Research Track Paper

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Graph Adversarial Attack via Rewiring

Yao Ma Suhang Wang Tyler Derr
majunyao@gmail.com szw494@psu.edu tyler.derr@vanderbilt.edu
New Jersey Institute of Technology The Pennsylvania State University Vanderbilt University
Lingfei Wu Jiliang Tang
Ilwu@email. wm.edu tangjili@msu.edu

JD.COM Silicon Valley Research
Center

ABSTRACT

Graph Neural Networks (GNNs) have demonstrated their powerful
capability in learning representations for graph-structured data.
Consequently they have enhanced the performance of many graph-
related tasks such as node classification and graph classification.
However, it is evident from recent studies that GNNs are vulnerable
to adversarial attacks. Their performance can be largely impaired
by deliberately adding carefully created unnoticeable perturbations
to the graph. Existing attacking methods often produce the pertur-
bation by adding/deleting a few edges, which might be noticeable
even when the number of modified edges is small. In this paper,
we propose a graph rewiring operation to perform the attack. It
can affect the graph in a less noticeable way compared to existing
operations such as adding/deleting edges. We then utilize deep
reinforcement learning to learn the strategy to effectively perform
the rewiring operations. Experiments on real world graphs demon-
strate the effectiveness of the proposed framework. To understand
the proposed framework, we further analyze how its generated
perturbation impacts the target model and the advantages of the
rewiring operations. The implementation of the proposed frame-
work is available at https://github.com/alge24/ReWatt.

CCS CONCEPTS

« Computing methodologies — Neural networks; « Theory
of computation — Sequential decision making.

KEYWORDS

graph neural networks, adversarial attack, rewiring

ACM Reference Format:

Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. 2021. Graph
Adversarial Attack via Rewiring. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD °21), August
14-18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3447548.3467416

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD °21, August 14-18, 2021, Virtual Event, Singapore

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8332-5/21/08...$15.00
https://doi.org/10.1145/3447548.3467416

1161

Michigan State University

1 INTRODUCTION

Graph structured data is ubiquitous in many real world applications.
Data from different domains, such as social networks, molecular
graphs and transportation networks, can be modeled as graphs. Re-
cently, increasing efforts have been made on developing deep neural
networks on graph structured data. This stream of works, which is
known as Graph Neural Networks (GNN), has shown to enhance
the performance in many graph related tasks such as node classifica-
tion [1, 2] and graph classification [3-6]. Recent studies have shown
that deep neural networks are highly vulnerable to adversarial at-
tacks [7-10]. In computer vision, performing an adversarial attack
is to add deliberately created but unnoticeable perturbations to a
given image such that the deep model misclassifies the perturbed
image. Unlike image data, which can be represented in the continu-
ous space, graph structured data is discrete. Increasing attention
has been paid on the robustness of graph neural networks against
adversarial attacks [11]. The existing adversarial attacks on graphs
can be roughly divided to white box [12, 13], gray box [14, 15] and
black box attacks [16, 17] according to the level of the knowledge
of the victim model that can be accessed by the attack models. The
majority of these attacks have been designed for the node clas-
sification task by adding/deleting edges. In this work, we aim to
design adversarial black box attacks for the graph classification
task. To ensure that the difference between the attacked graph
and the original graph is “unnoticeable”, the number of actions
(adding/deleting edges) that can be taken by the attacking algo-
rithms is usually constrained by a limited budget. However, even
when this budget is small, adding or deleting edges can still make
“noticeable” changes to the graph structure [18]. For example, it is
evident that many important graph properties are based on eigen-
values and eigenvectors of the Laplacian matrix of the graph [19];
while adding or deleting an edge can make remarkable changes the
eigenvalues/eigenvectors [20]. Thus, in this work, we propose a
new operation based on graph rewiring. A single graph rewiring op-
eration involves three nodes (vf;,, vsec, 0s4;), where we remove the
existing edge between vy;, and vsec and add a new edge between
vfir and vyp;. Note that vyp; is constraint to be the 2-hop neigh-
bor of vf;, in our setting. It is obvious that the proposed rewiring
operation preserves some basic properties of the graph such as
number of nodes and edges and total degrees of the graph, while
operations like adding and deleting edges cannot. Furthermore, the
proposed rewiring operation affects some of graph properties based
on the Laplacian such as algebraic connectivity in a much smaller
way than adding/deleting edges, which will be demonstrated the-
oretically and empirically. In addition, the rewiring operation is

https://github.com/alge24/ReWatt
https://doi.org/10.1145/3447548.3467416
https://doi.org/10.1145/3447548.3467416

Research Track Paper

a more natural way to modify the graph. For example, in biology,
the evolution of DNA and amino acid sequences can lead to per-
vasive rewiring of protein—protein interactions [21]. In this paper,
we aim to construct adversarial examples by performing rewiring
operations for the task of graph classification. More specifically, we
treat the process of conducting a series of rewiring operations to a
given graph as a discrete Markov decision process (MDP) and use
reinforcement learning to learn how to make these decisions.

