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ABSTRACT

Hydraulic fracturing is a technique to extract oil and gas from shale formations, and obtaining a uniform
proppant concentration along the fracture is key to its productivity. Recently, various model predictive
control schemes have been proposed to achieve this objective. But such controllers require an accurate
and computationally efficient model which is difficult to obtain given the complexity of the process and
uncertainties in the rock formation properties. In this article, we design a model-free data-based rein-
forcement learning controller which learns an optimal control policy through interactions with the pro-
cess. Deep reinforcement learning (DRL) controller is based on the Deep Deterministic Policy Gradient
algorithm that combines Deep-Q-network with actor-critic framework. Additionally, we utilize dimen-
sionality reduction and transfer learning to quicken the learning process. We show that the controller
learns an optimal policy to obtain uniform proppant concentration despite the complex nature of the

process while satisfying various input constraints.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Hydraulic fracturing is performed for extraction of oil and
gas from rocks that have low porosity and low permeability
(Economides et al., 1998). This is achieved by first carrying out
controlled explosions within the formation to create initial frac-
ture paths. Next, a fluid called pad is injected at high pressures to
extend the initial fracture paths, which is followed by injection of
a fracturing fluid which consists of water, additives, and proppant
at high pressures in order to further extend these fractures into
the rock formation. Once pumping is stopped, these fractures close
due to the natural stresses in the rock formation as the fracturing
fluid leaks into the reservoir, leaving behind proppant in the frac-
tures. The trapped proppant acts as a highly conductive medium
for easier extraction of oil and gas. The proppant concentration and
the fracture geometry are the two main factors that affect the effi-
ciency of the hydraulic fracturing process. To achieve the desired
values for these attributes, it is necessary to design an optimal
pumping schedule. Many works have been conducted in this direc-
tion (Nolte, 1986; Gu and Desroches, 2003; Yang et al., 2017). These
works consider this control problem in an open-loop formulation.
Additionally, there have been efforts to design model predictive
control (MPC) schemes for hydraulic fracturing processes after ad-
vances in real-time measurement techniques such as downhole
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pressure analysis and microseismic monitoring (Gu and Hoo, 2015;
Siddhamshetty et al.,, 2018). However, an MPC system requires a
model which is difficult to build given the various uncertainties in
the rock formation and is an ongoing research area (Narasingam
et al., 2017; Narasingam and Kwon, 2017; Narasingam et al., 2018;
Sidhu et al., 2018; Narasingam and Kwon, 2018; Bangi et al., 2019;
Bangi and Kwon, 2020). Additionally, the performance of a MPC
system depends on its tuning parameters, and the accuracy of the
process model. It is a common practice to continuously monitor
the controller’s performance and begin a model re-identification
process or re-tune the parameters of the controller in case the con-
troller performance degrades, which is time-consuming and is re-
source intensive. To summarize, there are two challenges with de-
signing a model-based controller for hydraulic fracturing process:
(a) Its first principles model involves highly-coupled partial differ-
ential equations (PDEs) with moving boundaries which are compu-
tationally expensive to solve at each sampling time, and (b) Regu-
lar re-tuning of controller and model parameters.

To address the limitations of a model-based controller, we
design a model-free data-based controller suitable for nonlinear
chemical processes, specifically for hydraulic fracturing, by combin-
ing concepts from reinforcement learning (RL) and deep learning
(DL). RL is a branch of machine learning which deals with solv-
ing complex decision making problems, and it involves an agent
which interacts with the environment (process) to derive an opti-
mal policy in order to reach the desired target (Sutton and Barto,
1998; Suglyama, 2015). A schematic of the RL process is shown
in Fig. 1. RL has delivered tremendous success in computer games
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Fig. 1. A schematic of a standard RL algorithm.

