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Replicability takes on special meaning when researching phenomena that are embedded in space and
time, including phenomena distributed on the surface and near surface of the Earth. Two principles, spatial
dependence and spatial heterogeneity, are generally characteristic of such phenomena. Various practices
have evolved in dealing with spatial heterogeneity, including the use of place-based models. We review
the rapidly emerging applications of artificial intelligence to phenomena distributed in space and time and
speculate on how the principle of spatial heterogeneity might be addressed. We introduce a concept of
weak replicability and discuss possible approaches to its measurement.
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Recently replicability and reproducibility have re-
ceived attention across virtually all of the sciences,
because of failures to replicate certain previously
published results. Some have identified a “replicabil-
ity crisis,” and comprehensive discussions have
appeared in leading journals (1–3) and in reports of
prestigious academies (4). Unfortunately the two
terms are used differently by different disciplines. In
this paper we define reproducibility as the ability to
obtain the same results using the same data andmeth-
ods, and replicability as the ability to obtain similar
results (within acceptable bounds of uncertainty) using
similar data (e.g., different samples obtained ran-
domly from the same population) and similar methods
(e.g., computer codes that have been designed to im-
plement the same general procedures, but perhaps
using different algorithms and running on different
machines). In this paper we focus on replicability and
use this definition.

While replicability is an accepted requirement in
experimental psychology, physics, chemistry, and
many other disciplines, its relevance in the social
and environmental sciences is more nuanced. Our
primary purpose in this paper is to explore replicability
for studies of phenomena on or near the Earth’s surface,
that is, “replicability over the globe.” We term this the
geographic domain, which we define as extending from
tens of kilometers below the surface to tens of kilometers

above, and at spatial resolutions frommillimeters to tens
of kilometers. While this domain and these limits define
the scope of our discussion, much of it may also be rel-
evant to other fields.

Much of this concern stems from efforts to assess
established results by closely repeating the original
experiments. But in a recent paper, Nichols et al. (5)
argue that the replicability of a previously published
result should not be regarded as a binary outcome of a
test, but as the focus of an evolving process. As more
positive evidence becomes available, the degree of
belief in the initial result increases; while accumulating
negative evidence casts increasing doubt on the original
research. In this paper we echo some aspects of
this argument in addressing replicability across the
geographic domain.

This introduction next focuses on spatial hetero-
geneity, a principle that forms the foundation for this
discussion and its relevance to replicability. We then
place studies of social, economic, demographic, and
environmental phenomena in the geographic domain
into two categories, which we term within-area and
between-area studies, a distinction that helps to ground
the subsequent discussion. Following this introduction
we review relevant methodological arguments and ap-
proaches in the social and environmental sciences and
include a section on what have been termed place-based
methods. We introduce relevant methods of machine
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learning using the example of convolutional neural networks (CNNs)
and examine replicability in this context in the light of spatial hetero-
geneity. In the final and prospective section we argue for what we
propose to term weak replicability, and for the development of
associated metrics.

Our arguments in this paper are grounded in the principle of
spatial heterogeneity. In a seminal paper titled “What is special
about spatial data?”, Anselin (6) identified two general properties
of information about the geographic domain: spatial dependence
and spatial heterogeneity. The principle of spatial dependence
was succinctly expressed by Tobler (7) as “nearby things are more
similar than distant things,” and Sui (8) provides an introduction to
a collection of papers that exploremany implications of the statement.
This simple expression of positive spatial autocorrelation is the con-
ceptual foundation of many spatial methods. Spatial interpolation (9),
for example, is a widely used family of techniques that estimates
unknown or missing data values, based on known values at nearby
locations. Maps showing contours also employ the same principle,
and positive spatial autocorrelation is the foundation of the science
of regionalized variables, commonly known as geostatistics (10).

In advancing spatial heterogeneity as another fundamental
principle, Anselin (6) argued that expectation (the expected value
of a discrete random variable) varies across the Earth’s surface, as
do many other statistical properties. Numerous forms of spatial
organization and pattern exist in the geographic domain, and in
focusing on spatial heterogeneity we do not wish to imply that
spatial variation is necessarily random. Teleconnections and tele-
couplings (11), for example, can induce strong correlations be-
tween locations that are far apart, and two well-separated cities
or agricultural regions may nevertheless possess many forms of
similarity. Such studies are well outside the focus of this paper.