2 RELATED WORK

In recent years, adversarial attacks on deep learning models have
attracted increasing attention in the area of computer vision. Many
deep models are found to be easily fooled by adversarial samples,
which are generated by adding deliberately designed unnoticeable
perturbation to normal images [7, 8]. Most works have focused on
the computer vision domain, where the data sample can be repre-
sented in the continuous space. Few attention has been paid on the
discrete data structure such as graphs. Graph Neural Networks have
been shown to bring impressive advancements to many different
graph related tasks such as node classification and graph classifica-
tion. Recent researches show that the graph neural networks are
also venerable to adversarial attacks. A greedy algorithm is pro-
posed in [14] to perform adversarial attack to the node classification
task. Their algorithm tries to change the label of a target node by
modifying both the graph structure and node features. In [16], a
deep reinforcement learning based attacker is proposed to attack
both the node classification and the graph classification task. The
metattack algorithm [15] is designed to impair the overall perfor-
mance of node classification based on meta learning. In [12, 13, 22],
gradient based methods are proposed to attack the graph structure
by deleting/adding edges. All these aforementioned methods mod-
ify the graph structure by adding or deleting edges. Some more
recent works [17, 23] on attacking node classifications proposed
to modify the graph structure by injecting nodes. Some recent
surveys [11, 13, 24] provide a comprehensive view on adversarial
attacks on graph-structured data and some techniques to defend
these attacks. In this work, we propose to modify the graph struc-
ture using rewiring, which is shown to make less noticeable changes
to the graph structure.

3 BACKGROUND

In this section, we introduce notations and the target graph convo-
lutional model to attack. We denote a graph as G = {V, &}, where
YV =A{o1,...,09} and € = {ey, ..., e g} are the sets of nodes and
edges, respectively. The edges describe the relations between nodes,
which can be described by an adjacency matrix A € {0, 1}/VXIVI,
A;j = 1 means v; and v; are connected, 0 otherwise. Each node in
the graph is associated with some features. These features are rep-
resented as a matrix X € Rl(V‘Xd, where the i-th row of X denotes
the node features of node v; and d is the dimension of features.
Thus, an attributed graph can be represented as G = {A, X}.

3.1 Graph Classification

In the setting of graph classification, we are given a set of graphs
G = {G;}. Each of these graphs G; is associated with a label y;. The
task is to build a good classifier using the given set of graphs such

1162

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

that it can make correct predictions on unseen graphs. A graph
classifier parameterized by 6 can be represented as f(G|0) = y°,
where y° denotes the label of a graph G € G predicted by the
classifier. The parameters 0 in the classifier f(-|0) can be learned by
solving the following optimization problem ming },; L(f(G;|0), y:),
where L(-, -) is the loss function to measure the difference between
the predicted and ground truth labels. Cross entropy is a commonly
adopted measurement for L(-, -).

3.2 Graph Convolution Networks

Recently, Graph Neural Networks have been shown to be effec-
tive in graph representation learning. These models usually learn
node representations by iteratively aggregating, transforming and
propagating node information. In this work, we adopt the graph
convolutional networks (GCN) [1]. A graph convolutional layer in
the GCN framework can be represented as

F/ = ReLU(D 2 AD 2 F/"'W/) 1)

where F/ € RN*4) js the output of the j-th layer and W/ represents
the parameters of this layer. A GCN model usually consists of J
graph convolutional layers, with FO = X. The output of the GCN
model is F/, which is denote as F for convenience. To obtain a graph
level embedding ug for the graph G to perform graph classification,
we apply a global pooling over the node embeddings.

uG = pool (F) @)
Different global pooling functions can be used, and we adopt the
max pooling in this work. A multilayer perceptron (MLP) and soft-

max layer are then sequentially applied on the graph embedding to
predict the label of the graph

®3)
where MLP(-|Wpsp) denotes the MLP with parameters as W rp.
A GCN-based classifier for graph classification can be described
using (1), (2) and (3) as introduced above. For simplicity, we sum-
marize it as y° = fGcn(Gl0cen), where Ogeon includes all the
parameters in the model.

y° = argmax softmax(MLP(ug|W prp))

4 PROBLEM FORMULATION

In this work, we aim to build an attacker 7~ that takes a graph as
input and modity its structure to fool a GCN classifier. Modifying
a graph structure is equivalent to modify its adjacency matrix.
The function of the attacker can be represented as G = 7(G) =
{T(A), X} = {A,X}. Given a classifier f(-), the goal of the attacker
is to modify the graph structure so that the classifier outputs a
different label from its originally predicted one. Note here, we
neglect the 0 inside f(-), as the classifier is already trained and
fixed. Mathematically, the goal of the attacker can be represented as:
f(T(G)) # f(G). As described above, the attacker 7" is specifically
designed for a given classifier f(+). To reflect this in the notation,
we now denote the attacker for the classifier f(-) as 7¢. In our
work, the attacker ‘7} has limited knowledge of the classifier. The
only information the attacker can get from the classifier is the
label of (modified) graphs. In other words, the classifier f(-) is
treated as a black-box model for the attacker 7. An important
constraint to the attacker 77 is that it is only allowed to make
“unnoticeble” changes to the graph structure. To account for this,

Research Track Paper

we propose the rewiring operation, which is supposed to make
more subtle changes than adding or deleting edges. We will show
that the rewiring operation can better preserve a lot of important
properties of the graph compared to adding or deleting edges in
Section 5.1. We also empirically compare the rewiring operation
with the deleting/adding edges in Section 6.3 in the supplementary
file. The definition of the proposed rewiring operation is given
below:

DEFINITION 1. A rewiring operation a involves three nodes and it
can be denoted as a = (vfiy, Usec, Uppi), where vsec € Nl(vfl-r) and
Vs € Nz(vfir)/Nl(vfir). Nk(vfir) denotes the k-th hop neighbors
of vy and the sign | stands for exclusion. The rewiring operation
deletes the existing edge between nodes vy, and vsec, while adding
an edge to connect nodes v f;, and vp;.

