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Abstract— Nonlinear model predictive control (NMPC) has
gained widespread use in many applications. Its formulation tra-
ditionally involves repetitively solving a nonlinear constrained
optimization problem online. In this paper, we investigate
NMPC through the lens of Bayesian estimation and highlight
that the Monte Carlo sampling method can offer a favorable
way to implement NMPC. We develop a constraint-aware
particle filtering/smoothing method and exploit it to implement
NMPC. The new sampling-based NMPC algorithm can be
executed easily and efficiently even for complex nonlinear
systems, while potentially mitigating the issues of computational
complexity and local minima faced by numerical optimization
in conventional studies. The effectiveness of the proposed
algorithm is evaluated through a simulation study.

I. INTRODUCTION

Nonlinear model predictive control (NMPC) has emerged
as one of the most important control methods, with numerous
applications ranging from process control and robotics to
energy management and traffic control [1]-[3]. Its immense
success is owed to its ability of predictively optimizing the
control of a nonlinear system subject to constraints. At the
center of its formulation, NMPC is designed to address an
optimal control problem repetitively at every time instant in a
receding-horizon manner [4]. Its implementation hence hinges
on the online solution of a nonlinear constrained optimization
problem. A simple approach is to do model linearization and
solve the resultant linear model predictive control problem
by a Newton-type method, if the system is subject to only
linear constraints [5], [6]. Further, nonlinear programming
must be considered when generic nonlinear constraints are
present. Two popular classes of methods to deal with it
include the sequential quadratic programming and nonlinear
interior-point methods [7], [8]. As practical applications
often demand computational efficiency, significant research
efforts have recently been dedicated to NMPC driven by fast
real-time optimization. The continuation/GMRES method
and various other proposed approaches of leveraging the
structures of NMPC have proven useful in improving the
computational speed [8]-[12]. Evolutionary algorithms, e.g.,
the particle swarm optimization method, have also received
some attention in the literature [13], [14]. This is mainly due
to their ability to achieve global optimization for nonconvex
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nonlinear programs, even though they are computationally
expensive.

Despite the advancements, the high computational costs of
nonlinear constrained optimization remains a bottleneck for
the application of NMPC, especially when it comes to high-
dimensional or highly nonlinear systems. Another concern
lies in whether the global minimum can be attained, given that
the optimization is nonconvex in many cases. The particle
filtering approach, as a sequential Monte Carlo sampling
method, has shown effective in handling the complexity of
nonlinear systems in state estimation tasks [15], [16]. Its
utility can be extended to tackle the above issues facing
NMPC. The study in [17] illustrates particle filtering as a
means to implement NMPC, by estimating the optimal control
input sequence from the reference signal to track over the
receding horizon. However, it is the only work on this subject
to our knowledge, though a few other studies use particle
filtering for the purpose of state estimation in output-feedback
NMPC [18], [19]. Another related line of research is to solve
NMPC using the Monte Carlo sampling-based optimization
in place of numerical optimization [20], [21].

It is noteworthy that the method offered in [17] adopts an
existing particle filter algorithm and thus cannot deal with
generic state-input inequality constraints despite their presence
in various practical systems. In this work, we aim to overcome
this limitation and make the following contributions:

o We introduce a systematized formulation of NMPC
through the lens of Bayesian estimation and an imple-
mentation based on vanilla particle filtering/smoothing.

o Further, we propose a novel constraint-aware particle
filtering/smoothing approach using the barrier function
method and then apply it to develop a new NMPC
algorithm.

The proposed algorithm makes a crucial advancement of the
particle-filtering-based NMPC and can find prospective use
in a broad range of applications.

The rest of the paper is organized as follows. Section II
interprets the NMPC problem as a Bayesian estimation
problem. Section III presents a realization of NMPC based on
particle filtering/smoothing and proposes the constraint-aware
particle filtering/smoothing method to implement NMPC.
Section IV evaluates the proposed algorithm through a
simulation example. Finally, Section V concludes the paper.

