
Graph Adversarial Attack via Rewiring
Yao Ma

majunyao@gmail.com

New Jersey Institute of Technology

Suhang Wang

szw494@psu.edu

The Pennsylvania State University

Tyler Derr

tyler.derr@vanderbilt.edu

Vanderbilt University

Lingfei Wu

lwu@email.wm.edu

JD.COM Silicon Valley Research

Center

Jiliang Tang

tangjili@msu.edu

Michigan State University

ABSTRACT
Graph Neural Networks (GNNs) have demonstrated their powerful

capability in learning representations for graph-structured data.

Consequently they have enhanced the performance of many graph-

related tasks such as node classification and graph classification.

However, it is evident from recent studies that GNNs are vulnerable

to adversarial attacks. Their performance can be largely impaired

by deliberately adding carefully created unnoticeable perturbations

to the graph. Existing attacking methods often produce the pertur-

bation by adding/deleting a few edges, which might be noticeable

even when the number of modified edges is small. In this paper,

we propose a graph rewiring operation to perform the attack. It

can affect the graph in a less noticeable way compared to existing

operations such as adding/deleting edges. We then utilize deep

reinforcement learning to learn the strategy to effectively perform

the rewiring operations. Experiments on real world graphs demon-

strate the effectiveness of the proposed framework. To understand

the proposed framework, we further analyze how its generated

perturbation impacts the target model and the advantages of the

rewiring operations. The implementation of the proposed frame-

work is available at https://github.com/alge24/ReWatt.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Theory
of computation → Sequential decision making.

KEYWORDS
graph neural networks, adversarial attack, rewiring

ACM Reference Format:
YaoMa, SuhangWang, Tyler Derr, LingfeiWu, and Jiliang Tang. 2021. Graph

Adversarial Attack via Rewiring. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’21), August
14–18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3447548.3467416

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00

https://doi.org/10.1145/3447548.3467416

1 INTRODUCTION
Graph structured data is ubiquitous in many real world applications.

Data from different domains, such as social networks, molecular

graphs and transportation networks, can be modeled as graphs. Re-

cently, increasing efforts have beenmade on developing deep neural

networks on graph structured data. This stream of works, which is

known as Graph Neural Networks (GNN), has shown to enhance

the performance in many graph related tasks such as node classifica-

tion [1, 2] and graph classification [3–6]. Recent studies have shown

that deep neural networks are highly vulnerable to adversarial at-

tacks [7–10]. In computer vision, performing an adversarial attack

is to add deliberately created but unnoticeable perturbations to a

given image such that the deep model misclassifies the perturbed

image. Unlike image data, which can be represented in the continu-

ous space, graph structured data is discrete. Increasing attention

has been paid on the robustness of graph neural networks against

adversarial attacks [11]. The existing adversarial attacks on graphs

can be roughly divided to white box [12, 13], gray box [14, 15] and

black box attacks [16, 17] according to the level of the knowledge

of the victim model that can be accessed by the attack models. The

majority of these attacks have been designed for the node clas-
sification task by adding/deleting edges. In this work, we aim to

design adversarial black box attacks for the graph classification
task. To ensure that the difference between the attacked graph

and the original graph is “unnoticeable”, the number of actions

(adding/deleting edges) that can be taken by the attacking algo-

rithms is usually constrained by a limited budget. However, even

when this budget is small, adding or deleting edges can still make

“noticeable” changes to the graph structure [18]. For example, it is

evident that many important graph properties are based on eigen-

values and eigenvectors of the Laplacian matrix of the graph [19];

while adding or deleting an edge can make remarkable changes the

eigenvalues/eigenvectors [20]. Thus, in this work, we propose a

new operation based on graph rewiring. A single graph rewiring op-

eration involves three nodes (𝑣 𝑓 𝑖𝑟 , 𝑣𝑠𝑒𝑐 , 𝑣𝑡ℎ𝑖), where we remove the

existing edge between 𝑣 𝑓 𝑖𝑟 and 𝑣𝑠𝑒𝑐 and add a new edge between

𝑣 𝑓 𝑖𝑟 and 𝑣𝑡ℎ𝑖 . Note that 𝑣𝑡ℎ𝑖 is constraint to be the 2-hop neigh-

bor of 𝑣 𝑓 𝑖𝑟 in our setting. It is obvious that the proposed rewiring

operation preserves some basic properties of the graph such as

number of nodes and edges and total degrees of the graph, while

operations like adding and deleting edges cannot. Furthermore, the

proposed rewiring operation affects some of graph properties based

on the Laplacian such as algebraic connectivity in a much smaller

way than adding/deleting edges, which will be demonstrated the-

oretically and empirically. In addition, the rewiring operation is

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1161

https://github.com/alge24/ReWatt
https://doi.org/10.1145/3447548.3467416
https://doi.org/10.1145/3447548.3467416

a more natural way to modify the graph. For example, in biology,

the evolution of DNA and amino acid sequences can lead to per-

vasive rewiring of protein–protein interactions [21]. In this paper,

we aim to construct adversarial examples by performing rewiring

operations for the task of graph classification. More specifically, we

treat the process of conducting a series of rewiring operations to a

given graph as a discrete Markov decision process (MDP) and use

reinforcement learning to learn how to make these decisions.

2 RELATED WORK
In recent years, adversarial attacks on deep learning models have

attracted increasing attention in the area of computer vision. Many

deep models are found to be easily fooled by adversarial samples,

which are generated by adding deliberately designed unnoticeable

perturbation to normal images [7, 8]. Most works have focused on

the computer vision domain, where the data sample can be repre-

sented in the continuous space. Few attention has been paid on the

discrete data structure such as graphs. Graph Neural Networks have

been shown to bring impressive advancements to many different

graph related tasks such as node classification and graph classifica-

tion. Recent researches show that the graph neural networks are

also venerable to adversarial attacks. A greedy algorithm is pro-

posed in [14] to perform adversarial attack to the node classification

task. Their algorithm tries to change the label of a target node by

modifying both the graph structure and node features. In [16], a

deep reinforcement learning based attacker is proposed to attack

both the node classification and the graph classification task. The

metattack algorithm [15] is designed to impair the overall perfor-

mance of node classification based on meta learning. In [12, 13, 22],

gradient based methods are proposed to attack the graph structure

by deleting/adding edges. All these aforementioned methods mod-

ify the graph structure by adding or deleting edges. Some more

recent works [17, 23] on attacking node classifications proposed

to modify the graph structure by injecting nodes. Some recent

surveys [11, 13, 24] provide a comprehensive view on adversarial

attacks on graph-structured data and some techniques to defend

these attacks. In this work, we propose to modify the graph struc-

ture using rewiring, which is shown tomake less noticeable changes

to the graph structure.

