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Fundamentally, agriculture is about sustainably culti-
vating the environment to meet societal needs. How-
ever, neither the environment nor society are static or
uniform. Instead, they vary across regions and time,
and they form complex interaction networks. For in-
stance, changing cultural norms may require an adjust-
ment of practices even though these may not strictly be
optimal from an agronomic perspective. Conversely,
society has to adapt to changes in the environment,
e.g., to ensure the long-term sustainability of natural
resources. Decision-makers also need to account for
regional aspects and interactions between neighboring
regions that, to date, are often considered in isolation.

For example, the Ogallala Aquifer [1] is a part of the
U.S. High Plains Aquifer System, spans eight states
of the Great Plains, and provides water for a third of
all irrigated land in the United States, while also sup-
plying drinking water for millions of Americans. De-
spite various initiatives, the aquifer is still depleting
as reductions in water usage due to precision agricul-
ture are offset by new demands, such as biofuel and
increasing environmental stress. While the Ogallala
Agquifer is unique in its role for the U.S., it is prototyp-
ical for the complex intertwined relationships across
the biotic, abiotic, and cultural factors that characterize
agriculture like no other domain. While the aquifer’s
water levels are rising in Nebraska, they are declin-
ing in Kansas, New Mexico, and parts of Texas. A
changing climate will further exaggerate these regional
differences. The usage of water also differs among
states ranging from serving the irrigation needs of rural
America and the drinking water needs of urban Amer-

ica. Even water use rights differ among the states, e.g.,
granting Texans unrestricted rights to the water be-
neath their properties.

In the past, such conflicting interests and a soci-
etal consensus around topics such as environmental
sustainability, tail docking, or genetically engineered
foods have been addressed via commissions, elections,
and regulations to reach joint explanations of new
norms. Increasingly, decision-making in agriculture is
too rapid, too multivariate, and too interlinked to be
satisfactorily settled in such ways. Instead, more and
more decisions are left to machine learning models and
their supporting sensor networks that provide a wide
range of heterogeneous data at multiple scales. How-
ever, current artificial intelligence models and preci-
sion agriculture techniques alone cannot readily cap-
ture the breadth of conflicting actors, interests, envi-
ronmental factors, and regional differences while im-
proving climate adaptation and sustainable intensifica-
tion. And most importantly, they cannot provide expla-
nations.

The discussion just provided makes it apparent that
modern and sustainable agricultural decision making
needs to be based not only on multi-faceted and multi-
sourced, and thus highly heterogeneous data, but also
needs to be supported by artificially intelligent deci-
sion support systems that can flexibly adapt to contex-
tual factors based on knowledge about situational pa-
rameters, their relevance, and their implications.

To further illustrate this point, consider U.S. agricul-
ture, which is a flourishing and robust industry con-
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tributing US$390 billion per year in annual revenue
from agricultural commodities [2]. The top 10 com-
modities contributing 77% of this revenue among oth-
ers include corn, soybean, wheat, chickens, cattle, and
hay. Most of these crops are grown over very large
acres with varied climate, soil, irrigation water, soil nu-
trition, pests, extent of technology, and level of intel-
ligence used in crop production decision making. As
an example, corn and soybean alone captures 41% of
total cultivated farmland (1.5 million km?), with an
annual operating cost of US$48 billion [3, 4]. Over
the last two decades, precision agriculture technolo-
gies have been systematically integrated for crop pro-
duction, with current machines being bigger, wider and
faster. These developments in agriculture, improved
genetics, and enhancements in technology design have
helped to increase farm productivity and yields. How-
ever, today’s grand challenge as highlighted by the
United States Department of Agriculture is to increase
food production by 40% while cutting the environmen-
tal footprint by 40%.

Total farmland in the U.S. has steadily decreased from
3.8 million km? in 2000 to 3.6 million km? in 2019 [5].
In order to increase food production from limited farm-
lands, radical changes in decision making based on in-
tegrated digital data needs to be utilized to take every
plant to its optimal yield potential. One of the key im-
pediments to accomplish this task has been the gaps
in site-specific decision making. Decision making for
agricultural ecosystems to drive decisions has been be-
coming increasingly complex since it utilizes diverse
data layers including soil, topography, water, crop, ma-
chine, pest, disease, and changing environment. How-
ever, these vast spatial and temporal digital data lay-
ers have not yet been utilized to develop Al decision
making algorithms, because data layers are lacking in-
tegrability, spatial and temporal density, completeness,
accuracy, accessibility, and availability due to privacy.

