
Alignment Completeness for
Relational Hoare Logics

Ramana Nagasamudram
Stevens Institute of Technology

David A. Naumann
Stevens Institute of Technology

Abstract—Relational Hoare logics (RHL) provide rules for
reasoning about relations between programs. Several RHLs
include a rule we call sequential product that infers a relational
correctness judgment from judgments of ordinary Hoare logic
(HL). Other rules embody sensible patterns of reasoning and have
been found useful in practice, but sequential product is relatively
complete on its own (with HL). As a more satisfactory way to
evaluate RHLs, a notion of alignment completeness is introduced,
in terms of the inductive assertion method and product automata.
Alignment completeness results are given to account for several
different sets of rules. The notion may serve to guide the design of
RHLs and relational verifiers for richer programming languages
and alignment patterns.

I. INTRODUCTION

A common task in programming is to ascertain whether a
modified version of a program is equivalent to the original.
For programs with deterministic results, equivalence can be
formulated simply: From any initial state, if both programs
terminate then their final states are the same. This termination-
insensitive property is akin to partial correctness: A program
c satisfies P ; Q if its terminating executions, from initial
states that satisfy P , end in states that satisfy Q. To relate
programs c and d, use binary relations R,S over states: c and
d satisfy R ≈> S if pairs of their terminating executions, from
R-related initial states, end in S-related states. For program
equivalence, take R and S to be the identity on states.

Hoare logics (HL) provide sound rules to infer correctness
judgments c : P ; Q, conventionally written {P} c {Q},
for various programming languages. In this paper we con-
fine attention to simple imperative commands and focus on
Relational Hoare logics (RHL) which provide rules to infer
judgments which we write as c | d : R ≈> S . Such proper-
ties go beyond program equivalence. Using primed variables
to refer to the second of two related states, the judgment
c | d : x = x′ ≈> y < y′ expresses that when run from
states that agree on the initial value of x, the final value of y
produced by c is less than the final value of y from d (i.e., d
majorizes c). As another example, c | c : x = x′ ≈> y = y′

relates c to itself and says that the final value of y is determined
by the initial value of x. Such dependency properties arise in
many contexts including compiler optimization and security
analysis which motived early work on RHL [1].

Suppose the variables of d are disjoint from those of c.
For example let d be a copy of c with all the variables
renamed by adding primes. Then a relation on states amounts

to a predicate on primed and unprimed variables as in the
preceding informal notation. Moreover terminated executions
of (c; d) are in bijection with pairs of terminated executions
of c and d. Put differently, c; d serves as a product program,
much like products in automata theory. The product program
lets us prove relational properties using HL, but in general
the technique is unsatisfactory. As an example, consider the
simple program c0 in Fig. 1 which computes in z the factorial
of x. Let c0′ be a renamed copy, so determinacy of c0
can be expressed by x = x′ ; z = z′. To prove the
judgment c0; c0′ : x = x′ ; z = z′ in HL we need
the assertion z = x! ∧ x = x′ at the semicolon, to get
z = x! ∧ z′ = x′! ∧ x = x′ following c0′, from which z = z′

follows. The spec x = x′ ; z = z′ involves nothing more
than equalities, yet the proof requires nonlinear arithmetic.
This illustrates the general problem that the technique requires
strong functional properties and thus nontrivial loop invariants
(as famously observed in [2]).

There is a simple way to prove c0 | c0′ : x = x′ ≈>
z = z′. Consider the execution pairs to be aligned step-by-
step, and note that at each aligned pair of states we have
y = y′ ∧ z = z′, given x = x′ initially. RHLs feature
rules for compositional reasoning about similarly-structured
subprograms, which embody informal patterns of reasoning
and enable the use of simple assertions with alignment of
computations expressed in terms of syntax. For example, from
judgments y := x | y′ := x′ : x = x′ ≈> y = y′ and
z := 1 | z′ := 1 : y = y′ ≈> (y = y′ ∧ z = z′) infer that y :=
x; z := 1 | y′ := x′; z′ := 1 : (x = x′) ≈> (y = y′ ∧ z = z′).
A number of RHLs have appeared in the literature, but even
for the simple imperative language we see no convergence on
a common core set of rules. Besides closely “synchronized”
rules like the sequence rule for the preceding inference (see
DSEQ in Fig. 10), there are sound rules to relate a command
to skip (Fig. 12) or to a differently-structured command. For
an example of the latter see Sec. VIII.

The touchstone for Hoare logics is Cook’s completeness
theorem [3] which says any true correctness judgment c :
P ; Q can be derived using the rules. To be precise,
HL relies on entailments between assertions and the rules
are complete relative to completeness of assertion reason-
ing. Moreover, completeness requires expressiveness of the
assertion language, meaning that weakest preconditions can
be expressed, for whatever types of data are manipulated by
the program [4]. These considerations are not important for978-1-6654-4895-6/21/$31.00 ©2021 IEEE

c0: (* z := x! *) y:= x; z:= 1; while y 6= 0 do z:= z*y; y:= y−1 od
c1: (* z := 2x *) y:= x; z:= 1; while y 6= 0 do z:= z*2; y:= y−1 od
c2: (* z := x! *) y:= x; z:= 1; w:= 0; while y 6= 0 do if w % 2 = 0 then z:= z*y; y:= y−1 fi; w:= w+1 od
c3: (* z := 2x *) y:= x; z:= 1; w:= 0; while y 6= 0 do if w % 3 = 0 then z:= z*2; y:= y−1 fi; w:= w+1 od

Fig. 1. Example programs (where % is modulo).

the ideas in this paper. We follow the common practice of
treating assertions and their entailments semantically [5] (i.e.,
by shallow embedding in our metalanguage).

RHLs often feature a rule we dub “sequential product”,
which infers c | c′ : R ≈> S from the HL judgment
c; c′ : R ; S , formalizing the idea of product program.
It is a useful rule, to complement the rules for relational
judgments about similarly-structured programs. For example,
in the regression verification [6] scenario with which we
began, i.e., equivalence between two versions of a program,
same-structure rules can be used to relate the unchanged parts,
while sequential product can be used for the revised parts if
they differ in control structure. This is how programmers might
reason informally about a small change in a big program.

But there is a problem. Consider the logic comprised of the
sequential product rule together with a sound and complete
HL. This is complete, in the sense of Cook, for relational
judgments! The problem is well known to RHL experts.
Completeness is the usual means to determine a sufficient and
parsimonious set of inference rules, but completeness fails
to discriminate between a RHL that supports compositional
proofs using facts about aligned subprograms and an impov-
erished RHL with only sequential product.

The conceptual contribution of this paper is the no-
tion of alignment completeness, which discriminates be-
tween rules in terms of different classes of alignments. The
technical contributions are four alignment completeness theo-
rems, for representative collections of RHL rules.

To explain the idea our first step is to revisit Floyd-Hoare
logic. Floyd [7] made precise the inductive assertion method
(IAM) already evident in work by Turing [8] (see [9]). To
prove P ; Q by IAM, provide assertions at control points in
the program, at least P at the initial point and Q at program
exit. We call this an annotation; it is familiar to programmers
in the form of assert statements, and it gives rise to verification
conditions. A valid annotation is one where the verification
conditions are true and every loop in control flow is “cut” by an
annotation. A valid annotation constitutes a proof by induction.
HL is complete in a sense that we call Floyd completeness:
For any valid annotation of a program c for a spec P ; Q,
there is a proof in HL of c : P ; Q using only judgments
of the form b : R ; S with b ranging over subprograms of c
and R,S the assertions annotating the entry and exit points
of b.1

Now consider relating two programs. An annotation should
attach relations to designated pairs of points in the con-

1The precise result depends on details of the HL rules and may require
mildly adjusted judgments in addition to those directly given by the annota-
tion; see Thm. 6.

trol flow of the two programs. For the example judgment
c0 | c0′ : x = x′ ≈> z = z′, choose pairs at the lockstep
positions, and the abovementioned conjunction y = y′∧z = z′.
Validity of an annotation is defined in terms of execution pairs
aligned in accord with the designated pairs of control points: at
aligned steps, the asserted relations hold. To make alignment
precise we use product automata. A product represents a
particular pattern of alignment; if it is adequate in the sense
of covering all execution pairs then the IAM can be applied
to prove relational properties of the two programs. A set of
RHL rules is then alignment complete, for a given class of
alignment automata, if for any valid annotated automaton
there is a derivation using the rules and only the assertions
and judgments associated with the annotated automaton.

This paper formalizes the idea and gives some representative
results of this kind: for sequential product, for strict lockstep,
and also for data-dependent alignment of loop iterations. To
see the need for the latter, consider program c2 in Fig. 1,
in which some iterations have no effect on y or z. We can
prove c0 | c2 : x = x′ ≈> z = z′ using only simple equalities
and without reasoning about factorial, provided the effectful
iterations are aligned in lockstep while the gratuitous iterations
of c2 (when w is odd) proceed with c0 considered to be
stationary.

The notion of Floyd completeness should be no surprise to
readers familiar with Floyd-Hoare logic or related topics like
software model checking. But the authors are unaware of any
published result of this form. A related idea is proof outline
logic [4], [10], which formalizes commands with correct
embedded assertions. Rules for proof outlines have verification
conditions which imply an annotation is valid. In addition to
showing Cook-style soundness and completeness results for
a proof outline logic, Apt et al. prove a “strong soundness”
theorem [4, Thm. 3.3] which says that if the program’s proof
outline is provable then in any execution each assertion is true
when control is at that point. The converse would be a way
to formalize Floyd completeness. Strong soundness is phrased
in terms of transition semantics (small steps). By contrast, the
fact that reasoning in HL is compositional in terms of control
structure is beautifully reflected in proofs of soundness and
(Cook) completeness based on denotational semantics [4].

In this paper we only consider rules that are sound, in the
usual sense, and we have no need to formalize alignment
soundness.

Outline: Sec. II lays the groundwork by spelling out Floyd
completeness for HL, in terms of automata with explicit con-
trol points, including automata based on small-step semantics
of labelled commands. Sec. III formalizes product automata:
ways in which a pair of automata can be combined into an

automaton on pairs of states that serves to represent aligned
steps of two computations.