3 BACKGROUND
In this section, we introduce notations and the target graph convo-

lutional model to attack. We denote a graph as 𝐺 = {V, E}, where
V = {𝑣1, . . . , 𝑣 |V |} and E = {𝑒1, . . . , 𝑒 |E |} are the sets of nodes and
edges, respectively. The edges describe the relations between nodes,

which can be described by an adjacency matrix A ∈ {0, 1} |V |×|V |
.

A𝑖 𝑗 = 1 means 𝑣𝑖 and 𝑣 𝑗 are connected, 0 otherwise. Each node in

the graph is associated with some features. These features are rep-

resented as a matrix X ∈ R |V |×𝑑
, where the 𝑖-th row of X denotes

the node features of node 𝑣𝑖 and 𝑑 is the dimension of features.

Thus, an attributed graph can be represented as 𝐺 = {A,X}.

3.1 Graph Classification
In the setting of graph classification, we are given a set of graphs

G = {𝐺𝑖 }. Each of these graphs𝐺𝑖 is associated with a label 𝑦𝑖 . The

task is to build a good classifier using the given set of graphs such

that it can make correct predictions on unseen graphs. A graph

classifier parameterized by 𝜃 can be represented as 𝑓 (𝐺 |𝜃) = 𝑦𝑜 ,
where 𝑦𝑜 denotes the label of a graph 𝐺 ∈ G predicted by the

classifier. The parameters 𝜃 in the classifier 𝑓 (·|𝜃) can be learned by

solving the following optimization problem min𝜃

∑
𝑖 𝐿 (𝑓 (𝐺𝑖 |𝜃), 𝑦𝑖) ,

where 𝐿(·, ·) is the loss function to measure the difference between

the predicted and ground truth labels. Cross entropy is a commonly

adopted measurement for 𝐿(·, ·).

3.2 Graph Convolution Networks
Recently, Graph Neural Networks have been shown to be effec-

tive in graph representation learning. These models usually learn

node representations by iteratively aggregating, transforming and

propagating node information. In this work, we adopt the graph

convolutional networks (GCN) [1]. A graph convolutional layer in

the GCN framework can be represented as

F𝑗 = 𝑅𝑒𝐿𝑈 (D− 1

2 AD− 1

2 F𝑗−1W𝑗) (1)

where F𝑗 ∈ R𝑁×𝑑 𝑗
is the output of the 𝑗-th layer andW𝑗

represents

the parameters of this layer. A GCN model usually consists of 𝐽

graph convolutional layers, with F0 = X. The output of the GCN
model is F𝐽 , which is denote as F for convenience. To obtain a graph
level embedding u𝐺 for the graph𝐺 to perform graph classification,

we apply a global pooling over the node embeddings.

u𝐺 = 𝑝𝑜𝑜𝑙 (F) (2)

Different global pooling functions can be used, and we adopt the

max pooling in this work. A multilayer perceptron (MLP) and soft-

max layer are then sequentially applied on the graph embedding to

predict the label of the graph

𝑦𝑜 = argmax 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀𝐿𝑃 (u𝐺 |W𝑀𝐿𝑃)) (3)

where𝑀𝐿𝑃 (·|W𝑀𝐿𝑃) denotes the MLP with parameters as W𝑀𝐿𝑃 .

A GCN-based classifier for graph classification can be described

using (1), (2) and (3) as introduced above. For simplicity, we sum-

marize it as 𝑦𝑜 = 𝑓𝐺𝐶𝑁 (𝐺 |𝜃𝐺𝐶𝑁), where 𝜃𝐺𝐶𝑁 includes all the

parameters in the model.

4 PROBLEM FORMULATION
In this work, we aim to build an attacker T that takes a graph as

input and modify its structure to fool a GCN classifier. Modifying

a graph structure is equivalent to modify its adjacency matrix.

The function of the attacker can be represented as 𝐺̃ = T (𝐺) =

{T (A),X} = {Ã,X}. Given a classifier 𝑓 (·), the goal of the attacker
is to modify the graph structure so that the classifier outputs a

different label from its originally predicted one. Note here, we

neglect the 𝜃 inside 𝑓 (·), as the classifier is already trained and

fixed. Mathematically, the goal of the attacker can be represented as:

𝑓 (T (𝐺)) ≠ 𝑓 (𝐺). As described above, the attacker T is specifically

designed for a given classifier 𝑓 (·). To reflect this in the notation,

we now denote the attacker for the classifier 𝑓 (·) as T𝑓 . In our

work, the attacker T𝑓 has limited knowledge of the classifier. The

only information the attacker can get from the classifier is the

label of (modified) graphs. In other words, the classifier 𝑓 (·) is
treated as a black-box model for the attacker T𝑓 . An important

constraint to the attacker T𝑓 is that it is only allowed to make

“unnoticeble” changes to the graph structure. To account for this,

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1162

we propose the rewiring operation, which is supposed to make

more subtle changes than adding or deleting edges. We will show

that the rewiring operation can better preserve a lot of important

properties of the graph compared to adding or deleting edges in

Section 5.1. We also empirically compare the rewiring operation

with the deleting/adding edges in Section 6.3 in the supplementary

file. The definition of the proposed rewiring operation is given

below:

Definition 1. A rewiring operation a involves three nodes and it
can be denoted as a = (𝑣 𝑓 𝑖𝑟 , 𝑣𝑠𝑒𝑐 , 𝑣𝑡ℎ𝑖), where 𝑣𝑠𝑒𝑐 ∈ 𝑁 1 (𝑣 𝑓 𝑖𝑟) and
𝑣𝑡ℎ𝑖 ∈ 𝑁 2 (𝑣 𝑓 𝑖𝑟)/𝑁 1 (𝑣 𝑓 𝑖𝑟). 𝑁𝑘 (𝑣 𝑓 𝑖𝑟) denotes the 𝑘-th hop neighbors
of 𝑣 𝑓 𝑖𝑟 and the sign / stands for exclusion. The rewiring operation
deletes the existing edge between nodes 𝑣 𝑓 𝑖𝑟 and 𝑣𝑠𝑒𝑐 , while adding
an edge to connect nodes 𝑣 𝑓 𝑖𝑟 and 𝑣𝑡ℎ𝑖 .

