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Closed-loop stabilization of nonlinear systems using Koopman
Lyapunov-based model predictive control

Abhinav Narasingam and Joseph Sang-I1 Kwon

Abstract— This work considers the problem of stabilizing
feedback control design for nonlinear systems. To achieve this,
we integrate Koopman operator theory with Lyapunov-based
model predictive control (LMPC). A bilinear representation
of the nonlinear dynamics is determined using Koopman
eigenfunctions. Then, a predictive controller is formulated
in the space of Koopman eigenfunctions using an auxiliary
Control Lyapunov Function (CLF) based bounded controller as
a constraint which enables the characterization of stability of
the Koopman bilinear system. Unlike previous studies, we show
via an inverse mapping - realized by continuously differentiable
functions - that the designed controller translates the stability
of the Koopman bilinear system to the original closed-loop
system. Remarkably, the feedback control design proposed in
this work remains completely data-driven and does not require
any explicit knowledge of the original system. Moreover, in
contrast to standard LMPC, seeking a CLF for the bilinear
system is computationally favorable compared to the original
nonlinear system. The application of the proposed method is
illustrated on a numerical example.

I. INTRODUCTION

Nonlinear systems abound in nature. Yet, a universal
feedback design for stabilizing nonlinear dynamics remains
a daunting challenge unlike its linear counterpart. Existing
approaches such as optimization-based Sum of Squares (SoS)
[1], geometric-based feedback linearization [2], sliding mode
control [3], etc. use state-space description for nonlinear sta-
bilizing control. An alternative to the state-space description
is the operator-theoretic viewpoint where we are interested in
the evolution of observables (functions of states) and not the
states. One example is the Koopman operator which, when
acted upon an observable, governs its evolution along the
original system trajectory [4]. Hence, the operator-theoretic
description provides global insight into the system dynamics
which is appropriate for controller design.

The most attractive feature of the Koopman operator
theory is that it is a linear operator even when associated with
nonlinear dynamics. This means that the spectral properties
of the linear operator (i.e., eigenvalues and eigenfunctions)
encode global information that allows future state prediction
and scalable reconstruction of the underlying dynamics [5].
Several data-driven methods have been developed to approxi-
mate the spectrum of the Koopman operator from time-series
data of the system such as Dynamic Mode Decomposition
[6], Extended Dynamic Mode Decomposition (EDMD) [7],
Laplace analysis [8], and machine learning [9].
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These advanced data-driven algorithms have sparked in-
creased research activity in the analysis and control of
nonlinear dynamical systems [10]-[15]. However, ensuring
stability of the resulting closed-loop system has proven to be
difficult as the predictive capability of the Koopman operator
can be significantly impacted unless the role of actuation is
appropriately accounted. To deal with this, [16] redefined
the Koopman operator as a function of both states and the
inputs. In [17], a modification of EDMD was presented that
compensates for the effect of inputs. In [18], a bilinear
representation was provided in the Koopman space that is
tight and theoretically justified. Using this representation,
the authors in [19] proposed a stabilizing feedback con-
troller which relies on control Lyapunov function (CLF) and
achieves stabilization of the Koopman bilinear system.

However, [19] does not consider an optimal control prob-
lem accounting for explicit state and input constraints and
the stability analysis of the original nonlinear system was
not provided. To address this, CLFs were employed in [20]
where a feedback controller was designed for the Koop-
man space (i.e., lifted domain) using Lyapunov constraints
within a model predictive control (MPC) formulation. Such
a design allowed for explicit characterization of stability
properties of the original nonlinear system. However, the
method presented in [20] uses CLFs derived for the original
system which requires explicit mathematical expression of
the original nonlinear dynamics; it is particularly challenging
when we have limited a priori knowledge of the original
nonlinear system. Additionally, even though we have a good
understanding of a general nonlinear system, it is in practice
computationally demanding to determine the CLFs.

To address these issues, this work seeks to derive a sta-
bilizing feedback controller based on the Koopman bilinear
representation of the original nonlinear system. To do so, a
CLF is determined for the bilinear system in the Koopman
eigenfunction space which is employed in the Lyapunov-
based MPC (LMPC) formulation. Then, a stability criterion
is presented that guarantees stability of the original closed-
loop system in the € — § sense from the stability of the
Koopman bilinear system. Unlike [20], the feedback control
design proposed in this work is completely data-driven and
does not require any a priori knowledge of the original
system. Moreover, deriving CLFs for the Koopman bilinear
system is much more computationally affordable than the
original nonlinear system. In fact, the search for CLFs can
be focused on a class of quadratic functions which are known
to effectively characterize the stability region of simpler
systems like the (Koopman) bilinear systems.
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II. PRELIMINARIES
A. Overview of Koopman Operator

Let us consider a continuous-time nonlinear dynamical
system given by
% = F(x) (1)

where x € X C R" is the vector of state variables and
F : X — X is the evolution operator that represents the
dynamics which map the system states forward in time. It is
assumed that the vector field F' is continuously differentiable.
Let us denote the solution of (1) by ®¢(x).