Rather, our concern in this paper is for the implications of
spatial heterogeneity for scientific discovery. Many processes are
expected to operate uniformly over the globe, and the objective
of sciences such as physics and chemistry can been seen as the
isolation of such uniform processes from any spatial (and tempo-
ral) variation that may obscure them. In the social and environ-
mental sciences, however, there may bemany reasons not only for
an appearance of spatial heterogeneity in the relevant variables,
but also for a confounding of the process of discovery. Models
may fit better to data in some areas than in others, and the fitted
values of parameters may also vary. It may be difficult if not
impossible to exclude the variable effects of context, and spatial
heterogeneity will also appear when models are incompletely
specified, since the missing variables will almost certainly exhibit
spatial variation. Below we explore some of the literature of the
social and environmental sciences that recognizes this issue and
some of the approaches that have been used to address it.

Studies of phenomena in the geographic domain fall into two
broad categories, which we term within area and between area.
Within-area studies examine the spatial variation of some phe-
nomenon of interest within a frame or study area. The terms
“extent” and “scale” are often used in this context, and we some-
times refer to studies of large areas as large-scale studies (though
scale is also used to refer rather confusingly to spatial resolution and
in cartography, to the related property of the representative
fraction; ref. 12). Spatial heterogeneity leads us to expect both
variation within the study area and dependence of results on
the choice of study area. If the area covers less than the entire
surface of the Earth we also expect difficulties in replicating the
results of the study within other areas that may or may not overlap
with the original area.

Such studies use methods of spatial analysis to make infer-
ences and conclusions. Spatial analysis (see, for example, ref. 9, p.
291) can be defined informally as analysis that relies directly or
indirectly on the locations of the features or samples that are be-
ing analyzed, or more formally as any analysis whose results are
not invariant under changes in those locations. This definition is
extremely broad: in addition to the kinds of inferences from spatial
analysis that advance scientific knowledge and are the subject of
this paper, it also covers techniques that are prescriptive or nor-
mative in character, seeking to design part of the geographic
domain to achieve certain objectives (see, for example, ref. 13).

Methods of spatial analysis are today implemented in geo-
graphic information systems (GISs) and in many packages of
cartographic or statistical software, and issues of replicability and
reproducibility in spatial analysis have been addressed in recent
papers (14, 15). However, most of these methods assume that the
processes affecting the phenomena within the study area are spa-
tially homogeneous; we focus here on the implications of spatial
heterogeneity for replicability. We discuss below how somemeth-
ods of spatial analysis have been adapted to address specifically
the concept of spatial heterogeneity.

Between-area studies compare phenomena at a selection of
locations, without necessarily being concerned with how phenom-
ena vary within areas; thus they do not necessarily utilize methods
of spatial analysis. They are nevertheless impacted by spatial het-
erogeneity, so we include them here.

Replicability in Practice
Replicability, or lack of it, has been a long-standing problem in
disciplines that focus on the geographic domain, such as regional
science, spatial ecology, geography, epidemiology, sustainability
science, or spatial econometrics. As complex and adaptive,
social–ecological systems (SESs) often embrace observations
collected from within a specific spatial and temporal setting, un-
der what may be unique weather and climate conditions, or
shifting political regimes, making replicability difficult to achieve
(16). Ostrom (17) argues that in SES studies it is unlikely that a
simple, universally applicable, predictive model exists due to the
complexity of places (see also refs. 18, 19). Sustainability science,
a field that studies interactions between nature and society, re-
quires an understanding of the interactions between global pro-
cesses and the local characteristics of particular places (20), which
may differ in socioeconomic, political, and ecological conditions.
At the center of these studies is the spatial context that situates
the data collection, research design, and findings (21). When data
related to a geographic location are collected, they must be set in
a specific spatial and temporal frame. This practice of frame-
dependent geographic measurement (22) creates contextual un-
certainty, causing results to differ from location to location, and
this will negatively affect a study’s replicability even when all other
experimental settings remain the same (23). The data represen-
tation, be it a point, line, or area, may also be a factor contributing
to the generation of nonreplicable results despite the use of the
same methodological workflow (24).

