horodecki, Horodecki, Horodecki, and Horodecki (2009), Jensen (2019)). The Hellinger 

transform (Torgersen (1991, p. 39)), another well-known measure of informativeness, is a 

monotone transformation of the Rényi divergences of an experiment. 

The two Rényi divergences R1
P and R0

P of an experiment are related by the identity 

t 

 R t)  (6) 

Hence the values of Rθ
P(t) for tare determined by the values of R1

P
−θ(t) on the 

interval [ 1/21 ] . Thus, it suffices to consider values of t in . 

DEFINITION 2—Rényi Order: An experiment P dominates an experiment Q in the Rényi order 

if it holds that for all  and all t > 0 

Rθ
P(t) > Rθ

Q(t)  

The Rényi order is a extension of the (strict) Blackwell order. In the proof of Theorem 1 

below, we explicitly construct a one-parameter family of decision problems with the property 

that dominance in the Rényi order is equivalent to higher expected payoff with respect to each 

decision problem in this family. See Section 5.1 for details. 

A simple calculation shows that if P = S ⊗ T is the product of two experiments, then for every 

state θ, 
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R    

A key implication is that P dominates Q in the Rényi order if and only if the same relation holds 

for their nth fold repetitions P⊗n and Q⊗n, for any n. Hence, the Rényi order compares 

experiments in terms of properties that are unaffected by the number of samples. Because, in 

turn, the Rényi order extends the Blackwell order, it follows that dominance in the Rényi order 

is a necessary condition for dominance in large samples. 

As a final remark on the definition of the Rényi order, it is important to require the 

comparison for both states θ = 0 and θ = 1, as there exist pairs of experiments P and Q such that 

R1
P(t) > R1

Q(t) for every t, but R0
P(t) < R0

Q(t) for some t.3 

3. CHARACTERIZATION OF THE LARGE SAMPLE ORDER 

We say two bounded experiments P and Q form a generic pair if the essential maxima 

of the log-likelihood ratios log d
d

P
P

1
0 and log d

d
Q

Q
1
0 are different, and if their essential minima 

are also different. This holds, for example, if for each of the two experiments the set of signal 

realizations is finite, and there is no posterior beliefs that can be induced by both experiments. 

THEOREM 1: For a generic pair of bounded experiments P and Q, the following are 
equivalent: 

(i) P dominates Q in large samples. 

(ii) P dominates Q in the Rényi order. 

That (ii) implies (i) means that for every two experiments P and Q that are ranked in the 

Rényi order, there exists a sample size n such that n or more independent samples of P and Q 
are ranked in the Blackwell order. The proof of the theorem also establishes an upper bound on 

n; however, as stating this bound requires several additional concepts we defer this result to 

Theorem 4 in Section 5.7. The complete proof of Theorem 1 appears in Section 5 below. 

We mention that Theorem 1 remains true so long as the dominated experiment Q is bounded 

(whereas P need not be bounded); see Section J in the Appendix in the Online Supplementary 

Material (Mu, Pomatto, Strack, and Tamuz (2021)) for discussion of this and another 

generalization. On the other hand, the theorem does not remain true if we remove the genericity 

assumption. In Section I, in the Appendix we discuss the knife-edge case where the maxima or 

the minima of the log-likelihood ratios are equal. We demonstrate a nongeneric pair of 

 
3 A simple example involves the following pair of binary experiments: 

 ω ω 

P0 1/3 2/3 

P1 2/3 1/3 

 ω ω 

Q0 6/9 3/9 

Q1 8/9 1/9 

where the entries represent conditional probabilities. Direct computation shows that R1
P(t) > R1

Q(t) for every t > 0, 

while R0
P(t) < R0

Q(t) for t > 2. 
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experiments P and Q such that P dominates Q in the Rényi order, but P does not dominate Q in 

large samples. Given this example, it seems difficult to obtain an applicable characterization of 

large sample dominance without imposing some genericity condition. 

A natural alternative definition of “Blackwell dominance in large samples” would require 

P⊗n  Q⊗n to hold for some n, but the resulting order is in fact equivalent 

under our genericity assumption. This is a consequence of Theorem 1, 

becausefor any n0 implies P dominates Q in the Rényi order, which in turn implies P  Q for all 

large n.4 

3.1. Examples 

In this section, we illustrate Theorem 1 by means of two examples of pairs of experiments 

that are not Blackwell ranked, but are ranked in large samples. 

EXAMPLE 1: We first introduce a new example of two such experiments P and Q. The first 

experiment P appears in Smith and Sørensen (2000). The signal space is the interval [ 01 ] , and 

the measures P0 and P1 are absolutely continuous with densities f0(s) = 1 and f1(s) = 1/2 + s. Our 

second experiment Q is binary, with signal space {01 } . The measure Q0 assigns probability 1/2 

to both signals, while the other measure is Q1(1) = p and Q1(0) = 1 − p. 

For p = 0 625, P Blackwell dominates Q, as witnessed by the garbling from [ 01 ] to {01 } that 

maps all signal realizations above 1/2 to 1 and all realizations below 1/2 to 0. For larger p, P 

is no longer Blackwell dominant. To see this, consider the decision problem in which the prior 

belief is uniform, the set of actions is the set of states, and the payoff is one if the action matches 

the state and zero otherwise. It is easy to check that for p > 0 625, the experiment Q yields a 

larger expected payoff. 

 

 
4 However, it is not true that1 in Example 2 below provides an example whereP⊗n0  Q⊗n0 for some n0 

impliesP⊗2PBlackwell dominates⊗n  Q⊗n for all n ≥ n0Q. The case of⊗2, but P⊗3  does not305, 

dominate Q⊗3. 
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FIGURE 1
.—The Rényi divergences 

R0
P (solid line), and R0

Q (dashed line) for 
p 

= 0 63 in Example 1. The comparison 

between R1P and R1Q yields a similar graph. 

Nevertheless, if we choose p = 0 63, then as Figure 1 suggests, P dominates Q in the Rényi 

order even though the two experiments are not Blackwell ranked.6 Thus, by Theorem 1, there 

is some n so that n independent samples from P Blackwell dominate n independent samples 

from Q. 

The next proposition generalizes the example, showing that a binary experiment Q with the 

same properties can be constructed for (almost) any experiment P. 

PROPOSITION 1: Let P be a bounded experiment with induced distribution over posteriors π. 

Assume that the support of π has cardinality at least 3. Then there is a binary experiment Q 

such that P and Q are not Blackwell ranked, and P dominates Q in large samples. 

The proof of this proposition crucially relies on Theorem 1. 

EXAMPLE 2 AND A CONJECTURE BY AZRIELI (2014): We next apply Theorem 1 to revisit an 

example due to Azrieli (2014) and to complete his analysis. The example provides a simple 

instance of two experiments that are not ranked in Blackwell order but become so in large 

samples. Despite its simplicity, the analysis of this example is not straightforward, as shown 

by Azrieli (2014). We will show that applying the Rényi order greatly simplifies the analysis 

and elucidates the logic behind the example. 

Consider the following two experiments P and Q, parametrized by β and α, respectively. In 

each matrix, entries are the probabilities of observing each signal realization 

 
6The Rényi divergences as defined in (5) are computed to be 

 R ; R  

and 

 R0Q ; R1Q   

given the state θ: 

 

 θ x1 x2 x3 θ y1 y2 

 P :  Q :  

The parameters satisfy 0 ≤ β ≤ 1/4 and 0 ≤ α ≤ 1/2. The experiment Q is a symmetric, binary 

experiment. The experiment P with probability 1/2 yields a completely uninformative signal 

realization x2, and with probability 1/2 yields an observation from another symmetric binary 

experiment. As shown by Azrieli (2014, Claim 1), the experiments P and Q are not ranked in 

the Blackwell order for parameter values 2β < α < 1/4 + β. 
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Azrieli (2014) points out that a necessary condition for P to dominate Q in large samples is 

that the Rényi divergences are ranked at 1/2, that is, R1
P(1/2) > R1

Q(1/2).7 In addition, he 

conjectures it is also a sufficient condition, and proves it in the special case of β = 0. We show 

that for the experiments in the example, the fact that the Rényi divergences are ranked at 1/2 is 

enough to imply dominance in the Rényi order and, therefore, by Theorem 1, dominance in 

large samples. This settles the above conjecture in the affirmative. 

PROPOSITION 2: In this example, suppose R1
P(1/2) > R1

Q(1/2). Then R1
P(t) > R1

Q(t) for all t > 0 

and by symmetry R0
P(t) > R0

Q(t), hence P dominates Q in large samples. 

3.2. A Quantification of Blackwell Dominance in Large Samples 

The characterization in Theorem 1 makes it possible to quantify the extent to which one 

experiment Blackwell dominates another in large samples. We start with the observation that 

any two experiments, even if not ranked according to dominance in large samples, can be 

compared by applying different samples sizes. For example, suppose P and Q are not 

comparable, but P⊗50 Blackwell dominates Q⊗100. Then 50 samples from P are more 

informative than 100 from Q, and thus, in an intuitive sense, P is at least twice as informative 

as Q, for large enough samples. 