The attacker 75 is given a budget of K rewiring operations to
modify the graph structure. A straightforward way to set K is
choosing a small fixed number. However, it is likely that graphs
in a given data set have various graph sizes. The same number
of rewiring operations can affect the graphs of different sizes in
various magnitude. Hence, a more suitable way is to allow a flexible
number of rewiring operations according to the graph size. Thus,
we propose to use K = p - |&| for a given graph G, where p € (0,1)
is a ratio. With the above notations and definitions, the process
and goal of the attacker on a graph G can be now denoted as
T7(G) < (a1,az,...,am)[G] such that f(7(G)) # f(G), where
the (a1, az, . ..,ap)[G] means to sequentially apply the rewiring
operations ay, . . ., ay to the graph G, and M < K is the number of
rewiring operations.

5 REWIRING-BASED ATTACK TO GRAPH
CONVOLUTIONAL NETWORKS

In this section, we first discuss the properties of the rewiring opera-
tion and then introduce the proposed attacking framework ReWatt
based on reinforcement learning and rewiring.

5.1 Properties of Proposed Rewiring Operation

In this section, we describe the advantages of the proposed rewiring
operation compared to simply adding or deleting edges. More em-
pirical discussions can be found in Section 6.3.

Property 1. The proposed rewiring operation does not change
the number of nodes, the number of edges and the total degree of a
graph.

Many important graph properties are based on the eigenvalues
of the Laplacian matrix of a graph [19] such as Algebraic Connec-
tivity [25]. The algebraic connectivity of a graph G is the second-
smallest eigenvalue of its Laplacian matrix [25]. The larger the
algebraic connectivity is, the more difficult it is to separate the
graph into components (i.e., more edges need to be removed). Next,
we demonstrate that the proposed rewiring operation is likely to
make smaller changes to eigenvalues, which result in unnoticeable
changes under graph Laplacian based measures such as Algebraic
Connectivity. For a graph G with A as its adjacency matrix, its
Laplacian matrix L is defined as L = D — A, where D is the diagonal
degree matrix [26]. Let A1,..., 4| denote the eigenvalues of the
Laplacian matrix arranged in the increasing order with xy, ..., x|

1163

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

the corresponding eigenvectors. We show how a single rewiring
operation affects the eigenvalues based on the following lemma:

LEmMMA 1. [27]Let (a;, h;) be the eigen-pairs of a symmetric matrix
M € RVNXN Given a perturbation AM to the matrix M, its eigenvalues
can be updated by Aa; = hiTAMhi.

The detailed proof can be found in [27]. According to the lemma,
it is easy to verify that, for a graph G with L as its Laplacian matrix
and (4, x;) as its eigenpairs, when we add an edge between nodes
vj and vy, Ad; = (x;[j] - x;[k])?; while AA; = —(x;[j] — xi[k])?
when we delete the edge between v; and vj. Using this lemma, we
have the following corollary.

CoROLLARY 1. For a given graph G with Laplacian matrix L, one
proposed rewiring operation (v, Usec, Vi) affects the eigen-value
Ai by AA, fori=1,...,|V|, where

A = = (xilfir] = xi[sec])® + (il fir] = xi[thi])* (4)

where x;[index]| denotes the index-th value of the eigenvector x;.

ProoF. Let AL denote the change in the Laplacian matrix af-
ter applying the rewiring operation (vf;, 0sec, vspi) to graph G.
Then we have AL[fir,sec] = AL[sec, fir] = 1, AL[fir, thi]
AL[thi, fir] = —1, AL[sec,sec] = —1, AL[thi, thi] = 1 and 0 else-
where. Thus

AA; = xT ALx;
=2x; [firlx;[sec] — x;[sec]? + x; [thi]? — 2x; [fir]x;[thi]
=x; [fir]? + 2x; [fir]x;[sec] — x;[sec]?
+x;[thi]?® - 2x; [fir]x; [thi] - x;[fir]?
== (xi[fir] = xi[sec])® + (x; [fir] - x;[thi])®

which completes the proof.

©)

]

With Corollary 1, we can obtain the following properties of
the rewiring operations that are also supported by the empirical
observations in Section 6.3 in the supplementary file.

Property 2. The rewiring operation is likely to make small
changes to the first a few eigenvalues.

Each eigenvalue A; of the Laplacian matrix measures the “smooth-
ness” of its corresponding eigenvector x; [28, 29]. The “smoothness”
of an eigenvector measures how different its elements are from their
neighboring nodes. Thus, the first few eigenvectors with relatively
small eigenvalues are rather “smooth”. In the proposed rewiring
operation, vsec is the direct neighbor of vf;, and vyy; is the 2-hop
neighbor of vf;,.. Thus, the difference x; [fir] — x;[thi] is expected
to be smaller than the difference x;[fir] — x;[can], where x;[can]
can be any other node that is further away. This means that the
proposed rewiring operation (to 2-hop neighbors) tends to make
smaller changes to the first a few eigenvalues than rewiring to any
further away nodes or adding an edge between two nodes that are
far away from each other.

Property 3. The proposed rewiring operation is less likely to
change the rank of the Laplacian matrix.

