Type-based Declassification for Free

Minh Ngo®2, David A. Naumann'®, and Tamara Rezk?

1 Stevens Institute of Technology
2 Inria

Abstract. This work provides a study to demonstrate the potential of
using off-the-shelf programming languages and their theories to build
sound language-based-security tools. Our study focuses on information
flow security encompassing declassification policies that allow us to ex-
press flexible security policies needed for practical requirements. We
translate security policies, with declassification, into an interface for
which an unmodified standard typechecker can be applied to a source
program—if the program typechecks, it provably satisfies the policy. Our
proof reduces security soundness—with declassification—to the mathe-
matical foundation of data abstraction, Reynolds’ abstraction theorem.

1 Introduction

A longstanding challenge for software systems is the enforcement of security
in applications implemented in conventional general-purpose programming lan-
guages. For high assurance, precise mathematical definitions are needed for poli-
cies, enforcement mechanism, and program semantics. The latter, in particular,
is a major challenge for languages in practical use. In order to minimize the
cost of assurance, especially over time as systems evolve, it is desirable to lever-
age work on formal modeling with other goals such as functional verification,
equivalence checking, and compilation.

To be auditable by stakeholders, policy should be expressed in an accessible
way. This is one of several reasons why types play an important role in many
works on information flow (IF) security. For example, Flowcaml [33] and Jif [26]
express policy using types that include IF labels. They statically enforce policy
using dedicated IF type checking and inference. Techniques from type theory are
also used in security proofs such as those for Flowcaml and the calculus DCC [1].

IF is typically formalized as the preservation of indistinguishability relations
between executions. Researchers have hypothesized that this should be an in-
stance of a celebrated semantics basis in type theory: relational parametric-
ity [36]. Relational parametricity provides an effective basis for formal reasoning
about program transformations (“theorems for free” [49]), representation inde-
pendence and information hiding for program verification [25,6]. The connection
between IF and relational parametricity has been made precise in 2015, for DCC,
by translation to the calculus F,, and use of the existing parametricity theorem
for F,, [12]. The connection is also made, perhaps more transparently, in a trans-
lation of DCC to dependent type theory, specifically the calculus of constructions
and its parametricity theorem [4].

In this work, we advance the state of the art in the connection between
IF and relational parametricity, guided by three main goals. One of the goals
motivating our work is to reduce the burden of defining dedicated type checking,
inference, and security proofs for high assurance in programming languages. A
promising approach towards this goal is the idea of leveraging type abstraction to
enforce policy, and in particular, leveraging the parametricity theorem to obtain
security guarantees. A concomitant goal is to do so for practical IF policies that
encompass selective declassification, which is needed for most policies in practice.
For example, a password checker program or a program that calculates aggregate
or statistical information must be considered insecure without declassification.

To build on the type system and theory of a language without a priori IF
features, policy needs to be encoded somehow, and the program may need to
be transformed. For example, to prove that a typechecked DCC term is secure
with respect to the policy expressed by its type, Bowman and Ahmed [12] en-
code the typechecking judgment by nontrivial translation of both types and
terms into F,,. Any translation becomes part of the assurance argument. Most
likely, complicated translation will also make it more difficult to use extant type
checking/inference (and other development tools) in diagnosing security errors
and developing secure code. This leads us to highlight a third goal, needed to
achieve the first goal, namely to minimize the complexity of translation.

There is a major impediment to leveraging type abstraction: few languages
are relationally parametric or have parametricity theorems. The lack of para-
metricity can be addressed by focusing on well behaved subsets and leveraging
additional features like ownership types that may be available for other pur-
poses (e.g., in the Rust language). As for the paucity of parametricity theorems,
we take hope in the recent advances in machine-checked metatheory, such as
correctness of the CakeML and CompCert compilers, the VST logic for C, the
relational logic of Iris. For parametricity specifically, the most relevant work is
Crary’s formal proof of parametricity for the ML module calculus [14].

Contributions. Our first contribution is to translate policies with declassification—
in the style of relaxed noninterference [24]—into abstract types in a functional
language, in such a way that typechecking the original program implies its secu-
rity. For doing so, we neither rely on a specialized security type system [12] nor
on modifications of existing type systems [15]. A program that typechecks may
use the secret inputs parametrically, e.g., storing in data structures, but cannot
look at the data until declassification has been applied. Our second contribution
is to prove security by direct application of a parametricity theorem. We carry
out this development for the polymorphic lambda calculus, using the original
theorem of Reynolds. We also provide an extended version [29] that shows this
development for the ML module calculus using Crary’s theorem [14], enabling
the use of ML to check security.

2 Background: Language and Abstraction Theorem

To present our results we choose the simply typed and call-by-value lambda
calculus, with integers and type variables, for two reasons: (1) the chosen lan-
guage is similar to the language used in the paper of Reynolds [36] where the
abstraction theorem was first proven, and (2) we want to illustrate our encoding
approach (§4) in a minimal calculus. This section defines the language we use
and recalls the abstraction theorem, a.k.a. parametricity. Our language is very
close to the one in Reynolds [36, § 2]; we prove the abstraction theorem using
contemporary notation.?

Language. The syntax of the language is as below, where « denotes a type
variable, x a term variable, and n an integer value. A value is closed when there
is no free term variable in it. A type is closed when there is no type variable in
it.