Comprehensively addressing agricultural needs such
as those described above can be achieved by refine-
ment and application of a broad range of Semantic
Web technologies. We discuss some of the main pil-
lars.

Semantic Data Integration As we have seen above,
to address modern agricultural needs it is necessary to
integrate large-scale, multi-sourced data from (some-
times sporadic) data streams in order to make this in-
tegrated data available for analysis. The Semantic Web
field has provided research and solutions for this for

decades [6], but they need to be tailored to the specifics
of agriculture, and they need to scale both in terms
of data size and speed. Complex temporal and spa-
tial aspects play a major role, both of which are top-
ics that have so far not received sufficient attention in
research and solutions around ontologies, linked data,
and knowledge graphs.

Semantic Data Enrichment Large volumes of rel-
evant data, such as air quality, weather, or land use
data, are already available, and sometimes even in the
form of knowledge graphs. Additional large volumes
of data are or will soon be created by agricultural
sensor networks and autonomous agricultural machin-
ery. In order to make use of this data, it needs to be
annotated with sufficient semantic metadata to facili-
tate automated data integration and analysis at the re-
quired speed and in different and possibly changing
environments of data streams. The same piece of data-
producing equipment will be used in many different
agricultural and data contexts, meaning different re-
quirements on content, precision and resolution of the
streamed data. We need to work towards an under-
standing of the exact requirements in each context, and
towards conceptually and technologically scalable and
sustainable solutions on how to meet different meta-
data requirements cost-efficiently in different scenar-
ios and at scale.

Semantic Sustainable Data Management Data solu-
tions will have to be in place that can be utilized long-
term, and this requires emphasis on aspects that ap-
pear to be underrepresented in Semantic Web research.
What are good and scalable solutions to evolve an on-
tology (as knowledge graph schema) while maintain-
ing access and usability of legacy data [7, 8]? How
to make decisions which data to keep long-term and
in what format? How to develop data integration so-
lutions that easily adapt to data, sensor and require-
ments contexts that change and evolve over time? Can
our current ways of knowledge engineering cope with
effects of semantic aging?

Knowledge-adaptive Data Analytics Collecting and
integrating relevant data is a central aspect, as outlined
above. However, in order to utilize this data, analytics
capabilities need to be able to make use of a context in
a flexible way. This includes, ideally, geographic and
environmental factors, as well as socio-cultural factors
such as local preferences, guidelines, and policies, and
some of these may change more or less rapidly over
time. Data analytics, currently dominantly reliant on
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machine learning methods, is at this time ill-equipped
to make significant use of relevant and changing back-
ground context, and more research efforts are required
on this front. From a Semantic Web context, a lead
question is how to make systematic use of semantically
rich and evolving metadata, for machine learning and
analytics.

Semantic Explainability [9, 10] Furthermore, ana-
Iytics solutions will have to be trusted by farmers,
who may query system recommendations, in particu-
lar if they may not align with past experience or prac-
tice. Explanations of data analytics results will have
to be provided in terms understandable by laypersons,
which means that they have to be at a suitable level of
abstraction from the raw data. While explainability, in
particular in the context of machine learning, is being
researched, the nature of the explanations is often in
very basic terms, e.g. by highlighting parts of the in-
put data that contributed most to the system’s output.
In these cases, it is still left to the human user to make
sense of this. It would be much more helpful to have
explanations expressed in terms that have more direct
and immediate meaning within a particular domain.

The arguments just laid out provide us with some
guidelines as to where the Semantic Web field needs to
evolve to address the agricultural — and other similarly
complex — challenges. It is necessary to develop solu-
tions that are fit for long-term complex and changing
settings, and that seamlessly interface with data ana-
Iytics. Much of the current Semantic Web research, in
contrast, is driven by short-term projects and individ-
ual capabilities, disregarding the additional complexi-
ties introduced by a complex application setting such
as agriculture.
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