Let |V| denote the number of nodes in the graph and #components
denote the number of connected components in a given graph.
Then the rank of the Laplacian matrix can be expressed as |'V| —

Research Track Paper

#components, as the multiplicity of eigenvalue 0 of Laplacian ma-
trix is equal to #components. As shown in the definition of Alge-
braic Connectivity, the larger the second-smallest eigenvalue is, the
more difficult it is to separate the graph into components. Utiliz-
ing Lemma 5.1 and following similar analysis in Corollary 1, we
can validate that adding an edge will increases the second smallest
eigenvalue (or the algebra connectivity) while deleting an edge
will decrease it. Compared to adding/deleting edges which might
delete more edges than adding ones, the rewiring operation always
perform the same number of adding and deleting edges operations.
The rewiring operation is less likely to disconnect the graph. As a
result, the rewiring operation is also less risky to change the rank
of the Laplacian matrix.

5.2 Graph Adversarial Attack with
Reinforcement Learning

Given a graph G, the process of the attacker 7 is a general deci-
sion making process M = (S, A, P, R), where A = {a;} is the set
of actions, which consists of all valid rewiring operations, S =
{s¢} is the set of states that includes all possible intermediate
and final graphs after rewiring, P is the transition dynamics that
describes how a rewiring action a; changes the graph structure
p(st+1ls St - - -, 51, ar). R is the reward function, which gives the re-
ward for the action taken at a given state. Thus, the procedure of at-
tacking a graph can be described by a trajectory (s1, a1, r1, . .
where s; = G. The key for the attacker is to learn how to make the
decision of picking a suitable rewiring action at the state s;. This
can be done by learning a policy network to get the probability
plarlst, ..
spondingly. Following this intuition, the decision at a state s; is
dependant on all its previous states, which could be difficult due to
the long-term dependency. Note that all intermediate states s; are
predicted to the same label as the original graph. Therefore, we can
treat each state as a new graph to be attacked. In other words, the
decision making at the state s; can be solely dependant on the cur-
rent state, p(arlss, ..., s1) = p(arlst). As a consequence, we model
the attack process as a Markov Decision Process (MDP) [30], and
we adopt reinforcement learning to learn how to make effective de-
cisions. The key elements of the environment for the reinforcement
learning are defined as follows —

.,$1) and then sampling the rewiring operation corre-

o State Space: The state space of the environment consists
of all the intermediate graphs generated after the possible
rewiring operations;

Action Space: The action space consists of the valid rewiring
operations as defined in Definition 1. Note that the valid ac-
tion space is dynamic when the state changes, as the k-th
hop neighbors are different in different states;

State Transition Dynamics: Given an action (rewiring op-
eration) a; = {Ufir) Usec, Uzp;) at state sy. The next state sy41
is achieved by deleting the edge between v, and vsec in
the current state s; and adding an edge to connect v;, with
Othis

Reward Design: The main goal of the attacker is to make

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

to the graph structure is minimal. Thus, we assign a positive
reward when the attack is successful and assign a negative
reward for each action step taken. The reward R(s;, az) is
given as

1 if f(sy) # f(s1);
nyif fse) = f(s1).
where n, is the negative reward to penalize each step taken.
Similar to how we set a flexible rewiring budget K, we also
propose to use n, = _Il(= —m, which depends on the

R(St,at) = { (6)

size of the graph;

Termination The attack process will stop either when the
number of actions reaches the budget K or the attacker suc-
cessfully changes the label of the modified graph.

5.3

In this subsection, we introduce the policy network to learn the
policy p(at|s;) on top of the graph representations learned by a
GCN model. To choose a valid rewiring action, we decompose the
rewiring action to 3 steps: 1) choosing an edge e; = (ve,, ve,) from
the set of edges of the intermediate graph s;; 2) determining ve,,
or ve,, to be Ufir, and the other to be vge(,; and 3) choosing the

Policy Network

third node v, p;, from stt (Ufir,)/Nsl, (vfir,). Correspondingly, we
decompose p(a¢|s;) as follows

M @M TM)> p(ays;) = Pedge(€tlst) - Prir(Ofir, ler, st) - PeniOeni, [0 fir,» €25 5t)

™)

We design three policy networks based on GCN to estimate the
three distributions in the right hand of the equation (7), which will
be introduced next. To select an edge from the edge set &s,, we
generate the edge representation from the node representations
Fs, € RIVs: IXdF learned by GCN. For an edge e = (ve,,e,), the
edge representation can be represented as e = concat (us,, h(Fs, [e1,:
], Fs, [e2,:])), where ug, is the graph representation of the state s;,
h(-,-) is a function to combine the two node representations and
concat (-, -) denotes the concatenation operation. We include ug; in
the representation of the edge to incorporate the graph information
when making the decision. The representation of all the edges in
&s, can be represented as a matrix Es, € RI€:1X2dF where each
row represents an edge. The probability distribution over all the
edges can be represented as

Pedge (“Ist) = softmax(MLP(Es, |0cgge)), ®)
where we use MLP(+|0¢44¢) to denote a Multilayer Perceptron that
maps E;, € RI€s: [X2dF to a vector in R!€s: |, which, after going
through the softmax layer, represents the probability of choosing
each edge. Let e; = (ve,, ve,,) denote the edge sampled according

to (8). To decide which node is going to be the first node, we estimate
the probability distribution over these two nodes as

prirCler.se) = softmax(MLP([Ve,,. Ve, 1" 1071)) (9)

where ve,, = concat(es,Fs, [er;,:]) € R34 for i = 1,2. The first
node can be sampled from the two nodes ve,, , ve,, according to (9).

the classifier f(-) predict a different label from the originally We then proceed to estimate the probability distribution p(-[vf;, . €r, s¢)-

predicted one. We also want to encourage the attacker to
take as a few actions as possible such that the modification