(Mnih et al., 2013; 2015), board games (Tesauro, 1995; Silver et al.,
2016), robotics (Lehnert and Precup, 2015; Lillicrap et al., 2015),
etc. Furthermore, developments in DL have enabled its combina-
tion with RL, which has achieved huge success such as AlphaGo
defeating human champions in the game Go (Silver et al., 2017).
Another RL algorithm called deep-Q-network (DQN) (Mnih et al.,
2013) has achieved the human level performance in Atari video
games. Despite its success in other domains, application of RL to
process control has been very limited (Brujeni et al., 2010; Badg-
well et al, 2018; Shin et al., 2019; Kim et al., 2020; Yoo et al.,
2021; Pistikopoulos et al., 2021) even though many process con-
trol problems can be defined as Markov decision processes (MDPs)
(Lee and Lee, 2006). The challenge is the lack of RL algorithms that
can efficiently deal with continuous state and action spaces, which
is usually the case with process control applications. It is possi-
ble to discretize and use Dynamic programming (DP) to obtain a
solution to the RL problem in such cases, but there is an expo-
nential growth in computational complexity with respect to the
number of states and actions which is referred to as the curse of
dimensionality (Bertsekas, 2005). Approximate dynamic program-
ming (ADP) was proposed, which utilizes simulations and function
approximators to overcome this challenge (i.e., curse of dimension-
ality). In addition to ADP, many other RL algorithms have been pro-
posed for continuous-time nonlinear systems (Vrabie and Lewis,
2009; Vamvoudakis and Lewis, 2010). But these algorithms require
high-accuracy models that are either available or that can be iden-
tified using system identification methods. Given the limitations
of model-based RL methods, several data-based RL methods have
been proposed, which come with their own limitations (Lee and
Lee, 2006). The recent success of combining RL with DL has led to
a resurgence of interest in data-based RL for continuous state and
action spaces.

In this article, we design a deep reinforcement learning (DRL)
controller which is based on actor-critic approach and temporal
difference (TD) learning (Spielberg et al., 2019; Ma et al., 2019).
The actor (controller) interacts with the process iteratively and im-
plements control actions that give maximum rewards. The critic,
as the name suggests, evaluates the control policy followed by the
actor and modifies it to achieve the optimal policy. In the DRL con-
troller, the actor and the critic are both represented by two deep
neural networks (DNNs) in order to effectively generalize them for
continuous-time variables. The DRL controller also utilizes deep
deterministic policy gradient (DDPG) algorithm (Silver et al., 2014)
which is usually used for continuous action spaces. We also uti-
lized concepts such as replay memory (RM), target networks and
constrained action spaces to make learning more suitable for com-
plex systems like hydraulic fracturing (Lillicrap et al., 2015). Replay
memory (RM) is used to break the temporal correlation between
two consecutive experiences obtained from the process. Without
the RM, the DRL controller will learn from temporally correlated
tuples of online data which will lead to inefficient learning. Tak-
ing random experiences from the RM breaks this correlation, and
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hence, speeds up the learning process. Target networks are sepa-
rate networks used to stabilize the learning process by providing
stable targets to the actor and the critic networks. At the begin-
ning of the learning process, these networks are initialized as the
copies of the actor and the critic networks, and during the learning
process their parameters are constrained to change slowly, which
enhances their stability. Action spaces are to RL what control input
spaces are to process control. The relationship between the con-
troller’s action in the DRL framework and the control input from
the process control perspective is direct. The DRL controller tra-
verses the action space to obtain an optimal control policy for the
defined control problem. In order to enforce constraints on the ac-
tion space, we included an action-based reward function in the
overall reward calculation. Additionally, we utilized Principal Com-
ponent Analysis to reduce the dimension of the RL state before
using it in the learning of the actor and the critic. Transforming
the RL state to the reduced PCA space helped in faster learning of
the control policy. Moreover, we utilized transfer learning wherein
the DRL controller learns offline using a data-based reduced-order
model (ROM) first and then learns online from the process. We
summarize the novelty of our framework as follows: (1) We pro-
pose to use a data-based model-free DRL controller for control of a
hydraulic fracturing process which is a complex moving-boundary
system and is difficult to develop a highly accurate model; (2)
We propose to utilize PCA in the DRL control framework to re-
duce the dimension of the RL state; (3) We propose a cumulative
reward function to handle various process constraints of the hy-
draulic fracturing process; and (4) We propose the use of transfer
learning for the DRL controller to reduce the online learning time.

The remainder of this text is organized as follows:
Section 2 provides a brief background on RL and actor-critic
approach. Section 3 provides the DRL framework for data-based
control of discrete-time nonlinear processes. Section 4 presents the
first principles model of hydraulic fracturing. Section 5 presents
the design of a DRL controller for a hydraulic fracturing process
including a ROM of a hydraulic fracturing process utilized in this
work. Section 6 presents the results and analysis of the designed
DRL conroller. Section 7 presents a few conclusions related to the
closed-loop simulation results using the controller.