To=int |a | X | =T Types
viu=n| (v,v) | Az :Te Values
ex=uz|v]{ee)| meleres Terms
E:=[]|(E,e) | {(v,E) | mE|Ee|vE Eval. Contexts

We use small-step semantics, with the reduction relation — defined inductively
by these rules.

e—¢
i {v1, v2) —> v; Az : T.e)v — e[z — 0] m

We write e[x — €'] for capture-avoiding substitution of €’ for free occurrences
of z in e. We use parentheses to disambiguate term structure and write —* for
the reflexive, transitive closure of —».

A typing context A is a set of type variables. A term context I' is a mapping
from term variables to types, written like x : int,y : int — int. We write A F 7
to mean that 7 is well-formed w.r.t. A, that is, all type variables in 7 are in A.
We say that e is typable w.r.t. A and I' (denoted by A, I' - e) when there exists
a well-formed type 7 such that A, I' - e : 7. The derivable typing judgments are
defined inductively in Fig. 1. The rules are to be instantiated only with I" that
is well-formed under A, in the sense that A F I'(z) for all € dom(I"). When
the term context and the type context are empty, we write e : 7.

Logical relation. The logical relation is a type-indexed family of relations on
values, parameterized by given relations for type variables. From it, we derive a
relation on terms. The abstraction theorem says the latter is reflexive.

3 Some readers may find it helpful to consult the following references for background
on logical relations and parametricity: [22, Chapt. 49], [25, Chapt. 8], [13], [31].

x:T€el

FT-INT ————— FT-VAR ————
A, n:int ATFx:T
AT'Fer:n A TFes:m AT'Fe:m X1
FT-PAIR FT-PR] ———
AT (e1,e2) : 1 X T2 AT¢Fme:n;

AlNx:mbe:m
ATFAx:Tm.e:T1 — T2

FT-Fun

ATFer:m1 — 1 ATFex:m
ATt elex:m

FT-Aprp

Fig. 1. Typing rules

Let v be a term substitution, i.e., a finite map from term variables to closed
values, and 6 be a type substitution, i.e., a finite map from type variables to
closed types. In symbols:

yu=. |y, v Term Substitutions
§u=.|d,a— T, where 1 Type Substitutions

We say v respects I' (denoted by v = I') when dom(y) = dom(I") and F v(x) :
I'(z) for any x. We say 0 respects A (denoted by § = A) when dom(§) = A.
Let Rel(t1,72) be the set of all binary relations over closed values of closed
types 71 and 7. Let p be an environment, a mapping from type variables to
relations R € Rel(m1,m2). We write p € Rel(d1,d2) to say that p is compatible
with &1,0, as follows: p € Rel(61,02) = dom(p) = dom(6;) = dom(d2) A Va €
dom(p). p(a)) € Rel(d1(ax),62(c)). The logical relation is inductively defined in
Fig. 2, where p € Rel(é1, d2) for some 61 and d2. For any 7, [7], is a relation on
closed values. In addition, [7]$’ is a relation on terms.

Lemma 1. Suppose that p € Rel(d1,02) for some 61 and 6. For i € {1,2}, it
follows that:

— if (v1,v2) € [7],, then - v; : 6;(7), and
— if {e1,e9) € [[TH;V, then b e; : §;(7).

We write §(I") to mean a term substitution obtained from I" by applying ¢
on the range of I', i.e.:

dom(6(I")) = dom(I") and Va € dom(I").6(I")(z) = §(I'(x)).

Suppose that A, "'+ e: 7,6 | A, and v = §(I"). Then we write dy(e) to
mean the application of v and then § to e. For example, suppose that é(«) = int,
~v(z) = n for some n, and o,z : a - Ay : .z : @ = «, then dy(Ay : a.z) = Ay :
int.n. We write (y1,72) € [I'], for some p € Rel(d1,02) when v1 = 6:(I),
Y2 = 02(1), and (y1(z),v2(x)) € [I'(x)], for all x € dom(I").

(vi,v1) €[], (v2,03) € [72],

FR-INT ——M—— FR-PAIR
<n7 n> € ﬂintﬂp <<'U1,'U2>, <'U/1,'U§>> € |IT1 X TQ]]P
FROFUN V{1, v5) € [T1]p-(v1 v1,v2 v3) € [72]}
<’U1,’U2> S |I7'1 d Tz]]p
FR-VAR <’U1,’02> € Re Rel(ThTQ)
<'U17'U2> € Ha]]p[cw—)R]
Feq:di(r) Feo:da(r) e1 —" vy e2 —" Vg (v1,v2) € [7],

FR-TERM
<61,€2> € HTH;\/

Fig. 2. The logical relation

Definition 1 (Logical equivalence). Terms e and ¢’ are logically equivalent
at 7 in A and I’ (written A,\T Fe~ceé :7)if AlFe:7, A€ T,
and for all 61,00 = A, all p € Rel(d1,062), and all (y1,72) € [I'],, we have
(0171(e), 0272(€)) € [7]7"

Theorem 1 (Abstraction [36]). If A, I'Fe: T, then A, T'Fe~e:T.