One approach to the problem of replicability across a spatially
heterogeneous globe has been to reduce it to a dichotomy:
simply, some findings are replicable in the style of physics and
chemistry and others are not. The Polish–Dutch geographer Varenius,
writing in the 17th century in books that were later annotated by
Isaac Newton, distinguished between special geography, that is,
the distinct nature of places, and general geography, the general
and presumably replicable principles on which the geographic
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domain is constructed (25, 26). In the 1950s this issue came to a
head in a lengthy debate in the discipline of geography between
these two positions, which we term idiographic and nomothetic,
respectively. Idiographic science, or “areal differentiation,” con-
sists in recording the distinguishing and therefore unreplicable
properties of places; to paraphrase Hartshorne (27), the only
possible general principle of the geographic domain is that all
places are unique. Schaefer (28) argued the opposing case for
nomothetic geography, or what later became known as scientific
or theoretical geography (29), as the search for general laws and
principles that apply and are replicable everywhere, and
presumably at all times.

However, the idiographic position nevertheless implies a cer-
tain degree of homogeneity within the places or areas being stud-
ied, and thus a geographic scale, introducing one form of nuance in
what otherwise would be a simple dichotomy. We might study the
differences between continents, nations, states, counties, cities, or
neighborhoods, while implicitly assuming that within each of these
areas the distinguishing characteristics are near uniform. Thus the
difference between the nomothetic and idiographic positions is in
practice not absolute, but a matter of geographic scale, from the
nomothetic global to the yet-to-be-specified idiographic local.

Several place-based methods attempt to address the issue of
spatial heterogeneity directly, by incorporating it into the mod-
eling process. This could be done (in a within-area approach to
spatial heterogeneity) by partitioning the study area into regions
and calibrating models independently in each region. However,
there are several obvious objections to this approach, including
the lack of an objective basis on which to define the regions, and
the sharp breaks in coefficients that would occur at region
boundaries. Casetti (30) developed what he termed the expansion
method by allowing the coefficients in a model to vary with lo-
cation. Each coefficient is allowed to be a linear or quadratic
function of geographic coordinates, thus incorporating spatial
heterogeneity directly into the model. Fotheringham et al. (31)
generalized this approach in their technique of geographically
weighted regression (GWR). In GWR, the model’s structure and
the independent variables are defined generally, but the param-
eters of the model are allowed to vary spatially and perhaps
through time. Unlike the expansion method, coefficients are
calibrated for each location and can be mapped. Both of these
techniques introduce additional degrees of freedom, so it is not
appropriate to use goodness of fit as a criterion for choosing
between them or for rejecting a simple regression model (32).

In a simple application, we might build a GWRmodel based on
the assumption that the presence of a swimming pool will always
affect the price of a house. However, we also acknowledge that
the effect of the variable could be very different across space (e.g.,
in Arizona compared with Minnesota). This is done by estimating
the parameters of the model point by point, at each point bor-
rowing support only from nearby observations, and using weights
that decrease with distance according to a function parameterized
by a preset bandwidth value. In the recently developed multiscale
version of GWR (MGWR; 33) the bandwidth is separately cali-
brated for each independent variable in the model, in effect
allowing each variable’s influence to vary at its own geographic
scale. We might interpret these functions as distinguishing the
scales of the various processes that operate on the landscape.

Similar to GWR and MGWR, the spatially varying coefficient
(SVC) (34, 35) model and its multiscale extension (36) treat
the bandwidth parameters in a Bayesian framework, resulting in
explicit measures of uncertainty on each bandwidth estimate.

Griffith (37) has proposed a spatial-filter–based local regression
(SFLR) as an alternative to GWR; for a comparison of the two
techniques see the work of Oshan and Fotheringham (38). There
have also been numerous extensions and modifications of the
basic GWR format. Wheeler (39), for example, has developed a
geographically weighted lasso regression that employs shrinkage
to reduce model coefficients, potentially to zero, in some parts of
the study area.

All of these approaches appear to find intermediate positions
in the longstanding debate between nomothetic and idiographic—
between global and local or general and special. Certain aspects
of models are held constant while others are allowed to vary. In
GWR, the structure of the model and the choice of variables are
held constant, but the coefficients and the overall goodness of
fit are allowed to vary. We might term this weak replicability, ac-
knowledging that some but not all aspects of a geographic prin-
ciple or model are replicable across space (and perhaps also
through time); we expand on this point below.