For any node v, € N? (Ufir,)/Nl (Ufl-,t), weuse V¢ = concat(ve,,, Fs, [c,:
]) to represent it. The representations for all the nodes in N2 (ofir,) /N1 (vfir,)

1164

Research Track Paper

Black-box classifier

foen (Gl0gen)

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

! f(se)

f(Se41) l

R(a;,s¢) f(s1) R(att1,St41)
" Attacker 7} y
F,
St b at 3 St+
mE
|
> koo —
|
El
[
GCN Node Edge Pedge(: ISt) Prir (- ler, s¢) Deni (- Vi €r,St) -~
Emb_Emb

Figure 1: The overall framework of ReWatt

can be represented by a matrix Vs, € RIN?(orir)IN' (vpir,) Ix4dp
with each row representing a node. The probability distribution
of choosing the third node over all the candidate nodes can be
modeled as:

Peni(ofir,. €1.5¢) = softmax(MLP(Vs,6;1;)) (10)

The third node v;p;, can be sampled from the set of candidate
nodes Nz(vfirt)/N1 (0fir,) according to the probability distribu-
tion in (10). An action a; can be generated by sequentially esti-
mating and sampling from the probability distributions in (8), (9)
and (10).

5.4 Proposed Framework - ReWatt

With the rewiring and the policy network defined above, our overall
framework can be summarized as follows. As shown in Figure 1,
with State s;, the Attacker uses GCN to learn node and edge em-
beddings, which are used as input to Policy Networks to make
decision about the next action. Once the new action is sampled
from the policy network, rewiring is performed on s; and we arrive
in the new state s;4+1. We query the black-box classifier to get the
prediction f(St+1), which is compared with f(s1) to get reward.
Policy gradient [30] is adopted to learn the policies by maximizing
the rewards.

6 EXPERIMENT

In this section, we conduct experiments to evaluate the performance
of the proposed framework ReWatt. We also provide some empirical
investigations and a case study to analyze how the trained attacker
works.

6.1 Attack Performance

To demonstrate the effectiveness of ReWatt, we conduct experi-
ments on three widely used social network data sets [31] for graph
classification, i.e., REDDIT-MULTI-12K, REDDIT-MULTI-5K and
IMDB-MULTI [32]. The statistics of the datasets can be found in Ta-
ble 1. We use RE-12K, RE-5K and IM-M to denote the three datasets
in Table 1. In this table, #nodes denotes the average number of
nodes over all graphs and #edges denotes the average number of
edges over all graphs. ACC denotes the mean of Average Clustering

1165

Coeflicient (ACC) over all graphs. GCC denotes the mean of Global
Clustering Coefficient (GCC) over all graphs.

Table 1: Statistics of the data sets

#graphs | #labels | #nodes | #edges | ACC | GCC

RE-12K | 11,929 12 391.41 | 456.89 | 0.0331 | 0.0087
RE-5K 4,999 5 508.52 | 594.87 | 0.0268 | 0.0038
IM-M 1,500 3 13 65.94 0.968 | 0.8955

Note that the re-wiring operation (as well as the other operations)
may lead to abnormal structure of some kinds of graphs, which
can make the graphs invalid, especially for chemical molecules.
Thus, in this paper, We avoid chemical related datasets but only use
social networks datasets. In the social domain, if the changes are
subtle, it is less likely to introduce abnormal structures. Meanwhile,
it is straightforward to extend our framework to datsets from the
other domains if we have the domain expertise. For example, if we
know what structures are abnormal, we can use such knowledge
to constraint the the state space of the RL framework. We leave it
as one future work. In this work, the classifier we target to attack
is the GCN-based classifier as introduced in Section 3. We set the
number of layers to 3. We need to train the classifier using a fraction
of the data and then treat the classifier as a black box to be attacked.
We then use a part of the remaining data to train the attacker and
use the rest of the data to test the performance of the attacker.
Thus, for each data set, we split it into three parts with the ratio of
a% : b% : ¢%, which are used to train the classifier, the attacker and
test the performance of the attacker, respectively. For the REDDIT-
MULTI-12K and REDDIT-MULTI-5K data sets, we set a = 90, b = 8
and ¢ = 2. As the size of the IMDB-MULTI data set is quite small,
to have enough data for test, we set a = 50, b = 30 and ¢ = 20. We
compare the attacking performance of the proposed framework
with the RL-S2V proposed in [16], random selection method and
some variants of our proposed framework. We briefly describe these
baselines:

e RL-S2V is a reinforcement learning based attack frame-
work [16], which allows adding and deleting edges to the
graph with a fixed budget for all the graphs;

Research Track Paper

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Table 2: Performance comparison in terms of the success rate

REDDIT-MULTI-12K REDDIT-MULTI-5K IMDB-MULTI

K 1 2 3 1 2 3 1 2 3
ReWatt 14.4% 21.6% 23.4% | 8.99% 16.9% 18.0% | 22.3% 22.3% 22.6%
RL-S2V | 9.46% 18.5% 21.1% | 4.49% 16.9% 18.0% | 2.00% 6.00% 3.33%

P 1% 2% 3% 1% 2% 3% 1% 2% 3%
ReWatt | 24.8% 33.3% 36.5% | 11.2% 20.2% 27.0% | 22.3% 22.3% 22.6%
ReWatt-a | 26.1% 35.1% 42.8% | 5.60% 21.3% 30.3% | 22.0% 23.0% 23.6%
ReWatt-n | 17.6% 25.7% 31.1% | 5.60% 14.6% 19.1% | 21.3% 21.3% 21.6%
random | 10.3% 15.7% 21.6% | 3.30% 12.4% 16.9% | 1.33% 1.33% 1.66%
random-s | 6.30% 6.70% 9.45% | 5.60% 6.74% 11.0% | 1.00% 1.33% 1.66%

Random denotes an attacker that performs the proposed
rewiring operations randomly;

Random-s is also based on random rewiring. Note that
ReWatt can terminate before using all the budget. We record
the actual number of rewiring actions made in our method
and only allow the Random-s to take exactly the same num-
ber of rewiring actions as ReWatt;

ReWatt-n denotes a variant of the ReWatt, where the nega-
tive reward is fixed to —0.5 for all the graphs in the testing
set;

ReWatt-a is a variant of ReWatt, where we allow any nodes
in the graph to be the third node v;p;, instead of only 2-hop
neighbors.