Our formal definition is based on the fact that for any two bounded nontrivial experiments P 

and Q, there exist positive integers n, m such that P⊗n Blackwell dominates Q⊗m. Reasoning as 

above, P will be at least m/n times as informative as Q in large samples. We can then consider 

the largest ratio m/n for which this comparison holds. This leads to a well-defined measure of 

dominance, which we refer to as the dominance ratio P/Q of P with respect to Q: 

P/Q   

 
7As in his paper, this condition can be written in terms of the parameter values as 

  

Thus, when α = 0 1 and β = 0 for example, the experiment P does not Blackwell dominate Q but does dominate it in 

large samples, as shown by Azrieli (2014). 

Thus, in large samples, each observation from P contributes at least as much as P/Q 
observations from Q. 

An immediate consequence of Theorem 1 is the following characterization of P/Q in terms 

of the Rényi divergences of the two experiments. 

PROPOSITION 3: Let P and Q be nontrivial, bounded experiments. Then 

Rθ
P(t) (t) 

P/Q = inf   
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Furthermore, the dominance ratio P/Q is always positive.5 

As discussed, P/Q can be interpreted as an asymptotic lower bound on the information 

produced by one observation from P relative to Q. On the other hand, we also have the 

asymptotic upper bound (Q/P)−1, where Q/P is the dominance ratio of Q with respect to P. We 

remark that the two bounds are in general (in fact, generically) not equal. However, Proposition 

3 shows that P/Q ≤ (Q/P)−1 always holds. 

3.3. The Blackwell Order in the Presence of Additional Information 

The large sample order compares the informativeness of repeated experiments. A related 

problem is to compare the informativeness of one-shot experiments when additional 

independent sources of information may be present. 

Consider a decision maker choosing which of two experiments P and Q to conduct, on top of 

an independent source of information R. The resulting choice is between the compound 

experiments P ⊗ R and Q ⊗ R. It is intuitive, and immediate from Blackwell’s garbling 

characterization, that if P dominates Q in the Blackwell order, then the same relation must hold 

between the two compound experiments. 

One might expect that if P and Q are incomparable, then no additional independent 

experiment R can make the compound experiments comparable. Instead, we show that P ⊗ R 

can dominate Q ⊗ R even though the two original experiments P and Q were not comparable. 

Moreover, for generic experiments, this occurs precisely when P has higher Rényi divergences 

than Q. 

PROPOSITION 4: Let P and Q be a generic pair of bounded experiments. Then the following 

are equivalent: 

(i) There exists a bounded experiment R such that P ⊗ R  Q ⊗ R. (ii) P 

dominates Q in the Rényi order. 

Proposition 4 suggests that in general, whether two experiments are Blackwell ordered 

depends on what additional sources of information are available. We note that whenever an 

experiment R makes P dominant over Q (when each is combined with R), then the same holds 

for any experiment R that is more informative than R. It is an interesting question for future 

work to fully characterize the set of experiments R that make P dominant. 

Proposition 4 follows by combining the characterization in Theorem 1 together with the 

observation that if P dominates Q in the large sample order, then there exists an R such that P 

⊗ R Blackwell dominates Q ⊗ R. The latter fact is a consequence of an order-theoretic result 

 
5 This characterization, together with Theorem 1, implies that the following natural alternative definition of P/Q 

is equivalent: 

P/Qan for all n large enough 

where an denotes the smallest integer greater than or equal to an. 
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from the quantum information literature (Duan, Feng, Li, and Ying (2005), Fritz (2017), see 

Lemma 4 in the Appendix). 

4. A CHARACTERIZATION OF ADDITIVE DIVERGENCES 

In this section, we apply the characterization of Blackwell dominance in large samples to 

study measures for quantifying the degree of dissimilarity between distributions, also known 

as divergences. Examples of divergences include total variation distance, the Hellinger 

distance, the Kullback–Leibler divergence, Rényi divergences, and more general f-divergences. 

A key property of Rényi divergences is additivity. Consider two domains Ω1 and Ω2, a pair 

of measures μ1, ν1 defined on Ω1, and a pair of measures μ2, ν2 on Ω2. Additivity states that when 

the two domains are considered in conjunction, the divergence between the product measures 

μ1 × μ2 and ν1 × ν2, which are both defined on Ω1 × Ω2, is the sum of the divergences of the two 

pairs. In words, this condition says that the total divergence of two unrelated pairs should not 

change when they are considered together as a bundle. 

Another property of Rényi divergences, which it in fact shares with all the above examples 

of divergences, is the data processing inequality, which captures the idea that discarding 

some information decreases dissimilarity. 

We show that every additive divergence that satisfies the data-processing inequality is an 

integral of Rényi divergences. The proof relies on the characterization of the large sample order 

together with functional analytic techniques. Since this result does not assume any functional 

form of the divergence, it improves over the existing characterizations such as in Rényi (1961) 

and Csiszár (2008). 

The result has potential applications for modeling experiments as economic commodities. In 

recent years, there has been growing interest in modeling the cost and pricing of information. 

By interpreting a divergence as a cost function over experiments, additivity reflects an 

assumption of constant marginal costs in information production (an assumption discussed in 

detail in Pomatto, Strack, and Tamuz (2018)). By interpreting a divergence as a pricing function 

over experiments, additivity captures a notion of linearity, appropriate for pricing information 

in competitive markets. 

4.1. Additive Divergences 

Given a Polish space Ω, we denote by B(Ω) its Borel σ-algebra and by  (Ω) the collection of 

Borel probability measures on B(Ω). Given another Polish space Ξ, a measurable function f : Ω 

→ Ξ and a probability measure , we denote by f∗(μ) the push-forward probability 

measure in  (Ξ) defined as [ f∗(μ)](E) = μ(f −1(E)) for all E ∈ B(Ξ). 

Consider, for each Ω, a map 

D  

and let D = (DΩ) be the collection obtained by varying Ω. We say D is a divergence if 

DΩ(μμ) = 0 for all Ω and all . 

A divergence satisfies the data processing inequality if for any measurable f : Ω → Ξ it holds 

that 
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D (μν)  

The data processing inequality captures the idea that the distributions of two random variables 

X and Y are at least as dissimilar as those of f(X) and f(Y); applying a common deterministic 

mapping f can only make the distributions more similar.6 It is a natural concept in signal 

processing and information theory, and closely related to the Blackwell order over experiments. 

Indeed, we can see a pair of probability measures as an experiment (P0P1), and hence a 

divergence D as a functional over experiments. The data-processing inequality states that the 

value of D decreases when applying a deterministic garbling. 

We say that the divergence D is additive if 

DΩ×Ξ(μ1 × μ2ν1 × ν2) = DΩ(μ1ν1) + DΞ(μ2ν2)  

We will henceforth drop the subscript from DΩ(μν), and write D(μν) whenever there is no risk 

of confusion. 

We call a pair μ, ν of measures as bounded if there exists an M > 0 such that for any 

measurable A ⊆ Ω, ν(A) ≥ μ(A)/M and μ(A) ≥ ν(A)/M. Equivalently, dμ/dν is supported on [ 

1/MM ] , and hence bounded from above and bounded away from 0. We will restrict our 

attention to divergences that take finite values on bounded pairs of experiments. 

4.2. Representation Theorem 

Our representation theorem shows that all additive divergences that are finite on bounded 

experiments arise from linear combinations of Rényi divergences. 

THEOREM 2: Let D be an additive divergence that satisfies the data processing inequality 

and is finite on bounded experiments. Then there exist two finite Borel measures m0, m1 on 

 such that for every bounded pair μ, ν it holds that 

 D(μν) Rt(μ ν)dm Rt(ν  μ)dm1(t) (7) 

with Rt given by (3) and (4). 

Varying the two measures m0 and m1 leads to some important special cases. When both are 

finitely supported, D is a linear combination of Rényi divergences. Any additive divergence D 

(finite on bounded experiments) is hence a limit of such combinations. When m0 and m1 are 

Dirac probability measures concentrated on 1, D reduces to twice the Jensen–Shannon 

divergence, which is the symmetric counterpart of the Kullback–Leibler divergence. When 

instead m0 is a Dirac probability measure concentrated on 1 and m1 is set to have total mass 

zero, D reduces to the Kullback–Leibler divergence. 

Note that the lower integration bound in (7) is 1/2. This is because, as discussed, the values 

of Rt(μ ν) are related to the values of R1−t(ν  μ). Hence it suffices to consider values of t above 

1/2. 

 
6 Note that the data processing inequality implies that D is invariant to measurable isomorphisms: If f is a bijection, 

then D . Thus the dissimilarity between measures does not depend on the particular 
labeling of the domain. 
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PROOF SKETCH OF THEOREM 2: The first key idea is to see a bounded pair of probability 

measures as a bounded experiment (P0P1), and hence see a divergence D as a functional over 

experiments. When D is additive, the data processing inequality implies monotonicity with 

respect to the Blackwell order. 