The attacker T𝑓 is given a budget of 𝐾 rewiring operations to

modify the graph structure. A straightforward way to set 𝐾 is

choosing a small fixed number. However, it is likely that graphs

in a given data set have various graph sizes. The same number

of rewiring operations can affect the graphs of different sizes in

various magnitude. Hence, a more suitable way is to allow a flexible

number of rewiring operations according to the graph size. Thus,

we propose to use 𝐾 = 𝑝 · |E | for a given graph𝐺 , where 𝑝 ∈ (0, 1)
is a ratio. With the above notations and definitions, the process

and goal of the attacker on a graph 𝐺 can be now denoted as

T𝑓 (𝐺) ↔ (𝑎1, 𝑎2, . . . , 𝑎𝑀) [𝐺] such that 𝑓 (T (𝐺)) ≠ 𝑓 (𝐺), where
the (𝑎1, 𝑎2, . . . , 𝑎𝑀) [𝐺] means to sequentially apply the rewiring

operations 𝑎1, . . . , 𝑎𝑀 to the graph 𝐺 , and𝑀 ≤ 𝐾 is the number of

rewiring operations.

5 REWIRING-BASED ATTACK TO GRAPH
CONVOLUTIONAL NETWORKS

In this section, we first discuss the properties of the rewiring opera-

tion and then introduce the proposed attacking framework ReWatt

based on reinforcement learning and rewiring.

5.1 Properties of Proposed Rewiring Operation
In this section, we describe the advantages of the proposed rewiring

operation compared to simply adding or deleting edges. More em-
pirical discussions can be found in Section 6.3.

Property 1. The proposed rewiring operation does not change

the number of nodes, the number of edges and the total degree of a

graph.

Many important graph properties are based on the eigenvalues

of the Laplacian matrix of a graph [19] such as Algebraic Connec-

tivity [25]. The algebraic connectivity of a graph 𝐺 is the second-

smallest eigenvalue of its Laplacian matrix [25]. The larger the

algebraic connectivity is, the more difficult it is to separate the

graph into components (i.e., more edges need to be removed). Next,

we demonstrate that the proposed rewiring operation is likely to

make smaller changes to eigenvalues, which result in unnoticeable

changes under graph Laplacian based measures such as Algebraic

Connectivity. For a graph 𝐺 with A as its adjacency matrix, its

Laplacian matrix L is defined as L = D − A, where D is the diagonal

degree matrix [26]. Let 𝜆1, . . . , 𝜆 |V | denote the eigenvalues of the
Laplacian matrix arranged in the increasing order with x1, . . . , x |V |

the corresponding eigenvectors. We show how a single rewiring

operation affects the eigenvalues based on the following lemma:

Lemma 1. [27] Let (𝛼𝑖 , h𝑖) be the eigen-pairs of a symmetric matrix
M ∈ R𝑁×𝑁 . Given a perturbationΔM to the matrixM, its eigenvalues
can be updated by Δ𝛼𝑖 = h𝑇

𝑖
ΔMh𝑖 .

The detailed proof can be found in [27]. According to the lemma,

it is easy to verify that, for a graph𝐺 with L as its Laplacian matrix

and (𝜆𝑖 , x𝑖) as its eigenpairs, when we add an edge between nodes

𝑣 𝑗 and 𝑣𝑘 , Δ𝜆𝑖 = (x𝑖 [𝑗] − x𝑖 [𝑘])2
; while Δ𝜆𝑖 = −(x𝑖 [𝑗] − x𝑖 [𝑘])2

when we delete the edge between 𝑣 𝑗 and 𝑣𝑘 . Using this lemma, we

have the following corollary.

Corollary 1. For a given graph 𝐺 with Laplacian matrix L, one
proposed rewiring operation (𝑣 𝑓 𝑖𝑟 , 𝑣𝑠𝑒𝑐 , 𝑣𝑡ℎ𝑖) affects the eigen-value
𝜆𝑖 by Δ𝜆𝑖 , for 𝑖 = 1, . . . , |V|, where

Δ𝜆𝑖 = − (x𝑖 [𝑓 𝑖𝑟] − x𝑖 [𝑠𝑒𝑐])2 + (x𝑖 [𝑓 𝑖𝑟] − x𝑖 [𝑡ℎ𝑖])2
(4)

where x𝑖 [𝑖𝑛𝑑𝑒𝑥] denotes the 𝑖𝑛𝑑𝑒𝑥-th value of the eigenvector x𝑖 .

Proof. Let ΔL denote the change in the Laplacian matrix af-

ter applying the rewiring operation (𝑣 𝑓 𝑖𝑟 , 𝑣𝑠𝑒𝑐 , 𝑣𝑡ℎ𝑖) to graph 𝐺 .

Then we have ΔL[𝑓 𝑖𝑟, 𝑠𝑒𝑐] = ΔL[𝑠𝑒𝑐, 𝑓 𝑖𝑟] = 1, ΔL[𝑓 𝑖𝑟, 𝑡ℎ𝑖] =

ΔL[𝑡ℎ𝑖, 𝑓 𝑖𝑟] = −1, ΔL[𝑠𝑒𝑐, 𝑠𝑒𝑐] = −1, ΔL[𝑡ℎ𝑖, 𝑡ℎ𝑖] = 1 and 0 else-

where. Thus

Δ𝜆𝑖 = x𝑇𝑖 ΔLx𝑖

=2x𝑖 [𝑓 𝑖𝑟]x𝑖 [𝑠𝑒𝑐] − x𝑖 [𝑠𝑒𝑐]2 + x𝑖 [𝑡ℎ𝑖]2 − 2x𝑖 [𝑓 𝑖𝑟]x𝑖 [𝑡ℎ𝑖]
=x𝑖 [𝑓 𝑖𝑟]2 + 2x𝑖 [𝑓 𝑖𝑟]x𝑖 [𝑠𝑒𝑐] − x𝑖 [𝑠𝑒𝑐]2

(5)

+ x𝑖 [𝑡ℎ𝑖]2 − 2x𝑖 [𝑓 𝑖𝑟]x𝑖 [𝑡ℎ𝑖] − x𝑖 [𝑓 𝑖𝑟]2

= − (x𝑖 [𝑓 𝑖𝑟] − x𝑖 [𝑠𝑒𝑐])2 + (x𝑖 [𝑓 𝑖𝑟] − x𝑖 [𝑡ℎ𝑖])2

which completes the proof. □

With Corollary 1, we can obtain the following properties of

the rewiring operations that are also supported by the empirical

observations in Section 6.3 in the supplementary file.

Property 2. The rewiring operation is likely to make small

changes to the first a few eigenvalues.