II. NMPC THROUGH THE LENS OF BAYESIAN
ESTIMATION

In this section, we present the NMPC problem and then
examine it from the perspective of Bayesian estimation.



Consider the following discrete-time nonlinear system:

Tpy1 = (@, uk), 9]

where z;, € R™= is the system state, uy € R™* is the control
input, and the mapping f : R"» x R™* — R"= represents
the state transition function. The system is subject to the
following inequality constraints:

g]<m7u)§0’ vj:]""'7m7 (2)

where m is the total number of constraints. We suppose that
the control objective is to make z track a reference signal
r,. A corresponding NMPC problem can be stated as follows:
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where H is the length of the upcoming horizon, uy.+g =
{ug, uk41,.. -, urrmr}, @ and R are weighting matrices,
and xj is known. The above problem seeks to determine
the optimal control input sequence uy., ,; to minimize
an objective function, which is a weighted quadratic sum
of the control cost and tracking error over H steps into
the future. The literature has conventionally resorted to
numerical optimization approaches to compute uj, ;. ;. Once
the optimization is done, the first element of uy ., rr, ug, will
be applied to control the system, with the rest discarded. The
same optimization and control procedure will repeat itself
recursively at the future time instants. To sum up, NMPC,
at its core, pursues model-based predictive optimization of a
system’s operation in a receding horizon.

Another perspective to investigate NMPC is based on
optimal estimation. The overarching notion is to interpret
the NMPC problem as a problem of estimating x.;+ g and
U+ g from rg.r4 . Specifically, we can view x4 and
U+ g together as the state characteristic of a virtual dynamic
system and 7., g as the virtual measurements made on this
system. The virtual system can be expressed as

Ti41 = f(l"t,ut)7
Ut4+1 = Wy, (4)
Ty = Tt + Vg,
for t = k,...,k + H, where w; and v, are additive
disturbances. Given (4), we can consider a moving horizon

estimation (MHE) problem [22] to estimate the combined
state z; and wu;:

k+H
m:k+gl,i£e:k+H ; ”UtHg? ! Hwtni’ oY
st. mpp1 = flag, ), (5b)
Upyp1 = Wy, (5¢)
Tt = Tt + Vt, (Sd)

gj(xhut)go Vj:L...,m, (Se)

t="k, ... k+H

The formulation in (5) is equivalent to (3), suggesting the
viability of treating NMPC as an estimation problem. This
view opens up a different way of dealing with NMPC.

Bayesian estimation offers another means of perform-
ing state estimation for (4). In principle, we consider the
probability distribution p(zy.k+m, Wk:k+H | "k:k+ 1), Which
characterizes the information that 7.4y contains about
Tik+p and ug.p4 . Using Bayes’ rule, we have

P(fﬂk:kJrH, Uk:k+H | Tk:k+H)
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where the last equality holds because xj, is known and ;1 =
f(z¢,us) is deterministic. By (6), if assuming p(ry | a¢) ~
N (2¢,Q") and p(us) ~ N (0, R™') and considering the
maximum likelihood estimation based on

max
Lh:k+H Uk:k+H

log (@bt B, Ukikt H | Thikt-H ) s

we will obtain the same formulation as in (5) except without
the inequality constraints.

Bayesian estimation encompasses different ways of im-
plementation. Among them, particle filtering is one of the
most powerful approaches, which uses sequential Monte
Carlo sampling to approximate the conditional probability
distribution of a system’s state given the measurements. The
study in [17] leverages particle filtering to develop an NMPC
method. However, by design, it is unable to handle the state-
input inequality constraints (2), thus limiting its applicability
to many practical systems. To overcome this limitation, we
will propose a constraint-aware particle filtering method and
exploit to enable NMPC, with details to be offered in the
next sections.