Sec. IV gives the first alignment completeness theorem:
Given a valid annotation of a product automaton for c|c′ :
P ≈> Q that executes c to termination and then executes c′,
there is a proof using just the sequential product rule and the
rules of HL —and using only judgments for subprograms with
pre- and postconditions given by the annotation.

Sec. V gives the alignment completness theorem for lock-
step alignment: if c | c′ : P ≈> Q is witnessed by such an
alignment with valid annotation, then it can be proved without
HL, using just the RHL rules that relate same-structured
programs (see Fig. 10). And again the judgments used are
those associated with the annotation. These rules are not
complete in the usual sense, but lockstep reasoning is sufficient
in some practical situations.

The theorem of Sec. VI accounts for the combination of
SEQPROD with the lockstep RHL rules. This and the preceding
results are for alignments that can be described in terms
of which control points are aligned. Sec. VII accounts for
conditional alignment of loop iterations, using a rule due to
Beringer [11]. Our fourth alignment completeness theorem is
for a logic including that rule together with lockstep rules but
not SEQPROD. As a worked example we show that c2 majorizes
c3 for sufficiently large x.

Sec. VIII discusses related work and open questions. Some
recent works on relational verification use alignments that
can be understood as more sophisticated product automata for
which alignment complete rules remain to be designed.

Additional details and proofs are in the appendix of an ex-
tended version of the paper (https://arxiv.org/abs/2101.11730).

II. PRELIMINARIES AND FLOYD COMPLETENESS

In order to connect Floyd’s theory with Hoare’s we formu-
late the IAM in terms of transition systems with an explicit
finite control flow graph (CFG). We consider ordinary program
syntax, with a standard structural operational semantics and
Hoare logic, but with labels used to define the transition system
of a given “main program”.

Floyd automata, specs and correctness: An automaton is
a tuple (Ctrl, Sto, init ,fin, 7→) where Sto is a set (the data
stores), Ctrl is a finite set (the control points) that contains
distinct elements init and fin , and 7→ ⊆ (Ctrl×Sto)×(Ctrl×
Sto) is the transition relation. We require (n, s) 7→ (m, t) to
imply n 6= fin and n 6= m and call these the finality and
non-stuttering conditions respectively. Absence of stuttering
loses no generality and facilitates definitions involving product
automata. Let s, t range over stores and n,m over control
points.

A pair (n, s) is called a state and we write ctrl, stor for the
left and right projections on states. A trace of an automaton
is a non-empty sequence of states, consecutive under the
transition relation. A trace τ is terminated provided τ is finite
and ctrl(τ−1) = fin , where τ−1 denotes the last state of τ . An
initial trace is one such that ctrl(τ0) = init . We allow traces

of length one, in which case τ−1 = τ0, but a terminated initial
trace has plural length because init 6= fin .

We treat predicates semantically, i.e., as sets of stores.
Define s |= P iff s ∈ P and define (n, s) |= P iff s |= P .

Let us spell out two semantics for specs in terms of an
automaton A. The basic semantics is as follows. For a finite
initial trace τ to satisfy P ; Q means that τ0 |= P and
ctrl(τ−1) = fin imply τ−1 |= Q, in which case we write τ |=
P ; Q. Then A satisfies P ; Q, written A |= P ; Q, just if
all its finite initial traces do. For non-stuck semantics there are
two conditions: (i) τ0 |= P and ctrl(τ−1) = fin imply τ−1 |=
Q, and (ii) τ0 |= P and ctrl(τ−1) 6= fin imply τ−1 7→ −, where
τ−1 7→ − means there is at least one successor state. A state
with no successor is called stuck. Non-final stuck states are
often used to model runtime faults. Again, A satisfies P ; Q
just if all its finite initial traces do. Non-stuck is important in
practice and we consider it in passing but for clarity our main
development is for basic semantics.

For an automaton A, define CFG(A) to be the rooted
directed graph with vertices Ctrl, root init , and an edge
n→m iff ∃s, t. (n, s) 7→ (m, t). For our purposes CFGs are
unlabelled; we write n→m for (n,m) to avoid confusion with
various other uses of pairs. A path is a non-empty sequence
of vertices that are consecutive under the edge relation. By
mapping the first projection (ctrl) over a trace τ of A we get
its control path, cpath(τ), i.e., the sequence of control points
in τ .

A cutpoint set for A is a set K ⊆ Ctrl with init ∈ K
and fin ∈ K, such that every cyclic path in CFG(A) contains
at least one element of K. Define segs(A,K), the segments
for K, to be the finite paths between cutpoints that have no
intermediate cutpoint. Formally, vs ∈ segs(A,K) iff vs is
finite, len(vs) > 1, vs0 ∈ K, vs−1 ∈ K, and ∀i. 0 < i <
len(vs) − 1 ⇒ vsi /∈ K. A segment vs is meant to refer to
execution starting at control point vs0 and ending at vs−1,
hence the requirement len(vs) > 1. Note that segs(A,K) is
finite because CFG(A) is finite and K cuts every cycle.

As an example, Fig. 2 shows a labelled version of program
c0. Fig. 3 shows the CFG of the automaton for c0; skip6. The
trailing skip serves to provide an end label. The figure shows
code as edge labels, for clarity, but we do not formally consider
edge-labelled CFGs. One cutpoint set is {1, 3, 6}; its segments
are [1, 2, 3], [3, 4, 5, 3], and [3, 6].

It is convenient to have notation for the effect of transitions
along a segment. Given vs ∈ segs(A,K) define relation vs7−→
by (n, s)

vs7−→ (m, t) iff there is a trace τ of A with cpath(τ) =
vs and τ0 = (n, s) and τ−1 = (m, t). Notice that vs7−→ need not
be total, even in the typical case that the underlying relation 7→
is never stuck on non-fin states. For example, if vs0 represents
a conditional branch and in state (vs0, s) the condition does
not drive the automaton to vs1 then (vs0, s) is not in the
domain of vs7−→.

Given automaton A, cutpoint set K, and spec P ; Q,
an annotation is a function an from K to store predicates
such that an(init) = P and an(fin) = Q. The requirement
init 6= fin ensures that annotations exist for any spec.

c0 : y :=1 x; z :=2 1; while3 y 6= 0 do z :=4 z ∗ y; y :=5 y − 1 od

c4 : y :=1 x; z :=2 24;w :=3 0; while4 y 6= 4 do if5 w % 2 = 0 then z :=6 z ∗ y; y :=7 y − 1 else skip8 fi;w :=9 w + 1 od

c5 : y :=1 x; z :=2 16;w :=3 0; while4 y 6= 4 do if5 w % 3 = 0 then z :=6 z ∗ 2; y :=7 y − 1 else skip8 fi;w :=9 w + 1 od

Fig. 2. Example labelled commands; c4 and c5 are variations on c2 and c3 of Fig. 1.

1 2 3 4 5 6
y := x z := 1 y 6= 0

y = 0

z := z ∗ y

y := y − 1

Fig. 3. CFG of the automaton aut(c0; skip6), with suggestive edge labels.

We lift an to a function ân that yields states: ân(n) =
{(n, s) | s |= an(n)}. Put differently: ân(n) = {n} × an(n).
For each vs in segs(A,K) there is a verification condition
(VC):

post(
vs7−→)(ân(vs0)) ⊆ ân(vs−1) (1)

Here post(
vs7−→) is the direct image i.e., strongest postcondition.

Using the universal pre-image,2 (1) is equivalent to ân(vs0) ⊆
pre(

vs7−→)(ân(vs−1)). The VC says that for every trace τ with
cpath(τ) = vs, if τ0 |= an(vs0) then τ−1 |= an(vs−1).
Annotation an is valid if all the VCs are true. A segment
represents a finite execution that follows that control path, so
pre-image is the weakest precondition.

Proposition 1 (soundness of IAM). Consider a valid anno-
tation, an, of automaton A with cutpoint set K, for P ; Q.
In any initial trace τ of A such that τ0 |= P , at any position
i, 0 ≤ i < len(τ), we have ctrl(τi) ∈ K ⇒ τi |= an(ctrl(τi)).
Moreover A |= P ; Q.

Proposition 2 (completeness of IAM). Suppose A |= P ; Q
and let K be a cutpoint set. Then there is an annotation on
K that is valid.

A full annotation of an automaton is one where the cut-
point set is all control points. Using strongest postconditions,
including disjunction at control joins, one can show:

Lemma 3. Any valid annotation can be extended to a full
annotation that is valid.

In fact the extension can be constructed efficiently, for many
assertion languages and programming languages.

Labelled commands: A few tedious but routine technical
details need to be spelled out in order to precisely formulate
the main results. Hoare logic is about programs; to make
connections with automata we use syntax with labels n ∈ Z:

c ::= skipn | x :=n e | c; c | c tn c
| ifn e then c else c fi | whilen e do c od

Here metavariable x ranges over a set Var of variable names
and e ranges over integer expressions. The form c tn d is for

2For relation R on states and set X of states, pre(R)(X) = {α |
∀β. αRβ ⇒ β ∈ X} and post(R)(X) = {β | ∃α. α ∈ X ∧ αRβ}.

s(e) 6= 0

〈ifn e then c else d fi, s〉_ 〈c, s〉

s(e) = 0

〈ifn e then c else d fi, s〉_ 〈d, s〉

s(e) 6= 0

〈whilen e do c od, s〉_ 〈c; whilen e do c od, s〉

s(e) = 0

〈whilen e do c od, s〉_ 〈skip−n, s〉
〈c, s〉_ 〈d, t〉
〈c; b, s〉_ 〈d; b, t〉

〈x :=n e, s〉_ 〈skip−n, [s |x: s(e)]〉 〈skipn; c, s〉_ 〈c, s〉

〈c tn d, s〉_ 〈c, s〉 〈c tn d, s〉_ 〈d, s〉

Fig. 4. Command semantics (with n ranging over Z).

nondeterministic choice. We also use metavariables b, d, c′, . . .
for commands.

Let lab(c) be the label of command c, defined recursively
in the case of sequence: lab(c; d) = lab(c). Let labs(c) be the
set of labels that occur in c. The label of a command can be
understood as its entry point. We focus on programs of the
form c; skipfin where fin ∈ N serves as the exit label for c.
Such a program can take at least one step, even if c is just
skip; this fits with our formulation of automata.