3 Declassification Policies

Confidentiality policies can be expressed by information flows of confidential
sources to public sinks in programs. Confidential sources correspond to the se-
crets that the program receives and public sinks correspond to any results given
to a public observer, a.k.a. the attacker. These flows can either be direct —e.g.
if a function, whose result is public, receives a confidential value as input and
directly returns the secret— or indirect —e.g. if a function, whose result is pub-
lic, receives a confidential boolean value and returns 0 if the confidential value is
false and 1 otherwise. Classification of program sources as confidential or public,
a.k.a. security policy, must be given by the programmer or security engineer: for
a given security policy the program is said to be secure for noninterference if
public resources do not depend on confidential ones. Thus, noninterference for
a program means total independence between public and confidential informa-
tion. As simple and elegant as this information flow policy is, noninterference
does not permit to consider as secure programs that purposely need to release
information in a controlled way: for example a password-checker function that
receives as confidential input a boolean value representing if the system password
is equal to the user’s input and returns 0 or 1 accordingly. In order to consider
such intended dependences of public sinks from confidential sources, we need to
consider more relaxed security policies than noninterference, a.k.a. declassifica-
tion policies. Declassification security policies allow us to specify controlled ways
to release confidential inputs [39].

Declassification policies that we consider in this work map confidential in-
puts to functions, namely declassification functions. These functions allow the
programmer to specify what and how information can be released. The formal
syntax for declassification functions in this work is given below,* where n is an
integer value, and @ represents primitive arithmetic operators.

To=int |7 — 7T Types
ex=Xx:Telee|x|n|lede Terms
f = Az :int.e Declass. Functions

The static and dynamic semantics are standard. To simplify the presentation we
suppose that the applications of primitive operators on well-typed arguments
terminates. Therefore, the evaluations of declassification functions on values ter-
minate. A policy simply defines which are the confidential variables and their
authorized declassifications. For policies we refrain from using concrete syntax
and instead give a simple formalization that facilitates later definitions.

Definition 2 (Policy). A policy P is a tuple (Vp,Fp), where Vp is a finite set
of variables for confidential inputs, and Fp is a partial mapping from variables
i Vp to declassification functions.

For simplicity we require that if f appears in the policy then it is a closed term
of type int — 77 for some 7¢. In the definition of policies, if a confidential input
is not associated with a declassification function, then it cannot be declassified.

Ezample 1 (Policy Pog using f). Consider policy Pog given by (Vp,,., Fp,s)
where Vp,, = {z} and Fp_,(x) = f = Az : int. z mod 2. Policy Pog states that
only the parity of the confidential input x can be released to a public observer.

4 Type-based Declassification

In this section, we show how to encode declassification policies as standard types
in the language of § 2, we define and we prove our free theorem. We consider a
termination-sensitive [30] information flow security property,® with declassifica-
tion, called type-based relaxed noninterference (TRNI) and taken from Cruz et
al [15]. It is important to notice that our developement, in this section, studies
the reuse for security of standard programming languages type systems together
with soundness proofs for security for free by using the abstraction theorem.
In contrast, Cruz et al [15] use a modified type system for security and prove
soundness from scratch, without apealing to parametricity.

Through this section, we consider a fixed policy P (see Def. 2) given by
(Vp,Fp). We treat free variables in a program as inputs and, without loss of

4 In this paper, the type of confidential inputs is int.

® Our security property is termination sensitive but programs in the language always
terminate. In the extended version [29], in the development for ML, programs may
not terminate and the security property is also termination sensitive.

generality, we assume that there are two kinds of inputs: integer values, which are
considered as confidential, and declassification functions, which are fixed accord-
ing to policy. A public input can be encoded as a confidential input that can be
declassified via the identity function. We consider terms without type variables
as source programs. That is we consider terms e s.t. for all type substitutions 9,
d(e) is syntactically the same as e.’

4.1 Views and indistinguishability

We provide two term contexts to define TRNI, called the confidential view and
public view. The first view represents an observer that can access confidential
inputs, while the second one represents an observer that can only observe de-
classified inputs. The views are defined using fresh term and type variables.

Confidential view. Let V1 = {x | x € Vp \ dom(Fp)} be the set of inputs that
cannot be declassified. First we define the encoding for these inputs as a term
context:

Fg-ré{a;:int | x €V}

Next, we specify the encoding of confidential inputs that can be declassified. To
this end, define ((_, -))¢ as follows, where f :int — 7 is in P.

(z, f)c & {z :int,z; : int — 74}

Finally, we write I'Z for the term context encoding the confidential view for P.

rrerf-u |J (@ Fp)e.
zedom(Fp)

We assume that, for any z, the variable z; in the result of (z,Fp(z))c is
distinct from the variables in Vp, distinct from each other, and distinct from
xy for distinct f’. We make analogous assumptions in later definitions.

From the construction, I g is a mapping, and for any x € dom(T, g), it follows
that I'L (z) is a closed type. Therefore, I'%; is well-formed for the empty set of
type variables, so it can be used in typing judgments of the form I'% e : 7.

Ezample 2 (Confidential view). For Pog in Example 1, the confidential view is:
Fg‘m =z :int,z; : int — int.

Public view. The basic idea is to encode policies by using type variables. First
we define the encoding for confidential inputs that cannot be declassified. We
define a set of type variables, A?T and a mapping FET for confidential inputs
that cannot be declassified.

Afpr&2{as |zeVr} TPrE{z:a,|zeVT}

5 An example of a term with type variables is Az : o.z. We can easily check that there
exists a type substitutions J s.t. d(e) is syntactically different from e (e.g. for ¢ s.t.
d(a) = int, d(e) = Az : int.z).