Note that there are other adversarial attack algorithms for graph
neural networks, such as nettack [14] and metattack [15]. However,
they have been designed to perform adversarial attacks specific to
the node classification task. While in this work, we focus on attack-
ing the graph classification task. Hence, we do not include them
as baselines. As RL-S2V only allows a fixed budget for the all the
graphs, when comparing to it, for ReWatt, we also fix the number
of proposed rewiring operations to a fixed number K for all the
graphs. A single proposed rewiring operation involves two edges.
Thus, for a fair comparison, we allow RL-S2V to take 2K actions
(adding/deleting edges). We set K = 1,2, 3 in the experiments. To
compare with the random selection method and the variants of
ReWatt, we use flexible budget, more specially, we allow at most
p - 1Ei| proposed rewiring operations for graph G;. Here, p is a fixed
percentage and we set it to p = 1%, 2%, 3% in our experiments. We
use the success rate as measure to evaluate the performance of the
attacker. A graph is said to be successfully attacked if its label is
changed when it is modified within the given budget.

The results are shown in Table 2. We can make the following
observations from the table.

e Compared to RL-S2V, ReWatt can perform more effective at-
tacks. Especially, in the IMDB-MULTI data set, where ReWatt
outperforms RL-S2V with a large margin;

e ReWatt outperforms the Random method as expected. Espe-
cially, ReWatt is much more effective than Random-s which
performs exactly the same number of proposed rewiring op-
erations ReWatt. This also indicates that the Random method

1166

uses more rewiring operations for successful attacking than
ReWatt;

e The variant ReWatt-a outperforms ReWatt, which means if
we do not constraint the rewiring operation to 2-hop neigh-
bors, the performance of ReWatt can be further improved.
However, as we discussed in earlier sections, this may lead
to more “noticeable” changes of the graph structure;

e ReWatt-n performs worse than our ReWatt, which shows
the advancement of using a flexible reward design.

It is interesting to notice that RL-S2V has a larger search space than
ReWatt, while its performance is not as good as ReWatt. With a
larger action space, the optimal solution of should be as good or
even better than that of ReWatt. However, both methods are not
guaranteed to always achieve the optimal solution in the given
action space. Next we discuss potential reasons on why ReWatt
can outperform RL-S2V. More discussions are provided in the case
study subsection.

e When performing an adding/deleting edge action in RL-S2V,
it chooses two nodes sequentially. Then it decides to add an
edge between two nodes if they are not connected, otherwise,
the edge between them is removed. Since most graphs are
very sparse, the RL-S2V algorithm is, by design, biased to
adding an edge. However, ReWatt removes an edge and then
adds another edge. The adding/deleting edge operations are
more balanced.

The reward design in ReWatt is different from RL-S2V. In
RL-S2V, a non-zero reward is only given at the end of an
attacking session. Specifically, at the end of an attacking
session, a positive reward is given if the attack succeeded,
otherwise a negative reward is given. All the intermediate
steps get 0 reward. On the other hand, in ReWatt, the reward
is given after each action. A positive reward is given once
an action leads to a successful attack. A negative reward is
penalized to take each action if it does not directly lead to a
successful attack. This encourages the attacker to make as a
few actions as possible. Furthermore, we also proposed an
adaptive negative reward design, which determines the value
of the negative reward according to the size of each graph.
The advantage of this reward design has been demonstrated
by the comparison between ReWatt and ReWatt-n in Table 2.

Research Track Paper

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

06 e Ours °
Random-s .
0.5
.. o
L] ...
0.4 e

RC(u®, u?)
S
o8’ ee

o
02 ¢ N
ol ° ﬁO Y
° oS (XY
2

0.1 . [o, @9, °

® : ° ° o Oxne - "
0.0

0.010 0.015 0.020 0.025 0.030 0.035

#actions/#edges

(b) Failed graphs

Figure 2: The change of graph representation after attack

06 e Ours °
Random-s °
0.5 °
L] L]
;‘; 0.4 . o °
o °
3 0.3 °
e} ° o ° °
53 [4 °
0.2 ° ee ©% [od °
e g e © ° °
° 'o‘. by o
0.1 o9 f! ® en e
0.0
0.00 0.01 0.02 0.03
#actions/#edges
(a) Succeeded graphs
25
e Ours °
Random-s .
2.0
L]
E 15 °
o
S .
Q‘ 1.0 °
L[] . ..
05 ° o
Ll o® °
L) (] °
0.0 [V VY R
0.00 0.01 0.02 0.03
#actions/#edges
(a) Succeeded graphs

1.6
e Ours °
14 Random-s
1.2 L)
L]
10
2 .
508 °
a °
< o6
04
02 ° o
o 3
0.0 me o es:.-".‘-"es"’c € 24083 ¢ o
0.010 0.015 0.020 0.025 0.030 0.035