The next crucial step is to leverage Theorem 1 to show that additivity renders D monotone in 

the Rényi order. Indeed, if (P0P1) dominates (Q0Q1) in the Rényi order, then, by Theorem 1, 

there exists a number n of repetitions such that (P0
nP1

n) dominates (Q0
nQ1

n) in the Blackwell 

order. Hence, by combining Blackwell monotonicity and additivity, we obtain that D must 

satisfy 

nD(P  nD(Q0Q1)  

Hence, D is monotone in the Rényi order. 

We deduce from this that D is a monotone functional F(R0
PR1

P) of the Rényi divergences of 

the experiment. Additivity of D implies F is also additive. We then use tools from functional 

analysis to show that F extends to a positive linear functional, leading to the integral 

representation of Theorem 2. Q.E.D. 

5. PROOF OF THEOREM 1 

The proof of Theorem 1 is organized as follows. In Section 5.1 we first show that the Rényi 

order is necessary for the large sample order. The remaining subsections demonstrate 

sufficiency. In Section 5.3, we provide a novel characterization of Blackwell dominance, 

showing that it is equivalent to first-order stochastic dominance of appropriate statistics of the 

two experiments. Section 5.5 applies this observation, together with techniques from large 

deviations theory. Omitted proofs are deferred to the Appendix. 

5.1. Dominance in Large Samples Implies Dominance in the Rényi Order 

As discussed above, the comparison of Rényi divergences between two experiments is 

independent of the number of samples. Thus it suffices to show that the Rényi order extends 

the strict Blackwell order.7 We do this by constructing decision problems with the property that 

higher expected payoff in these problems translates into higher Rényi divergences. 

For each t > 1, the function v1(p) = 2pt(1 − p)1−t defined for  is strictly convex, 

because its second derivative in p is 2t(t − 1)pt−2(1 − p)−1−t. Thus v1(p) is the indirect utility 

function induced by some decision problem. Moreover, we have that 

t−1 

 dP   (8) 

To see this, recall that πθ is the distribution over posteriors induced by P, conditional on state 

, and that 

 1 p 

 
7 Since by assumption the two experiments P and Q form a generic pair, Blackwell dominance of P⊗n over Q⊗n 

necessarily implies strict Blackwell dominance. 



 FROM BLACKWELL DOMINANCE IN LARGE SAMPLES 489 

 d = d 1 + d 0 and dπ1(p) = − dπ0(p)  (9) 

 2 1 p 

Thus d , which allows us to write 

t−1 

dπ1(p)  

The first equality in (8) then follows from a change of variable from signal realizations ω to 

posterior beliefs p  (with the probability measure changing from P1 to π1, holding 

fixed the true state θ = 1). 

The second equality in (8) follows from the definition of Rényi divergences. Thus (8) holds, 

which shows that in the decision problem with indirect utility function v1(p), the ex ante 

expected payoff is a monotone transformation of the Rényi divergence R1
P(t). Hence, 

experiment P yields higher expected payoff in this decision problem than Q if and only if R1
P(t) 

> R1
Q(t). 

Similarly, for t  we consider the indirect utility function v2(p) = −2pt(1 − p)1−t, which 

is now strictly convex due to the negative sign (its second derivative is 2t(1 − t) × pt−2(1 − p)−1−t). 

Then 

 

is again a monotone transformation of the Rényi divergence. So P yields higher expected payoff 

in this decision problem only if R1
P(t) > R1

Q(t). 

For t = 1, we consider the indirect utility function v3(p) = 2plog(1 −
p

p), which is strictly 

convex with a second derivative of 2p−
1(1 − p)−2. We have 

)  

Thus P yields higher expected payoff in this problem if and only if R . 

Summarizing, the above family of decision problems shows that P strictly Blackwell 

dominates Q only if R1
P(t) > R1

Q(t) for all t > 0. Since the two states are symmetric, another set 

of necessary conditions is that R0
P(t) > R0

Q(t) for all t > 0. Hence dominance in the Rényi order 

is necessary for Blackwell dominance and (due to additivity of Rényi divergences) also for 

dominance in large samples. 

5.2. Repeated Experiments and log-Likelihood Ratios 

We turn to the proof that dominance in the Rényi order is (generically) sufficient for 

dominance in large samples. Recall that P⊗n Blackwell dominates Q⊗n if and only if the former 

induces a distribution over posterior beliefs that is a mean-preserving spread of the latter. 

However, the distribution over posteriors induced by a product experiment can be difficult to 
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analyze directly. A more suitable approach consists in studying the distribution of the induced 

log-likelihood ratio 

dPθ 

log 

 dP1−θ 

As is well known, given a repeated experiment P, its log-likelihood ratio satisfies, for every 

realization ω = (ω1   ωn) in Ωn, 

 dP1n n dP 

log)  

 dP0 i=1 0 

Moreover, the random variables 

dP 

Xi(ω)   n 

are i.i.d. under Pθ
n, for. Focusing on the distributions of log-likelihood ratios will 

allow us to transform the study of repeated experiments to the study of sums of i.i.d. random 

variables. 

5.3. From Blackwell Dominance to First-Order Stochastic Dominance 

Expressing posterior beliefs in terms of log-likelihood ratios simplifies the analysis of 

repeated experiments. However, it is not obvious that the Blackwell order admits a simple 

interpretation in this domain. 

We provide a novel characterization of the Blackwell order, expressed in terms of the 

distributions of the log-likelihood ratios. Given two experiments P = (ΩP0P1) and Q = 

(ΞQ0Q1) we denote by Fθ and Gθ, respectively, the cumulative distribution function of the log-

likelihood ratios conditional on state θ. That is, 

 F  for all a   (10) 

The c.d.f. Gθ is defined analogously using Qθ. 

We associate to P a new quantity, which we call the perfected log-likelihood ratio of the 

experiment. Define 

dP1 

 L˜ 1 = log  − E 

dP0 

where E is a random variable that, under P1, is independent from log d
d

P
P

1
0 and distributed 

according to an exponential distribution with support R+ and cumulative distribution function 1 

− e−x for all x ≥ 0. We denote by F˜ 1 the cumulative distribution function of L˜ 1 under P1. That 

is, F˜ 1(a) = P1({L˜ 1 ≤ a}) for all a ∈ R. 

     
1 
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More explicitly, F˜ 1 is the convolution of the distribution F1 with the distribution of −E, and 

thus can be defined as 

 F˜  e−u dF1(u)  (11) 

The next result shows that the Blackwell order over experiments can be reduced to firstorder 

stochastic dominance of the corresponding perfected log-likelihood ratios. 

THEOREM 3: Let P and Q be two experiments, and let F˜ 1 and G˜ 1, respectively, be the 

associated distributions of perfected log-likelihood ratios. Then 

 P  Q if and only if F˜ 1(a) ≤ G˜ 1(a) for all a ∈ R  

PROOF: Let π and τ be the distributions over posterior beliefs induced by P and Q, 

respectively. As is well known, Blackwell dominance is equivalent to the requirement that π is 

a mean-preserving spread of τ. Equivalently the functions defined as 

 q)dπ(q) and q)dτ(q) (12) 

must satisfy Λπ(p) ≥ Λτ(p) for every p . 

We now express (12) in terms of the distributions of log-likelihood ratios F1 and G1. We have 

 qdπ(q)  (13) 

To transform the relevant integrals into those that condition on state 1, we recall that (9) implies 

d . We then obtain from (13) that 

 dπ1(q)  

Next, we change variable from posterior beliefs to log-likelihood ratios. Letting a = log 1 −
p

p 

and accordingly u = log 1 −
q

q, we have 

ea 

  (a)  (14) 

Since 

e−u dF1(u) + 1 − F1(a) 

(a∞) 

(14) leads to 
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 a − + 

 1e 1 

where the final equality follows from (11). It then follows that Λπ(p) ≥ Λπ(p) if and only if F˜ 

1(a) ≤ G˜ 1(a) for a . Requiring this for all p  yields the theorem. 

Q.E.D. 

Intuitively, transferring probability mass from lower to higher values of log(dPθ/dP1−θ) leads 

to an experiment that, conditional on the state being θ, is more likely to shift the decision 

maker’s beliefs towards the correct state. Hence, one might conjecture that Blackwell 

dominance of the experiments P and Q is related to stochastic dominance of the distributions 

Fθ and Gθ. However, since the likelihood ratio dP1/dP0 must satisfy the change of measure 

identity 1, the distribution F1 must satisfy 

  
Because the function e−u is strictly decreasing and convex, and the same identity must hold for 

G1, it is impossible for F1 to stochastically dominate G1. Theorem 3 shows that a more useful 

comparison is between the perfected log-likelihood ratios.8 

The next lemma simplifies the study of perfected log-likelihood ratios, by showing that their 

first-order stochastic dominance can be deduced from comparisons of the original distributions 

Fθ and Gθ over subintervals. 

LEMMA 1: Consider two experiments P and Q. Let Fθ and Gθ, respectively, be the distributions 

of the corresponding log-likelihood ratios, and F˜ 1 and G˜ 1 be the distributions of the 

perfected log-likelihood ratios. The following holds: 

(i) If F1(a) ≤ G1(a) for all a ≥ 0, then F˜ 1(a) ≤ G˜ 1(a) for all a ≥ 0. (ii) If F0(a) 

≤ G0(a) for all a ≥ 0, then F˜ 1(a) ≤ G˜ 1(a) for all a ≤ 0. 