This raises an important question, however, since it begs a
definition of acceptability: How much weakness is acceptable,
and can a result fail to replicate if such a generous approach is
taken? We argued earlier that replication must be subject to
“acceptable bounds of uncertainty,” which allow for different er-
rors in measuring instruments, the effects of taking different
samples, and the use of different machines and codes for analysis.
With a place-based method such as GWR, we expect also to be
able to replicate the geographic variation in the coefficients, but
again have no objective basis for determining how much variation
between results is to be considered acceptable. We return to this
and its implications in the concluding section.

Geospatial Artificial Intelligence
In recent years, geospatial artificial intelligence (GeoAI) has
emerged as an addition to the analytic tools that can be used to
advance scientific discovery in the geographic domain (40). In this
section we focus on the role of spatial heterogeneity in GeoAI,
and its implications for replicability and scientific discovery.
Concerns have already been expressed about the replicability of
methods of artificial intelligence (AI) in general. Hutson (41) ar-
gued in a recent paper in Science that AI is facing significant
technical short-term challenges in replicability due to a lack of code
sharing and proper documentation, and the practice of publishing
research through nonreviewed platforms such as arXiv, but here our
focus is on the more specific concerns of GeoAI. We first review
applications of GeoAI, and then focus on one specific technique of
machine learning to illustrate the nature of its results, and how it
already accommodates the principle of spatial dependence. Fi-
nally, we address the difficulties in accommodating the principle of
spatial heterogeneity and their implications for replicability.

AI has a longstanding history of notable successes in the
geographic domain (42–45). We term this research area GeoAI.
From the postwar era to the late 1980s, the dominant AI research
paradigm was symbolic AI and expert systems. An expert system
is essentially driven by prior knowledge and models; it works by
predefining a set of reasoning rules or if-else conditions for a
machine to make decisions when different scenarios are present.
The creation of these rules relies heavily on domain experts. For
instance, researchers at the National Aeronautics and Space Ad-
ministration (NASA) developed an image-based geological expert
system to identify mineral properties in the Earth’s surface by
analyzing hyperspectral remotely sensed images (46). In this ap-
proach a decision tree is codified by a knowledge engineer to
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integrate a geologist’s 10-step decision-making process into the
expert system. To date, decision-tree analyses remain popular
approaches for image analysis and data processing. The methods
have also been extended from binary classification to probabilistic
models, such as random forests (47).

Agent-based modeling (ABM) (48) and cellular automata (CA)
(49) are also commonly used methods for building an expert
system. They both rely on microscale simulation, with the former
simulating the behavior of moving agents in space and the latter
simulating process change over a region partitioned into a regular
grid (50). When the solution space for a real-world problem
becomes too large due to combinatorial complexity, heuristic
techniques can be adopted to guide the expert system to achieve
an acceptable but perhaps nonoptimal solution (51).

In symbolic expert systems the decision rules are well defined.
However, a flaw of such systems is that they are monotonic. As
more rules are added, the more knowledge is encoded in the
system and the more complex the system becomes. This will in-
evitably affect its computational efficiency and flexibility because
new knowledge cannot overwrite old knowledge. Another stum-
bling block of an expert system is the lack of generalization in the
reasoning rules across space (and time), making them extremely
difficult to replicate when a study area changes. This issue is
predominantly seen in the analysis of remotely sensed images, in
which the spectral, optical, and spatial–contextual properties of
an object may vary significantly across spatially heterogeneous
landscapes and geographic regions.

Data-driven models attempt to address these issues by having
the machine learn, without prior expert knowledge, the correla-
tions between input data and output symbols. A symbol in this
context means a high-level concept that is understandable by
humans, such as a class label in a classification system. Models
such as artificial neural networks (ANNs), support vector machines,
and the aforementioned random forest, all belong to this cate-
gory. They work by supervised machine learning, in which training
data are required to feed the model to gain intelligence between
the input and the desired output. These models are called shallow
machine-learning models because the models do not have the
ability to learn from the raw data; instead, the input of such
models needs to be a set of independent variables (features) that
are known to influence the outcome. Compared to the
knowledge-driven models, this kind of model can be easily
retrained with new data. While the model stays the same, the
model parameters can be adjusted when input data are nonsta-
tionary, hence they are better at encoding new knowledge and
modifying it. However, the model does not control its transfer-
ability or replicability across space, which is indeed determined by
the spatial heterogeneity of the spatial processes underlying the
data. ANN models that incorporate spatial weights to respect
spatial heterogeneity have also been developed in recent years;
however, some of the model changes introduce extra computa-
tional time without gaining significant improvement in model
performance over the GWR model (52, 53).