Definition 1 (Koopman operator): For a given space G of
observables g(x) with ¢ € G : X — C, the Koopman
(semi)group of operators K! : G — G associated with system
(1) is defined by

[K'g](x) = g 0 ®'(x) 0
By definition, the Koopman operator is linear even though
the underlying dynamical system is nonlinear and therefore
can be characterized by its eigenvalues and eigenfunctions.

An eigenfunction ¢ € G : X — C of the Koopman operator
is defined to satisfy

[ ](30) = ()
d
00 = ()

where )\ € C is the associated eigenvalue.

3)

B. Koopman bilinear system identification

The Koopman operator theory has been conceptually
developed for uncontrolled systems. Here, we adopt it by
considering a control affine system as follows:

% =F(x)+ > Gi(x)u )
i=1

wherex e X CR",u; elUfori=1,--- ,mand G; : X —
X denotes the control vector fields that dictate the effect of
input on the system. Now, the evolution of the observable
functions for the controlled system of (4) is given by

m
where Ly and Lg, cieriote the Lie derivatives with respect
to the vector fields F and G; for i = 1,--- ,m, respectively.
The system (5) is analogous to a bilinear system except that
the operators Ly and L, are infinite dimensional, operating
on the function space G. For practical implementation, we
can determine a finite-dimensional approximation [18]. Let

2= W(x) = (100, ()T
) =B, U)X SR
(0560, 100" = ZRe(d;(), — 2m(;(0)]"

if 9y, Yjpa(x): X = C
(6)
Applying the above transformation to (4) yields

2=Az+ ) uLa,¥ (7)
=1

Assumption 1: 3 p;,7=1,--- , N such that

N
La, ¥ = b$i;(x) = B;W
j=1

where bf’ € R™ and v;(x) are defined in (6). In other words,
it is assumed that L, ¥ lies in the span of the eigenfunctions
¥j, j = 1,---,N so that it can be represented using a
constant matrix, B; € RV*V,

Based on this assumption, the system (7) becomes the
following bilinear control system in the Koopman space,

z=Az+ ZuiBiz (8)
i=1

where A is a block-diagonal matrix constructed using the
Koopman eigenvalues A;,j = 1,--- , N in a manner similar
to Koopman eigenfunctions shown in (6), i.e.,

Ajﬂ' = /\j, if /\j eR

Ag o Aggw | Ly | eos(Edg) - sin(2;)
Ajriy Ajragn T =sin(4A;)  cos(4)))]”

if )‘ja )‘j+1 eC

)

To determine the above continuous bilinear system using

time-series data generated by (4), the EDMD algorithm [7]

is utilized in this work. Please refer to [19] for the detailed

algorithm computing system matrices A and B;. Please

note that EDMD cannot directly approximate systems whose

Koopman operator exhibit continuous spectrum. This is a

challenging issue that remains a subject of research in the
field of operator theory [9].

III. STABILIZATION USING KOOPMAN LYAPUNOV MPC

LMPC provides a powerful tool for the design of an opti-
mal stabilizing feedback controller for nonlinear dynamical
systems [21]. Essentially, LMPC is a control strategy that
is designed based on an explicit, stable (albeit not optimal)
control law h(-) and a Lyapunov constraint by virtue of
which the controller is able to stabilize the closed-loop
system. In the proposed method, LMPC is applied in the
Koopman eigenspace to determine a stabilizing input for the
resulting closed-loop system.

For simplicity, let us consider the Koopman bilinear sys-
tem of (8) with ¢ = 1, i.e., a single input. This system is
assumed to be stabilizable (and controllable), which implies
the existence of a feedback control law u(t) = h(z) that
satisfies input constraints for all z inside a given stability
region and renders the origin of the closed-loop system
asymptotically stable. This is equivalent to assuming that
there exists a CLF for the system of (8). Due to the bilinear
structure of the system, the CLF can be limited to a class
of quadratic functions, i.e., V(z) = z” Pz. The necessary
and sufficient conditions for the symmetric positive definite
matrix P such that the system of (8) is stabilizable are
provided in [19]. The theorem is stated below.