5.4. Large Deviations 

The main step in the proof of Theorem 1 relies on the theory of large deviations. Large 

deviations theory studies low probability events, and in particular the odds with which an i.i.d. 

sum deviates from its expectation. The law of large numbers implies that for a random variable 

X, the probability of the event {X1 + · · · + Xn > na} is low for a > E[ X ] and large n, where X1   Xn 

are i.i.d. copies of X. A crucial insight due to Cramér (1938) is that the order of magnitude of 

 
8 It might appear puzzling that two distributions F1 and G1 that are not ranked by stochastic dominance become 

ranked after the addition of the same independent random variable. In a different context and under different 

assumptions, the same phenomenon is studied by Pomatto, Strack, and Tamuz (2019). 

2      
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the probability of this event is determined by the cumulant generating function of X, defined 

as 

KX  

for every t ∈ R. 

As is well known, KX is strictly convex whenever X is not a constant. We denote by 

 KX
∗ KX(t) a ∈ R (15) 

its Fenchel conjugate. Two facts we will repeatedly apply are that for every a ∈ the problem 

(15) has a unique solution t ∈ R, and such t is nonnegative 

if and only if a ≥ E[ X ] . Moreover, KX
∗ ≥ 0 · a − KX(0) = 0 is nonnegative. 

Cramér’s theorem establishes that for each threshold a > E[ X ] , the exponential rate at which 

the probability of the event {X1 + · · · + Xn > na} vanishes with n is equal to the value KX
∗ (a) taken 

by the Fenchel conjugate at a. In this paper, we are interested in comparing the probabilities of 

large deviations across different random variables. Consider, to this end, two random variables 

X and Y and a threshold a strictly greater than E[ X ] and 

E[ Y ] . If 

KY
∗ (a) > KX

∗ (a) 

then the probability of the event {X1 + · · · + Xn > na} vanishes more slowly than the probability 

of the event {Y1 + · · · + Yn > na} . Thus there exists n sufficiently large such that P[ X1 + · · · + Xn 

> na] ≥ P[ Y1 + · · · + Yn > na]   

The next proposition establishes a general version of this fact, while also providing a specific 

number of repetitions sufficient to rank the probability of the two events. 

PROPOSITION 5: Let X and Y be random variables taking values inand let X1   Xn, 

Y1   Yn be i.i.d. copies of X and Y, respectively. Suppose a ≥ E[ Y ] , and η > 0 satisfies KY
∗ 

. Then for all n ≥ 4b2(1 + η)η−
3, it holds that 

 P[ X1 + · · · + Xn > na] ≥ P[ Y1 + · · · + Yn > na]   (16) 

The condition K  −  + η) ensures that the rate at which the probability of the 

events {Y1 + · · · + Yn > na} vanish with n is larger by a factor of at least η than the rate of the 

events {X1 + · · · + Xn > n(a + η)} . Larger values of η make this condition more demanding, and 

imply that a smaller number of repetitions is sufficient to guarantee (16) to hold. 
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5.5. Application to the Rényi Order 

Now consider two experiments P = (ΩP0P1) and Q = (ΞQ0Q1). Denote the cor- 

responding log-likelihood ratios 

 θ dPθ θ dQθ 

X = log  and Y = log 1 dP1−θ

 dQ −θ 

defined over the probability spaces (ΩPθ) and (ΞQθ), respectively. Thus, for instance, X1 is the 

log-likelihood ratio of state 1 to state 0, distributed conditional on state 1, and X0 is the log-

likelihood ratio of state 0 to 1, distributed conditional on state 0. 

The cumulant generating function of the log-likelihood ratio is a simple transformation of 

the Rényi divergences, as defined in (3), (4), and (5): 

 KXθ(t) = t · Rθ
P(t + 1)  (17) 

Likewise, KYθ(t) = t · Rθ
Q(t + 1). Hence, if P dominates Q in the Rényi order then the following 

relation must hold between the cumulant generating functions: 

KXθ(t) > KYθ(t) for t > 0 (18) 

KXθ(t) < KYθ(t) for − 1 < t < 0  (19) 

At t = 0, we have KXθ(0) = KYθ(0) = 0, but KX
  must hold by (17) and the assumption 

that R . It is well known that , which by definition is the 

Kullback–Leibler divergence between Pθ and P1−θ. Hence we also have 

 

The Fenchel conjugate is an order-reversing operation: From (15), we see that if KX ≥ 

KY pointwise, then the corresponding conjugates satisfy KY
∗  pointwise. The relation 

 

12Throughout the proof, we assumeθ 1 θ Q is a nontrivial experiment, so that E[Yθ] being the Kullback–Leibler 

divergence between Q and Q − is strictly positive. This is without loss, as P clearly dominates Q (in large samples) in 

case Q is trivial. 

between KXθ and KYθ established in (18) and (19) is more complicated, and implies the following 

ranking of their conjugates: 

 KY
∗ 

θ(a) > KX
∗ 

θ(a) for  

 KY
∗ 

θ(a) < KX
∗ 

θ(a) for 0   

This is the content of the next lemma, which in addition shows that the differences between the 

Fenchel conjugates admit a uniform bound. 

LEMMA 2: Suppose P and Q are a generic pair of bounded experiments such that P 

dominates Q in the Rényi order. Let (Xθ) and (Y θ) be the corresponding log-likelihood ratios. 

Then there exists  such that in both states : 
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 K  for  

 K  for η  

These estimates will allow us to apply the previous 

Proposition 5 and make uniform comparisons of large deviation 

probabilities. In the range a that is not covered by Lemma 2, large deviation techniques are not 

necessary and it will be sufficient to apply more elementary estimates. 

5.6. Rényi Order Implies Large Sample Order 

We now complete the proof of Theorem 1 and show that if two experiments are ranked in 

the Rényi order then they are also ranked in the large sample order. By Theorem 3, we need to 

show that there exists a sample size n0 such that for all n ≥ n0, the perfected loglikelihood ratios 

of n independent draws from P and Q are ordered in terms of first-order stochastic dominance. 

More concretely, consider the log-likelihood ratios Xθ and Y θ (for a single sample) as defined 

above, with distributions Fθ and Gθ conditional on state θ. Let Fθ
∗n be the nth convolution power 

of Fθ, which represents the distribution of log-likelihood ratios under the product experiment 

P⊗n; similarly define G∗
θ

n. By Lemma 1, it suffices to show that for n ≥ n0 it holds that 

 F  for all a ≥ 0 (20) 

and 

 F  for all a ≥ 0  (21) 

Below we show (20); the argument for (21) is identical after relabeling the states. 

We will set n0 = 8b2η−3, where  is as Assume that X1 and Y1 take values in . 

given in Lemma 2. For future use, we note that E[ X1 ] − η > E[ Y1 ] .9 

Let X1
1   Xn

1 be i.i.d. copies of X1 and Y1
1   Yn

1 be i.i.d. copies of Y1. We can restate (20) as 

  for all a ≥ 0  (22) 

To prove this, we divide into four ranges of values of a: 

Case 1: a ≥ max[ Y1 ] . In this case the right-hand side of (22) is 1, and hence the result 

follows trivially. 

Case 2: E[ X1 ] − η ≤ a < max[ Y1 ] . From Lemma 2, we have that 

 
9 Otherwise, the first part of Lemma 2 would apply to a = E[Y1], leading to 0 . This is impossible 

as K∗ is nonnegative. 
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KY
∗ 

1(a) − η > KX
∗ 

1(a + η)  

As a ≥ E[ X1 ] − η >2 
E[ Y1 ] , we can directly apply Proposition3 5 and conclude that (2

 3 22) holds for all n ≥ 4b (1 + η)η− . Since η < 1, it holds for all n ≥ n0 = 8b η− . 

Case 3: E[ Y1 ] + η ≤ a < E[ X1 ] − η. By the Chebyshev inequality, 

  

, we have that 

b2 

 nη2 

By a similar argument, 

b2 

 nη2 

Hence for all n ≥ 2b2η−2 we have 

  

As n0 = 8b2η−3 is bigger, (22) holds for n ≥ n0. 

Case 4: 0 ≤ a < E[ Y1 ] + η. By Lemma 2, we have that 

 K η)  

For any random variable Z, we have K−Z(t) = log
E[ et(−Z) ] = log

E[ e(−t)Z ] = KZ(−t), and 

K−
∗

Z(a) = supt∈Rt · a − K−Z(t) = supt∈R(−t) · (−a) − KZ(−t) = KZ
∗ (−a). Therefore, 

 K η)  

We can now apply Proposition1 1 5 to the random variables −Y1 and 

−X1, and the threshold 

−a > −E[ Y ] − η > E[ −X ] . This yields 
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nfor all 

 ( η)η 22) 

holds for ≥ n0. 

This proves ( 0 and completes the proof of Theorem 1. 

 
14The comparison  for all a in this range implies the desired 

result , by a standard limit argument. 

5.7. Number of Samples Required 

The proof of Theorem 1 establishes a stronger statement, and in fact provides an explicit 

bound on the number of repetitions sufficient to achieve large sample dominance. 