Remark 1: The execution of NMPC has convention-
ally relied on numerical optimization. However, for high-
dimensional or highly nonlinear systems, the computational
complexity can be extremely high and even prohibitive, and
the implementation (e.g., coding and testing) rather burden-
some. By contrast, Monte Carlo sampling is computationally
more efficient and easier to implement in such scenarios.
Some recent studies have also pointed out that sampling can
be a more favorable choice than numerical optimization for
large-scale tasks [23]. Sampling-based NMPC hence holds
significant promise for controlling complex systems that
emerge in various problem domains.

III. NMPC viA CONSTRAINT-AWARE PARTICLE
FILTERING/SMOOTHING

In this section, we first present the problem of addressing
NMPC via particle filtering/smoothing and show a basic
approach to this end. Then, we develop the constraint-aware



particle filtering/smoothing and apply it to NMPC with
generic inequality constraints.
A. Problem Formulation

We consider the NMPC-oriented virtual system in (4) and
rewrite it compactly as

Tip1 = f(Te) + W, 7

ry = M.i‘t + V¢,
for t = k,...,k + H, where T; = [:EtT utT]T wy =
[of wﬂT, f stems from f, and M = [I 0]. For now, we

neglect the inequality constraints and will come back to this
point in Section III-C. As discussed in Section II, the original
NMPC problem could be cast as estimating Zj.,4 g from
rr.k+H- According to the principle of Bayesian estimation,
it is of interest to determine p(Zy.k+ 5 | Tk:k+ 1 ). We hence
consider the following recurrence relation

P(Thet | Thet) X Pt | Tt )D(Zt | T 1)D(Tpot—1 | Tt 1)

®)
for t = k, ...,k + H. This relation shows a forward pass
from p(ZTg.t—1|7rkt—1) t0 p(Ti.t|7re) and is known as
filtering. Since NMPC only applies the first element of the
computed control input sequence, we further need to consider
p(Zk | Tkt 1 )- A backward recursion as follows is necessary
to this end:

_ _ P(Tey1|T4)
P\Tt|Tk:ke+H) = P\Tt|Tk: /_7
( tl + ) ( t| t) p(xt+1|’rk:t)

X P(Teq1|Thektm)dT 41,  (9)

fort =k+ H,..., k, which describes a backward pass from
P(Ztt1 | Thkr i) 0 P(Zt | 7hk4pr) and is known as smoothing.
Together, (8)-(9) form a Bayesian forward filtering/backward
smoothing framework to realize NMPC. However, a closed-
form solution to p(Zg|rg.x+m) is generally intractable to
derive for nonlinear systems. This motivates the use of
sequential Monte Carlo sampling, which leads to particle
filtering/smoothing.

B. NMPC via Vanilla Particle Filtering/Smoothing

To begin with, we discuss the forward filtering and
consider p(Tg.; | rg.t) for k < t < k + H. Given that an
analytical expression is unavailable for p(Zy.; | 7.t), we seek
to approximate it by developing a sample-based empirical
distribution. Nonetheless, it is non-trivial to draw the samples
since p(Ty.t | Tk:+) is unknown. To deal with this problem,
one can leverage the technique of importance sampling.
The main idea lies in drawing samples from an alternative
known distribution ¢(Z.; | 7.¢), which is called importance
distribution, and then evaluating the weights of the samples
in relation to p(Zy.t | rx.¢). Suppose that N samples, z% , for

t=1,..., N, are drawn from ¢(Z.; | 7%.¢) . Their importance
weights are then given by
Wtz _ p(ajk:t | Tk:t) ) (10)
q(xk:t |rk:t)

If W} for i =1,..., N are normalized to be between 0 and
1, then p(Zy.+ | 7x:+) is approximated as

ZWk {,th fEk t)

Note that (10) can be written as

p(re fi)P(f% | ji—l)