Negative labels are used in the transition semantics, but for
most purposes we are concerned with “main programs” which
are required to have unique, non-negative labels. This is for-
malized by the predicate ok(c) defined straightforwardly. Fig. 2
gives example labelled commands. The transition semantics is
standard except for the manipulation of labels, which is done
in a way that facilitates definitions to come later.

As in the discussion of automata, let s and t range over
stores —but here we use variable stores, i.e., total mappings
from Var to Z. We write [s |x: i] for the store like s but map-
ping x to i. A configuration 〈c, s〉 pairs a labelled command
with a store, and we let ctrl〈c, s〉 = c and stor〈c, s〉 = s.

The transition relation _ is defined in Fig. 4. In a con-
figuration reached from an ok command, the only negative
labels are those introduced by the transitions for assignment
and while, which introduce negative labels on skip commands.
For while, one transition rule duplicates the loop body, creating
non-unique labels. For every c, s, either 〈c, s〉 has a successor
or c is skipn for some n ∈ Z. Assume integer expressions are
everywhere defined, so configurations are not stuck under _
unless the program is a single skip.

fsuc(n, skipn, f) = f
fsuc(n, x :=n e, f) = f
fsuc(n, c; d, f) = fsuc(n, c, lab(d)) , if n ∈ labs(c)

= fsuc(n, d, f) , otherwise
fsuc(m,whilen e do c od, f) = f , if m = n

= fsuc(m, c, n) , otherwise
fsuc(m, ifn e then c else d fi, f) = fsuc(m, c, f) , if m ∈ labs(c)

= fsuc(m, d, f) , if m ∈ labs(d)
= f , otherwise (i.e., m = n)

fsuc(m, c tn d, f) = fsuc(m, c, f) , if m ∈ labs(c)
= fsuc(m, d, f) , if m ∈ labs(d)
= f , otherwise (i.e., m = n)

Fig. 5. Following successor fsuc(n, c, f), assuming ok(c), n ∈ labs(c), and
f ∈ N \ labs(c).

The automaton of a program: If ok(c) and m ∈ labs(c), let
sub(m, c) be the sub-command of c with label m. For example,
consider c0 in Fig. 2, then sub(2, c0) is z :=2 1 and sub(3, c0)
is while3 y 6= 0 do . . . od. To manipulate the CFG of a program
of the form c; skipfin that is ok (so, fin /∈ labs(c)), we define
functions fsuc and elab. For motivation, the control flow succes-
sors of the loop, sub(3, c0), in c0; skip6 are 3 and 6. Whereas 3
is inside c0, 6 is not. We call 6 the following successor, given
by fsuc(3, c0, 6). In general, fsuc(n, c, f) is defined by recur-
sion on c; see Fig. 5. For example, fsuc(sub(3, c0), c0, 6) =
6 and fsuc(sub(5, c0), c0, 6) = 3. For another example,
let c be if1 x > 0 then x :=2 x− 1; y :=3 x else skip4 fi;
then fsuc(2, c, 5) = 3 and fsuc(1, c, 5) = fsuc(3, c, 5) =
fsuc(4, c, 5) = 5.

For subcommand b of c we define elab(b, c, fin) to be the
exit label, i.e., the label to which control goes after every path
through b. In case b is a conditional, loop, choice, assignment
or skip, let elab(b, c, fin) = fsuc(lab(b), c,fin). In case b is a
sequence b0; b1, let elab(b, c, fin) = elab(b1, c,fin), i.e., the
exit of a sequence is the exit of its last command.3

Now we can define the CFG for an ok program c; skipfin ,
and with this in mind define an automaton with the same CFG
to represent the program. The nodes of the CFG are the control
points {fin} ∪ labs(c). There is no control flow successor of
fin . For n ∈ labs(c) there are one or two successors, described
by cases on sub(n, c):

sub(n, c) successor(s) of n in the CFG
x :=n e n→fsuc(n, c, fin)
skipn n→fsuc(n, c, fin)
ifn e then d0 else d1 fi n→lab(d0) and n→lab(d1)
d0 tn d1 n→lab(d0) and n→lab(d1)
whilen e do d od n→lab(d) and n→fsuc(n, c, fin)

The automaton of an ok program c; skipfin , written
aut(c; skipfin), is (labs(c) ∪ {fin}, (Var → Z), lab(c),fin, 7→)
where (n, s) 7→ (m, t) iff either
• ∃d. 〈sub(n, c), s〉_ 〈d, t〉 ∧ lab(d) ≥ 0 ∧m = lab(d)
• ∃d. 〈sub(n, c), s〉_ 〈d, t〉 ∧ lab(d) < 0 ∧m = fsuc(n, c, fin)
• or sub(n, c) = skipn ∧m = fsuc(n, c, fin) ∧ t = s

The first two cases use the semantics of Fig. 4 for a sub-
command on its own. The second case uses fsuc for a sub-

3Formally the definition of elab is by recursion on its first argument. We
can define elab as a function of b because unique labels rules out multiple
occurrences of a subprogram. And it needs to be a function of command b,
not its label, to handle sequences.

command that has terminated. The third case handles skip
which on its own would be stuck, but which should take a
step when it occurs as part of a sequence. The only stuck
states of aut(c; skipfin) are terminated ones.

For any traces τ via _ and υ via 7→, define τ � υ iff
len(τ) = len(υ) and stor(τi) = stor(υi) and lab(ctrl(τi)) =
ctrl(υi), for all i, 0 ≤ i < len(τ).

Lemma 4. Suppose ok(c; skipn). Let A be aut(c; skipn) and
let s be a store.

(i) For any trace τ from 〈c; skipn, s〉 via _, there is a
trace υ of A from (lab(c), s) via 7→, such that τ � υ.

(ii) For any trace υ of A from (lab(c), s) via 7→, there is
a trace τ from 〈c; skipn, s〉 via _, such that τ � υ.

For a full annotation, the segments are exactly the paths
of length two, i.e., the edges of the CFG. This enables a
straightforward description of the VCs for the automaton of a
program (not unlike the VCs given by Floyd [7] for flowchart
programs).

Lemma 5 (VCs for programs). Consider an ok program
c; skipfin and a full annotation, an, of its automaton. For each
control edge n→m, the VC (1) can be expressed as in Fig. 6.

The conditions are derived straightforwardly from the se-
mantic definitions. Although we are treating assertions as sets
of stores, we use formula notations like ∧ and ⇒, rather
than ∩ and ⊆, for clarity. We write an(n) ∧ e to abbreviate
an(n) ∩ {s | s(e) 6= 0}. For a set P of program stores, we
use substitution notation P x

e with standard meaning: s ∈ P x
e

iff [s |x: s(e)] ∈ P .
Floyd completeness of Hoare Logic: Fig. 7 gives the rules

of HL. We write ` to indicate derivability using the rules. As
usual, the semantics is that for all s, t, if s |= P and 〈c, s〉_∗
〈skipn, t〉 then t |= Q. We write this as |= c : P ; Q. As
is well known, the rules are sound: ` c : P ; Q implies
|= c : P ; Q.

A corollary of Lemma 4 is that if ok(c; skipf) then
aut(c; skipf) |= P ; Q iff |= c; skipf : P ; Q. The trailing
skip loses no generality. By semantics, |= c; skipf : P ; Q iff
|= c : P ; Q. In terms of proofs, the two are equi-derivable.

Given a valid annotation for aut(c; skipfin) and P ; Q,
by Prop. 1 we have aut(c; skipfin) |= P ; Q, so by the
corollary of Lemma 4 we have |= c; skipfin : P ; Q and
thus |= c : P ; Q. So by the standard (Cook) completeness
result for HL [3], [4] there is a proof of c : P ; Q. The
idea of Floyd completeness is that from a valid annotation an
one may obtain a proof that essentially uses only judgments
given directly by the annotation. For a full annotation, an, of
aut(c; skipfin), define the associated judgments to be:
• for subprograms b of c, the judgments

b : an(lab(b)) ; an(elab(b, c, fin)) (2)

• b : an(lab(b))∧ e; an(elab(b, c, fin)) where b is the body
of a loop, or then-branch of a conditional, with test e;
• b : an(lab(b)) ∧ ¬e ; an(elab(b, c, fin)) where b is the

else-branch of a conditional with test e;

if b = sub(n, c) is. . . and n→m in CFG is. . . then the VC is equivalent to. . .
skipn m = elab(b, c, fin) an(n)⇒ an(m)
x :=n e m = elab(b, c, fin) an(n)⇒ an(m)xe
ifn e then d0 else d1 fi m = lab(d0) an(n) ∧ e⇒ an(m)
ifn e then d0 else d1 fi m = lab(d1) an(n) ∧ ¬e⇒ an(m)
whilen e do d od m = lab(d) an(n) ∧ e⇒ an(m)
whilen e do d od m = elab(b, c, fin) an(n) ∧ ¬e⇒ an(m)
d0 tn d1 m is lab(d0) or lab(d1) an(n)⇒ an(m)

Fig. 6. VCs for the automaton of a program c; skipfin and full annotation an.

SKIP
skip : P ; P

ASS
x := e : P x

e ; P

SEQ
c : P ; R d : R ; Q

c; d : P ; Q

IF
c : P ∧ e ; Q d : P ∧ ¬e ; Q

if e then c else d fi : P ; Q

WH
c : P ∧ e ; P

while e do c od : P ; P ∧ ¬e

CHOICE
c : P ; Q d : P ; Q

c t d : P ; Q

CONSEQ
P ⇒ R c : R ; S S ⇒ Q

c : P ; Q

Fig. 7. Rules of HL (command labels elided).

• b : an(lab(b)) ; an(lab(b))∧¬e where b is a loop with test
e; and
• x :=n e : an(m)

x
e ; an(m) where m = elab(x :=n

e, c, fin).

Theorem 6 (Floyd completeness). Consider an ok program
c; skipfin , and a valid annotation, an, of aut(c; skipfin) for
P ; Q. Then there is proof in HL of c : P ; Q using
only the associated judgments of an.

A corollary is Cook completeness, i.e., |= c : P ; Q
implies ` c : P ; Q, using Prop. 2.

To prove the theorem, we first prove that

` b : an(lab(b)) ; an(elab(b, c, fin)) (3)

for every subprogram b of c. The claim (3) is proved by
structural induction on c. In each case, we use one instance of
the syntax-directed rule for b, and in some cases also CONSEQ.
The base cases are the assignments and skip commands in c.
For such a command b, let m = elab(b, c, fin).