Each eigenvalue 𝜆𝑖 of the Laplacianmatrixmeasures the “smooth-

ness” of its corresponding eigenvector x𝑖 [28, 29]. The “smoothness”

of an eigenvector measures how different its elements are from their

neighboring nodes. Thus, the first few eigenvectors with relatively

small eigenvalues are rather “smooth”. In the proposed rewiring

operation, 𝑣𝑠𝑒𝑐 is the direct neighbor of 𝑣 𝑓 𝑖𝑟 and 𝑣𝑡ℎ𝑖 is the 2-hop

neighbor of 𝑣 𝑓 𝑖𝑟 . Thus, the difference x𝑖 [𝑓 𝑖𝑟] − x𝑖 [𝑡ℎ𝑖] is expected
to be smaller than the difference x𝑖 [𝑓 𝑖𝑟] − x𝑖 [𝑐𝑎𝑛], where x𝑖 [𝑐𝑎𝑛]
can be any other node that is further away. This means that the

proposed rewiring operation (to 2-hop neighbors) tends to make

smaller changes to the first a few eigenvalues than rewiring to any

further away nodes or adding an edge between two nodes that are

far away from each other.

Property 3. The proposed rewiring operation is less likely to

change the rank of the Laplacian matrix.

Let |V| denote the number of nodes in the graph and #𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

denote the number of connected components in a given graph.

Then the rank of the Laplacian matrix can be expressed as |V| −

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1163

#𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 , as the multiplicity of eigenvalue 0 of Laplacian ma-

trix is equal to #𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 . As shown in the definition of Alge-

braic Connectivity, the larger the second-smallest eigenvalue is, the

more difficult it is to separate the graph into components. Utiliz-

ing Lemma 5.1 and following similar analysis in Corollary 1, we

can validate that adding an edge will increases the second smallest

eigenvalue (or the algebra connectivity) while deleting an edge

will decrease it. Compared to adding/deleting edges which might

delete more edges than adding ones, the rewiring operation always

perform the same number of adding and deleting edges operations.

The rewiring operation is less likely to disconnect the graph. As a

result, the rewiring operation is also less risky to change the rank

of the Laplacian matrix.

5.2 Graph Adversarial Attack with
Reinforcement Learning

Given a graph 𝐺 , the process of the attacker T is a general deci-

sion making process 𝑀 = (S,A, 𝑃, 𝑅), where A = {𝑎𝑡 } is the set
of actions, which consists of all valid rewiring operations, S =

{𝑠𝑡 } is the set of states that includes all possible intermediate

and final graphs after rewiring, 𝑃 is the transition dynamics that

describes how a rewiring action 𝑎𝑡 changes the graph structure

𝑝 (𝑠𝑡+1 |, 𝑠𝑡 , . . . , 𝑠1, 𝑎𝑡). 𝑅 is the reward function, which gives the re-

ward for the action taken at a given state. Thus, the procedure of at-

tacking a graph can be described by a trajectory (𝑠1, 𝑎1, 𝑟1, . . . , 𝑠𝑀 , 𝑎𝑀 , 𝑟𝑀),
where 𝑠1 = 𝐺 . The key for the attacker is to learn how to make the

decision of picking a suitable rewiring action at the state 𝑠𝑡 . This

can be done by learning a policy network to get the probability

𝑝 (𝑎𝑡 |𝑠𝑡 , . . . , 𝑠1) and then sampling the rewiring operation corre-

spondingly. Following this intuition, the decision at a state 𝑠𝑡 is

dependant on all its previous states, which could be difficult due to

the long-term dependency. Note that all intermediate states 𝑠𝑡 are

predicted to the same label as the original graph. Therefore, we can

treat each state as a new graph to be attacked. In other words, the

decision making at the state 𝑠𝑡 can be solely dependant on the cur-

rent state, 𝑝 (𝑎𝑡 |𝑠𝑡 , . . . , 𝑠1) = 𝑝 (𝑎𝑡 |𝑠𝑡). As a consequence, we model

the attack process as a Markov Decision Process (MDP) [30], and

we adopt reinforcement learning to learn how to make effective de-

cisions. The key elements of the environment for the reinforcement

learning are defined as follows –

• State Space: The state space of the environment consists

of all the intermediate graphs generated after the possible

rewiring operations;

• Action Space:The action space consists of the valid rewiring
operations as defined in Definition 1. Note that the valid ac-

tion space is dynamic when the state changes, as the 𝑘-th

hop neighbors are different in different states;

• State Transition Dynamics: Given an action (rewiring op-

eration) 𝑎𝑡 = {𝑣 𝑓 𝑖𝑟 , 𝑣𝑠𝑒𝑐 , 𝑣𝑡ℎ𝑖 } at state 𝑠𝑡 . The next state 𝑠𝑡+1

is achieved by deleting the edge between 𝑣 𝑓 𝑖𝑟 and 𝑣𝑠𝑒𝑐 in

the current state 𝑠𝑡 and adding an edge to connect 𝑣 𝑓 𝑖𝑟 with

𝑣𝑡ℎ𝑖 ;

• Reward Design: The main goal of the attacker is to make

the classifier 𝑓 (·) predict a different label from the originally

predicted one. We also want to encourage the attacker to

take as a few actions as possible such that the modification

to the graph structure is minimal. Thus, we assign a positive

reward when the attack is successful and assign a negative

reward for each action step taken. The reward 𝑅(𝑠𝑡 , 𝑎𝑡) is
given as

𝑅(𝑠𝑡 , 𝑎𝑡) =
{

1 if 𝑓 (𝑠𝑡) ≠ 𝑓 (𝑠1);
𝑛𝑟 if 𝑓 (𝑠𝑡) = 𝑓 (𝑠1) .

(6)

where 𝑛𝑟 is the negative reward to penalize each step taken.

Similar to how we set a flexible rewiring budget 𝐾 , we also

propose to use 𝑛𝑟 = − 1

𝐾
= − 1

𝑝 · |E | , which depends on the

size of the graph;

• Termination The attack process will stop either when the

number of actions reaches the budget 𝐾 or the attacker suc-

cessfully changes the label of the modified graph.