#actions/#edges

(b) Failed graphs

Figure 3: The change of logits after attack

6.2 Attacker Analysis

4.0
3.5
e o °
3.0 . . .
. ° .
. e o °
L]

2.5
- .
<‘$< .
o 20 °
]

154 @

1.0 - o————--- - - -——

0.5

0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

i-th eigenvalue

Figure 4: Comparison in the change of eigenvalues

1167

In this subsection, we carry out experiments to analyze how
ReWatt’s change in graph structure affects the graph representa-
tion u calculated by (2) and the logits P (the output immediately
after the softmax layer of the classifier). For convenience, we de-
note the original graph as G° and the attacked graph as G in this
subsection. Correspondingly, the graph representation and logits
for the original (attacked) graph are denoted as u® (u%) and P°
(P?), respectively. To measure the difference in graph representa-
tion, we used the relative difference in terms of 2-norm defined as
RC(u°,u%) = W The logits denote the probability distribu-
tion that the given graph belongs to each of the classes. Thus, we use
the KL-divergence [33] to measure the difference between the logits

of the original and attacked graphs KL(P°,P%) = '§1 P°[i]log (g(a)—m),
where C is the number of classes in the data set arlld P|[i] denotes the
logit for the i-th class. We perform the experiments on the REDDIT-
MULTI-12K data set under the setting of allowing at most 3% - |&|
rewiring operations. The results for the graph representation and
logits are shown in Figure 2 and Figure 3, respectively. The graphs
in the test set are separated into two groups — one contains all the
graphs successfully attacked by ReWatt (shown in Figure 2a and

Research Track Paper

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Figure 5: Case study of ReWatt attacker on two graphs sampled from REDDIT-MULTI-12K dataset.

Figure 3a), and the other contains those survived from ReWatt’s
attack (shown in Figure 2b and Figure 3b). Note that, for compari-
son, we also include the results of Random-s on these two groups
of graphs. In these figures, a single point represents a test graph
and the x-axis is the ratio % where M is the number of rewiring
operations ReWatt used before the attacking process terminating.
Note that M can be smaller than the budget as the process termi-
nates once the attack successes. As we can observe from the figures,
compared with the Random-s, ReWatt can make more changes to
both the graph representation and logits, using exactly the same
number of proposed rewiring operations. Comparing Figure 2a
with Figure 2b, we find that the perturbation generated by ReWatt
affects the graph representation a lot even when it fails to attack
the graph. This means our attack is perturbing the graph structure
in a right way to fool the classifier, although it fails potentially due
to the limited budget. Similar observation can be made when we
compare Figure 3a with Figure 3b.

6.3 Empirical Investigation of the Rewiring
Operation

In this section, we conduct experiments to empirically show the ad-
vancements of the proposed rewiring operator compared with the
adding/deleting edge operator. We compare them from two perspec-
tives: 1) connectivity after the attack and 2) change in eigenvalues
after the attack. The experiments are carried out on the REDDIT-
MULTI-12K dataset. On each of the graph successfully attacked by
ReWatt, we perform exactly the same number of deleting/adding
edge operator on it. For connectivity, the average number of com-
ponents in the clean graphs is 2.6, this number becomes 3.02 after
the rewiring attack while it becomes 5.2 after the deleting/adding
edges attack. On the other hand, only 20% of the graphs get more
disconnected (having more components) after ReWatt attack than
the original ones, while 87% of the graphs get more disconnected
after the adding/deleting edges attack. Clearly, the rewiring oper-
ator is less likely to disconnect the graph. This is consistent with
our theoretical understanding that ReWatt is likely to maintain the
rank (|V| — #components) of the target graph.

The comparison of the change in eigenvalues is shown in Fig-
ure 4, where we compare the change in different eigenvalues of the

1168

graphs after these two attacks. Specifically, we first compute the
average relative change in the i-th eigenvalue after both attacks as
follows:

M;_)ri _ A;zttack|

, (11)

r). = -
/11 Aorl
i

where 9" ! denotes the i-th eigenvalue of the clean graph while
gt ack denotes the i-th eigenvalue of the attacked graph. We then
take the average of the above value over all the succeeded graphs,
which we denoted as 7y, . Specially, we use F;le to denote the average

/

change ratio after ReWatt while using fj “ to denote the average

1
change ratio after deleting/adding edge attack. To compare these
two attacks, we calculate f;l/ 4/ 7,¢ and the results are shown in Fig-

ure 4. The results show that in most of the cases, the deleting/adding
edges attack makes much more changes to the eigenvalues as the

value fj/ e/ 7,¢ is way larger than 1. This observation is also aligned
with the theoretical understanding.

By conducting these two experiments, we conclude that the
proposed re-wiring operator makes more subtle changes to graphs

than adding/deleting edges.

6.4 Case Study

We also conduct a case study to demonstrate how the attacker
modifies the graph structure through rewiring operations.

Two representative graphs from REDDIT-MULTI-12K are shown
in Figure 5, where the deleted edges are marked in blue while
the added edges are marked in red. The rewiring operations are
centered around the high degree nodes. Specifically, in both graphs
shown in Figure 5, the rewiring operations all involve the nodes
with the highest degree. We observe that the RL-S2V also take a
similar strategy; however, it is biased to take the action of adding
edges to the graph, while the proposed ReWatt performs rewiring
operation, which involve both adding and deleting edges.