• If b is skipn, we have ` skipn : an(m) ; an(m) by rule
SKIP, and Lemma 5 gives an(n)⇒ an(m) (using validity of
an), so by CONSEQ we get ` skipn : an(n) ; an(m)

• if b is x :=n e, we have ` x :=n e : an(m)
x
e ; an(m)

by rule ASS, and Lemma 5 gives an(n) ⇒ an(m)
x
e , so by

CONSEQ we get ` x :=n e : an(n) ; an(m)

The induction step is as follows. (Other cases in appendix.)
• If b is the sequence b0; b1, by induction we
have ` b0 : an(lab(b0)) ; an(elab(b0, c,fin))

and ` b1 : an(lab(b1)) ; an(elab(b1, c,fin) .
We have elab(b0, c,fin) = lab(b1) and
elab(b0; b1, c,fin) = elab(b1, c,fin), so by SEQ we get
` b : an(lab(b)) ; an(elab(b, c, fin)) .
• If b is ifn e then d0 else d1 fi, by induction
we have ` d0 : an(lab(d0) ; an(elab(d0, c,fin))

and ` d1 : an(lab(d1) ; an(elab(d1, c,fin)) .
Lemma 5 gives an(n) ∧ e ⇒ an(lab(d0)) and
an(n) ∧ ¬e ⇒ an(lab(d1)) so by Conseq we
get ` d0 : an(n) ∧ e; an(elab(d0, c,fin)) and

` d1 : an(n) ∧ ¬e; an(elab(d1, c,fin)) . By definitions
we have elab(b, c, fin) = elab(d0, c,fin) = elab(d1, c,fin).
So rule IF yields ` b : an(n) ; an(elab(b, c, fin) .

To prove the theorem we instantiate (3) with c itself, to get
` c : an(lab(c)) ; an(elab(c, c, fin)). Now init = lab(c) by
definition of aut(c; skipfin), and an is an annotation for P ;

Q, so an(lab(c)) = an(init) = P and an(elab(c, c, fin)) =
an(fin) = Q. Thus we have obtained ` c : P ; Q,
highlighting the associated judgments, q.e.d.

In the rest of the paper, we assume without mention that all
considered programs satisfy ok.

III. RELATIONAL JUDGMENTS AND PRODUCT AUTOMATA

Let A = (Ctrl, Sto, init ,fin, 7→) and A′ =
(Ctrl′, Sto′, init ′,fin ′, 7→′) be automata. A relational spec
R ≈> S is comprised of relations R and S from Sto to Sto′.
We write s, s′ |= R iff (s, s′) ∈ R and (n, s), (n′, s′) |= R iff
s, s′ |= R. Finite traces τ of A and τ ′ of A′ satisfy R ≈> S ,
written τ, τ ′ |= R ≈> S , just if τ0, τ ′0 |= R, ctrl(τ−1) = fin ,
and ctrl(τ ′−1) = fin ′ imply τ−1, τ

′
−1 |= S . The pair A,A′

satisfies R ≈> S , written A|A′ |= R ≈> S , just if all pairs of
finite initial traces do.

In passing we will consider the non-stuck semantics of rela-
tional specs: in addition to the above conditions, it requires, for
all finite initial τ, τ ′ such that τ0, τ ′0 |= R, that ctrl(τ−1) 6= fin
implies τ−1 7→ − and ctrl(τ ′−1) 6= fin ′ implies τ ′−1 7→′ −.

In casual examples, we use primed identifiers in specs to
refer to the second execution. The sequential product rule
involves renaming identifiers in order to encode two computa-
tions as one, but our product constructions and RHL rules do
not require programs to act on distinct variables. We continue
to use primes on metavariables to aid the reader, but introduce
notations like x =̈ x which expresses equality of the values
of x in two states with the same variables. For program ex-
pressions, e =̈ e′ denotes the relation {(s, s′) | s(e) = s′(e′)}

which we call agreement. For example, x =̈ x ≈> z =̈ z
expresses that the final value of z is determined by the initial
value of x. Owing to our use of non-zero integers to represent
truth (in semantics Fig. 4), we also need a different form,
e =̊ e′, to express agreement on truth value; it denotes
{(s, s′) | s(e) 6= 0 iff s′(e′) 6= 0}. We also write 〈[e〈] for
the set {(s, t) | s(e) 6= 0} and [〉e]〉 for {(s, t) | t(e) 6= 0}.

In the presence of nondeterminacy, the ∀∀-properties ex-
pressed by specs R ≈> S are not the only properties of
interest. For example, the program x := x + 1 t x := x + 2
does not satisfy x =̈ x ≈> x =̈ x, but it does satisfy the
“possibilistic noninterference” property that for any two stores
s, s′ that agree on x, and any run from s, there exists a run
from s′ with the same final value for x. Such ∀∃-properties are
beyond the scope of this paper. The nondeterministic program
(y := 0 t y := 1);x := x+ 1 does satisfy x =̈ x ≈> x =̈ x.

A product of automata A and A′ is meant to represent a
chosen alignment of steps of A with steps of A′. In many
cases, the control points of a product are pairs (n,m) from
underlying automata, but we continue to use identifiers n,m
for control points regardless of their type.

A product of A and A′ is an automaton ΠA,A′ of the form
(C, (Sto × Sto′), i, f, Z⇒), together with functions lt : C →
Ctrl and rt : C → Ctrl′ such that the following hold: First,
lt(i) = init , rt(i) = init ′, lt(f) = fin , and rt(f) = fin ′. Second,
(n, (s, s′)) Z⇒ (m, (t, t′)) implies either

• (lt(n), s) 7→ (lt(m), t) and (rt(n), s′) = (rt(m), t′), or
• (lt(n), s) = (lt(m), t) and (rt(n), s′) 7→′ (rt(m), t′), or
• (lt(n), s) 7→ (lt(m), t) and (rt(n), s′) 7→′ (rt(m), t′).

The second condition says each step of the product represents
a step of A, a step of A′, or both. For states of ΠA,A′ , define
left(n, (s, s′)) = (lt(n), s) and right(n, (s, s′)) = (rt(n), s′).
We extend left and right to traces of ΠA,A′ by left(T) =
destutter(map(left, T)) and right(T) = destutter(map(right, T)).
Observe that left(T) is a trace of A and right(T) a trace of
A′. (Any repeated states in map(left, T) are not transitions of
A, owing to the non-stuttering condition for automata.)

A product is R-adequate if it covers all terminated initial
traces from R-states: For all terminated initial traces τ of
A and τ ′ of A′ such that τ0, τ ′0 |= R, there is a trace T
of ΠA,A′ with τ = left(T) and τ ′ = right(T). A product is
adequate if it is adequate for all initial pairs of states (i.e.,
true-adequate). A product is strongly R-adequate if it covers
prefixes of diverging traces, in addition to terminated ones,
that is: For all finite initial traces τ, τ ′ of A,A′ such that
τ0, τ

′
0 |= R, there is a trace T of ΠA,A′ such that τ � left(T)

and τ ′ � right(T), where � means prefix. Moreover, it does not
have one-sided divergence: there is no infinite trace T , with
T0 |= R, with i such that left(Tj) = left(Ti) for all j > i, or
right(Tj) = right(Ti) for all j > i. Note that strong R-adequacy
implies R-adequacy.

Here are some products defined for arbitrary A,A′, taking
C to be Ctrl × Ctrl′ and lt, rt to be fst, snd.

only-lockstep. ((n, n′), (s, s′)) Z⇒olck ((m,m′), (t, t′)) iff
(n, s) 7→ (m, t) and (n′, s′) 7→′ (m′, t′).

left-only. ((n, n′), (s, s′)) Z⇒lo ((m,m′), (t, t′)) iff
(n, s) 7→ (m, t) and (n′, s′) = (m′, t′).

right-only. ((n, n′), (s, s′)) Z⇒ro ((m,m′), (t, t′)) iff
(n, s) = (m, t) and (n′, s′) 7→′ (m′, t′).

interleaved. The union Z⇒lo ∪ Z⇒ro.
eager-lockstep. ((n, n′), (s, s′)) Z⇒elck ((m,m′), (t, t′)) iff
((n, n′), (s, s′)) Z⇒olck ((m,m′), (t, t′)), or
n = fin and ((n, n′), (s, s′)) Z⇒ro ((m,m′), (t, t′)), or
n′ = fin ′ and ((n, n′), (s, s′)) Z⇒lo ((m,m′), (t, t′))

sequential. ((n, n′), (s, s′)) Z⇒seq ((m,m′), (t, t′)) iff
n′ = init ′ and ((n, n′), (s, s′)) Z⇒lo ((m,m′), (t, t′)), or
n = fin and ((n, n′), (s, s′)) Z⇒ro ((m,m′), (t, t′)).

ctrl-conditioned. Given subsets L,R, J of Ctrl×Ctrl′, define
((n, n′), (s, s′)) Z⇒cnd ((m,m′), (t, t′)) iff
(n, n′) ∈ L and ((n, n′), (s, s′)) Z⇒lo ((m,m′), (t, t′)), or
(n, n′) ∈ R and ((n, n′), (s, s′)) Z⇒ro ((m,m′), (t, t′)), or
(n, n′) ∈ J and ((n, n′), (s, s′)) Z⇒olck ((m,m′), (t, t′)).

As an example of the ctrl-conditioned form, the lockstep-
control product restricts only-lockstep to additionally require
the two executions to follow the same control path. (So it
only reaches a linear number out of the quadratically many
control points.) This can be described by taking L = R = ∅
and defining the condition for joint steps by (n, n′) ∈ J iff
n = n′. The reader can check that the ctrl-conditioned form
subsumes the others listed above.

A product can also be conditioned on data, as explored in
Sec. VII. Fig. 8 depicts a product of c0 with itself, in which
an iteration of the loop body on just the left (resp. right) side
may happen only when the store relation L (resp. R) holds.

The only-lockstep form is not adequate, in general, because
a terminated state can be reached on one side before the other
side terminates. But even lockstep-control can be R-adequate
in some cases, for example letR be equality of stores and A =
A′, then lockstep-control is R-adequate if A is deterministic.