In recent years, deep-learning models, especially deep con-
volutional neural network (DCNN) models, have emerged as a
breakthrough in AI research because of their outstanding capa-
bility in mining from big data and learning representative features
(i.e., independent variables) automatically from raw data. These
models have shown good performance in specialized tasks, such
as image classification and speech recognition (54). In the next
subsection we present a short discussion of DCNN and use it to
illustrate how this method of GeoAI incorporates the principle of

spatial dependence. Later we discuss what replicability might
mean for such methods.

Deep learning refers to computational models that are com-
posed of multiple processing layers, creating a data-processing
pipeline that can automatically learn and extract prominent fea-
tures or representations of the data that enhance prediction. The
multilayer architecture in deep learning has evolved from an ar-
tificial neural network, which purports to mimic how information
might be propagated in the human brain in support of decisions.
Fig. 1 illustrates an example of a multilayer, feed-forward neural
network (Fig. 1A), which we might term a shallow learning model,
and its extension to a DCNN for geospatial applications (Fig. 1B).

A key innovation in the DCNN shown in Fig. 1B is its intro-
duction of a convolution module, which applies a moving window
to perform convolution, another form of weighted sum, to extract
prominent features automatically. The result of this operation is
called a feature map. Max pooling is enabled between convolu-
tion layers to select the maximal value in a k × k pixel block to
reduce the dimension of the feature map and reveal important
features at different spatial scales. Although not explicitly stated,
these DCNN models have naturally incorporated the principle of
spatial dependence in the methodological design. The moving
window idea, which applies convolution on each square subarea
containing k × k adjacent pixels to extract prominent features from
data, is based on the underlying assumption that nearby pixels
composed together will provide a meaningful way of representing
data features. In effect, this assumes positive spatial autocorrela-
tion. Another principle built into the deep-learning technique is
scale-based analysis. The max-pooling operation enables scale-
dependent feature extraction, as an important strategy to aid
understanding of spatial structures and processes.

The concept of replicability which we adopted at the outset
asks for “similar” results across the geographic domain; this im-
plies some means of measuring how the results in one area
compare with results in another area. In the within-area strategy
defined in the Introduction it implies that similar results have been
obtained across the study area or when the same methods are
applied to more than one area. With the between-area strategy, it
implies similarity across the results obtained in each area. When
traditional methods such as linear regression are used, it is clearly
possible to assess similarity by comparing the fitted coefficients
and the overall goodness of fit. But how should the results of
GeoAI be compared?

The results of an application of DCNN or any other form of
neural network consist of a complex set of weights on the links of
the network. To assess the degree to which one application rep-
licates another, it would be necessary to compare sets of weights.
Moreover these links will not necessarily persist across applica-
tions, so it is not always possible to compare weight with weight.
Perhaps it would be possible to create a version of DCNN or other
GeoAI tool that directly incorporates the principle of spatial het-
erogeneity, in a similar manner to GWR and other place-based

techniques. The original objective function of

Fig. 1 would become , where m is the

number of output variables Y, n is the number of nearby sampled
data that would be involved in a localized deep-learning process,
and wil is the weight assigned to a sample data point using some
spatial weighting scheme. By incorporating this new objective
function, the use of the weights will ensure that the model
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calibrated at location i benefits from the support captured from
nearby observations and is less dependent on the existence of a
study area boundary. This strategy might constitute a new GeoAI
model that explicitly addresses spatial heterogeneity in the mod-
eling process. But with GWR the set of independent variables and
the algebraic structure of the model remain constant over space,
allowing the fitted coefficients to be mapped over space and
allowing the researcher to make some level of general statement.