This gives the program access to x at an opaque type.

In order to define the encoding for confidential inputs that can be declassified,
we define (_,)) p:

(z, e = {ap} Az apzpap = 77})

The first form will serve to give the program access to = only via function variable
x¢ that we will ensure is interpreted as the policy function f. We define a type
context AP and term context I'5 that comprise the public view, as follows.

(AR ITE) £ (AR IFn v | (@ Fr@)e,
z€dom(Fp)

where <51,S£> U <SQ,S§> = <S1 U S2,Si U Sé>

Ezample 3 (Public view). For Pog, the typing context in the public view has
one type variable: AL°” = a;. The term context in the public view is ;" =
oy, xy:ap — int.

From the construction, I'5 is a mapping, and for any z € dom(I'}), it follows
that I'p (z) is well-formed in AR (i.e. AR+ I'F(x)). Thus, I'} is well-formed in
the typing context A%. Therefore, AL and I'5 can be used in typing judgments
of the form AR, I'F e : 7.

Notice that in the public view of a policy, types of variables for confidential
inputs are not int. Thus, the public view does not allow programs where concrete
declassifiers are applied to confidential input variables even when the applications
are semantically correct according to the policy (e.g. for Pog, the program f x
does not typecheck in the public view). Instead, programs should apply named
declassifers (e.g. for Pog, the program z; x is well-typed in the public view).

Indistinguishability. The security property TRNI is defined in a usual way, using
partial equivalence relations called indistinguishability. To define indistinguisha-
bility, we define a type substitution dp such that dp |= Ag, as follows:

for all a,,af in AR, let dp(a,) = op(ay) = int. (1)

The inductive definition of indistinguishability for a policy P is presented in
Figure 3, where a, and oy are from AZ. Indistinguishability is defined for 7
s.t. AR, I'F = 7. The definitions of indistinguishability for int and 71 x 75 are
straightforward. We say that two functions are indistinguishable at m — 7 if
on any indistinguishable inputs they generate indistinguishable outputs. Since
we use ¢, to encode confidential integer values that cannot be declassified, any
integer values v; and ve are indistinguishable, according to rule Eq-Varl. Notice
that dp(ag) = int. Since we use oy to encode confidential integer values that
can be declassified via f where - f : int — 74, we say that (vi,v2) € Zy[ay]
when <f ’Ul,f 1}2> S IE[[Tf]].

<v1,v£> S Iv[[Tlﬂ <'U27'U;> € IV[[TQII

EqQ-INT —4—M ————— EQ-PAIR

(n,n) € Zy [int] ({v1,v2), (v, v5)) € Ty [x 2]
EqQ-Fux V{v1,v2) : (v1,v3) € Zv[mi]-(v1 v1,v2 va) € Ip[n]
(v1,v2) € Iy 11 = 7]
MG RRACT Fo,v2: 6 , ez
Bovapt FUn2idRes) L o Puvide(ay) (f e f) € Telr]
(v1,v2) € Tv [ax] (01, 02) € Ty [as]
EQ-TERM Fenez:dp(r) e —"u ez =" vy (v1,v2) € Iy [7]

(e1,e2) € Ig[7]

Fig. 3. Indistinguishability

Example 4 (Indistinguishability). For Pog (of Example 1), two values v; and v
are indistinguishable at ay when both of them are even numbers or odd numbers.

Iy laf] = {(vi,v2) | Foy:int, b oy :int, (v1 mod 2) =ing (v2 mod 2)}.
We write e; =jn¢ €2 to mean that e; —* v and e; —* v for some integer value v.

Term substitutions v; and e are called indistinguishable w.r.t. P (denoted
by (y1,72) € Zy[P]) if the following hold.

—m EOp(IF) and 12 = dp(I7),
— for all z; € dom(I'F), 71 (zy) = y2(zf) = f,
— for all other z € dom(I'F), (71(x),72(z)) € Zy [T'F (x)].

Note that each ; maps x ¢ to the specific function f in the policy. Input variables
are mapped to indistinguishable values.

We now define type-based relaxed noninterference w.r.t. P for a type 7 well-
formed in AP. It says that indistinguishable inputs lead to indistinguishable
results.

Definition 3. A term e is TRNI(P,T) provided that I'Y & e, and AL & 7, and
for all (v1,72) € Zv[P] we have (vi(e),2(e)) € Zp[r].

Notice that if a term is well-typed in the public view then by replacing all type
variables in it with int, we get a term which is also well-typed in the confidential
view (that is, if AR, I'5 + e : 7, then I'L + d(e) : (1) where § maps all type
variables in A% to int). However, Definition 3 also requires that the term e is
itself well-typed in the confidential view. This merely ensures that the definition
is applied, as intended, to programs that do not contain type variables.

The definition of TRNI is indexed by a type for the result of the term. The
type can be interpreted as constraining the observations to be made by the public
observer. We are mainly interested in concrete output types, which express that

the observer can do whatever they like and has full knowledge of the result. Put
differently, TRNI for an abstract type expresses security under the assumption
that the observer is somehow forced to respect the abstraction. Consider the
policy Por (of Example 1) where x can be declassified via f = Az : int.z mod 2.
As described in Example 3, A?’E = ay and F];“E =z:ayp zy:oap — int. We
have that the program z is TRNI(Pog, a5) since the observer cannot do anything
to x except for applying f to x which is allowed by the policy. This program,
however, is not TRNI(Pgg,int) since the observer can apply any function of
the type int — 7’ (for some closed 7’), including the identity function, to z and
hence can get the value of x.