The interleaved product is strongly adequate—but not very
helpful, since so many pairs of control points are reachable.
The sequential form is adequate but not strongly adequate: if
τ is a finite prefix of a divergent trace, and τ ′ has length > 1,
the sequential product never finishes on the left and so does
not cover τ ′.

Eager-lockstep is adequate, and strongly adequate if the
underlying automata have no stuck states. It shows the need
for prefix in the definition of strong adequacy: if τ is shorter
than τ ′, the product automaton needs to extend τ by further
steps in order to cover τ ′.

Auxiliary control state can be used to ensure strong ad-
equacy. The dovetail product has C = Ctrl × Ctrl′ ×
{0, 1} with lt(n, n′, i) = n and rt(n, n′, i) = n′. Let
((n, n′, i), (s, s′)) Z⇒dov ((m,m′, j), (t, t′)) iff either
• i = 0, j = 1, ((n, n′)(s, s′)) Z⇒lo ((m,m′), (t, t′)), or
• i = 1, j = 0, ((n, n′)(s, s′)) Z⇒ro ((m,m′), (t, t′)), or
• one of the last two eager-lockstep cases apply (one side

terminated).
The most general notion of product allows auxiliary store

in addition to auxiliary control. We return to this in Sec. VIII.
Owing to the definition of stores of a product, a relation

R ⊆ Sto × Sto′ from stores of A to stores of A′ is the
same thing as a predicate on stores of a product ΠA,A′ . So a

1, 1, lck 2, 2, lck 3, 3, lck 4, 4, lck 5, 5, lck

6, 6, lck

4, 3, lo 5, 3, lo

3, 4, ro 3, 5, ro

y := x
y′ := x′

z := 1

z′ := 1
y 6= 0 ∧ ¬L
y′ 6= 0 ∧ ¬R

z := z ∗ y
z′ := z′ ∗ y′

y 6= 0 ∧ L

z := z ∗ y

y′ 6= 0 ∧R

z′ := z′ ∗ y′

y := y − 1

y′ := y′ − 1 y = 0
y′ = 0

y := y − 1
y′ := y′ − 1

Fig. 8. Conditionally aligned loop product automaton for c0|c0, with informal
edge labels including alignment guards L,R.

relational spec R ≈> S for A,A′ can be seen as a unary spec
R; S for ΠA,A′ .

Theorem 7. For the basic semantics of specs, if ΠA,A′ is
an R-adequate product of A,A′ then ΠA,A′ |= R ; S iff
A|A′ |= R ≈> S . For the non-stuck semantics, if ΠA,A′ is a
strongly R-adequate product then ΠA,A′ |= R ; S implies
A|A′ |= R ≈> S .

This lifts IAM to a method for proving a relational judgment
for programs: construct their automata, define a product Π and
an annotation an; prove R-adequacy of Π and validity of an.

The number of cutpoints needed for a product may be on
the order of the product of the number for the underlying
automata. But some products have fewer. Unreachable cut-
points can be annotated as false so the corresponding VCs are
vacuous.

IV. A ONE-RULE COMPLETE RHL

Recall the sequential product rule sketched in Sec. I. Se-
quential product is adequate so by Theorem 7 it can be used
to prove correctness for any relational spec. This leads to the
well known rule that we now study in detail.

Although the definition of automaton allows an arbitrary
set for stores, in HL we require stores to be mappings on
variables, specifically on the set Var. To express a product as
a single program we need to encode a pair of such stores as a
single one. Let Var• be the set of fresh variable names x• such
that x ∈ Var. Let dot : Var → Var• be the obvious bijection.
Given s : Var → Z and t : Var• → Z, the union s ∪ t is a
function Var ∪ Var• → Z (treating functions as sets of ordered
pairs). For s and t of type Var→ Z define s+t = s∪(t◦dot−1),
so s+t : Var∪Var• → Z faithfully represents (s, t). For relation
R on variable stores, letR⊕ be the predicate on Var∪Var• → Z
given by R⊕ = {s+t | (s, t) ∈ R}. We overload the name dot
for the function renaming variables of an expression, and for
command c on Var let dot(c) be the command on Var• obtained
by renaming; this leaves labels unchanged.

Define semantic substitution Rx|x′
e|e′ by (s, t) ∈ Rx|x′

e|e′ iff
([s |x: s(e)], [t |x′: t(e′)]) ∈ R. (Here x need not be distinct
from x′.) Substitution is preserved by the encoding:

(Rx|x′
e|e′)

⊕ = (R⊕)
x,x′•

e,e′• (4)

(Using simultaneous substitution on the right; it can as well
be written ((R⊕)

x
e)

x′•

e′• .) We write Rx|
e| for substitution that

leaves the right side unchanged. We refrain explicit notation to
distinguish between correctness judgments for Var- programs
and those for Var ∪ Var•-programs.

Lemma 8. Let c, d be programs on Var and R,S be relations
on Var-stores. Let d′ = dot(d), so c; d′ is a (Var∪Var•)-program.
Then |= c; d′ : R⊕ ; S⊕ iff |= c|d : R ≈> S .

The lemma implies soundness of the following sequential
product rule (sometimes called self composition):

SEQPROD
d′ = dot(d) c; d′ : R⊕ ; S⊕

c | d : R ≈> S

Proposition 9 (one-rule complete RHL). The logic comprised
of SEQPROD and the rules of HL (Fig. 7) is complete.

To prove this, suppose |= c|d : R ≈> S . By Lemma 8 we
have |= c; d′ : R⊕ ; S⊕ where d′ = dot(d). By completeness
of HL we have ` c; d′ : R⊕ ; S⊕ so SEQPROD yields ` c|d :
R ≈> S , q.e.d.

Analogous to Floyd completeness (Thm. 6), we can directly
prove a stronger result. It refers to the associated judgments
of an annotation of a sequential product. These are similar to
those defined preceding Thm. 6, but now they have the form
b : an(n, 1)⊕ ; an(m, 1)⊕ (with b a subprogram of c with
n = lab(b) and m the end label), the form b : an(fin, n)⊕ ;

an(fin,m)⊕, and the variations like preceding Thm. 6. The
exact definition of associated judgment becomes evident in
the proof to follow.

Theorem 10 (alignment completeness for sequential product).
If an is a valid full annotation of the sequential product
of aut(c; skipfin) and aut(d; skipfin), for spec R ; S , then
` c | d : R ≈> S in the logic comprised of HL and
SEQPROD. Moreover this judgment can be proved using only
the associated judgments.

As a corollary, any valid annotation of a sequential product
gives a provable judgment, using loop invariants given by the
annotation, because the annotation can be extended to a full
one (Lemma 3). We choose to state all the theorems for full
annotations, just to avoid a more complicated definition for
the associated judgments.

The proof relies on an analysis like Lemma 5 but for VCs
of sequential product. Assume w.l.o.g. that lab(c) = 1 =
lab(d). As a first step, consider the CFG of the sequential
product Π of aut(c; skipfin) and aut(d; skipfin). Initial states
of Π have the form ((1, 1), (s, t)), final states have the
form ((fin,fin), (s, t)), and edges of the CFG are of two
forms: (n, 1)→(m, 1) for n→m in the CFG of c; skipfin and
(fin, n)→(fin,m) for n→m in the CFG of d; skipfin .

Now assume an is a full annotation of Π. Because steps
of Π represent execution of a program on one side or the
other, the VCs are similar to those in Fig. 6 except that they
pertain to control points of the forms (n, 1) and (fin, n). To

save space we just give some illustrative cases in Fig. 9, using
some notations from Sec. III.

Let Q = an(fin, 1). We will use Q⊕ as the intermediate
assertion for rule SEQ in a proof of c; dot(d) : R⊕ ; S⊕
which can then be used in SEQPROD to obtain c|d : R ≈> S .
To obtain proofs of c : R⊕ ; Q⊕ and dot(d) : Q⊕ ; S⊕, we
use the VCs of Fig. 9 in an argument similar to the proof of
Thm. 6. By induction on c we can show, for all subcommands
b of c:

` b : an(lab(b), 1)⊕ ; an(m, 1)⊕ (5)

where m = elab(b, c, fin). By induction on d we can show, for
all subcommands b of d:

` dot(b) : an(fin, lab(b))⊕ ; an(fin,m)⊕ (6)

where m = elab(b, d,fin). In proving (6) using Fig. 9, we
use that (an(fin, n) ∧ [〉e]〉)⊕ = an(fin, n)⊕ ∧ dot(e) and
(an(fin, n)

|x
|e)⊕ = (an(fin, n)⊕)

x•

dot(e). Instantiating (5) and (6)
we get ` c : an(1, 1)⊕ ; an(fin, 1)⊕

` dot(d) : an(fin, 1)⊕ ; an(fin,fin)⊕

Thus ` c : R⊕ ; Q⊕ and ` dot(d) : Q⊕ ; S⊕, because
an(1, 1) = R, an(fin, 1) = Q, and an(fin,fin) = S .

V. A LOGIC OF LOCKSTEP ALIGNMENT

So far we have that SEQPROD is complete in the sense of
Cook, and alignment complete with respect to alignments
represented by sequential product. It is not complete with
respect to other classes of alignments. For example, consider
lockstep-control alignments. As mentioned in Sec. I, such an
alignment enables to prove c0|c0 : x =̈ x ≈> z =̈ z using an
annotation with intermediate relations only y =̈ y ∧ z =̈ z.
A proof using SEQPROD with c0; dot(c0) requires to assert
z = x! ∧ x = x• at the semicolon, and to use factorial in
invariants. This is far beyond the assertions and judgments
associated with the annotation of the lockstep product.

Fig. 10 gives rules for relational judgments sometimes
called “diagonal” [12] because they relate same-structured
programs. They are typical of RHLs [1], [13] and we call
them lockstep because they embody lockstep-control align-
ment, with side conditions for agreement of tests. The rela-
tional version of CONSEQ is included in Fig. 10 because it is
needed in order for this collection of rules to be complete
for lockstep-control alignment, which we make precise in
Theorem 11. These rules are not complete in the sense of
Cook, for relational judgments in general, because they do not
apply to differently-structured commands and do not support
reasoning about differing control paths. For example, the
monotonicity property x ≤ x′ ≈> y ≤ y′ is satisfied by
if x > 0 then y := x+ 1 else y := x fi, but x ≤ x′ does not
imply agreement on the value of x > 0.