Compared to GWR, the result of the GeoAI model would no
longer be a coefficient surface (Fig. 2). Instead, it would be a
nonlinear, complex function that varies across space, generating a
multidimensional surface that may appear to ignore the principle
of spatial dependence and will be even more difficult to interpret
than the results of GWR. Since AI models generally have more
degrees of freedom than traditional regression models, they will
likely achieve better fits. But in the spirit of Occam’s razor, if a
simpler model works well, and if its mechanics can be easily
explained, why use a more elaborate model with millions of pa-
rameters that need to be learned?

In summary, there is no obvious way of comparing the results
of one GeoAI application, in one study area at one time, to the
results obtained independently in another study area or at another

time. When GeoAI is used for prediction, it may be acceptable to
adopt an idiographic position and regard the results of any ap-
plication as unique. But we are unable to see how GeoAI can lead
to the discovery of nomothetic knowledge of the geographic
domain, given the presence of spatial heterogeneity. Despite the
compelling performance of AI algorithms in appearing to emulate
some of the functions of human minds, these algorithms are often
questioned for their opaque learning processes and lack of in-
terpretability. Unlike human brains, which contain a meta-algorithm
(55) to explain the rationale for reasoning, either through observa-
tions, logical reasoning, or experience based on accumulated sci-
entific knowledge, the deep layers in complex AI algorithms are
often not as comprehensible as human intuition. Their black-box
nature is highly worrisome, especially when they are adopted to
answer scientific questions that require a transparent reasoning
process and valid results—key aspects that ensure scientific repli-
cability. Judea Pearl, winner of the Turing Award in 2011, argued
that the secret behind deep learning is merely a “curve fitting” (56).

Weak Replicability
The preceding sections have argued for a science of the geo-
graphic domain that is neither idiographic nor nomothetic, but

BA

Fig. 1. Examples of a multilayer neural network (A), and a DCNN as one might be used in GeoAI for analyzing a remotely sensed image (B).
Specifically, A presents a fully connected, feed-forward neural network, which is composed of multiple layers, and each layer is composed of
multiple nodes. The input to the network consists of multiple attributes (or features), represented by Xi, and the output is Y, where Y could be
either a numerical value, suitable for use in a regression scenario, or a categorized value, suitable for use in classifications. The goal of learning is
to find a nonlinear mapping between Y and X that minimizes themean squared difference between the expected output (Y) and predicted output
(Ŷ ). This mean squared difference is the most commonly used regression loss function in a machine-learning model. The mapping result is
captured in the set of weights (β) that act on the links connecting nodes in the network. g() is an activation function that determines the output of
a neuron. It also helps to normalize the value into a range between [0,1] or [−1,1]. In B, a DCNN is used to extract low- to high-level features (X in
A) in an automated manner such that there is no need for manual feature selection. Once all the features or the independent variables (X) are
extracted, a DCNN can be linked to a fully connected layer (A) for final classification and prediction.
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instead occupies an intermediate position between those two
extremes. We see this as a logical consequence of the near-
ubiquitous presence of spatial heterogeneity and the persistent
inability to completely specify models and processes in the social
and environmental sciences. Moreover, it is never clear how close
a new result must be to a previously published one to qualify as a
replication. Thus we concur with Nichols et al. (5) in questioning
the traditional approach to replicability, in which a new result must
either replicate an existing one, or conflict with it. In the geo-
graphic domain and in the ubiquitous presence of spatial het-
erogeneity, it is difficult to imagine a clear outcome of this
traditional approach.

Instead it seems that research in the geographic domain re-
quires a concept of what we choose to term weak replicability, in
which some of the requirements of replicability are dropped. This
might take the form of a single-model structure but with spatial
variation in the model’s parameters and goodness of fit, as in
GWR, or a single neural network with spatial variation in its
weights, as in our suggested spatially heterogeneous version of
DCNN. From this perspective the degree of weakness becomes
important, because there must be some limit to how much vari-
ation is acceptable; without it, all knowledge is implicitly replica-
ble. How much variation should be allowed in a fitted GWR
model, for example, and should models with more than a
threshold degree of spatial variation in parameters be rejected?