Proposition 1 (see [19], Theorem 2): The bilinear sys-
tem of (8) is stabilizable if and only if there exists an

Authorized licensed use limited to: Texas A M University. Downloaded on September 02,2021 at 02:43:31 UTC from IEEE Xplore. Restrictions apply.



N x N symmetric positive definite matrix P such that for
all z # 0 € RY with 27 (PA + ATP)z > 0, we have
z'(PB+ BTP)z # 0.

In other words, for V(z) = 27 (PA+AT P)z+u(z” (PB+
BT P)z) to be negative, if the first term on the right hand side
is positive then the second term cannot be zero so that the
control action u can render V' < 0. Once the conditions of
Proposition 1 are satisfied, one way to determine the explicit
control law h(z), required to stabilize the bilinear system, is
provided by Sontag’s formula [22] as below:

LAVAVINV2+LpV4 :
_A+L/;V+B , if LBV#O

b(z) =

0, if LV =0

Umin, 1f b(Z) < Umin (10)
h(Z) = b(Z), if Umin < b(Z) < Umax

Umaz, 1f b(Z) > Umaz

where L,V = zT(PA + ATP)z, LgV = zT(PB +
BT P)z, and h(z) represents the saturated control law that
accounts for the input constraints i, < u(t) < Umaz € U.
Let the largest level set of V be given by Q, = {z € RV :
V(z) < r} where r is the largest number for which 2, C ©,
) is the complete stability region, starting from which the
origin of the closed-loop system under (10) is guaranteed to
be stable.

Now that we have the explicit control law, the idea is
to stabilize the bilinear system using the LMPC scheme as

below:
. bt N T T

ugsl&) /tk [z* (T)Wz(r) +u" (7)Ru(r)]dr, (11a)
s.t z(t) = Az(t) + u(t)Ba(t) (11b)
z(ty) = ¥(x(tx)) (11c)
Umin S u(t) S Umaz, vVt € [tk7tk+Np) (1ld)

V(z(t)) <7, Vt € [th, then,]
if 2(ty) € Q; (11e)

V(z(tr), ultr)) < V(z(te), h(z(tr))),
if 2(ty) € Q. /Q (11D

where S(A) is the family of piece-wise constant functions
with sampling period A = ¢34 — ti, IV, is the prediction
horizon, and W € RV>*¥ and R € R are positive definite
weighting matrices.

The constraints (11e) and (11f) in the LMPC formulation
above correspond to the Lyapunov constraints. To explicitly
deal with the sampled system, we consider a region Q; C €.,
where 7 < r as a ‘safe’ zone to make (), invariant (details
given below in Proposition 2). When z(t;) is received at a
sampling time ¢, (11le) is active only when z(¢x) € 2 and
ensures that the sampled state is maintained in the region
Q; (so that the actual state of the closed-loop system is in
the stability region £2,.). The constraint (11f) is only active
when 7 < V(z(t;)) < r and ensures the rate of change of
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the Lyapunov function is smaller than or equal to that of the
value obtained if the explicit control law h(z) is applied
to the closed-loop system in a sample-and-hold fashion.
These constraints allow the LMPC controller to inherit the
stability properties of h(z), i.e., it possesses at least the same
stability region 2, as the controller h(z). This implies that
the (equilibrium point of) closed-loop system of (11a)-(11f)
is guaranteed to be stable for any initial state inside the region
Q,. provided the sampling time A is sufficiently small.

Proposition 2: Consider the system of (8) under the MPC
control law of (11a)-(11f), which is designed using a CLF
V' that has a stability region €2, under continuous imple-
mentation of the explicit controller i(z). Then, given any
positive real number d, 3 positive real numbers A* such
that if z(0) € 2, and A € (0, A*], then z(t) € Q,,Vt > 0
and lim;_, [|2(2)]] < d.

Proof: The proof is divided into three parts. In Part
1, the robustness of the explicit controller under the sample-
and-hold implementation is shown. In Part 2, the controller
of (11a)-(11f) is shown to be feasible for all z(0) € €,.
Subsequently, in Part 3, it is shown that the stability region
), is invariant under the predictive controller of (11a)-(11f).

Part 1: To prove the robustness of the explicit controller,
we need to show the existence of a positive real number A*
such that all state trajectories originating in €2, converge to
the level set {2; for any value of A € (0, A*]. To achieve
this, we need to consider different cases for z(0) inside
the stability region. Figure 1 represents a schematic of the
different cases considered in the following proof.