In a lockstep-control product, the CFG edges have the form
(n, n)→(m,m). For this to be sufficient for R-adequacy, the
code paths reached from initial state-pairs satisfying R need
to be the same. Thus lockstep control is not adequate for pro-
grams with choice except in trivial cases like x := 0 t x := 0.
Choice is ruled out in theorem.

Say c and c′ have same control, written sameCtl(c, c′), if
labs(c) = labs(c′) and for each n ∈ labs(c) the programs
sub(n, c) and sub(n, c′) are the same kind: both are assign-
ments, both are skip, both are if, and so on; moreover n has
the same control flow successors in c and in c′. Put differently:
c′ can be obtained from c by renaming variables and replacing
expressions in assignments and branch conditions, but no other
changes. For example, x :=5 y + z has same control as
w :=5 x−1; so too c4 and c5 in Fig. 2. Same control implies
identical CFGs.

For c, c′ with same control, and their lockstep-control prod-
uct Π, VCs for a full annotation are given in Fig. 11. As
usual, the VCs for conditional have the test or its negation as
antecedent, because the VC embodies the program semantics
while assuming control is along a particular path; see (1).

Regardless of whether the annotation is full, if the cutpoints
include all branch conditions, and for each point n with branch
conditions e, e′, respectively, we have an(n, n) ⇒ e =̊ e′,
then Π is R-adequate (if an is valid). This is because by
program semantics and definition of lockstep-control, the only
stuck non-terminated states are those where the program is
a conditional branch and the conditions disagree (so the
successor control points differ).

As with Prop. 2 and Theorem 10, an annotation de-
termines a set of what we call associated judgments. For
lockstep automata, the associated judgments are much like
those defined preceding Prop. 2 only doubled, like b|b′ :
an(lab(b), lab(b)) ≈> an(m,m) where m = elab(b, c, fin),
together with those obtained by adding if-tests and so forth.
For lack of space we refrain from spelling them out.

Theorem 11 (alignment completeness for lockstep product).
Suppose c and c′ are choice-free and satisfy sameCtl(c, c′).
Let Π be the lockstep-control product of aut(c; skipfin) and
aut(c′; skipfin) and let an be a valid full annotation of Π for
R ; S . Assume that for any branch point n with tests e, e′

we have an(n, n) ⇒ e =̊ e′. Then ` c|c′ : R ≈> S in the
logic comprising just the rules of Fig. 10. Moreover this can
be proved using only the associated judgments.

Informally, for a relation between two programs with the
same control structure, one may be able to argue that under
precondition R every pair of executions follows the same
control path. To formalize such an argument, the annotation at
each branch should include that their tests agree. The theorem
says this pattern of reasoning is covered by the rules of Fig. 10.

Such reasoning does not apply in the presence of pure
nondeterministic choice. Choice is sometimes used to model
externally determined inputs. An alternative is to model inputs
using additional variables, on which the precondition can
assert agreement.

To prove the theorem, we use that c and c′ satisfy
sameCtl(c, c′). We show, by induction on structure of c, that

if b = sub(n, c) is. . . and (n, 1)→(m, 1) in CFG is. . . then the VC is equivalent to. . .
x :=n e m = elab(b, c, fin) an(n, 1)⇒ an(m, 1)

x|
e|

ifn e then b0 else b1 fi m = lab(b0) an(n, 1) ∧ 〈[e〈]⇒ an(m, 1)
b0 tn b1 m is lab(b0) or lab(b1) an(n, 1)⇒ an(m, 1)

if b = sub(n, d) is. . . and (fin, n)→(fin,m) in CFG is. . . then the VC is equivalent to. . .
x :=n e m = elab(b, d, fin) an(fin, n)⇒ an(fin,m)

|x
|e

ifn e then b0 else b1 fi m = lab(b0) an(fin, n) ∧ [〉e]〉⇒ an(fin,m)
b0 tn b1 m is lab(b0) or lab(b1) an(fin, n)⇒ an(fin,m)

Fig. 9. Selected VCs for sequential product of aut(c; skipfin) and aut(d; skipfin) and full annotation an.

DSKIP
skip | skip : R ≈> R

DASS

x := e | x′ := e′ : Rx|x′
e|e′ ≈> R

DSEQ
c | c′ : R ≈> Q d | d′ : Q ≈> S

c; d | c′; d′ : R ≈> S

DIF
R ⇒ e =̊ e′ c | c′ : R∧ 〈[e〈] ∧ [〉e′]〉 ≈> S d | d′ : R∧ ¬〈[e〈] ∧ ¬[〉e′]〉 ≈> S

if e then c else d fi | if e′ then c′ else d′ fi : R ≈> S

DWH
Q ⇒ e =̊ e′ c | c′ : Q∧ 〈[e〈] ∧ [〉e′]〉 ≈> Q

while e do c od | while e′ do c′ od : Q ≈> Q∧ ¬〈[e〈] ∧ ¬[〉e′]〉 RCONSEQ
P ⇒ R c | d : R ≈> S S ⇒ Q

c|d : P ≈> Q

Fig. 10. Lockstep (diagonal) syntax-directed rules.

if b = sub(n, c) and b′ = sub(n, c′) are. . . and (n, n)→(m,m) in CFG is. . . then the VC is equivalent to. . .
x :=n e and x′ :=n e′ m = elab(b, c, fin) = elab(b′, c′,fin) an(n, n)⇒ an(m,m)

x|x′
e|e′

skipn and skipn m = elab(b, c, fin) = elab(b′, c′,fin) an(n, n)⇒ an(m,m)
ifn e then b0 else b1 fi and ifn e′ then b′0 else b′1 fi m = lab(b0) = lab(b′0) an(n, n) ∧ 〈[e〈] ∧ [〉e′]〉⇒ an(m,m)
ifn e then b0 else b1 fi and ifn e′ then b′0 else b′1 fi m = lab(b1) = lab(b′1) an(n, n) ∧ ¬〈[e〈] ∧ ¬[〉e′]〉⇒ an(m,m)

Fig. 11. Selected VCs for lockstep-control product of aut(c; skipfin) and aut(c′; skipfin) with sameCtl(c, c′), and full annotation an.

for every subprogram b of c, with corresponding subprogram
b′ in c′:

` b | b′ : an(lab(b), lab(b)) ≈> an(m,m) (7)

where m = elab(b, c, fin). Note that lab(b) = lab(b′) and m =
elab(b′, c′,fin) by sameCtl(c, c′). In the base case, b and b′ are
both assignments or both skip. We get that an(lab(b), lab(b))
implies the weakest precondition for the command to establish
an(m,m) by the first two rows in Fig. 11. So we can use DSKIP

or DASS, together with RCONSEQ, to get (7). For the induction
step, consider the case where b is ifn e then b0 else b1 fi and b′

is ifn e′ then b′0 else b′1 fi. Let m0 = lab(b0) = lab(b′0) (using
sameCtl) and m1 = lab(b1) = lab(b′1). Let p = elab(b, c, fin) =
elab(b′, c′,fin), noting that p is also the end label for the then
and else parts. By induction we have ` b0|b′0 : an(m0,m0) ≈>
an(p, p) and ` b1|b′1 : an(m1,m1) ≈> an(p, p). By the VCs
we have an(n, n) ∧ 〈[e〈] ∧ [〉e′]〉⇒ an(m0,m0) and an(n, n) ∧
¬〈[e〈] ∧ ¬[〉e′]〉⇒ an(m1,m1) so using RCONSEQ we get

` b0|b′0 : an(n, n) ∧ 〈[e〈] ∧ [〉e′]〉 ≈> an(p, p)
` b1|b′1 : an(n, n) ∧ ¬〈[e〈] ∧ ¬[〉e′]〉 ≈> an(p, p)

By assumption of the theorem we have an(n, n) ⇒ e =̊ e′,
which is the side condition of rule DIF, which yields:

ifn e then b0 else b1 fi | ifn e′ then b′0 else b′1 fi : an(n, n) ≈> an(p, p)

The arguments for sequence and while are similar, using rules
DSEQ and DWH. That completes the proof of (7), as c and c′ are
choice-free. Instantiating (7) with c, c′ completes the proof.

Theorem 11 pertains to a restricted class of program pairs.
We could relax the sameCtl condition slightly, to allow an
assignment to match skip, still using lockstep control for
the product. Then the VCs of Fig. 11 would include a
case for x :=n e on the left and skipn on the right, with
VC an(n, n) ⇒ an(m,m)

x|
e| where m = elab(b, c, fin) =

elab(b′, c′,fin). To get an alignment complete logic one would
add the axiom x := e | skip : Rx|

e| ≈> R (and a similar VC and
rule for assignment on the right).

VI. COMBINING LOCKSTEP WITH SEQUENTIAL

A common practical problem is regression verification:
equivalence of two programs that differ in that some sub-
program has been replaced by another. We can describe this
as equivalence of ĉ[b] and ĉ[b′], using the usual notation ĉ[b]
for a program context ĉ[] with a designated subprogram b.
Informal reasoning might go by lockstep except for b and b′.
In this section we consider a more general situation, relating
ĉ[b] to ĉ′[b′] where the contexts ĉ[] and ĉ′[] have the same
structure, as in Sec. V. We consider the logic comprised of
SEQPROD, HL, and the rules of Fig. 10. The corresponding form
of automata has both lockstep and one-sided sequential steps,
where lockstep execution is used for similar control structure

and one-sided only for the designated subprograms (which
may have arbitrarily different structure).

To be precise, define sameExcept(c, c′, b, b′, beg, end, fin) iff
there are contexts ĉ[] and ĉ′[] such that
• c = ĉ[b] and c′ = ĉ′[b′]
• beg = lab(b) = lab(b′) and labs(b) ∩ labs(b′) = {beg}
• end = elab(b, c, fin) = elab(b′, c′,fin).
• sameCtl(ĉ[skipbeg], ĉ′[skipbeg])
• ĉ[] and ĉ′[] are choice free (but b, b′ may have choice)

The setup encompasses any pair of programs, because it
includes the extreme case where ĉ[] is nothing more than the
hole to be filled, i.e., ĉ[b] = b and ĉ′[b′] = b′; put differently,
c = b and c′ = b′. Here is an example that is only a little
beyond what is encompassed by Theorem 11.
• c is if1 x > y then y :=2 y;x :=3 0 else skip4 fi and
• c′ is if1 y ≤ x− 1 then x :=2 0 else skip4 fi
• b is y :=2 y;x :=3 0 and b′ is a single assignment x :=2 0

Here beg = 2 and elab(b, c, fin) = fin . The example does not
satisfy sameCtl (because b and b′ do not match).