5.3 Policy Network
In this subsection, we introduce the policy network to learn the

policy 𝑝 (𝑎𝑡 |𝑠𝑡) on top of the graph representations learned by a

GCN model. To choose a valid rewiring action, we decompose the

rewiring action to 3 steps: 1) choosing an edge 𝑒𝑡 = (𝑣𝑒1
, 𝑣𝑒2

) from
the set of edges of the intermediate graph 𝑠𝑡 ; 2) determining 𝑣𝑒𝑡 1

or 𝑣𝑒𝑡 2
to be 𝑣 𝑓 𝑖𝑟𝑡

and the other to be 𝑣𝑠𝑒𝑐𝑡 ; and 3) choosing the

third node 𝑣𝑡ℎ𝑖𝑡 from 𝑁 2

𝑠𝑡
(𝑣 𝑓 𝑖𝑟𝑡)/𝑁

1

𝑠𝑡
(𝑣 𝑓 𝑖𝑟𝑡). Correspondingly, we

decompose 𝑝 (𝑎𝑡 |𝑠𝑡) as follows

𝑝 (𝑎𝑡 |𝑠𝑡) = 𝑝𝑒𝑑𝑔𝑒 (𝑒𝑡 |𝑠𝑡) · 𝑝 𝑓 𝑖𝑟 (𝑣 𝑓 𝑖𝑟𝑡 |𝑒𝑡 , 𝑠𝑡) · 𝑝𝑡ℎ𝑖 (𝑣𝑡ℎ𝑖𝑡 |𝑣 𝑓 𝑖𝑟𝑡 , 𝑒𝑡 , 𝑠𝑡)
(7)

We design three policy networks based on GCN to estimate the

three distributions in the right hand of the equation (7), which will

be introduced next. To select an edge from the edge set E𝑠𝑡 , we
generate the edge representation from the node representations

F𝑠𝑡 ∈ R |V𝑠𝑡 |×𝑑𝐹 learned by GCN. For an edge 𝑒 = (𝑣𝑒1
, 𝑣𝑒2

), the
edge representation can be represented as e = 𝑐𝑜𝑛𝑐𝑎𝑡 (u𝑠𝑡 , ℎ(F𝑠𝑡 [𝑒1, :

], F𝑠𝑡 [𝑒2, :])), where u𝑠𝑡 is the graph representation of the state 𝑠𝑡 ,

ℎ(·, ·) is a function to combine the two node representations and

𝑐𝑜𝑛𝑐𝑎𝑡 (·, ·) denotes the concatenation operation. We include u𝑠𝑡 in
the representation of the edge to incorporate the graph information

when making the decision. The representation of all the edges in

E𝑠𝑡 can be represented as a matrix E𝑠𝑡 ∈ R |E𝑠𝑡 |×2𝑑𝐹
, where each

row represents an edge. The probability distribution over all the

edges can be represented as

𝑝𝑒𝑑𝑔𝑒 (·|𝑠𝑡) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀𝐿𝑃 (E𝑠𝑡 |𝜃𝑒𝑑𝑔𝑒)), (8)

where we use𝑀𝐿𝑃 (·|𝜃𝑒𝑑𝑔𝑒) to denote a Multilayer Perceptron that

maps E𝑠𝑡 ∈ R |E𝑠𝑡 |×2𝑑𝐹
to a vector in R |E𝑠𝑡 | , which, after going

through the softmax layer, represents the probability of choosing

each edge. Let 𝑒𝑡 = (𝑣𝑒𝑡 1
, 𝑣𝑒𝑡 2

) denote the edge sampled according

to (8). To decide which node is going to be the first node, we estimate

the probability distribution over these two nodes as

𝑝 𝑓 𝑖𝑟 (·|𝑒𝑡 , 𝑠𝑡) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀𝐿𝑃 ([v𝑒𝑡 1
, v𝑒𝑡 2

]𝑇 |𝜃 𝑓 𝑖𝑟)) (9)

where v𝑒𝑡 𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡 (e𝑡 , F𝑠𝑡 [𝑒𝑡 𝑖 , :]) ∈ R3𝑑𝐹
for 𝑖 = 1, 2. The first

node can be sampled from the two nodes 𝑣𝑒𝑡 1
, 𝑣𝑒𝑡 2

according to (9).

We then proceed to estimate the probability distribution 𝑝 (·|𝑣 𝑓 𝑖𝑟𝑡 , 𝑒𝑡 , 𝑠𝑡).
For any node 𝑣𝑐 ∈ 𝑁 2 (𝑣 𝑓 𝑖𝑟𝑡)/𝑁

1 (𝑣 𝑓 𝑖𝑟𝑡), we use v̂𝑐 = 𝑐𝑜𝑛𝑐𝑎𝑡 (v𝑒𝑡 1
, F𝑠𝑡 [𝑐, :

]) to represent it. The representations for all the nodes in𝑁 2 (𝑣 𝑓 𝑖𝑟𝑡)/𝑁
1 (𝑣 𝑓 𝑖𝑟𝑡)

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1164

Figure 1: The overall framework of ReWatt

can be represented by a matrix V̂𝑠𝑡 ∈ R |𝑁
2 (𝑣𝑓 𝑖𝑟𝑡)/𝑁

1 (𝑣𝑓 𝑖𝑟𝑡) |×4𝑑𝐹

with each row representing a node. The probability distribution

of choosing the third node over all the candidate nodes can be

modeled as:

𝑝𝑡ℎ𝑖 (·|𝑣 𝑓 𝑖𝑟𝑡 , 𝑒𝑡 , 𝑠𝑡) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀𝐿𝑃 (V̂𝑠𝑡 |𝜃𝑡ℎ𝑖)) (10)

The third node 𝑣𝑡ℎ𝑖𝑡 can be sampled from the set of candidate

nodes 𝑁 2 (𝑣 𝑓 𝑖𝑟𝑡)/𝑁
1 (𝑣 𝑓 𝑖𝑟𝑡) according to the probability distribu-

tion in (10). An action 𝑎𝑡 can be generated by sequentially esti-

mating and sampling from the probability distributions in (8), (9)

and (10).

5.4 Proposed Framework - ReWatt
With the rewiring and the policy network defined above, our overall

framework can be summarized as follows. As shown in Figure 1,

with State 𝑠𝑡 , the Attacker uses GCN to learn node and edge em-

beddings, which are used as input to Policy Networks to make

decision about the next action. Once the new action is sampled

from the policy network, rewiring is performed on 𝑠𝑡 and we arrive

in the new state 𝑠𝑡+1. We query the black-box classifier to get the

prediction 𝑓 (𝑆𝑡+1), which is compared with 𝑓 (𝑠1) to get reward.

Policy gradient [30] is adopted to learn the policies by maximizing

the rewards.

6 EXPERIMENT
In this section, we conduct experiments to evaluate the performance

of the proposed framework ReWatt. We also provide some empirical

investigations and a case study to analyze how the trained attacker

works.