Example 5. The program x; x is TRNI(Pog,int). Indeed, for any arbitrary
(71,72) € Zv[P], we have that 1 (xf) = y2(xf) = f = Ax : int.x mod 2, and
(v1,v2) € Ty [ay], where v1(x) = v1 and ya(z) = ve for some v1 and vo. When
we apply 71 and 5 to the program, we get respectively vy mod 2 and v mod 2.
Since (v1,v2) € Iy [ay], as described in Example 4, (v1 mod 2) =in¢ (v2 mod 2).
Thus, (v1(zf x),72(zf x)) € Zg[int]. Therefore, the program z ¢ x satisfies the
definition of TRNI.

4.2 Free theorem: typing in the public view implies security

In order to prove security “for free”, i.e., as consequence of Theorem 1, we define
pp as follows:

— for all a, € AR, pp(a.) = Ty [a.],
— for all af € AIE’ pp(af) :ZV[[af]].

It is a relation on the type substitution dp defined in Eqn. (1).
Lemma 2. pp € Rel(dp,0p).

From Lemma 2, we can write [7],, or [r]%, for any 7 such that A% F 7.
We next establish the relation between [7]5’ and Zg[7]: under the interpreta-
tion corresponding to the desired policy P, they are equivalent. In other words,

indistinguishability is an instantiation of the logical relation.

Lemma 3. For any 7 such that AL & 1, we have (v1,v2) € [7],, iff (v1,v2) €
Ty [r], and also {e1,es) € [[T]]Z\;) iff (e1,e2) € Ir[7].

By analyzing the type of I'5 (x), we can establish the relation of v; and 72
when (y1,72) € Zy [P].

Lemma 4. If (y1,72) € Zy[P], then {(y1,72) € [[I“];]]p,,.

The main result of this section is that a term is TRNI at 7 if it has type 7
in the public view that encodes the policy.

Theorem 2. Ife has no type variables and A}z, F]; Fe:r,theneis TRNI(P,T).

Proof. From the abstraction theorem (Theorem 1), for all 61,82 = AL, for all
(y1,72) € [['F],, and for all p € Rel(d1,d2), it follows that

(6171(e), 0272(e)) € [T]5.

Consider (y1,72) € Zy [P]. Since (y1,72) € Zy [P], from Lemma 4, we have
that (v1,72) € [I'5]pp- Thus, we have that (6pv1(e), dpy2(e)) € [7]57. Since e
has no type variable, we have that dpv;(e) = v;(e). Therefore, (y1(e),12(e)) €
[7]5% - Since (y1(e),12(e)) € [7]5,,, from Lemma 3, it follows that (y1(e),72(e)) €
Zg[r]. In addition, since e has no type variable and A?,Fﬁ F e : 7, we have
that 6p(I'F) - e : 5p(7) and hence, I'Y F e. Therefore, e is TRNI(P, 7).

Ezample 6 (Typing implies TRNI). Consider the policy Pog. As described in
Examples 2 and 3, the confidential view Fg‘” is x :int,zy : int — int and the
public view A?OE,F],D“E is ay,x : ay,xp : oy — int. We look at the program
xy x. We can easily verify that FgOE Fxy x:int and A7;OE, F];OE Fxp x:int.
Therefore, by Theorem 2, the program is TRNI(Pog, int).

Ezample 7. If a program is well-typed in the confidential view but not TRNI(P, 7)
for some T well-formed in the public view of P, then the type of the program in
the public view is not 7 or the program is not well-typed in the public view. In
policy Pog, from Example 6, the public view is o,z : ayf, x5 : af — int. We
first look at the program x that is not TRNI(Pgg, int) since x itself is confiden-
tial and cannot be directly declassified. In the public view of the policy, the type
of this program is ay which is not int. We now look at the program x mod 3 that
is not TRNI(Pog, arf) since it takes indistinguishable inputs at ay (e.g. 2 and
4) and produces results that are not indistinguishable at oy (e.g. 2 = 2 mod 3,
1 =4mod 3, and (2,1) & Zy [ays]). We can easily verify that this program is not
well-typed in the public view since the type of x in the public view is o, while
mod expects arguments of the int type.

Remark 1 (Extension). Our encoding can be extended to support richer policies
(details in an extended version [29]). To support policies where an input x can
be declassified via two declassifiers f : int — 7 and g : int — 7, for some
77 and 74, we use type variable oy, as the type for x and use apy — 74 and
afg — T4 as types for xy and z4. To support policies where multiple inputs
can be declassified via a declassifier, e.g. inputs = and y can be declassified via
f = Az :int x int.(712 + 722)/2, we introduce a new term variable z which
is corresponding to a tuple of two inputs x and y and we require that only z
can be declassified. The type of z is oy and two tuples (v1,v2) and (v}, v5) are
indistinguishable at oy when f (vi,vs) = f (v],v5).