To describe the product we use extra control state, for
which we assume a set of three tags {lck, lo, ro} to designate
lockstep, left-only, and right-only steps. Let Ctrl and Ctrl′

be the control sets for the automata of c; skipfin and c′; skipfin

respectively, assuming as before that lab(c) = 1 = lab(c′). Re-
call Ctrl = labs(c; skipfin) and Ctrl′ = labs(c′; skipfin). The
control set of the product is Ctrl×Ctrl′×{lck, lo, ro} and lt
and rt are the first two projections. The initial and final control
points are (1, 1, lck) and (fin,fin, lck). Define Z⇒ as follows,
where 7→ is from aut(c; skipfin), 7→′ is from aut(c′; skipfin),
and Z⇒lckc is the lockstep-control product based on those. For
all n,m, s, t, s′, t′:

(i) ((n, n, lck), (s, s′)) Z⇒ ((m,m, lck), (t, t′))
if ((n, n), (s, s′)) Z⇒lckc ((m,m), (t, t′)) and n /∈ labs(b) ∪
labs(b′) and m 6= beg

(ii) ((n, n, lck), (s, s′)) Z⇒ ((beg, beg, lo), (t, t′))
if ((n, n), (s, s′)) Z⇒lckc ((beg, beg), (t, t′)) and n /∈ labs(b) ∪
labs(b′)

(iii) ((n, beg, lo), (s, s′)) Z⇒ ((m, beg, lo), (t, s′))
if m 6= end and (n, s) 7→ (m, t) and n ∈ labs(b)

(iv) ((n, beg, lo), (s, s′)) Z⇒ ((end, beg, ro), (t, s′))
if (n, s) 7→ (end, t) and n ∈ labs(b)

(v) ((end, n′, ro), (s, s′)) Z⇒ ((end,m′, ro), (s, t′))
if m′ 6= end and (n′, s′) 7→′ (m′, t′) and n′ ∈ labs(b′)

(vi) ((end, n′, ro), (s, s′)) Z⇒ ((end, end, lck), (s, t′))
if (n′, s′) 7→′ (end, t′) and n′ ∈ labs(b)

Rule (ii) enters left-only mode, (iii) continues, (iv) switches
to right-only, (v) continues, and (vi) resumes lockstep. Like
the lockstep-control product, this gets stuck at branch points
outside the designated subprograms b, b′, if tests don’t agree.

Theorem 12. Suppose sameExcept(c, c′, b, b′, beg, end, fin)
and Π is the product defined above. Suppose an is a valid full
annotation of Π for R ; S . Suppose for all branch points
n ∈ labs(c) \ (labs(b) ∪ labs(b′)), with branch conditions e, e′,
we have an(n, n, lck) ⇒ e =̊ e′. Then ` c|c′ : R ≈> S in
the logic comprised of HL, the rules of Fig. 10, and SEQPROD,
using only the associated judgments.

As an exercise the reader may like to modify the product in
this section to handle the special case where b is b0 t b1 and

b′ is b0′ t b1′ by nondeterministically choosing between four
sequential executions (b0′ after b0, or b1′ after b0, etc). Then
recover alignment completeness by adding a relational proof
rule that relates a choice to a choice, with four premises.

VII. CONDITIONALLY ALIGNED LOOPS

We want to prove c2 majorizes c3, that is, the judgment
c2 | c3 : x = x′ ∧ x > 3 ≈> z > z′, by aligning the iterations
in which y gets updated, maintaining invariant y = y′∧z > z′

and allowing the no-op iterations to happen independently. To
do so we use this rule [11]:

CAWHILE
c | c′ : Q∧ 〈[e〈] ∧ [〉e′]〉 ∧ ¬L ∧ ¬R ≈> Q

c | skip : Q∧ L ∧ 〈[e〈] ≈> Q
skip | c′ : Q∧R ∧ [〉e′]〉 ≈> Q

Q ⇒ e =̊ e′ ∨ (L ∧ 〈[e〈]) ∨ (R∧ [〉e′]〉)

while e do c od | while e′ do c′ od : Q ≈> Q∧ ¬〈[e〈] ∧ ¬[〉e′]〉

There are three premises, which strengthen the invariant Q in
three different ways. The first premise relates both loop bodies,
like the lockstep loop rule in Fig. 10. The second and third
premises each relate a loop body to skip, under preconditions
strengthened by relations L or R. The side condition ensures
these are adequate to cover all cases. Later we consider the
example of c2, c3 using 〈[w % 2 6= 0〈] for L and [〉w′ % 3 6= 0]〉
for R. For CAWHILE to be useful, the proof system we consider
has the lockstep rules of Fig. 10 together with one-sided rules
of Fig. 12.

In order to focus on this situation, we consider relating
same-control programs c, c′ with a distinguished label beg
such that sub(beg, c) is a loop—and so is sub(beg, c′), since
we assume sameCtl(c, c′). Let Ctrl, Ctrl′ and 7→, 7→′ be the
control sets and transition relations for their automata (noting
that Ctrl′ = Ctrl). As in Sec. VI we define a product
with control Ctrl × Ctrl′ × Tag where Tag = {lck, lo, ro}.
The transition relation Z⇒ is defined with respect to given
relations L and R. Unlike a ctrl-conditioned automaton, some
transitions are conditioned on the stores. If n is the label of
the distinguished loop’s body, there are three transitions from
the top of the loop into its body: (beg, beg, lck)→(n, n, lck) if
neither L nor R holds, (beg, beg, lck)→(n, beg, lo) if L holds,
and (beg, beg, lck)→(beg, n, ro) if R holds. Fig. 8 depicts an
example.

Theorem 13. Consider c, c′, beg,L,R such that sameCtl(c, c′),
c and c′ are choice-free, sub(beg, c) is a loop, and L,R are
store relations. Let Π be the product described above for
c; skipfin , c′; skipfin . Suppose an is a valid full annotation of
Π for P ; Q. Assume

(a) for all branch points n ∈ labs(c) \ {beg} with branch
conditions e, e′, we have an(n, n, lck)⇒ e =̊ e′; and

(b) an(beg, beg, lck) ⇒ e =̊ e′ ∨ (L ∧ 〈[e′〈]) ∨ (R ∧ [〉e]〉)
where e, e′ are the tests of the loops at beg.

Then ` c | c′ : P ≈> Q in the logic comprised of the rules
of Fig. 10, Fig. 12, and CAWHILE, using only the associated
judgments.

ASSSKIP

x := e | skip : Rx|
e| ≈> R

SKIPSKIP
skip | skip : R ≈> R

SEQSKIP
c | skip : R ≈> Q d | skip : Q ≈> S

c; d | skip : R ≈> S

IFSKIP
c | skip : R∧ 〈[e〈] ≈> S d | skip : R∧ 〈[¬e〈] ≈> S

if e then c else d fi | skip : R ≈> S

WHSKIP
c | skip : Q∧ 〈[e〈] ≈> Q

while e do c od | skip : Q ≈> Q∧ 〈[¬e〈]

Fig. 12. One-side rules (symmetric right-side rules omitted).

Assumption (a) is about annotations of aligned branch
points, even inside the distinguished loop at beg, but only in
the part of the product CFG that executes in lockstep. For n a
branch point inside that loop, the control points (n, n, lo) and
(n, n, ro) are not reachable, by construction of Π. Assumption
(b) is like the side condition of rule CAWHILE and ensures
adequacy.

Instead of showing how c2 majorizes c3, we consider
variations c4, c5 in Fig. 2. This lets us avoid complications in
the invariant needed to handle the first few iterations of c2, c3
(where z > z′ does not hold under precondition x = x′).
Whereas the originals maintain the invariants x! = z ∗ y! (for
c2) and 2x = z∗2y (for c3) and y ≥ 0 (for both), the variations
maintain x!∗4! = z ∗y! and 2x ∗24 = z ∗2y and y ≥ 4, owing
to initializations of z = 4! = 24 and z = 24 = 16. We shall
prove x = x′ ∧ x > 3 ≈> z > z′ for c4; skip0 and c5; skip0.
We use the product construction of this section, for alignment
conditions mentioned earlier: L is 〈[w % 2 6= 0〈] and R is
[〉w′%3 6= 0]〉. So the transition on edge (4, 4, lck)→(5, 4, lo) is
guarded by 〈[w%2 6= 0〈], the transition (4, 4, lck)→(4, 5, ro) is
guarded by [〉w′%3 6= 0]〉, and (4, 4, lck)→(5, 5, lck) is guarded
by ¬L ∧ ¬R. As loop invariant we choose

S : y = y′ ∧ y > 3 ∧ z > z′ > 0

Define the annotation an as follows.

(n,m, tag) an(n,m, tag)
(1, 1, lck) x = x′ ∧ x > 3 precondition
(2, 2, lck) y = y′ ∧ y > 3
(3, 3, lck) y = y′ ∧ y > 3 ∧ z > z′ > 0
(4, 4, lck) S
(5, 5, lck) S ∧ y > 4 ∧ ¬L ∧ ¬R
(6, 6, lck) S ∧ y > 4 ∧ w % 2 = 0 = w′ % 3
(7, 7, lck) S ∧ y > 4 ∧ w % 2 = 0 = w′ % 3
(8, 8, lck) S ∧ y > 4 ∧ w % 2 6= 0 6= w′ % 3
(9, 9, lck) S
(5, 4, lo) S ∧ L
(8, 4, lo) S
(9, 4, lo) S
(4, 5, ro) S ∧R
(4, 8, ro) S
(4, 9, ro) S
(0, 0, lck) z > z′ postcondition

Let an(m,n, tag) = false for all others. The automaton
never reaches (6, 8, lck) or (8, 6, lck), owing to the lockstep
conditions. It never reaches (6, 4, lo) or (7, 4, lo) because L
contradicts the if-test; likewise (4, 6, ro), (4, 7, ro), and R.
The annotation is valid.