2. Background
2.1. Reinforcement learning

In RL framework, an agent interacts with the environment E at
its current state s; by implementing control action a; and receiving
a reward of r;. The cumulative future discounted reward is given by

Re = Y20 v*rek (M

where the discount factor is 0 < y < 1. The expected return Q after
implementing action a; on state s; is defined as

Q(s,a) =E[R¢|s; = s, a = a] (2)

The optimal action-value is defined as the maximum expected re-
turn after implementing action a; on state s;, and is given as

Q*(s.a) = maxE[R:|s; = 5. a; = a] (3)

The optimal action-value Q* can be calculated by iteratively solving
the Bellman equation which is shown below:

Q*(s.a) = maxE[r+ y max Q*(s'. a') |s. a] (4)

where s’ and @’ are the subsequent state and action, respectively.
Overall, the solution to a RL problem is obtained by implement-
ing control actions on the environment and by learning an optimal
control policy by receiving data from it.
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Fig. 2. A schematic of the actor-critic framework.

2.2. Actor-critic framework

The actor-critic framework is a widely used RL algorithm as it
can be generalized to systems with continuous spaces. It has two
components, i.e., the actor and the critic. The actor finds an opti-
mal policy, and the job of the critic is to evaluate the policy cal-
culated by the actor. With each iteration of learning, the actor is
updated by the policy gradient theorem by adjusting the parame-
ters of the policy function which can be represented using func-
tion approximators like neural networks. The critic estimates the
action-value function Q which can be represented using a neu-
ral network and its parameters are updated using stochastic gra-
dient descent (SGD) method such that the Bellman optimality con-
dition is reached. A schematic diagram of the actor-critic algorithm
is shown in Fig. 2.

3. Deep reinforcement learning (DRL) controller

The DRL controller (Spielberg et al., 2019) is a model-free con-
troller based on the actor-critic framework. It utilizes two DNNs;
one to generalize the actor in the continuous state space, and the
other to generalize the critic in the continuous state and action
spaces.

3.1. States and actions

Let u; and y; be the input applied on the system at time ¢t and
output from the system, respectively. The RL action a; is same as
the input u; as understood from a control perspective. Therefore,
ar = u;. But the relationship between RL state s; € S and the state
of the system is different as the RL state s; should contain informa-
tion about the system deemed necessary for the successful work-
ing of the RL controller. An example of a RL state definition can
contain past outputs and the current deviation from the set-point
as shown below:

St i= (Ve Ye1. - Yeed,, e = Ysp)] (5)

where dy is the number of past outputs to be included in the
DRL controller. The state of the system is initialized as y, in every
episode, and ys is the defined set-point for the controller. During
the learning process, in every episode, and at every time step, the
RL state s; is updated as we obtain measurements from the sys-
tem. Additionally, the RL controller computes a deterministic con-
trol policy u for each state s; € S such that u : S — A, where a; € A.
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3.2. Reward functions

The goal of the RL controller is to reach the set-point using an
optimal policy n that maximizes the aggregate reward that the
agent gains from the system. Two examples of reward functions
r:SxAxS— 9% are shown below:

if |yi¢ *Yi,sp| <€
otherwise (6)

Cc
r(St, Ar, Se1) = {_Zr} i _yispl
1= 5 5

Vie(l,...n)

0 if Vit = YVisp|l > Vitw1 = Vi
r(st,atqswl):{_l OtLJg,rtWiSyel,sﬂ Vi1 yl,spl

(7)
where y;  is the it" output, y;, is the set-point for the it" output,
Vies1 is the subsequent it output, and € is the user defined tol-
erance. As per Eq. (6), the agent receives a reward of ¢ > 0 only if
all the outputs are within the tolerance limit. The reward function
of Eq. (6) leads to faster tracking but has the disadvantage of ob-
taining an aggressive control strategy. On the other hand, Eq. (7), a
polar reward function, assigns a reward of 0 if the deviation from
the set-point is monotonically decreasing for all n outputs at each
sampling time, and assigns a reward of -1 otherwise. This reward
function incentivizes gradual improvement towards the set-point,
which results in a smoother tracking performance and a less ag-
gressive control strategy.

3.3. DNNs as function approximators

The DRL controller utilizes two DNNs to approximate the pol-
icy and the Q functions. The actor utilizes a DNN with parame-
ters W, to generalize the policy function over the continuous ac-
tion space such that given the state s;, it produces control actions
ar = u(s¢, Wy). Likewise, the critic utilizes a DNN with parameters
W to generalize the Q function such that given the state s; and ac-
tion at, it produces Q values as network outputs, i.e., Q* (s¢, ar, We).