Q(Eé | f%—lv Tk:t)

pxkt“‘kt

Wi _ p(jk:t ‘Tk:t) _
k Q('fk:t | Tk:t)

t—1

which suggests a recursive update of W},

There are different ways to select the importance dis-
tribution ¢. In general, it should be chosen such that it
is well related with the target distribution p and allows
samples to be easily drawn. A straightforward choice is to
let q(Z¢ | Tr—1,7k:t) = p(Tt | Ty 1) This implies that, at time
t, we can draw samples 7 ~ p(z;|Zi_,), with associated
normalized weights computed by

i p(re| 7

Ll a)
The resulting implementation is called the bootstrap particle
filter. A common challenge in particle filtering is particle
degeneracy, where a majority of the particles have zero or
almost zero weights after a few time steps. The overall
quality of the particles become extremely low and reduce
the estimation performance. A useful method to resolve this
problem is resampling, which replaces low-weight particles
with those that have high weights [24].

Then, we perform the backward smoothing, which will

provide a more accurate estimation of Zj. Rewrite (9) as:

Y

$t+1 |9€t)
(Tt | Theky i) = P(Tt | Thet) -
fp Ti41 \xt (3715 |7“k:t)d$t
X P(Teq1 | Pkt 1) AT, (12)
where the relation P(Tpg1 | Thot) =

J p(Zig1 | Z)p(ZTy | i )dT, is used. It is noted that
all the probability distributions in (12) can be approximated
by empirical distributions based on samples computed in the
filtering procedure. Hence, according to (12), we only need
to reweight the samples in smoothing:

W} p(z],,|7})

i
tk+H = Z Lokl o 13)
Zz  Wip(7,, | 75)
where W}/, Hik+H = = W/, ;. The resultant procedure is

called reweighted particle smoother. The smoothing will end
up with the following empirical distribution for p(Zg |k k45 ):

N
)~ Y Wiy (i — ).

i=1

P(Zk | Thokt |
This implies that the best estimate of Ty from rg.p4fr 1S

N
= Wik nTh, (14)

i=1

which then gives the optimal control input at time k.
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Fig. 1: The softplus barrier function for different values of («, 3).

The above introduces a vanilla particle filtering/smoothing
algorithm to implement NMPC. It bears a resemblance
to the algorithm in [17] but uses the reweighted particle
smoother to enhance the accuracy of smoothing. However,
both algorithms, at their core, do not take the inequality
constraints into account. Next, we propose a constraint-aware
particle filtering/smoothing approach to remedy this issue.

C. Constraint-Aware Particle Filtering/Smoothing for NMPC

Here, we develop an effective method to enable particle
filtering/smoothing with an awareness of the inequality
constraints. The idea lies in leveraging a barrier function to
create virtual measurements about the constraint satisfaction
and then incorporate them into the estimation procedure.

We first construct a virtual measurement equation as

ze = ¢ (9(Z4)) + me,

where z is the virtual measurement variable quantifying the
constraint satisfaction, g is the collection of g; for j =
1,...,m, n is an additive small noise, and ¢ is a barrier
function. Then, (15) will be used to evaluate the weights of the
particles and penalize those failing to satisfy the constraints.

In general, a barrier function outputs almost zero at a point
within a constraint set, almost infinity near the inner boundary
of the set, and infinity outside the set [25]. However, such
a barrier function will assign just zero weights to samples
that violate the constraints. This may further deteriorate the
particle degeneracy issue, impoverishing the entire ensemble
of samples. Meanwhile, from the viewpoint of estimation,
one only needs to make the final aggregated state estimate
meet the constraints. Therefore, we depart from the traditional
way to consider a fully continuous barrier function, which is
designed to output almost zero within the constraint set and
very large values outside the set. To this end, we choose the
softplus function as a barrier function, which is expressed as

5)

B(s) =~ In (1+ exp(B - 5)), (16)

where o and S are parameters to adjust the effect of the
constraint violation on the particle weights. Fig. 1 shows the
shape of the function under different choices of o and 3. The
virtual measurement z; is accordingly set to be 0.