THEOREM 4: Let P and Q be a generic pair of bounded experiments, with log-

likelihood ratios taking values in . Assume P dominates Q in the Rényi order, 

and let be provided by Lemma 2. Then P⊗n Blackwell dominates Q⊗n for all n ≥ n0 = 

8b2η−3. 

The constant n0 is decreasing in the parameter η. This fact follows from a logic analogous to 

the one behind Proposition 5: Larger values of η imply that the probability of unlikely, but very 

informative, signal realizations decreases at a much slower rate under the experiment P⊗n than 

under Q⊗n, as the sample size n becomes large. 

While simple, the constant n0 is far from being tight. For example, our proof of Proposition 

5 uses the Chebyshev inequality, which may be improved by a suitable application of the 

Berry–Esseen theorem, at the cost of a more complex bound. It remains an open problem to 

develop more precise estimates. 

6. DISCUSSION AND RELATED LITERATURE 

Comparison of Experiments. Blackwell (1951, p. 101) posed the question of whether 

dominance of two experiments is equivalent to dominance of their n-fold repetitions. Stein 

(1951) and Torgersen (1970) provide early examples of two experiments that are not 

comparable in the Blackwell order, but are comparable in large samples. 

Moscarini and Smith (2002) proposed an alternative criterion for comparing repeated 

experiments. According to their notion, an experiment P dominates an experiment Q if for every 

decision problem with finitely many actions, there exists some n0 such that the expected payoff 

achievable from observing P⊗n is higher than that from observing Q⊗n whenever n ≥ n0. This 

order is characterized by the efficiency index of an experiment, de-0 fined, in our notation, as 

the minimum over t  of the function e(t−1)R
P
(t) (where a smaller index means a better 

experiment). There are two conceptual differences between the order studied in Moscarini and 

Smith and the large sample order that we characterize: 

(i) While in Moscarini and Smith the number n0 of repetitions is allowed to depend on the 

decision problem, dominance in large samples is a criterion for comparing experiments 
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uniformly over decision problems, for fixed sample sizes. Thus the large sample order 

is conceptually closer to Blackwell dominance.10 

(ii) The order proposed in Moscarini and Smith restricts attention to decision problems with 

finitely many actions, while dominance in the large sample order implies that observing 

P⊗n is better that observing Q⊗n for every decision problem. 

Related to (ii), Azrieli (2014) showed that the Moscarini–Smith order is a strict extension of 

dominance in large samples. Perhaps surprisingly, this conclusion is reversed under a 

modification of their definition: It follows from our results that when extended to consider all 

decision problems, including problems with infinitely many actions, the Moscarini–Smith 

order over experiments (generically) coincides with the large sample order.11 

Our notion of dominance in large samples is prior-free. In contrast, several authors (Kelly 

(1956), Lindley (1956), Cabrales, Gossner, and Serrano (2013)) have studied a complete 

ordering of experiments, indexed by the expected reduction of entropy from prior to posterior 

beliefs (i.e., mutual information between states and signals). We note that unlike Blackwell 

dominance, dominance in large samples does not guarantee a higher reduction of uncertainty 

given any prior belief.17 

Majorization and Quantum Information. Our work is related to the study of majorization in 

the quantum information literature. Majorization is a stochastic order commonly defined for 

distributions on countable sets. For distributions with a given support size, this order is closely 

related to the Blackwell order. Let P = (ΩP0P1) and Q = (ΞQ0Q1) be two experiments such that Ω 

and Ξ are finite and of the same size, and P0 and Q0 are the uniform distributions on Ω and Ξ. 

Then P Blackwell dominates Q if and only if P1 majorizes Q1 (see Torgersen (1985, p. 264)). 

This no longer holds when Ω and Ξ are of different sizes. 

Motivated by questions in quantum information, Jensen (2019) asked the following question: 

Given two finitely supported distributions μ and ν, when does the n-fold product μ×n = μ × · · · 

× μ majorize ν×n for all large n? He shows that for the case that μ and ν have different support 

sizes, the answer is given by the ranking of their Rényi entropies.18 For the case of equal support 

size, Theorem 1 implies a similar result, which Jensen (2019, Remark 3.9) conjectures to be 

true. We prove his conjecture in Section L in the Appendix. 

Fritz (2018) used an abstract algebraic approach to prove a result that is complementary to 

Proposition 5. While Fritz’s theorem does not require our genericity condition, the comparison 

of distributions is stated in terms of a notion of approximate stochastic dominance. A result 

similar to Proposition 5 (but without the η and the quantitative bound on n) appears as Lemma 

2 in Aubrun and Nechita (2008), also in the context of majorization and quantum information 

theory. 

Both Fritz (2018) and Jensen (2019), in their respective settings, asked a question in the spirit 

of our dominance ratio, and proved results that are similar to Proposition 3. 

Experiments for Many States and Unbounded Experiments. Our analysis leaves open a 

number of questions. The most salient is the extension of Theorem 1, our characterization of 

dominance in large samples, to experiments with more than two states. In Section K in the 

Appendix, we identify a set of necessary conditions for large sample dominance. These 

 
10 Recent work by Hellman and Lehrer (2019) generalizes the Moscarini–Smith order to Markov (rather than i.i.d.) 

sequences of experiments. 
11 Consider the following variant of the Moscarini–Smith order: Say that P dominates Q if for every decision 

problem (with possibly infinitely many actions) there exists an n0 such that the expected payoff achievable from 
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conditions are expressed in terms of the moment generating function of the log-likelihood 

ratios—which generalizes the ranking of Rényi divergences in the two state case. While we 

conjecture this set of conditions to be also sufficient, our proof technique for sufficiency does 

not straightforwardly extend to more than two states. In particular, we do not 

 

P⊗n is higher than that from Q⊗n whenever n ≥ n0. Each Rényi divergence Rθ
P(t) corresponds to the expected payoff 

in some decision problem (see Section 5.1), and for such decision problems the ranking over repeated experiments is 

independent of the sample size n. Thus P dominates Q in this order only if P dominates Q in the Rényi order. By 

Theorem 1, P must then dominate Q in large samples. 
17To see this, consider Example 2 above with parameters α = 0 1 and β = 0. Then Proposition 2 ensures that the 

experiment P dominates Q in large samples. However, given a uniform prior, the residual uncertainty under P is 

calculated as the expected entropy of posterior beliefs, which is 346. The residual uncertainty under Q 

is 325, which is lower. 
18As discussed above, majorization with different support sizes does not imply Blackwell dominance. Indeed, the 

ranking based on Rényi entropies is distinct from our ranking based on Rényi divergences unless the support sizes 

are equal. See Section L in the Appendix for details. 

know how to extend the reduction of Blackwell dominance to first-order stochastic dominance 

(Theorem 3).12 With binary states, we have been able to derive this simplification because one-

dimensional convex (indirect utility) functions admit an one-parameter family of extremal rays. 

Going to higher dimensions, the difficulty is that “the extremal rays are too complex to be of 

service” (Jewitt (2007)). 

Another extension for future work is to experiments with unbounded likelihood ratios. As 

we demonstrate in Section J in the Appendix, our characterization of the large sample order 

remains valid if the dominant experiment P is unbounded whereas the dominated experiment 

Q is bounded. The result also extends, under an additional assumption, to pairs of unbounded 

experiments whose Rényi divergences are finite. However, we do not know whether and how 

our result would generalize to the case of infinite Rényi divergences. The technical challenge 

is that large deviation estimates that are uniform across different thresholds typically require 

the moment generating function to be finite (socalled “Cramér’s condition”).13 

APPENDIX 

The structure of the Appendix follows that of the paper. After reviewing large deviations 

theory, we complete the proof of Theorem 1 by supplying the proofs of Proposition 5, Lemma 

1, and Lemma 2. We then provide proofs for our other results in the order in which they 

appeared. 

APPENDIX A: LARGE DEVIATIONS 

 
12 If such a reduction could be obtained, the remaining obstacle would be the characterization of first-order 

stochastic dominance between large i.i.d. sums of random vectors. This would require the development of large 

deviation estimates in higher dimensions (generalizing Lemma 3 in the Appendix). 
13 Although Cramér’s result that logP[X1 + ··· + Xn > na] ∼ −n·KX∗ (a) remains true even when KX(t) can be infinite, as 

far as we know the proofs of this generalization do not deliver a quantitative lower bound similar to our Lemma 3. 

As a consequence, Cramér’s approximation is not uniform across a. 
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For every bounded random variable X that is not a constant, we denote by MX(t) = logE[ etX ] 

and KX(t) = logMX(t) the moment and cumulant generating functions of X. As is well known, MX 

and KX are strictly convex. We denote by 

KX∗ KX(t) 

the Fenchel conjugate of KX. For a, the maximization problem has a 

some t ∈ R. This unique solution, achieved at 

solution t is nonnegative if and only if a ≥ E[ X ] . In addition, as KX 0 is nonnegative. The 

function KX
∗ (a) is continuous (in fact, analytic) wherever it is finite. 

The well-known Chernoff bound states that if XX1   Xn are an i.i.d. sequence, then 

  for all a ≥ E[ X ]   

The next proposition gives a lower bound for this probability. 