5 Related Work

Typing secure information flow. Pottier and Simonet [32] implement Flow-
Caml [33], the first type system for information flow analysis dealing with a

real-sized programming language (a large fragment of OCaml), and they prove
soundness. In comparison with our results, we do not consider any imperative
features; they do not consider any form of declassification, their type system sig-
nificantly departs from ML typing, and their security proof is not based on an
abstraction theorem. An interesting question is whether their type system can be
translated to system F or some other calculus with an abstraction theorem. Flow-
Caml provides type inference for security types. Our work relies on the Standard
ML type system to enforce security. Standard ML provides type inference, which
endows our approach with an inference mechanism. Barthe et al. [9] propose a
modular method to reuse type systems and proofs for noninterference [40] for
declassification. They also provide a method to conclude declassification sound-
ness by using an existing noninterference theorem [37]. In contrast to our work,
their type system significantly departs from standard typing rules, and does
not make use of parametricity. Tse and Zdancewic [46] propose a security-typed
language for robust declassification: declassification cannot be triggered unless
there is a digital certificate to assert the proper authority. Their language in-
herits many features from System F.. and uses monadic labels as in DCC [1].
In contrast to our work, security labels are based on the Decentralized Label
Model (DLM) [27], and are not semantically unified with the standard safety
types of the language. The Dependency Core Calculus (DCC) [1] expresses se-
curity policies using monadic types indexed on levels in a security lattice with
the usual interpretation that flows are only allowed between levels in accordance
with the ordering. DCC does not include declassification and the noninterfer-
ence theorem of [1] is proved from scratch (not leveraging parametricity). While
DCC is a theoretical calculus, its monadic types fit nicely with the monads and
monad transformers used by the Haskell language for computational effects like
state and I/O. Algehed and Russo [5] encode the typing judgment of DCC in
Haskell using closed type families, one of the type system extensions supported
by GHC that brings it close to dependent types. However, they do not prove se-
curity. Compared with type systems, relational logics can specify IF policy and
prove more programs secure through semantic reasoning [28,8,21,10], but at the
cost of more user guidance and less familiar notations. Aguirre et al [2] use re-
lational higher order logic to prove soundness of DCC essentially by formalizing
the semantics of DCC [1].

Connections between secure IF and type abstraction. Tse and Zdancewic [45]
translate the recursion-free fragment of DCC to System F. The main theorem
for this translation aims to show that parametricity of System F implies non-
interference. Shikuma and Igarashi identify a mistake in the proof [41]; they
also give a noninterference-preserving translation for a version of DCC to the
simply-typed lambda calculus. Although they make direct use of a specific logical
relation, their results are not obtained by instantiating a parametricity theorem.
Bowman and Ahmed [12] finally provide a translation from the recursion-free
fragment of DCC to System F,, proving that parametricity implies noninter-
ference, via a correctness theorem for the translation (which is akin to a full
abstraction property). Bowman and Ahmed’s translation makes essential use of

the power of System F,, to encode judgments of DCC. Algehed and Bernardy [4]
translate a label-polymorphic variant DCC (without recursion) into the calculus
of constructions (CC) and prove noninterference directly from a parametricity
result for CC [11]. The authors note that it is not obvious this can be extended to
languages with nontermination or other effects. Their results have been checked
in Agda and the presentation achieves elegance owing to the fact that para-
metricity and noninterference can be explicitly defined in dependent type the-
ory; indeed, CC terms can represent proof of parametricity [11]. Our goals do
not necessitate a system like DCC for policy, raising the question of whether a
simpler target type system can suffice for security policies expressed differently
from DCC. We answer the question in the affirmative, and believe our results
for polymorphic lambda (and for ML) provide transparent explication of non-
interference by reduction to parametricity. The preceding works on DCC are
“translating noninterference to parametricity” in the sense of translating both
programs and types. The implication is that one might leverage an existing type
checker by translating both a program and its security policy into another pro-
gram such that it’s typability implies the original conforms to policy. Our work
aims to cater more directly for practical application, by minimizing the need to
translate the program and hence avoiding the need to prove the correctness of a
translation. Cruz et al. [15] show that type abstraction implies relaxed noninter-
ference. Similar to ours, their definition of relaxed noninterference is a standard
extensional semantics, using partial equivalence relations. This is in contrast
with Li and Zdancewic [24] where the semantics is entangled with typability.

Protzenko et al. [34] propose to use abstract types as the types for secrets
and use standard type systems for security. This is very close in spirit to our
work. Their soundness theorem is about a property called “secret independence”,
very close to noninterference. In contrast to our work, there is no declassifica-
tion and no use of the abstraction theorem. Rajani and Garg [35] connect fine-
and coarse-grained type systems for information flow in a lambda calculus with
general references, defining noninterference (without declassification) as a step-
indexed Kripke logical relation that expresses indistinguishability. Further afield,
a connection between security and parametricity is made by Devriese et al [16],
featuring a negative result: System F cannot be compiled to the the Sumii-Pierce
calculus of dynamic sealing [43] (an idealized model of a cryptographic mech-
anism). Finally, information flow analyses have also been put at the service of
parametricity [50].

Abstraction theorems for other languages. Parametricity remains an active area
of study [42]. Vytiniotis and Weirich [48] prove the abstraction theorem for R,
which extends F,, with constructs that are useful for programming with type
equivalence propositions. Rossberg et al [38] show another path to parametricity
for ML modules, by translating them to F,,. Crary’s result [14] covers a large
fragment of ML but without references and mutable state. Abstraction theorems
have been given for mutable state, based on ownership types [6] and on more
semantically based reasoning [3,17,7,44].