First, consider a small region close to the boundary of the
stability region denoted as Z := {z: (r — ') < V(z) < r},
for some 0 < r’ < r. Now, let h(0) = hg be computed for
z(0) = 2o € Z and held constant until a time A such that
h(t) := hg V¥t € (0, A]. Then,

V(z(t)) = LAV (2(t)) + LV ((t))ho
= LAV (z0) + LV (20)ho
+ (LAV (2(t)) — LAV (20))
+ (LpV (2(t))ho — LV (20)ho)-

Since the initial state zg € Z C €, and hg is computed based
on the stabilizing control law (10), it follows that V (zg) :=
LAV (zo) + LV (z0)ho < —pV (2zo) (this can be shown by
substituting (10) in V). Combining this with the definition
of Z, we have LaV (zo) + LV (zo)ho < —p(r —r').

We also need the following properties corresponding to
Lipschitz continuity to complete the proof.

Property 1: Since the evolution of z is continuous, ||u|| <
Umae and Z is bounded, one can find, for all zy € Z and a
fixed A, a positive real number %, such that ||z(t) — zo| <
k:lA for all t < A.

Property 2: Additionally, since L,V (-), LgV () are con-
tinuous functions, the following properties hold:

(12)

LAV (2(t)) — LoV (2o)|| < k2l|z(t) — 2ol < kik2A
LBV (z(t))ho — LV (2o)ho| < k3l|z(t) — 2ol < klk(gl%)
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Fig. 1. A schematic representing the stability region of the bounded
controller €2, together with the sample-and-hold constrained set, 27, and
the overall stability region of the system, 2. The grey shaded part represents
the ring, Z, close to the boundary of the stability region, 2.

Using all the above inequalities in (12),
V(a(t) < —p(r —1") + (kiks + kaks) A (14)

Now, if we choose A < (p(r—1r') —¢)/ (k1 ks +koks) where
¢ < p(r—r') is a positive number, we get V(z(t)) < —c < 0
for all t < A ensuring that the state does not escape €.

Now, we need to show the existence of a A’ such that for
all zg € Qv := {20 : V(20) <r —1'} we have zg € Q; :=
{20 : V(z¢) < 7}. Consider A’ such that

Vi(z(t))

This is possible because both V' and z are continuous
functions, and therefore for any 7/ < 7, one can find a
sufficiently small A’ such that (15) holds. All that remains
now is to show that for all zg € Q; if A € (0, A*] where
A* = min{A, A'}, then z(t) € Q; Vt > 0.

Consider all zy € Q> NQ,.. Then by definition, z(t) € Q5
for t € [0, A*] since A* < A’. On the other hand, for all
zo € Qp/Q, ie., 29 € Z, it was shown that V <O0forte
[0, A*] since A* < A. Therefore, 2 is an invariant set under
the control law of (10). Hence, all trajectories originating in
Q,. converge to §2; with a hold time less than A*. That is,
for all zy € Q,,lim sup, ,  V(z(t)) < 7. Since, V(-) is a
continuous function, one can always find a finite, positive
number d such that V(z) < 7 = ||z|| < d. Therefore,
lim sup,_, .V (z(t)) <+ = lim sup,_, ||z(¢)| < d.

Part 2: Let us consider some z(0) € €2, under the predic-
tive controller of (11a)-(11f) with a prediction horizon N,
denoting the number of prediction steps such that ¢, N, =
tr+NpA. There are two cases. If zy € Q,/Q;, the feasibility
of constraint (11f) is guaranteed by the control law of (10) as
shown in Part 1. Additionally, if V(z(0)) < #, once again
the control input trajectory under the explicit controller of
(10), given by u(t) = h(z(t)), Vt € [t,txin,], provides
a feasible initial guess to constraint (11e) because it was
designed to stabilize the system, i.e., V(z(t)) < 7. This
shows that for all z(0) € Q,, (11a)-(11f) is feasible.

Part 3: Since constraint (11f) is feasible, upon implemen-
tation it ensures that the value of the Lyapunov function un-
der the predictive controller u(t) decreases at each sampling

T = max (15)

z0€Q ,held te[0,A’]
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time. Since €, is a level set of V, and Vv decreases, the
state trajectories cannot escape (.. Additionally, satisfying
constraint (11e) means that {2, continues to remain invariant
under the implementation of the predictive controller of
(11a)-(11f). The recursive feasibility of (11d)-(11f) implies
that V' <7 and V < 0 for all z(¢) under the controller given
by (11a)-(11f). However, since it is implemented in a sample-
and-hold fashion there exists a maximum sampling time A*,
given in Part 1 such that when A € (0, A*) it is guaranteed
that for all z(0) € €, implies lim;_, . ||z(t)| < d.