LEMMA 3: Let XX1   Xn be an i.i.d. sequence taking values in. For all η > 0, a ∈ [ 

min[ X ] max[ X ] − η) and n ≥ 1, it holds that 

  
PROOF: We first consider the case where a ≥ E[ X ] − η/2. Define t by 

KX
 (t) = a + η/2 

so that KX
∗ (aKX(t). Such a t is a nonnegative finite number, since 

E[ X ]≤ a +  [ ] 

Denote by ν the distribution of X, and let Xˆ be a real random variable whose distribution νˆ 

is given by 

d tx 

KX(t) e −   
d 

This construction ensures that νˆ is also a probability measure, so that Xˆ is a well-defined 

random variable. Note that 

η/2 

and that the cumulant generating function of Xˆ is 
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KXˆ (t)  

Now let Xˆ 1   Xˆ n be i.i.d. copies of Xˆ . Denote Sn = X1 + · · · + Xn and Sˆ n = Xˆ 1 + · · · + Xˆ n. 

The cumulant generating function of Sˆ n is 

KSˆn (t) 

and so the Radon–Nikodym derivative between the distributions of Sˆ n and Sn is etx−KSn
(t) = 

etx
−

nKX(t). Hence 

  

The event {Sˆ n > na} contains the event {n(a + η) > Sˆ n > na} , and so 

 

 

where the second inequality uses t ≥ 0 and Sˆ n < n(a + η) whenever 1{n(a+η)>Sˆn>na} > 0. 

Now, Sˆ n has expectation nE[ Xˆ ] = n(a + η/2). Its variance is nVar[ Xˆ

 ] ≤ nE[ Xˆ 2 ] ≤ nb2, since Xˆ has the same support of X by construction. Therefore, 

by the Chebyshev inequal- 

ity, 

nη/2 (nη/2)2 2 

  
We have thus shown that 

  

Now, by definition K . Hence we arrive at 
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We turn to the case where a < E[ X ] − η/2. In this case, we can directly apply the Chebyshev 

inequality and obtain 

4b2 

 
nη2 

Hence 

4b2 

 P[ Sn > na] ≥ 1 − 2  

nη 

Since KX
∗ is nonnegative, we again have 

  

This proves the lemma. Q.E.D. 

A.1. Proof of Proposition 5 

If a < min[ X ] , then the statement holds since in (16) the LHS is equal to 1. Below we assume 

a ≥ min[ X ] . By assumption, KX
∗ (a + η) is finite, and hence a + η < max[ X ] . We can thus apply 

Lemma 3 to X and conclude that for every n ≥ 1, 

  
By assumption, we have that K , and so 

  

Hence, for n ≥ 4b2(1 + η)η−3, 

 P[ X1 + · · · + Xn > na] ≥ e−n·KY∗ (a)  

On the other hand, since a ≥ E[ Y ] by assumption, we have the Chernoff bound 

 P[ Y1 + · · · + Yn > na] ≤ e−n·KY∗ (a)  
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This proves the desired result (16). 

APPENDIX B: PROOF OF LEMMA 1 

An exponential distribution has probability density function that vanishes for negative u and 

equals e−u for positive u. Thus F˜ 1 and G˜ 1 can be written as 

F˜ u du G˜ u du  

and likewise 

Consider the first part of the lemma. Suppose a ≥ 0, then by assumption F1(a + u) ≤ G1(a + u) 

for all u ≥ 0, which implies F˜ 1(a) ≤ G˜ 1(a). 

For the second part of the lemma, we will establish the following identities: 

 F˜ 1(a) F0(v)e−v dv and G˜ 1(a) G0(v)e−v dv  (23) 

Given this, the result would follow easily: If F0(v) ≤ G0(v) for all v ≥ 0, then the above implies 

F˜ 1(a) ≤ G˜ 1(a) for all a ≤ 0. 

To show (23), we recall (11) and write 

 F˜ e−u dF1(u)  (24) 

The key observation is that dF1(u) = −eu dF0(−u). Indeed, dF1(u) is the density under state 1 that 

the log-likelihood ratio log(dP1/dP0) is equal to u, which is also the density under state 1 that 

the opposite log-likelihood ratio log(dP0/dP1) is equal to −u. By definition of the log-likelihood 

ratio, this density is scaled by a factor of e−
u when we change measure from state 1 to state 0. 

 Substituting dF1(u) = −eu dF0(−u) into (24), we have 

 F˜ eu dF u) 

a) 

where the second equality uses change of variable from u to v = −u. Integration by parts 

then yields (23) and completes the proof. 

APPENDIX C: PROOF OF LEMMA 2 
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Fix θ, we will show the result holds for all sufficiently small positive η. Because P dominates 

Q in the Rényi order, and the pair of experiments is generic, the two log-likelihood ratios satisfy 

0 < E[ Y θ ] < E[ Xθ ] and max[ Yθ ] < max[ Xθ ] . 

For the first part of the lemma, consider the interval A. If it is 

empty (i.e., E[ Xθ ] > max[ Y θ ] ), the result trivially holds by choosingθ η small. Otherwise, 

consider any point a ∈ A. Since a is above the expectation of X , 

KX
∗ KXθ(t)  

And because a < max[ X ] the supremum is achieved at some finite tˆ ≥ 0. Dominance in the 

Rényi order implies, by (18), 

KX
∗ (a)  

The first inequality can only hold equal if tˆ = 0 and a = E[ Xθ ] , but in that case theθ second 

inequality is strict because a is strictly above the expectation of Y . Hence KY
∗ 

θ(a) > KX
∗ 

θ(a) for 

all a in A. Since A is compact and the two Fenchel transforms are continuous, we can find ε1 

positive such that 
K

Y
∗ 

θ(a
) − ε1 > KX

∗ 
θ(a) over all 

a ∈ A. Choosing positive ε2 sufficiently small, 

have 
K

Y
∗ 

θ(a
) − ε1 > KX

∗ 
θ(a) for all a in the slightly bigger we in fact 

. By uniform continuity, any interval 

small positive η satisfies KX
∗for all a in this interval. If in addition η < min{ ε2

1ε2 } , 

then 

 K

 X 

 Y 2 2 X 

a, and thus for a. This for all 

yields the desired result. 

As for the second half, consider a pointθ 14 a. Since a ≤ E[ Yθ ] and a ≥ 0 > min[ 

Y ] , there exists a finite t˜ ≤ 0 such that K  (a) KYθ(t)˜ . This t˜ satisfies 

KY
 
θ(t)˜ = a. θ 1 θ 

We now show that t >˜ −1. The cumulant generating functions of Y and Y − satisfy for all t ∈ 

R the relation 

KYθ(t) = KY1−θ(−t − 1) 

and hence KY
 0. Since KY

 
θ(t)˜ = a ≥ 0, and KY

 
θ is increasing, 

we have t˜ . Dominance in the Rényi order then implies, by (19), 

 
14 The latter holds because max[Y1−θ] ≥ E[Y1−θ] > 0, and by definition min[Yθ] = −max[Y1−θ]. 
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 K  θ Y X θ(a)  

Similar to before, the first inequality can only hold equal if t˜ = 0 and a = E[ Yθ ] , but in that 

strict because a is strictly below the case the second inequality is 

Xθ. Hence KY
∗ 

θ(a) < K  for all a . Using expectation of 

before, any sufficiently small η makes Khold continuity as 

for all a in the slightly bigger interval 

. Hence the lemma holds. 

APPENDIX D: PROOF OF PROPOSITION 1 

Let p1 (resp., p3) be the essential minimum (resp., maximum) of the distribution π of posterior 

beliefs induced by P. Since the support of π has at least 3 points, we can find p  such 

that π([ p1p2 ] ) > π({p1 }) and π([ p2p3 ] ) > π({p3 }). 

We use this p2 to construct an experiment Q which has signal space {01 } , and which is a 

garbling of P. Specifically, if a signal realization under P leads to posterior belief below p2, the 

garbled signal is 0. If the posterior belief under P is above p2, the garbled signal is 1. Finally, if 

the posterior belief is exactly p2, we let the garbled signal be 0 or 1 with equal probabilities. 

Since π([ p1p2 ] ) > π({p1 }), the signal realization “0” under experiment Q induces a posterior 

belief that is strictly bigger than p1, and smaller than p2. Likewise, the signal realization “1” 

induces a belief strictly smaller than p3, and bigger than p2. Thus P and Q form a generic pair, 

and the distribution τ of posterior beliefs under Q is a strict meanpreserving contraction of π. 

We now recall that the Rényi divergences are derived from strictly convex indirect utility 

functions u(p) = −pt(1 − p)1−t for 0 < t < 1 and v(p) = pt(1 − p)1−t for t > 1. Thus, 

Rθ
P(t) > R  for all and t > 0. 

We will perturb Q to be a slightly more informative experiment Q, such that P still dominates 

Q in the Rényi order but not in the Blackwell order. For this, suppose that under Q the posterior 

belief equals q  with some probability λ, and equals q  with remaining 

probability. Choose any small positive number ε, and let Qbe another binary experiment 

inducing the posterior belief q1 − ε(1 − λ) with probability λ, and inducing the posterior belief 

q2 + ελ otherwise. Such an experiment exists, because the expected posterior belief is 

unchanged. By continuity, Rθ
P(t) > Rθ

Q(t) still holds when ε is sufficiently small.15 Since P and 

Q also form a generic pair, Theorem 1 shows that P dominates Q in large samples. 