6.1 Attack Performance
To demonstrate the effectiveness of ReWatt, we conduct experi-

ments on three widely used social network data sets [31] for graph

classification, i.e., REDDIT-MULTI-12K, REDDIT-MULTI-5K and

IMDB-MULTI [32]. The statistics of the datasets can be found in Ta-

ble 1. We use RE-12K, RE-5K and IM-M to denote the three datasets

in Table 1. In this table, #nodes denotes the average number of

nodes over all graphs and #edges denotes the average number of

edges over all graphs. ACC denotes the mean of Average Clustering

Coefficient (ACC) over all graphs. GCC denotes the mean of Global

Clustering Coefficient (GCC) over all graphs.

Table 1: Statistics of the data sets

#graphs #labels #nodes #edges ACC GCC

RE-12K 11,929 12 391.41 456.89 0.0331 0.0087

RE-5K 4,999 5 508.52 594.87 0.0268 0.0038

IM-M 1,500 3 13 65.94 0.968 0.8955

Note that the re-wiring operation (as well as the other operations)

may lead to abnormal structure of some kinds of graphs, which

can make the graphs invalid, especially for chemical molecules.

Thus, in this paper, We avoid chemical related datasets but only use

social networks datasets. In the social domain, if the changes are

subtle, it is less likely to introduce abnormal structures. Meanwhile,

it is straightforward to extend our framework to datsets from the

other domains if we have the domain expertise. For example, if we

know what structures are abnormal, we can use such knowledge

to constraint the the state space of the RL framework. We leave it

as one future work. In this work, the classifier we target to attack

is the GCN-based classifier as introduced in Section 3. We set the

number of layers to 3. We need to train the classifier using a fraction

of the data and then treat the classifier as a black box to be attacked.

We then use a part of the remaining data to train the attacker and

use the rest of the data to test the performance of the attacker.

Thus, for each data set, we split it into three parts with the ratio of

𝑎% : 𝑏% : 𝑐%, which are used to train the classifier, the attacker and

test the performance of the attacker, respectively. For the REDDIT-

MULTI-12K and REDDIT-MULTI-5K data sets, we set 𝑎 = 90, 𝑏 = 8

and 𝑐 = 2. As the size of the IMDB-MULTI data set is quite small,

to have enough data for test, we set 𝑎 = 50, 𝑏 = 30 and 𝑐 = 20. We

compare the attacking performance of the proposed framework

with the RL-S2V proposed in [16], random selection method and

some variants of our proposed framework.We briefly describe these

baselines:

• RL-S2V is a reinforcement learning based attack frame-

work [16], which allows adding and deleting edges to the

graph with a fixed budget for all the graphs;

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1165

Table 2: Performance comparison in terms of the success rate

REDDIT-MULTI-12K REDDIT-MULTI-5K IMDB-MULTI

K 1 2 3 1 2 3 1 2 3

ReWatt 14.4% 21.6% 23.4% 8.99% 16.9% 18.0% 22.3% 22.3% 22.6%

RL-S2V 9.46% 18.5% 21.1% 4.49% 16.9% 18.0% 2.00% 6.00% 3.33%

p 1% 2% 3% 1% 2% 3% 1% 2% 3%

ReWatt 24.8% 33.3% 36.5% 11.2% 20.2% 27.0% 22.3% 22.3% 22.6%

ReWatt-a 26.1% 35.1% 42.8% 5.60% 21.3% 30.3% 22.0% 23.0% 23.6%

ReWatt-n 17.6% 25.7% 31.1% 5.60% 14.6% 19.1% 21.3% 21.3% 21.6%

random 10.3% 15.7% 21.6% 3.30% 12.4% 16.9% 1.33% 1.33% 1.66%

random-s 6.30% 6.70% 9.45% 5.60% 6.74% 11.0% 1.00% 1.33% 1.66%

• Random denotes an attacker that performs the proposed

rewiring operations randomly;

• Random-s is also based on random rewiring. Note that

ReWatt can terminate before using all the budget. We record

the actual number of rewiring actions made in our method

and only allow theRandom-s to take exactly the same num-

ber of rewiring actions as ReWatt;

• ReWatt-n denotes a variant of the ReWatt, where the nega-

tive reward is fixed to −0.5 for all the graphs in the testing

set;

• ReWatt-a is a variant of ReWatt, where we allow any nodes

in the graph to be the third node 𝑣𝑡ℎ𝑖𝑡 instead of only 2-hop

neighbors.

Note that there are other adversarial attack algorithms for graph

neural networks, such as nettack [14] and metattack [15]. However,

they have been designed to perform adversarial attacks specific to

the node classification task. While in this work, we focus on attack-

ing the graph classification task. Hence, we do not include them

as baselines. As RL-S2V only allows a fixed budget for the all the

graphs, when comparing to it, for ReWatt, we also fix the number

of proposed rewiring operations to a fixed number 𝐾 for all the

graphs. A single proposed rewiring operation involves two edges.

Thus, for a fair comparison, we allow RL-S2V to take 2𝐾 actions

(adding/deleting edges). We set 𝐾 = 1, 2, 3 in the experiments. To

compare with the random selection method and the variants of

ReWatt, we use flexible budget, more specially, we allow at most

𝑝 · |E𝑖 | proposed rewiring operations for graph𝐺𝑖 . Here, 𝑝 is a fixed

percentage and we set it to 𝑝 = 1%, 2%, 3% in our experiments. We

use the success rate as measure to evaluate the performance of the

attacker. A graph is said to be successfully attacked if its label is

changed when it is modified within the given budget.

The results are shown in Table 2. We can make the following

observations from the table.

• Compared to RL-S2V, ReWatt can perform more effective at-

tacks. Especially, in the IMDB-MULTI data set, where ReWatt

outperforms RL-S2V with a large margin;

• ReWatt outperforms the Random method as expected. Espe-

cially, ReWatt is much more effective than Random-s which

performs exactly the same number of proposed rewiring op-

erations ReWatt. This also indicates that the Randommethod

uses more rewiring operations for successful attacking than

ReWatt;

• The variant ReWatt-a outperforms ReWatt, which means if

we do not constraint the rewiring operation to 2-hop neigh-

bors, the performance of ReWatt can be further improved.

However, as we discussed in earlier sections, this may lead

to more “noticeable” changes of the graph structure;

• ReWatt-n performs worse than our ReWatt, which shows

the advancement of using a flexible reward design.