6 Discussion and Conclusion

In this work, we show how to express declassification policies by using standard
types of the simply typed lambda calculus. By means of parametricity, we prove
that type checking implies relaxed noninterference, showing a direct connection
between declassification and parametricity. Our approach should be applicable
to other languages that have an abstraction theorem (e.g [7,3,17,44]) with the
potential benefit of strong security assurance from off-the-shelf type checkers.
In particular, we demonstrate (in an extended version [29]) that the results can
be extended to a large fragment of ML including general recursion. Although in
this paper we demonstrate our results using confidentiality and declassification,
our approach applies as well to integrity and endorsement, as they have been
shown to be information flow properties analog to confidentiality [23,20,18,19].

The simple encodings in the preceding sections do not support computa-
tion and output at multiple levels. For example, consider a policy where x is
a confidential input that can be declassified via f and we also want to do the
computation z 4 1 of which the result is at confidential level. Clearly, x +1 is ill-
typed in the public interface. We provide (in the extended version) more involved
encodings supporting computation at multiple levels. To have an encoding that
support multiple levels, we add universally quantified types V.7 to the language
presented in §2. However, this goes against our goal of minimizing complexity of
translation. Observe that many applications are composed of programs which,
individually, do not output at multiple levels; for example, the password checker,
and data mining computations using sensitive inputs to calculate aggregate or
statistical information. For these the simpler encoding suffices.

Vanhoef et al. [47] and others have proposed more expressive declassification
policies than the ones in Li and Zdancewic [24]: policies that keep state and can
be written as programs. We speculate that TRNI for stateful declassification
policies can be obtained for free in a language with state—indeed, our work
provides motivation for development of abstraction theorems for such languages.

Acknowledgements. We thank anonymous reviewers for their suggestions. This
work was partially supported by CISC ANR-17-CE25-0014-01, IPL SPAI, the
European Union’s Horizon 2020 research and innovation programme under grant
agreement No 830892, US NSF CNS 1718713, and ONR N00014-17-1-2787.

References

1. Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A core calculus of dependency.
In: ACM POPL. pp. 147-160 (1999)

2. Aguirre, A., Barthe, G., Gaboardi, M., Garg, D., Strub, P.: A relational logic for
higher-order programs. PACMPL 1(ICFP), 21:1-21:29 (2017)

3. Ahmed, A., Dreyer, D., Rossberg, A.: State-dependent representation indepen-
dence. In: ACM POPL. pp. 340-353 (2009)

4. Algehed, M., Bernardy, J.: Simple noninterference from parametricity. PACMPL
3(ICFP), 89:1-89:22 (2019)

5. Algehed, M., Russo, A.: Encoding DCC in Haskell. In: Workshop on Programming
Languages and Analysis for Security. pp. 77-89 (2017)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.
24.
25.
26.
27.

28.

Banerjee, A., Naumann, D.A.: Ownership confinement ensures representation inde-
pendence for object-oriented programs. Journal of the ACM 52(6), 894-960 (2005)
Banerjee, A., Naumann, D.A.: State based encapsulation for modular reasoning
about behavior-preserving refactorings. In: Aliasing in Object-oriented Program-
ming. Springer State-of-the-art Surveys (2012)

Banerjee, A., Naumann, D.A., Nikouei, M.: Relational logic with framing and hy-
potheses. In: FSTTCS. LIPIcs, vol. 65, pp. 11:1-11:16 (2016)

Barthe, G., Cavadini, S., Rezk, T.: Tractable enforcement of declassification poli-
cies. In: IEEE Computer Security Foundations Symposium. pp. 83-97 (2008)
Beckert, B., Ulbrich, M.: Trends in relational program verification. In: Miiller, P.,
Schaefer, 1. (eds.) Principled Software Development - Essays Dedicated to Arnd
Poetzsch-Heffter on the Occasion of his 60th Birthday. pp. 41-58. Springer (2018)
Bernardy, J.P., Jansso, P., Paterson, R.: Proofs for free: Parametricity for depen-
dent types. Journal of Functional Programmming 22(2), 107-152 (2012)
Bowman, W.J., Ahmed, A.: Noninterference for free. In: ICFP. pp. 101-113 (2015)
Crary, K.: Logical relations and a case study in equivalence checking. In: Pierce,
B.C. (ed.) Advanced Topics in Types and Programming Languages, chap. 6, pp.
245-289. The MIT Press (2005)

Crary, K.: Modules, abstraction, and parametric polymorphism. In: ACM POPL.
pp. 100-113 (2017)

Cruz, R., Rezk, T., Serpette, B.P., Tanter, E.: Type abstraction for relaxed non-
interference. In: ECOOP. pp. 7:1-7:27 (2017)

Devriese, D., Patrignani, M., Piessens, F.: Parametricity versus the universal type.
PACMPL 2(POPL), 38:1-38:23 (2018)

Dreyer, D., Neis, G., Rossberg, A., Birkedal, L.: A relational modal logic for higher-
order stateful ADTs. In: ACM POPL. pp. 185-198 (2010)

Fournet, C., Guernic, G.L., Rezk, T.: A security-preserving compiler for distributed
programs: from information-flow policies to cryptographic mechanisms. In: ACM
Conference on Computer and Communications Security, CCS (2009)

Fournet, C., Planul, J., Rezk, T.: Information-flow types for homomorphic encryp-
tions. In: ACM CCS. pp. 351-360 (2011)