VIII. DISCUSSION

We introduced a notion of completeness relative to a desig-
nated class of alignments, and showed alignment completeness
for four illustrative sets of RHL rules. In passing, we defined
and proved Floyd completeness for HL. For simplicity we
used the basic semantics of specs. Non-stuck semantics is
preferable for richer languages and the requisite adjustments
to HL and RHL rules are straightforward and well known
(e.g., the precondition for assignment includes a definedness
condition). We highlighted what adequacy means for non-
stuck semantics, but refrained from spelling out alignment
completeness results for it.

In this section we point out related work and directions for
further development. For more extensive reviews of related
work on RHLs, some starting points are [14]–[16] and [17].
Naumann [17] proposes the idea of alignment completeness
but only in vague terms.

Product automata appear in many places (e.g., [12], [18],
[19]) and are similar to control flow automata [20], [21].
Francez [12] observes that sequential product is complete
relative to HL, but does not work that out in detail. Its com-
pleteness is featured in Barthe et al. [22], for the special case of
relating a program to itself; it is clear that it holds generally as
noted in [23]. Beringer [11] proves semantic completeness of
sequential product and leverages it to derive rules including
two conditionally aligned loop rules. The variation CAWHILE

is featured in Banerjee et al. [24], [25]; the latter uses a
form of dovetail product for non-stuck semantics. A RHL for
deterministic programs is proved complete based on sequential
product by Barthe et al. [26]. Sousa and Dillig [27] give a rule
like SEQPROD for k-products; their Theorem 2 is completeness
relative to completeness of an underlying HL. Wang et al. [28]
prove a similar result specialized to program equivalence. The
basis of these results is that the product under consideration is
adequate, to use our term. Francez gives an adequacy result of
this sort, for eager-lockstep, and Eilers et al. [29] do the same
for a more general form of k-product that uses eager-lockstep
for loops. Aguirre et al. [30] prove completeness of a RHL for
higher order functional programs, via embedding in a unary
logic.

By contrast with these Cook-style completeness results,
alignment completeness is with respect to a designated class of
alignments. Our results are for classes of alignments defined in
terms of a limited class of product automata without auxiliary
store, although ghost variables can be used in the relations
L and R of rule CAWHILE. The most general notion of align-
ment would be a function from pairs of traces to alignments
thereof [31]. Even restricted to computable functions, this is

far beyond the scope of known RHL rules, even using mixed-
structure rules like this one adapted from [12].

while e ∧ e0 do b od | c : P ≈> Q
while e do b od | d : Q ≈> R Q∧ 〈[¬e〈]⇒ R

while e do b od | c; d : P ≈> R

Several practical works use more sophisticated product con-
structions [19], [32], including some that use auxiliary
store [33], [34]. Clochard et al. [34] highlight the efficacy
of (unary) deductive verification applied to product programs,
as well as going beyond ∀∀ (as do [18]). Bringing more
sophisticated alignments within the purview of RHL could
have the familiar benefits of HL, like bringing the principles
of conjunctive and disjunctive decomposition together with
the IAM. However, merely collecting a large number of
mixed-structure and data-conditioned rules would be inelegant
and likely fall short of covering all useful alignments. An
alternative is to leverage HL in the way SEQPROD does, but for
a wider range of product encodings. This might be achieved
using a subsidiary judgment that connects two commands with
a third that is an adequate product, as explored in [15], [25],
and taking into account the encoding of two stores by one for
different data models [22], [35], [36].

Another subsidiary judgment that broadens the applicability
of basic RHL rules is correctness-preserving rewriting, which
is common in verification tools but is seldom made explicit
in HLs. The RHL of [24] includes an unconditional rewriting
relation ∼= and rule to infer c|c′ : R ≈> S from d|d′ : R ≈> S
if c ∼= d and c′ ∼= d′. Using simple equivalences like
if E then C else skip fi; while E do C od ∼= while E do C od,
together with a version of CAWHILE, they prove a loop tiling
transformation which had been used to argue for working
directly with automata [18]. Unrolling examples c2 and c3
a few times would address the problem we dodged by using
c4 and c5. Equivalences valid in Kleene algebra with tests [37]
are a natural candidate to connect with some class of product
automata.

Alignment completeness characterizes sets of rules in terms
of classes of alignments. If different classes could be defined
using combinators for product automata, one might obtain
a more uniform and comprehensive theory leading to more
systematic development of relational verification tools.

Acknowledgments

Thanks to Anindya Banerjee and anonymous reviewers for
helpful suggestions. The authors were partially supported by
NSF award CNS 1718713 and the second author was partially
supported by ONR N00014-17-1-2787.

REFERENCES

[1] N. Benton, “Simple relational correctness proofs for static analyses and
program transformations,” in POPL, 2004.

[2] T. Terauchi and A. Aiken, “Secure information flow as a safety problem,”
in Static Analysis Symposium (SAS), 2005.

[3] S. A. Cook, “Soundness and completeness of an axiom system for
program verification,” SIAM J. Comput., vol. 7, no. 1, 1974.

[4] K. R. Apt, F. S. de Boer, and E.-R. Olderog, Verification of Sequential
and Concurrent Programs, 3rd ed. Springer, 2009.

[5] T. Nipkow, “Hoare logics for recursive procedures and unbounded
nondeterminism,” in Computer Science Logic, 2002.

[6] B. Godlin and O. Strichman, “Regression verification,” in 46th ACM
Design Automation Conference, 2009.

[7] R. Floyd, “Assigning meaning to programs,” in Symposium on Applied
Mathematics 19, Mathematical Aspects of Computer Science, 1967.

[8] A. Turing, “On checking a large routine,” in Report of a Conference on
High Speed Automatic Calculating Machines, 1949.

[9] K. R. Apt and E. Olderog, “Fifty years of Hoare’s logic,” Formal Asp.
Comput., vol. 31, no. 6, 2019.

[10] S. Owicki and D. Gries, “An axiomatic proof technique for parallel
programs,” Acta Inf., vol. 6, 1976.

[11] L. Beringer, “Relational decomposition,” in Interactive Theorem Proving
(ITP), 2011.

[12] N. Francez, “Product properties and their direct verification,” Acta
Informatica, vol. 20, 1983.

[13] H. Yang, “Relational separation logic,” Theo. Comp. Sci., vol. 375, 2007.
[14] B. Beckert and M. Ulbrich, “Trends in relational program verification,”

in Principled Software Development, 2018.
[15] G. Barthe, J. M. Crespo, and C. Kunz, “Product programs and relational

program logics,” J. Logical and Algebraic Methods in Programming,
vol. 85, no. 5, 2016.

[16] K. Maillard, C. Hritçu, E. Rivas, and A. V. Muylder, “The next 700
relational program logics,” Proc. ACM Program. Lang., vol. 4, no.
POPL, 2020.

[17] D. A. Naumann, “Thirty-seven years of relational Hoare logic: remarks
on its principles and history,” in ISOLA, 2020, extended version at https:
//arxiv.org/abs/2007.06421.

[18] G. Barthe, J. M. Crespo, and C. Kunz, “Beyond 2-safety: Asymmetric
product programs for relational program verification,” in LFCS, 2013.

[19] B. R. Churchill, O. Padon, R. Sharma, and A. Aiken, “Semantic program
alignment for equivalence checking,” in PLDI, 2019.

[20] M. Heizmann, J. Hoenicke, and A. Podelski, “Software model checking
for people who love automata,” in CAV, 2013.

[21] T. Lange, M. R. Neuhäußer, and T. Noll, “IC3 software model checking
on control flow automata,” in FMCAD, 2015.

[22] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information flow by
self-composition,” in IEEE CSFW, 2004, see extended version [38].

[23] G. Barthe, J. M. Crespo, and C. Kunz, “Relational verification using
product programs,” in Formal Methods, 2011.

[24] A. Banerjee, D. A. Naumann, and M. Nikouei, “Relational logic with
framing and hypotheses,” in FSTTCS, 2016, technical report at https:
//arxiv.org/abs/1611.08992.

[25] A. Banerjee, R. Nagasamudram, M. Nikouei, and D. A. Naumann, “A
relational program logic with data abstraction and dynamic framing,”
2019, available at https://arxiv.org/abs/1910.14560.

[26] G. Barthe, B. Grégoire, J. Hsu, and P. Strub, “Coupling proofs are
probabilistic product programs,” in POPL, 2017.

[27] M. Sousa and I. Dillig, “Cartesian Hoare Logic for verifying k-safety
properties,” in PLDI, 2016.

[28] Y. Wang, I. Dillig, S. K. Lahiri, and W. R. Cook, “Verifying equivalence
of database-driven applications,” Proc. ACM Program. Lang., vol. 2, no.
POPL, 2018.

[29] M. Eilers, P. Müller, and S. Hitz, “Modular product programs,” ACM
Trans. Program. Lang. Syst., vol. 42, no. 1, 2020.

[30] A. Aguirre, G. Barthe, M. Gaboardi, D. Garg, and P. Strub, “A relational
logic for higher-order programs,” J. Funct. Program., vol. 29, 2019.

[31] M. Kovács, H. Seidl, and B. Finkbeiner, “Relational abstract interpreta-
tion for the verification of 2-hypersafety properties,” in CCS, 2013.

[32] R. Shemer, A. Gurfinkel, S. Shoham, and Y. Vizel, “Property directed
self composition,” in CAV, 2019.

[33] T. Girka, D. Mentré, and Y. Régis-Gianas, “Verifiable semantic differ-
ence languages,” in PPDP, 2017.

[34] M. Clochard, C. Marché, and A. Paskevich, “Deductive verification with
ghost monitors,” Proc. ACM Program. Lang., vol. 4, no. POPL, 2020.

[35] D. A. Naumann, “From coupling relations to mated invariants for secure
information flow,” in ESORICS, 2006.

[36] L. Beringer and M. Hofmann, “Secure information flow and program
logics,” in IEEE CSF, 2007.

[37] D. Kozen, “On Hoare logic and Kleene algebra with tests,” ACM Trans.
Comput. Log., vol. 1, no. 1, 2000.

[38] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information flow by
self-composition,” Math. Struct. Comput. Sci., vol. 21, no. 6, 2011.