It is interesting to notice that RL-S2V has a larger search space than

ReWatt, while its performance is not as good as ReWatt. With a

larger action space, the optimal solution of should be as good or

even better than that of ReWatt. However, both methods are not

guaranteed to always achieve the optimal solution in the given

action space. Next we discuss potential reasons on why ReWatt

can outperform RL-S2V. More discussions are provided in the case

study subsection.

• When performing an adding/deleting edge action in RL-S2V,

it chooses two nodes sequentially. Then it decides to add an

edge between two nodes if they are not connected, otherwise,

the edge between them is removed. Since most graphs are

very sparse, the RL-S2V algorithm is, by design, biased to

adding an edge. However, ReWatt removes an edge and then

adds another edge. The adding/deleting edge operations are

more balanced.

• The reward design in ReWatt is different from RL-S2V. In

RL-S2V, a non-zero reward is only given at the end of an

attacking session. Specifically, at the end of an attacking

session, a positive reward is given if the attack succeeded,

otherwise a negative reward is given. All the intermediate

steps get 0 reward. On the other hand, in ReWatt, the reward

is given after each action. A positive reward is given once

an action leads to a successful attack. A negative reward is

penalized to take each action if it does not directly lead to a

successful attack. This encourages the attacker to make as a

few actions as possible. Furthermore, we also proposed an

adaptive negative reward design, which determines the value

of the negative reward according to the size of each graph.

The advantage of this reward design has been demonstrated

by the comparison between ReWatt and ReWatt-n in Table 2.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1166

(a) Succeeded graphs (b) Failed graphs

Figure 2: The change of graph representation after attack

(a) Succeeded graphs (b) Failed graphs

Figure 3: The change of logits after attack

6.2 Attacker Analysis

Figure 4: Comparison in the change of eigenvalues

In this subsection, we carry out experiments to analyze how

ReWatt’s change in graph structure affects the graph representa-

tion u calculated by (2) and the logits P (the output immediately

after the softmax layer of the classifier). For convenience, we de-

note the original graph as 𝐺𝑜 and the attacked graph as 𝐺𝑎 in this

subsection. Correspondingly, the graph representation and logits

for the original (attacked) graph are denoted as u𝑜 (u𝑎) and P𝑜

(P𝑎), respectively. To measure the difference in graph representa-

tion, we used the relative difference in terms of 2-norm defined as

𝑅𝐶 (u𝑜 , u𝑎) = ∥u𝑎−u𝑜 ∥2

∥u𝑜 ∥2

. The logits denote the probability distribu-

tion that the given graph belongs to each of the classes. Thus, we use

the KL-divergence [33] to measure the difference between the logits

of the original and attacked graphs 𝐾𝐿 (P𝑜 , P𝑎) =
𝐶∑
𝑖=1

P𝑜 [𝑖] log

(
P𝑜 [𝑖]
P𝑎 [𝑖]

)
,

where𝐶 is the number of classes in the data set and P[𝑖] denotes the
logit for the 𝑖-th class. We perform the experiments on the REDDIT-

MULTI-12K data set under the setting of allowing at most 3% · |E |
rewiring operations. The results for the graph representation and

logits are shown in Figure 2 and Figure 3, respectively. The graphs

in the test set are separated into two groups – one contains all the

graphs successfully attacked by ReWatt (shown in Figure 2a and

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1167

Figure 5: Case study of ReWatt attacker on two graphs sampled from REDDIT-MULTI-12K dataset.

Figure 3a), and the other contains those survived from ReWatt’s

attack (shown in Figure 2b and Figure 3b). Note that, for compari-

son, we also include the results of Random-s on these two groups

of graphs. In these figures, a single point represents a test graph

and the x-axis is the ratio
𝑀
|E | , where𝑀 is the number of rewiring

operations ReWatt used before the attacking process terminating.

Note that𝑀 can be smaller than the budget as the process termi-

nates once the attack successes. As we can observe from the figures,

compared with the Random-s, ReWatt can make more changes to

both the graph representation and logits, using exactly the same

number of proposed rewiring operations. Comparing Figure 2a

with Figure 2b, we find that the perturbation generated by ReWatt

affects the graph representation a lot even when it fails to attack

the graph. This means our attack is perturbing the graph structure

in a right way to fool the classifier, although it fails potentially due

to the limited budget. Similar observation can be made when we

compare Figure 3a with Figure 3b.

6.3 Empirical Investigation of the Rewiring
Operation

In this section, we conduct experiments to empirically show the ad-

vancements of the proposed rewiring operator compared with the

adding/deleting edge operator. We compare them from two perspec-

tives: 1) connectivity after the attack and 2) change in eigenvalues

after the attack. The experiments are carried out on the REDDIT-

MULTI-12K dataset. On each of the graph successfully attacked by

ReWatt, we perform exactly the same number of deleting/adding

edge operator on it. For connectivity, the average number of com-

ponents in the clean graphs is 2.6, this number becomes 3.02 after

the rewiring attack while it becomes 5.2 after the deleting/adding

edges attack. On the other hand, only 20% of the graphs get more

disconnected (having more components) after ReWatt attack than

the original ones, while 87% of the graphs get more disconnected

after the adding/deleting edges attack. Clearly, the rewiring oper-

ator is less likely to disconnect the graph. This is consistent with

our theoretical understanding that ReWatt is likely to maintain the

rank (|V| − #𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠) of the target graph.

The comparison of the change in eigenvalues is shown in Fig-

ure 4, where we compare the change in different eigenvalues of the

graphs after these two attacks. Specifically, we first compute the

average relative change in the 𝑖-th eigenvalue after both attacks as

follows:

𝑟𝜆𝑖 =
|𝜆𝑜𝑟𝑖
𝑖

− 𝜆𝑎𝑡𝑡𝑎𝑐𝑘
𝑖

|
𝜆𝑜𝑟𝑖
𝑖

, (11)

where 𝜆𝑜𝑟𝑖
𝑖

denotes the 𝑖-th eigenvalue of the clean graph while

𝜆𝑎𝑡𝑡𝑎𝑐𝑘
𝑖

denotes the 𝑖-th eigenvalue of the attacked graph. We then

take the average of the above value over all the succeeded graphs,

which we denoted as 𝑟𝜆𝑖 . Specially, we use 𝑟
𝑟𝑒
𝜆𝑖

to denote the average

change ratio after 𝑅𝑒𝑊𝑎𝑡𝑡 while using 𝑟
𝑑/𝑎
𝜆𝑖

to denote the average

change ratio after deleting/adding edge attack. To compare these

two attacks, we calculate 𝑟
𝑑/𝑎
𝜆𝑖

/𝑟𝑟𝑒
𝜆𝑖

and the results are shown in Fig-

ure 4. The results show that in most of the cases, the deleting/adding

edges attack makes much more changes to the eigenvalues as the

value 𝑟
𝑑/𝑎
𝜆𝑖

/𝑟𝑟𝑒
𝜆𝑖

is way larger than 1. This observation is also aligned

with the theoretical understanding.