Questions like these are often resolved using the infrastructure
of inferential statistics. Variables in a multivariate model are tested
to determine the degree to which they contribute to the explan-
atory power of the model, and if that contribution is within the
range of chance contributions from similar but in reality unrelated
variables, then the variable is rejected. But consider a simple
multiple regression that is applied independently in two study
areas, and assume that the variables are all statistically significant
in both areas, suggesting that the model is replicable. Yet the
values of the model’s coefficients will not be identical and may be
more different than would be acceptable under inferential tests,
given the observed variances and sample sizes. How much vari-
ation should be allowed in the fitted coefficients before the model
is declared unreplicated? We can find no simple answer to
this question.

Moreover the property of spatial dependence creates prob-
lems for inferential tests in the geographic domain. While sam-
pling is the basis of inferential tests, in many cases there is no
sampling involved in within-region analyses; instead, all of the
available data are used. Further, inferential tests commonly as-
sume that individuals are randomly chosen; because of spatial
dependence, the independence assumption is often compro-
mised. There is of course a vast literature on this topic, so we
merely note its existence here.

If replicability is weak, and if metrics can be devised to mea-
sure the differences between models, then we see an opportunity
for the development of geographies of replicability, as follows.
Given the Tobler principle of positive spatial dependence, it
seems reasonable to assume that replicability will be stronger
over short distances and decline with distance. However, there
may be exceptions to this general principle: similar cities may
provide greater replicability than dissimilar ones, independently
of their separation in space. As more evidence accumulates, in the
form of calibrated models in different geographic areas, it would
be fascinating to develop what we might term “replicability
maps.”

Conclusion
Replicability is a key principle of the scientific method. But its
meaning is especially nuanced in those social and environmental
sciences that deal with phenomena embedded in space and time.
The principle of spatial heterogeneity is by now well established,
particularly in disciplines that deal with the surface of the Earth
and with change through time. Yet as a principle, it appears to cast
doubt on the property of replicability, implying that the results of
any study will change when the bounds of the study change, in a
direct challenge to replicability over the globe.

In response, we introduced the concept of weak replicability as
an intermediate position between the nomothetic and idiographic
ideals—between a search for general principles on the one hand,
and a belief that all places are unique on the other. Under weak
replicability the model specification might be generalizable, for
example, but the model’s parameters might be allowed to vary
spatially and temporally. We used the example of GWR, one of a

Fig. 2. Hypothetical results generated by the place-based method GWR and a possible GeoAI method in a study of how population and income
make an impact on crime. In the GWR result, coefficient values will be determined at each location (u, v) by borrowing support from nearby data
points. These values form a geographically varying coefficient surface for each independent variable Xi. By comparison, the values at each unit
location that result from the GeoAI method will be complex, nonlinear functions instead of a single number.
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number of place-based methods that provide practical ways of
implementing this intermediate position.

In line with the concept of weak replicability, we suggested
that replicability might be regarded as a variable rather than a
binary property in those sciences that deal with environmental
and social phenomena embedded in space and time. Perhaps
metrics of replicability could be developed, based on the simi-
larity of calibrated parameters. Such metrics would have their own
geography, since results are likely to be more replicable in nearby
areas than in distant ones, in an echo of the principle of spatial
dependence.

Recently there has been much interest in the use of AI tech-
niques in the geospatial sciences, despite the widespread ques-
tioning of their value in scientific knowledge discovery. We
focused on the analysis of remotely sensed Earth images using
deep convolutional neural networks: they incorporate the princi-
ple of spatial dependence, but not spatial heterogeneity. We
suggested that spatial heterogeneity might be implemented in
these models by allowing them to be calibrated locally, in a similar

manner to GWR. But we concluded that such models would be
very hard to interpret, and their generalizability would be so weak
as to add little in the way of useful knowledge.

Nevertheless we should not underrate the value of AI in facil-
itating advances in science. Karpatne et al. (57) have proposed a
theory-guided paradigm for data science in which AI researchers
and domain scientists work together to advance scientific under-
standing and produce novel insights—somewhat similar to our
proposal here to incorporate the established principle of spatial
heterogeneity, along with spatial dependence, into spatial ap-
plications of AI. We should also not underestimate AI’s evolving
expressive power, which computer scientists have been
attempting to improve (58). Open Machine Learning (59) and
other open-science frameworks (60) will improve transparency in
both AI research and other data-driven scientific research, hope-
fully leading to a more positive form of scientific replicability in AI.

Data Availability. There are no data underlying this work.
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