Fournet, C., Rezk, T.: Cryptographically sound implementations for typed
information-flow security. In: ACM POPL (2008)

Grimm, N., Maillard, K., Fournet, C., Hritcu, C., Maffei, M., Protzenko, J., Ra-
mananandro, T., Rastogi, A., Swamy, N., Béguelin, S.Z.: A monadic framework for
relational verification: applied to information security, program equivalence, and
optimizations. In: Certified Programs and Proofs. pp. 130-145 (2018)

Harper, R.: Practical foundations for programming languages. Cambridge Univer-
sity Press (2016)

Li, P., Mao, Y., Zdancewic, S.: Information integrity policies. In: In Proceedings
of the Workshop on Formal Aspects in Security and Trust (FAST) (2003)

Li, P., Zdancewic, S.: Downgrading policies and relaxed noninterference. In: ACM
POPL. pp. 158-170 (2005)

Mitchell, J.C.: Foundations for Programming Languages. MIT Press (1996)
Myers, A.C.: Jif homepage. http://www.cs.cornell.edu/jif/ (accessed July 2018)
Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.
ACM Trans. on Software Engineering and Methodology 9, 410-442 (Oct 2000)
Nanevski, A., Banerjee, A., Garg, D.: Dependent type theory for verification of
information flow and access control policies. ACM Trans. Program. Lang. Syst.
35(2), 6 (2013)

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Ngo, M., Naumann, D.A., Rezk, T.: Type-based declassification for free. CoRR
abs/1905.00922 (2020), http://arxiv.org/abs/1905.00922

Ngo, M., Piessens, F., Rezk, T.: Impossibility of precise and sound termination-
sensitive security enforcements. In: 2018 IEEE Symposium on Security and Privacy,
SP. IEEE Computer Society (2018)

Pitts, A.M.: Typed operational reasoning. In: Pierce, B.C. (ed.) Advanced Topics in
Types and Programming Languages, chap. 7, pp. 245-289. The MIT Press (2005)
Pottier, F., Simonet, V.: Information flow inference for ML. In: ACM POPL. pp.
319-330 (2002)

Pottier, F., Simonet, V.: Flowcaml homepage. https://www.normalesup.org/ si-
monet/soft /flowcaml/index.html (accessed July 2018)

Protzenko, J., Zinzindohoué, J.K., Rastogi, A., Ramananandro, T., Wang, P.,
Béguelin, S.Z., Delignat-Lavaud, A., Hritcu, C., Bhargavan, K., Fournet, C.,
Swamy, N.: Verified low-level programming embedded in F. PACMPL 1(ICFP),
17:1-17:29 (2017)

Rajani, V., Garg, D.: Types for information flow control: Labeling granularity and
semantic models. In: IEEE Computer Security Foundations Symposium (2018)
Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP
Congress. pp. 513-523 (1983)

Rezk, T.: Verification of confidentiality policies for mobile code. Ph.D. thesis, Uni-
versity of Nice-Sophia Antipolis (2006)

Rossberg, A., Russo, C.V., Dreyer, D.: F-ing modules. J. Funct. Program. 24(5),
529-607 (2014)

Sabelfeld, A., Sands, D.: Declassification: Dimensions and principles. Journal of
Computer Security 17(5), 517-548 (2009)

Santos, J.F., Jensen, T.P., Rezk, T., Schmitt, A.: Hybrid typing of secure informa-
tion flow in a javascript-like language. In: Trustworthy Global Computing - 10th
International Symposium, TGC (2015)

Shikuma, N., Igarashi, A.: Proving noninterference by a fully complete translation
to the simply typed lambda-calculus. Logical Methods in Comp. Sci. 4(3) (2008)
Sojakova, K., Johann, P.: A general framework for relational parametricity. In:
IEEE Symp. on Logic in Computer Science. pp. 869-878 (2018)

Sumii, E., Pierce, B.C.: A bisimulation for dynamic sealing. In: ACM POPL. pp.
161-172 (2004)

Timany, A., Stefanesco, L., Krogh-Jespersen, M., Birkedal, L.: A logical relation
for monadic encapsulation of state: Proving contextual equivalences in the presence
of runST. Proc. ACM Program. Lang. 2(POPL), 64:1-64:28 (Dec 2017)

Tse, S., Zdancewic, S.: Translating dependency into parametricity. In: International
Conference on Functional Programming. pp. 115-125 (2004)

Tse, S., Zdancewic, S.: A design for a security-typed language with certificate-based
declassification. In: ESOP. pp. 279-294 (2005)

Vanhoef, M., Groef, W.D., Devriese, D., Piessens, F., Rezk, T.: Stateful declassifi-
cation policies for event-driven programs. In: IEEE Computer Security Foundations
Symposium. pp. 293-307 (2014)

Vytiniotis, D., Weirich, S.: Parametricity, type equality, and higher-order polymor-
phism. J. Funct. Program. 20(2), 175-210 (2010)

Wadler, P.: Theorems for free! In: International Conference on Functional Pro-
gramming. pp. 347-359 (1989)

Washburn, G., Weirich, S.: Generalizing parametricity using information-flow. In:
IEEE Symp. on Logic in Computer Science. pp. 62-71 (2005)

http://arxiv.org/abs/1905.00922

	Type-based Declassification for Free