Now, let us add (15) to (7) and consider p(Ty.¢ | Tk:t, Zk:t)
for constraint-aware filtering. Assuming that p(ry, 2 | Z+) =
p(re | Z¢)p(2¢ | T4), we can remold (8) as

D(Zgoet | Thoots 2hit) 0 P(1e | Te)p(2e | T)p(Tt | Tp—1)
: p(jk:tfl | Tkit—1, Zk:t71)~

Then, the bootstrap particle filter described in Section III-B
can then be modified. Specifically, we still draw samples
Zi~ p(zy|@i_y) fori=1,...,N at time ¢ but compute the
weights via

i _ p(re|zyp(ee| 77)

Cp(r | #)p(a | 7))
With this change, the bootstrap particle filter diminishes the
weights of the samples in violation of the constraints. Once
the constraint awareness has been infused into the filtering
procedure, we can apply the reweighted particle smoother
without change. This can be seen from the fact that (13)
will not change if we consider p(Z; | 7x.k+ 5, 2k:k+5 ) for the
backward smoothing. Summarizing the above, we can readily
formulate the new sampling-based NMPC algorithm based
on the proposed constraint-aware particle filtering/smoothing
method, which is named as CAP-NMPC outlined in Algo-
rithm 1.

Remark 2: Particle filtering for constrained systems has
received attention in several studies. However, the proposed
barrier function method offers two distinct benefits. First,
using the suggested barrier function, the particle filtering
does not simply discard the particles violating the constraints
and instead include the constraint satisfaction or violation
into the weighting process. This will avoid complicating
the particle degeneracy problem and balance with the need
of approximating the state’s posterior distribution. The
treatment contrasts with the acceptance/rejection method
in [26]. Second, the computational cost will see only very
mild increase, even when the number of the constraints is
large or the constraints are highly nonlinear, as opposed to the
constrained optimization method in [27]. Finally, we highlight
that the barrier function method can be easily integrated into
almost every particle filter algorithm for broader application.

A7)

IV. NUMERICAL SIMULATION

In this section, we study the performance of the proposed
algorithm for a path following problem of an autonomous
vehicle. The code is available at: https://github.com/
KU-ISSL/PF_NMPC_ACC21. The considered vehicle mo-
tion model is the nonlinear bicycle kinematic model, described
in [28, p. 27]:

Ty 1 =Ty + At vy cos(Yr + Br), (18a)
P = b+ At - v sin(Wy + Br), (18b)
Vi1 = Vg + At - ay, (18¢)

Vi = Yeor + At T sin(By), (18d)



Algorithm 1 CAP-NMPC: NMPC Based on Constraint-
Aware Particle Filtering/Smoothing

1: Set up NMPC by specifying the dynamic system (1), the
inequality constraints (2), the reference signal r1.7, and
the weighting matrices @) and R

2: Recast NMPC as particle filtering/smoothing by setting
up the virtual system (7) and (15), and specifying p(Zy),

P(Zr41 | Zk), p(re | Zr) and p(2x | Zx)
3: for k=1,...,T do
Forward filtering
4: fort=%Fk,...,k+ H do
5: if t = k then
6: Draw samples Z ~ p(Zy), i =1,..., N
7: else
8: Draw samples Z! ~ p(z,|7i_,), i =
1,...,N
9: Evaluate sample weights via (17)
10: Do resampling based on the weights
11: end if
12: end for

Backward smoothing
13: fort=k+H,...,kdo

14: if t =k + H then

15: Assign Wé+H‘k+H:Wé+H,i:1,...,N
16: else

17: Reweight the particles using (13)

18: end if

19: end for

20: Compute the optimal estimation of Z} via (14)