This completes the proof. [ ]

In order to extend these results to the original nonlinear
system of (4), we make the following assumption.

Assumption 2: Let the inverse mapping from the Koop-
man space, z to the original state space, x be continuously
differentiable, ie., 3 &(z) = [&1(z), -, & (z)]T € Ct -
RY — R" such that #; = &(z),i = 1,---,n where
X = [Z1, -+ ,4y] is the predicted state vector obtained from
the inverse mapping defined above.

Theorem 1: Suppose that system (4) satisfies Assumptions
1-2. Let x(t) and %(t) denote the original state and the
predicted state values, respectively. The solutions for x(t)
and x(t) are given by the following dynamic equations:

x(t) = £(x(t), u(t)), x(0) = xg (16)

x(t) = &(=(1)), x(0) = %o (17)

z(t) = Az(t) + u(t)Bz(t), 2(0) = ¢(x(0)) (18
Then, the difference between x(¢) and %X(t) is bounded by

() = %(®)]| < (" ~ 1) 19

where v denotes the modeling error which bounds the
difference between

If(x,u) — f(x,u)|| <v (20)

where f(-) = F(-) + G(-)u is the original nonlinear dynam-
ical system, and f(%,u) = %Z denotes the solution to X().
Under this condition, the stabilizing feedback control input
u*(t) obtained from the control law of (11a)-(11f) for the
Koopman bilinear system of (6) also stabilizes the original
system of (4), i.e., the origin of the closed-loop system of
(4) is Lyapunov stable.

Proof: The proof is divided into two parts. First,
we show that the predicted state %(¢) is stable under the
application of the Koopman LMPC controller of (11a)-(11f)
to the Koopman bilinear system. In the second part, we show
that the evolution of the error between the original state and
the predicted state is bounded under Assumption 2 and the
Lipschitz property of the vector fields F, G.

Part 1: Let us consider any initial condition x(0) such
that x(0) = %(0) = x¢ and ||x¢| < ¢. Recall from Propo-
sition 2 that the predictive controller of (11a)-(11f) ensures
that the lifted states do not escape the stability region €2,., i.e.,
V(z(t)) <7,V <0 Vt. Therefore, lim sup, ,__||z(t)|| < d,.
Now, from Assumption 2, since the inverse mapping &(z)
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is assumed to be continuous (differentiable), the following
holds true:

1€)== (%O < e[z

%(t)] < d D

lim sup, |

where d = €.d,. In other words, since the controller ensures
asymptotic stability of the lifted state, it implies that ||z(¢)||
is bounded at all times and eventually converges to d,.. This
in turn implies that %(¢) is bounded at all times, albeit
by different constants at different sampling times. Now, if
we choose € to be the maximum of all these bounds, then
I%(t)|| < € Vt. Hence, for any initial condition ||xq| < 4,
the implementation of the predictive controller of (11a)-
(11f) guarantees that ||%(t)|| < €, Vt. This implies that the
predicted states of the original system starting close enough
to the equilibrium (at a distance §) will be maintained close
to the equilibrium at all times.

Part 2: Now, it remains to prove that the modeling error
between the original state vector and the predicted states is
bounded at all times for all ||xq|| < d. Let us consider the
modeling error e(t) = x(t) — %(t), then the evolution of the
error is given as

le()] = [1%(t) — %Ol = I£(x, u) — £, u)|

(22)

where f(x,u) = F(x) + G(x)u is the nonlinear dynamical
system, and f(X,u) denotes the evolution of the predicted
state X which can be determined from the following Koop-

man bilinear sytem:

B 9 .
f(x,u) = 52 (23)
By adding and subtracting f(x, u) to (22), we get
el = [1£ (e, w) — £(%, ) + £(%, u) — £(%, )| 24)

< £6x,w) — £, w)l| + [1£(R, w) — £, u)|

The Lipschitz property of f(-), combined with the bounds on
u, implies that there exists a positive constant [, such that
the following inequality holds for all x,x’ € X, u € U:

[£(x,u) = £(x', u)|| < Lofjx — /|| (25)