It remains to prove that P does not dominate Q according to Blackwell. Consider a decision 

problem where the prior is uniform, the set of actions is {01 } , and payoffs are given by u(θ = 

a = 0) = p2, u(θ = a = 1) = 1 − p2 and u(θ = a) = 0. The indirect utility function is v(p) = max{(1 

− p)p2 p(1 − p2)} , which is piece-wise linear on [ 0p2 ] and [ p21 ] but convex at p2. Recall that 

 
15 Using the relation between R0

P(t) and R  t), it suffices to show Rθ
P(t) > R  and t ≥ 1/2. 

Fixing a large T, then by uniform continuity, R  implies RθP(t) > Rθ  for t / T] when ε is 

small. This also holds for t large, because as t → ∞ the growth rate of the Rényi divergences are governed by the 

maximum of likelihood ratios, which is larger under P than under Q. 
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in constructing the garbling from P to Q, those posterior beliefs under P that are below p2 are 

“averaged” into the single posterior belief q1 under Q, and those above p2 are averaged into the 

belief q2. Thus Q achieves the same expected utility in this decision problem as P (despite being 

a garbling). Nevertheless, observe that Q achieves higher expected utility in this decision 

problem than Q.16 Hence Q achieves higher expected utility than P, implying that it is not 

Blackwell dominated. 

APPENDIX E: PROOF OF PROPOSITION 2 

It is easily checked that the condition R  reduces to 

   (25) 

Since the experiments form a generic pair, by Theorem 1, we just need to check dominance in 

the Rényi order. Equivalently, we need to show 

  ; (26) 

 0 or r > 1 ; (27) 

   (28) 

To prove these, it suffices to consider the α that makes (25) hold with equality.17 We will 

show that the above inequalities hold for this particular α, except that (26) holds equal at r = . 

Let us define the following function: 

 

16 Formally, since q1 − ε(
1 

− λ) < q1 < p2 and q2 + ελ > q2 > p2, it holds that 

)  

17 It is clear that the inequalities are easier to satisfy when α increases in the range. 25This follows 

from Rolle’s theorem and an induction argument. 
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  (r) := r  

When (25) holds with equality, we have  (0) 0. Thus   has roots at 0, 1 as well 

as a double-root at . But since   is a weighted sum of 4 exponential functions plus a constant, 

it has at most 4 roots (counting multiplicity).25 Hence these are the only roots, and 

we deduce that the function   has constant sign on each of the intervals, 

. 

Now observe that since 2 , it holds that 1. It is then easy to check that  

(r) → ∞ as r → ∞ . Thus  (r) is strictly positive for r . As  (1) = 0, its derivative is weakly 

positive. But recall that we have enumerated the 4 roots of  . So  cannot have a double-root at r 

= 1, and it follows that  (1) is strictly positive. Hence (28) holds. 

Note that  (1) > 0 and  (1) = 0 also implies  (1 − ε) < 0. Thus   is negative on ( 1). A symmetric 

argument shows that   is positive on (−∞0) and negative on (0 ). Hence (26) and (27) both hold, 

completing the proof. 

APPENDIX F: PROOF OF PROPOSITION 3 
θ (t) 

r. We would like to show that P/Q = r. Let n, m be such that Denote 
RQ(t) 

P⊗n  Q⊗m. Then, since ranking of the Rényi divergences is a necessary 

condition for Blackwell dominance, and by the 

additivity of Rényi divergences, nfor alland t > 0. Thus any such m/n is bounded above by r, 

and so P/Q ≤ r. 

In the other direction, take any rational number m/n < r. Then, again by the additivity of the 

Rényi divergences, P⊗n dominates Q⊗m in the Rényi order. Furthermore, the fact 
Rθ (t) n that limt→∞ P > m/n implies the pair 

P⊗  and Q⊗m is generic. Therefore, by Theorem 1, we have that for 

some k large enough, P⊗nk  Q⊗mk. Thus P/Q ≥ mk/nk = m/n. Since this holds for every rational 

m/n that is less than r, we can conclude that P/Q ≥ r. Finally, note that each of the functions 

Rθ
P and Rθ

Q are positive, increasing and bounded on . Furthermore, using 

RθP(t) R1P−θ(1 − t) RθQ = 1−θ(1 − t) 

 

 (t) RQ 

for t , we can rewrite 
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Rθ (t) Rθ (t) (t) 

 P/Q  inf inf   

Recall that Rθ
P(t), Rθ

Q(t) are positive, continuous in t 

and approach max[ Xθ ] and max[ Y θ ] as t → ∞ . Thus a compactness argument shows that P/Q 

is always positive. 

REFERENCES 

AUBRUN, G., AND I. NECHITA (2008): “Catalytic Majorization and p Norms,” Communications in Mathematical 

Physics, 278 (1), 133–144. [496] 
AZRIELI, Y. (2014): “Comment on “The Law of Large Demand for Information”,” Econometrica, 82 (1), 415– 423. 

[476,479,482,483,495] 
BLACKWELL, D. (1951): “Comparison of Experiments,” in Proceedings of the Second Berkeley Symposium on 

Mathematical Statistics and Probability. University of California Press, 93–102. [475,476,479,495] 

 (1953): “Equivalent Comparisons of Experiments,” The Annals of Mathematical Statistics, 24 (2), 265–

272. [478] 
BLACKWELL, D. A., AND M. A. GIRSHICK (1979): Theory of Games and Statistical Decisions. Courier Corporation. 

[476] 
BOHNENBLUST, H. F., L. S. SHAPLEY, AND S. SHERMAN (1949): “Reconnaissance in Game Theory,” Unpublished 

Manuscript, Rand Corporation. [478] 
CABRALES, A., O. GOSSNER, AND R. SERRANO (2013): “Entropy and the Value of Information for Investors,” 

American Economic Review, 103 (1), 360–377. [496] 
CRAMÉR, H. (1938): “Sur un nouveau théoreme-limite de la théorie des probabilités,” Actual. Sci. Ind., 736, 5–23. 

[491] 
CRITCHLEY, F., P. MARRIOTT, AND M. SALMON (1996): “On the Differential Geometry of the Wald Test With 

Nonlinear Restrictions,” Econometrica, 64 (5), 1213–1222. [476] 
CSISZÁR, I. (2008): “Axiomatic Characterizations of Information Measures,” Entropy, 10 (3), 261–273. [477, 

479,485] 
DUAN, R., Y. FENG, X. LI, AND M. YING (2005): “Multiple-Copy Entanglement Transformation and Entanglement 

Catalysis,” Physical Review A, 71 (4), 042319. [485] 
FRITZ, T. (2017): “Resource Convertibility and Ordered Commutative Monoids,” Mathematical Structures in 

Computer Science, 27 (6), 850–938. [479,485] 

 (2018): “A Generalization of Strassen’s Positivstellensatz and Its Application to Large Deviation Theory,” 

ArXiv preprint. Available at arXiv:1810.08667v3. [496] 
HELLMAN, Z., AND E. LEHRER (2019): “Valuing Information by Repeated Signals,” Unpublished Manuscript, Bar-

Ilan University. [495] 
HONG, Y., AND H. WHITE (2005): “Asymptotic Distribution Theory for Nonparametric Entropy Measures of Serial 

Dependence,” Econometrica, 73 (3), 837–901. [476] 
HORODECKI, R., P. HORODECKI, M. HORODECKI, AND K. HORODECKI (2009): “Quantum Entanglement,” Reviews 

of modern physics, 81 (2), 865. [479] 
JENSEN, A. K. (2019): “Asymptotic Majorization of Finite Probability Distributions,” IEEE Transactions on 

Information Theory, 65 (12), 8131–8139. [479,496] 
JEWITT, I. (2007): “Information Order in Decision and Agency Problems,”. Nuffield College. Unpublished 

Manuscript. [497] 
KELLY, J. L. (1956): “A New Interpretation of Information Rate,” IRE Transactions on Information Theory, 2 (3), 

185–189. [496] 
KITAMURA, Y., AND M. STUTZER (1997): “An Information-Theoretic Alternative to Generalized Method of 

Moments Estimation,” Econometrica, 65 (4), 861–874. [476] 
KITAMURA, Y., T. OTSU, AND K. EVDOKIMOV (2013): “Robustness, Infinitesimal Neighborhoods, and Moment 

Restrictions,” Econometrica, 81 (3), 1185–1201. [476] 

 
  0  1    0 

 

 
 
    

 
  0  1   
    

 

 
 
 