21: Export uj, and apply it to the system (1)
22: end for

l
= tan~! "
Br n ( n

tan(ds k)) , (18e)
l, lf ’

where zz and yz denote the position of the center of mass, vy
is the vehicle’s speed, vy, is its heading angle, and Sy, is the
side-slip angle. The lengths I, and [ represent the distance
from the rear and front axles to the center of mass. The control
sequence used to control the vehicle is ux = [ay 0 fJC]T,
where aj, and d7j are the acceleration and front-wheel
steering angle, respectively. For the purpose of comparison,
we run the vanilla particle filtering/smoothing approach in
Section III-B as a benchmark, which is labeled as P-NMPC
for convenience. To ensure the fairness of comparison, we
require that both CAP-NMPC and P-NMPC use the same
set of particles with N = 100 throughout the simulation run.
The setting used for the simulation is as follows:

o The vehicle has to follow a sinusoidal track with the
x-position (z"*) ranging from 0 to 33 m with steps
size dr'"™* = 0.6 m, and the y-position as 'k
2 sin(0.2z7k);

e The vehicle is initialized from the state xg =
[-0.5, —0.5, 3, 7/4]T, where a deviation from the
desired trajectory is introduced to better evaluate the
performance of the reference tracking control;
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Fig. 2: Autonomous vehicle path following results.

e The control input is constrained between the lower
and upper bounds, u = [-3 m/s?, —35°]7 and W =
[3 m/s?, 35°], respectively;

o The state is constrained by the track boundaries, where
the lower and upper track boundaries are each 0.3 m
apart from the center of the track;

o The disturbance wy, wvi, and 7, are assumed
to have Gaussian distributions with covariances
as Qg = diag(0,0,0,0,0.8,0.4), @, =
diag(0.01,0.01,0,0,0,0), and @, = 0.01/s,
respectively. This setting corresponds to having
R = diag(1.25,2.5) and Q = diag(100,100) for the
NMPC problem in (5);



TABLE 1: RMSE and control cost achieved.

RMSE Cost
P-NMPC 0.330 1947
CAP-NMPC 0.324 1862

o The matrices Q3 and @, are slightly perturbed to ensure
positive definiteness for numerical stability;

o The horizon length H = 4;

¢ The barrier function parameters are set as o = 5 and

B=3;
o The axles are equidistant from the center of mass, with
l, =1y =0.5m.

The root mean squared error (RMSE) is used to evaluate the
tracking performance of the vehicle. The vehicle’s trajectory
is depicted in Fig. 2a with the zoomed region in the sub-
axes showing an instance where the CAP-NMPC is able to
satisfy the constraints while P-NMPC fails. Bearing in mind
that both algorithms use the same set of particles for every
horizon, it becomes evident from Fig 2 that the CAP-NMPC
has successfully managed to finely tune the particle weights
so that the vehicle can run while staying within the pre-set
trajectory boundaries. Similarly, the control acceleration and
steering inputs have also satisfied the constraints in the CAP-
NMPC case, as shown in Figs. 2b-2c. The control performance
is evaluated in Table 1. The CAP-NMPC outperforms the
P-NMPC for both metrics. This is because it maintains an
awareness of constraints. To summarize, the results show
that CAP-NMPC outperforms the P-NMPC, indicating that
the CAP-NMPC can sufficiently and successfully implement
NMPC.

V. CONCLUSION

In this paper, we have examined NMPC from the viewpoint
of Bayesian estimation and leveraged particle filtering to
estimate the optimal control input of an NMPC problem.
Compared with the commonly used numerical optimization,
this treatment exploits Monte Carlo sampling to improve the
efficiency, effectiveness, and easiness of implementing NMPC,
especially conducive to the control of nonlinear systems. To
endow the particle-filtering-based NMPC with the capability
of handling generic state-input inequality constraints, we
developed a constraint-aware particle filtering/smoothing
approach based on the barrier function method. We evaluated
the proposed NMPC algorithm via a simulation study of path
following for autonomous vehicles. Our future work will
include applying the algorithm to more complex nonlinear
systems and using more sophisticated particle filtering to
enhance the algorithm.
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