7 CONCLUSION

In this paper, we proposed a graph rewiring operation, which affect
the graph structure in a less noticeable way than adding/deleting

Research Track Paper

edges. The rewiring operation preserves some basic graph prop-
erties such as number of nodes and number of edges. We then
designed an attacker ReWatt based on the rewiring operations us-
ing reinforcement learning. Experiments in 3 real world data sets
show the effectiveness of the proposed framework. Analysis on
how the graph representation and logits change while the graph
being attacked provide us with some insights of the attacker.

8 ACKNOWLEDGEMENTS

Yao Ma and Jiliang Tang are supported by the National Science
Foundation (NSF) under grant numbers CNS1815636, 1IS1928278,
11S1714741, 11IS1845081, 11S1907704, 11S1955285, and Army Research
Office (ARO) under grant number W911NF-21-1-0198. Suhang Wang
is supported by National Science Foundation (NSF) under grant
number 1151955851 and Army Research Office (ARO) under grant
number W911NF-21-1-0198.

REFERENCES

[1] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning
on large graphs. In Advances in Neural Information Processing Systems, pages
1024-1034, 2017.

[3] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral net-
works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203,
2013.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional
neural networks on graphs with fast localized spectral filtering. In Advances in
neural information processing systems, pages 3844-3852, 2016.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and
Jure Leskovec. Hierarchical graph representation learning withdifferentiable
pooling. arXiv preprint arXiv:1806.08804, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-
end deep learning architecture for graph classification. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Tan Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

Tan J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-
nessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the
physical world. arXiv preprint arXiv:1607.02533, 2016.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages 39-57.
IEEE, 2017.

Wei Jin, Yaxin Li, Han Xu, Yiqi Wang, and Jiliang Tang. Adversarial attacks and
defenses on graphs: A review and empirical study. arXiv preprint arXiv:2003.00653,
2020.

[2

=

1169

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

[12] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming
Zhu. Adversarial examples for graph data: Deep insights into attack and defense.
Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, and Anil Jain.
Adversarial attacks and defenses in images, graphs and text: A review. arXiv
preprint arXiv:1909.08072, 2019.

Daniel Zigner, Amir Akbarnejad, and Stephan Giinnemann. Adversarial attacks
on neural networks for graph data. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 2847—
2856. ACM, 2018.

Daniel Ziigner and Stephan Giinnemann. Adversarial attacks on graph neural net-
works via meta learning. In International Conference on Learning Representations,
2019.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.
Adversarial attack on graph structured data. In International Conference on
Machine Learning, pages 1123-1132, 2018.

Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar.
Node injection attacks on graphs via reinforcement learning. arXiv preprint
arXiv:1909.06543, 2019.

Benjamin A Miller, Mustafa Camurcu, Alexander] Gomez, Kevin Chan, and Tina
Eliassi-Rad. Improving robustness to attacks against vertex classification. 2019.
Hau Chan and Leman Akoglu. Optimizing network robustness by edge rewiring:
a general framework. Data Mining and Knowledge Discovery, 30(5):1395-1425,
2016.

Arpita Ghosh and Stephen Boyd. Growing well-connected graphs. In Proceedings
of the 45th IEEE Conference on Decision and Control, pages 6605-6611. IEEE, 2006.
Marinka Zitnik, Rok Sosi¢, Marcus W. Feldman, and Jure Leskovec. Evolution
of resilience in protein interactomes across the tree of life. Proceedings of the
National Academy of Sciences, 116(10):4426-4433, 2019.

Aleksandar Bojchevski and Stephan Ginnemann. Adversarial attacks on node
embeddings via graph poisoning. In International Conference on Machine Learning,
pages 695-704, 2019.

Xiaoyun Wang, Joe Eaton, Cho-Jui Hsieh, and Felix Wu. Attack graph convolu-
tional networks by adding fake nodes. arXiv preprint arXiv:1810.10751, 2018.
Lichao Sun, Ji Wang, Philip S Yu, and Bo Li. Adversarial attack and defense on
graph data: A survey. arXiv preprint arXiv:1812.10528, 2018.

Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical
journal, 23(2):298-305, 1973.

Bojan Mohar, Y Alavi, G Chartrand, and OR Oellermann. The laplacian spectrum
of graphs. Graph theory, combinatorics, and applications, 2(871-898):12, 1991.
Gilbert W Stewart. Matrix perturbation theory. 1990.

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. The emerging field of signal processing on graphs: Extending
high-dimensional data analysis to networks and other irregular domains. arXiv
preprint arXiv:1211.0053, 2012.

Aliaksei Sandryhaila and Jose MF Moura. Discrete signal processing on graphs:
Frequency analysis. IEEE Transactions on Signal Processing, 62(12):3042-3054,
2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion
Neumann. Benchmark data sets for graph kernels, 2016.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1365-1374. ACM, 2015.

Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

(13]

[14

[15

=
&

(17

(18

[19]

[20

[21

~
5,

™
=)

&
i

[30

[31

[32

[33

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Graph Classification
	3.2 Graph Convolution Networks

	4 Problem Formulation
	5 Rewiring-based Attack to Graph Convolutional Networks
	5.1 Properties of Proposed Rewiring Operation
	5.2 Graph Adversarial Attack with Reinforcement Learning
	5.3 Policy Network
	5.4 Proposed Framework - ReWatt

	6 Experiment
	6.1 Attack Performance
	6.2 Attacker Analysis
	6.3 Empirical Investigation of the Rewiring Operation
	6.4 Case Study

	7 Conclusion
	8 Acknowledgements
	References