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/aubrun2008catalytic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/aubrun2008catalytic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/aubrun2008catalytic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/aubrun2008catalytic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/aubrun2008catalytic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/aubrun2008catalytic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/aubrun2008catalytic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/aubrun2008catalytic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/aubrun2008catalytic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/aubrun2008catalytic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/aubrun2008catalytic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/aubrun2008catalytic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/aubrun2008catalytic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/aubrun2008catalytic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/aubrun2008catalytic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/azrieli2014comment&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/azrieli2014comment&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/azrieli2014comment&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/azrieli2014comment&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/azrieli2014comment&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/azrieli2014comment&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/blackwell1953equivalent&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/blackwell1953equivalent&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/blackwell1953equivalent&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/blackwell1953equivalent&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/blackwell1953equivalent&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/blackwell1953equivalent&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/cabrales2013entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/cabrales2013entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/cabrales2013entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/cabrales2013entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/cabrales2013entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/cabrales2013entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/cabrales2013entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/cabrales2013entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/cabrales2013entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/cabrales2013entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/cabrales2013entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/cabrales2013entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/cabrales2013entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/cabrales2013entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/cramer1938nouveau&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/cramer1938nouveau&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/cramer1938nouveau&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/cramer1938nouveau&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/cramer1938nouveau&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/cramer1938nouveau&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/critchley1996differential&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/critchley1996differential&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/critchley1996differential&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/critchley1996differential&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/critchley1996differential&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/critchley1996differential&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/critchley1996differential&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/critchley1996differential&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/critchley1996differential&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/critchley1996differential&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/critchley1996differential&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/critchley1996differential&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/critchley1996differential&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/critchley1996differential&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/critchley1996differential&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/critchley1996differential&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/csiszar2008axiomatic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/csiszar2008axiomatic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/csiszar2008axiomatic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/csiszar2008axiomatic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/csiszar2008axiomatic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/duan2005multiple&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/fritz2017resource&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/fritz2017resource&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/fritz2017resource&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/fritz2017resource&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/fritz2017resource&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/fritz2017resource&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/fritz2017resource&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://arxiv.org/abs/arXiv:1810.08667v3
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/hong2005asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/hong2005asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/hong2005asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/hong2005asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/hong2005asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/hong2005asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/hong2005asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/hong2005asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/hong2005asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/hong2005asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/hong2005asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/hong2005asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/hong2005asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/horodecki2009quantum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/jensen2019asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/jensen2019asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/jensen2019asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/jensen2019asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/jensen2019asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/jensen2019asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/jensen2019asymptotic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/kelly1956entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/kelly1956entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/kelly1956entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/kelly1956entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/kelly1956entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/kelly1956entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/kelly1956entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/kelly1956entropy&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/kitamura1997information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/kitamura1997information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/kitamura1997information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/kitamura1997information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/kitamura1997information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/kitamura1997information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/kitamura1997information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/kitamura1997information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/kitamura1997information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/kitamura1997information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/kitamura1997information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/kitamura1997information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/kitamura1997information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/kitamura2013robustness&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/kitamura2013robustness&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/kitamura2013robustness&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/kitamura2013robustness&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/kitamura2013robustness&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/kitamura2013robustness&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/kitamura2013robustness&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/kitamura2013robustness&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/kitamura2013robustness&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/kitamura2013robustness&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/kitamura2013robustness&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/kitamura2013robustness&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/kitamura2013robustness&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/kitamura2013robustness&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/kitamura2013robustness&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/kitamura2013robustness&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5


 FROM BLACKWELL DOMINANCE IN LARGE SAMPLES 509 
KRISHNAMURTHY, A., K. KANDASAMY, B. POCZOS, AND L. WASSERMAN (2014): “Nonparametric Estimation of 

Renyi Divergence and Friends,” in International Conference on Machine Learning, 919–927. [479] 

LIESE, F., AND I. VAJDA (2006): “On Divergences and Informations in Statistics and Information Theory,” IEEE 

Transactions on Information Theory, 52 (10), 4394–4412. [479] 
LINDLEY, D. V. (1956): “On a Measure of the Information Provided by an Experiment,” The Annals of 

Mathematical Statistics, 27 (4), 986–1005. [496] 
MOSCARINI, G., AND L. SMITH (2002): “The Law of Large Demand for Information,” Econometrica, 70 (6), 2351–

2366. [477,495] 
MU, X., L. POMATTO, P. STRACK, AND O. TAMUZ (2021): “Supplement to ‘From Blackwell Dominance in Large 

Samples to Rényi Divergences and Back Again’,” Econometrica Supplemental Material, 89, https://doi. 

org/10.3982/ECTA17548. [481] 
PÓCZOS, B., L. XIONG, AND J. SCHNEIDER (2012): “Nonparametric Divergence Estimation With Applications to 

Machine Learning on Distributions,” ArXiv preprint. Available at arXiv:1202.3758. [479] 
POMATTO, L., P. STRACK, AND O. TAMUZ (2018): “The Cost of Information,” Unpublished Manuscript, California 

Institute of Technology. [485] 

 (2020): “Stochastic Dominance Under Independent Noise,” Journal of Political Economy, 128 (5), 1877–

1900. [491] 
RÉNYI, A. (1961): “On Measures of Entropy and Information,” in Proceedings of the Fourth Berkeley Symposium on 

Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. The Regents of the 

University of California. [476,477,479,485] 
SAWA, T. (1978): “Information Criteria for Discriminating Among Alternative Regression Models,” Econometrica, 

46 (6), 1273–1291. [476] 
SMITH, L., AND P. SØRENSEN (2000): “Pathological Outcomes of Observational Learning,” Econometrica, 68 (2), 

371–398. [481] 
STEIN, C. (1951): “Notes on the Comparison of Experiments,” Unpublished Manuscript, University of Chicago. 

[476,495] 
TORGERSEN, E. (1985): “Majorization and Approximate Majorization for Families of Measures, Applications to 

Local Comparison of Experiments and the Theory of Majorization of Vectors in r n (Schur Convexity),” in Linear 

Statistical Inference. Springer, 259–310. [496] 

 (1991): Comparison of Statistical Experiments, Vol. 36. Cambridge University Press. [479] TORGERSEN, 

E. N. (1970): “Comparison of Experiments When the Parameter Space Is Finite,” Probability Theory and Related 

Fields, 16 (3), 219–249. [476,479,495] 
ULLAH, A. (2002): “Uses of Entropy and Divergence Measures for Evaluating Econometric Approximations and 

Inference,” Journal of Econometrics, 107 (1-2), 313–326. [476] 
WHITE, H. (1982): “Maximum Likelihood Estimation of Misspecified Models,” Econometrica, 50 (1), 1–25. [476] 

 

Co-editor Ulrich K. Müller handled this manuscript. 

Manuscript received 5 August, 2019; final version accepted 4 September, 2020; available online 11 September, 
2020. 

http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/liese2006divergences&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/liese2006divergences&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/liese2006divergences&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/liese2006divergences&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/liese2006divergences&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/liese2006divergences&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/liese2006divergences&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/liese2006divergences&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/liese2006divergences&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/liese2006divergences&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/liese2006divergences&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/liese2006divergences&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/lindley1956measure&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/lindley1956measure&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/lindley1956measure&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/lindley1956measure&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/lindley1956measure&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/lindley1956measure&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/lindley1956measure&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/moscarini2002eventual&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/moscarini2002eventual&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/moscarini2002eventual&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/moscarini2002eventual&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/moscarini2002eventual&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/moscarini2002eventual&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/moscarini2002eventual&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/moscarini2002eventual&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/moscarini2002eventual&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/moscarini2002eventual&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/moscarini2002eventual&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/moscarini2002eventual&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/moscarini2002eventual&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
https://doi.org/10.3982/ECTA17548
https://doi.org/10.3982/ECTA17548
https://doi.org/10.3982/ECTA17548
https://doi.org/10.3982/ECTA17548
http://arxiv.org/abs/arXiv:1202.3758
http://arxiv.org/abs/arXiv:1202.3758
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:29/pomatto2018stochastic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:29/pomatto2018stochastic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:29/pomatto2018stochastic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:29/pomatto2018stochastic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:29/pomatto2018stochastic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:29/pomatto2018stochastic&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:31/sawa1978information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:31/sawa1978information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:31/sawa1978information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:31/sawa1978information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:31/sawa1978information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:31/sawa1978information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:31/sawa1978information&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/smith2000pathological&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/smith2000pathological&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/smith2000pathological&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/smith2000pathological&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/smith2000pathological&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/smith2000pathological&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/smith2000pathological&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/smith2000pathological&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/smith2000pathological&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/smith2000pathological&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/smith2000pathological&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/smith2000pathological&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/smith2000pathological&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:36/torgersen1970comparison&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:36/torgersen1970comparison&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:36/torgersen1970comparison&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:36/torgersen1970comparison&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:36/torgersen1970comparison&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:36/torgersen1970comparison&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:36/torgersen1970comparison&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:36/torgersen1970comparison&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:37/ullah2002uses&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:37/ullah2002uses&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:37/ullah2002uses&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:37/ullah2002uses&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:37/ullah2002uses&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:37/ullah2002uses&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:37/ullah2002uses&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:38/white1982maximum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:38/white1982maximum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:38/white1982maximum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:38/white1982maximum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:38/white1982maximum&rfe_id=urn:sici%2F0012-9682%282021%2989%3A1%3C475%3AFBDILS%3E2.0.CO%3B2-5