By conducting these two experiments, we conclude that the

proposed re-wiring operator makes more subtle changes to graphs

than adding/deleting edges.

6.4 Case Study
We also conduct a case study to demonstrate how the attacker

modifies the graph structure through rewiring operations.

Two representative graphs from REDDIT-MULTI-12K are shown

in Figure 5, where the deleted edges are marked in blue while

the added edges are marked in red. The rewiring operations are

centered around the high degree nodes. Specifically, in both graphs

shown in Figure 5, the rewiring operations all involve the nodes

with the highest degree. We observe that the RL-S2V also take a

similar strategy; however, it is biased to take the action of adding

edges to the graph, while the proposed ReWatt performs rewiring

operation, which involve both adding and deleting edges.

7 CONCLUSION
In this paper, we proposed a graph rewiring operation, which affect

the graph structure in a less noticeable way than adding/deleting

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1168

edges. The rewiring operation preserves some basic graph prop-

erties such as number of nodes and number of edges. We then

designed an attacker ReWatt based on the rewiring operations us-

ing reinforcement learning. Experiments in 3 real world data sets

show the effectiveness of the proposed framework. Analysis on

how the graph representation and logits change while the graph

being attacked provide us with some insights of the attacker.

8 ACKNOWLEDGEMENTS
Yao Ma and Jiliang Tang are supported by the National Science

Foundation (NSF) under grant numbers CNS1815636, IIS1928278,

IIS1714741, IIS1845081, IIS1907704, IIS1955285, and Army Research

Office (ARO) under grant numberW911NF-21-1-0198. SuhangWang

is supported by National Science Foundation (NSF) under grant

number IIS1955851 and Army Research Office (ARO) under grant

number W911NF-21-1-0198.

REFERENCES
[1] Thomas N Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907, 2016.
[2] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning

on large graphs. In Advances in Neural Information Processing Systems, pages
1024–1034, 2017.

[3] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral net-

works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203,
2013.

[4] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional

neural networks on graphs with fast localized spectral filtering. In Advances in
neural information processing systems, pages 3844–3852, 2016.

[5] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and

Jure Leskovec. Hierarchical graph representation learning withdifferentiable

pooling. arXiv preprint arXiv:1806.08804, 2018.
[6] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-

end deep learning architecture for graph classification. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[7] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[8] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-

nessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.
[9] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the

physical world. arXiv preprint arXiv:1607.02533, 2016.
[10] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural

networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages 39–57.
IEEE, 2017.

[11] Wei Jin, Yaxin Li, Han Xu, Yiqi Wang, and Jiliang Tang. Adversarial attacks and

defenses on graphs: A review and empirical study. arXiv preprint arXiv:2003.00653,
2020.

[12] Huijun Wu, ChenWang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming

Zhu. Adversarial examples for graph data: Deep insights into attack and defense.

[13] Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, and Anil Jain.

Adversarial attacks and defenses in images, graphs and text: A review. arXiv
preprint arXiv:1909.08072, 2019.

[14] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks

on neural networks for graph data. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 2847–
2856. ACM, 2018.

[15] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural net-

works via meta learning. In International Conference on Learning Representations,
2019.

[16] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.

Adversarial attack on graph structured data. In International Conference on
Machine Learning, pages 1123–1132, 2018.

[17] Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar.

Node injection attacks on graphs via reinforcement learning. arXiv preprint
arXiv:1909.06543, 2019.

[18] Benjamin A Miller, Mustafa Çamurcu, Alexander J Gomez, Kevin Chan, and Tina

Eliassi-Rad. Improving robustness to attacks against vertex classification. 2019.

[19] Hau Chan and Leman Akoglu. Optimizing network robustness by edge rewiring:

a general framework. Data Mining and Knowledge Discovery, 30(5):1395–1425,
2016.

[20] Arpita Ghosh and Stephen Boyd. Growing well-connected graphs. In Proceedings
of the 45th IEEE Conference on Decision and Control, pages 6605–6611. IEEE, 2006.

[21] Marinka Zitnik, Rok Sosič, Marcus W. Feldman, and Jure Leskovec. Evolution

of resilience in protein interactomes across the tree of life. Proceedings of the
National Academy of Sciences, 116(10):4426–4433, 2019.

[22] Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on node

embeddings via graph poisoning. In International Conference onMachine Learning,
pages 695–704, 2019.

[23] Xiaoyun Wang, Joe Eaton, Cho-Jui Hsieh, and Felix Wu. Attack graph convolu-

tional networks by adding fake nodes. arXiv preprint arXiv:1810.10751, 2018.
[24] Lichao Sun, Ji Wang, Philip S Yu, and Bo Li. Adversarial attack and defense on

graph data: A survey. arXiv preprint arXiv:1812.10528, 2018.
[25] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical

journal, 23(2):298–305, 1973.
[26] Bojan Mohar, Y Alavi, G Chartrand, and OR Oellermann. The laplacian spectrum

of graphs. Graph theory, combinatorics, and applications, 2(871-898):12, 1991.
[27] Gilbert W Stewart. Matrix perturbation theory. 1990.

[28] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre

Vandergheynst. The emerging field of signal processing on graphs: Extending

high-dimensional data analysis to networks and other irregular domains. arXiv
preprint arXiv:1211.0053, 2012.

[29] Aliaksei Sandryhaila and Jose MF Moura. Discrete signal processing on graphs:

Frequency analysis. IEEE Transactions on Signal Processing, 62(12):3042–3054,
2014.

[30] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[31] Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion

Neumann. Benchmark data sets for graph kernels, 2016.

[32] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1365–1374. ACM, 2015.

[33] Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1169

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Graph Classification
	3.2 Graph Convolution Networks

	4 Problem Formulation
	5 Rewiring-based Attack to Graph Convolutional Networks
	5.1 Properties of Proposed Rewiring Operation
	5.2 Graph Adversarial Attack with Reinforcement Learning
	5.3 Policy Network
	5.4 Proposed Framework - ReWatt

	6 Experiment
	6.1 Attack Performance
	6.2 Attacker Analysis
	6.3 Empirical Investigation of the Rewiring Operation
	6.4 Case Study

	7 Conclusion
	8 Acknowledgements
	References