Additionally, since X is bounded (see Part I in the proof of
Theorem 1), f is Lipschitz, and the mapping & is continuously
differentiable, there exists a positive constant v such that the
second term in (24) is bounded by v. Combining it with (25)
we have
lE@N < lellx — %[ + v
< Llle()] + v

Therefore, given the zero initial condition (i.e., ¢(0) = 0),
the upper bound for the norm of the error vector can be
determined by integrating (26) as

(26)

t .
el
e 7
and solving for ||e(t)]|
le(@®l = Ix(®) = %(0)] < (= 1) @8)
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Finally, since the error between the original and predicted
vectors is bounded and that the Koopman LMPC controller
of (11a)-(11f) stabilizes the predicted state vector ||x(¢)|| <
¢, there exists a positive constant € such that ||x(¢)|| < e
for all ¢. Therefore, for all ||xg|| < ¢ the implementation of
the predictive controller of (11a)-(11f) ensures that ||x(t)]| <
e for all ¢, thereby rendering the original nonlinear system
stable.
This completes the proof. [ ]
Remark 1: Assumption 2 seems restrictive in selecting
the types of basis functions to determine the Koopman
bilinear models. However, in practice, one can numerically
obtain a separate mapping from the Koopman space to the
original space without actually inverting the eigenfunctions.
In this case, the error of the optimization problem must be
certified to be bounded to ensure that the proposed controller
successfully stabilizes the closed-loop system.

IV. NUMERICAL EXPERIMENTS

To demonstrate the performance of Koopman-based non-
linear stabilization presented in Section III, it is applied to
a canonical nonlinear system, the Van der Pol oscillator.
The Van der Pol oscillator is described by the following
equations:

@1 =x9; do=(1—ad)ze — 1 +u (29)

At u = 0, the phase plot of the Van der Pol oscillator is
characterized by a limit cycle and an unstable equilibrium
point at the origin. The data required is generated using
simulations initialized uniformly over a circle around the
origin and 10 s long trajectories were collected with a
sampling time of A = 0.01 s, i.e., 103 time-series samples
per trajectory. In the next step, the states were lifted to
the high-dimensional space by using monomials of degree
5 as the dictionary functions ¢(x(t)), i.e., ¢(x(t)) =
(1,21, 29,22, w129, - , 23T This results in a lifted system
of dimension z € R?! and the system matrices A and B
were constructed using the EDMD algorithm [19].

Next, the Koopman LMPC developed in Section III was
applied to control the system (29) with N = 21 eigenfunc-
tions as the new states, z, in the transformed space. The
initial condition was chosen randomly around the unstable
equilibrium and the control objective was to stabilize the
system at the origin. The CLF used to define the explicit
stable controller h(z) was obtained by solving the following
optimization problem [19]:

U>0r7rgr:1PT o — vtrace(PB)

s.t ol — (PA+A"P) >0 (30)

dr<p<dlr

where o represents the epigraph form of the largest singular
value of (PA + ATP), and ¥ cV > 0 are two positive
scalars used to bound the eigenvalues of P. The weighting
parameter v > 0 is chosen as 2 in this example. The explicit
controller, h(z), was determined by using the obtained CLF,
V = 2" Pz, within the Sontag’s formula as shown in (10).
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Fig. 2. Comparison of open-loop and closed-loop trajectories for the Van
der Pol oscillator with u from the control law of (11a) - (11f)

The matrices Q and R in (11a) were chosen to be Q@ =1 €
R21%21 and R = 1, respectively, and the input was bounded,
i.e., u € [—50,50]. The prediction horizon was set to 1 s,
ie., N, = 1/A = 100. At every sampling time, the KLMPC
problem of (11a)-(11f) was solved using the IPOPT solver
(interfaced with MATLAB). Figure 2 shows the comparison
between open and closed loop results. It can be observed
from Figure 2 that the system was stabilized at the origin as
desired.

V. CONCLUSIONS

This manuscript presented a new approach for the design
of stabilizing controllers for nonlinear dynamical systems
using operator theory. Bilinear models that are valid on
the entire basin of attraction are computed using finite-
dimensional approximations to the Koopman operator. A
feedback controller is then designed using LMPC to obtain
closed-loop stability of the bilinear system. Due to the
bilinearity of the Koopman model, a quadratic CLF can
be obtained easily via an optimization problem. Further-
more, based on the stability of the Koopman model, the
original nonlinear system under the proposed controller can
be guaranteed to be stable, provided that a continuously
differentiable inverse mapping exists. The proposed method
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was applied to a nonlinear Van der Pol example and the
theoretical analysis of the paper was verified.
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