3.4. DRL training

The objective of DRL controller training is to calculate the
parameter values W, and W, such that, once the networks are
trained, the actor network can be used to obtain the optimal con-
trol actions for any given state.

The DDPG algorithm (Lillicrap et al., 2015) was proposed in or-
der to improve the trainability of the existing policy gradient the-
orem. DDPG borrows a concept of mini-batch training from DQN
method which involves learning in mini-batches rather than learn-
ing directly from online data. DQN utilizes a RM to store historical
data in the form of [s® a® r® ¢’G+D] and during the training
process, mini-batches of data are sampled from the RM which are
used to update the parameters of the DNNs that represent the ac-
tor and the critic. Using mini-batches of size M from the RM helps
in stabilizing the training process, and randomly sampling tuples
from the RM helps in breaking the temporal correlations between
the samples. At each sampling time, the latest tuple is stored in the
RM, and an old tuple is discarded from the RM in order to keep its
size constant. The parameters of the critic are updated using SGD
and samples from the RM so that the TD error is minimized, and
the update equation is given as follows:

M
o » o
R D (AR ICEN I CAR TARTA)

i=1
* Vi, Q1 (50, 1 (s, W), Wo) | (8)
where
FO 1D 49y Qi(s'D, (D Wy), W), Vi=1,....M (9)
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The parameters of the actor are updated in a batch-wise manner
using M samples from the RM, following the DPG theorem, and
the update equation is as follows:

Wy« Wo + 5 S [V it (59, W) VaQH (s, ¢, Wo) | o] (10)

To further stabilize the learning process, target networks are used
to provide stable targets to the critic. In Eq. (8), the parameters
W, are utilized to calculate y in Eq. (9), which is a target for the
critic network. If the target updates are erratic then the parameter
updates are also erratic, which may cause the network to diverge.
Hence, separate neural networks called target networks are utilized
to provide stable targets to be used in Eq. (9). Suppose the param-
eters of the target networks are W, and W/, then, Eq. (9) changes
as follows:

JO — 1 4 9Qr(s'®, M(s/("),Wg),Wc/),Vi =1,....M (11)
where

W/« W+ (1 -1)W/ (12)
W)« tWg+ (1 —1)W, (13)

where t is the target network update rate. As per Eqs. (12) and
(13), the parameters of the target networks slowly track the critic
and the actor network, which ensures that the targets are changed
slowly, thereby, stabilizing the learning process.

In practical applications, even though the action space is usually
continuous, it is bounded too. This is because the control action is
usually a representative of physical quantities like flow rate, pres-
sure, and these physical quantities have limits. In order to ensure
that the control actions are predicted within the set control limits,
it is necessary to bound the actor network. If the actor network
is not bounded, then the critic will continue to push the actor to
predict control actions outside the control limits. To avoid this sce-
nario, gradient clipping is used to bound the output layer of the
actor network. This is done by multiplying the gradient used in
the update step, Eq. (10), with an appropriate factor. Suppose the
action space is bounded in the interval [q;, ay] such that a; < ay,
then the gradient clipping is done as follows:

VaQH (s, a, w) < VoQH (s, a,w)
(ay —a)/(ay —ay) if V4Q* (s, a, w) increases a (14)
(a—ay)/(ag —a;) otherwise

With gradient clipping in place, the control actions will saturate at
the upper bound ay when the critic continually recommends in-
creasing the control actions. On the other hand, the gradient clip-
ping will ensure that the control actions do not decrease beyond
the lower limit a; when the critic continually recommends de-
creasing the control actions. Combining the above described con-
cepts, the algorithm for training the DRL controller is provided in
Algorithm 1.

As presented in the algorithm, RL training is started by first ini-
tializing the parameters of the actor and the critic network. Then
the target networks are initialized as outlined in Line 3 of the al-
gorithm. In Line 4, RM is initialized with tuples of historical data.
Then, for each episode, a set-point is defined (Line 5). Now for
each time step of the episode, the RL state s is defined (Line 8), a
control action a; is obtained from actor, which is implemented on
the system to obtain a new output y,,; and reward r; (Lines 9 and
10), and the latest tuple (s, a¢,s’,1¢) is stored in the RM (Line 12).
Now, M samples are uniformly drawn from the RM to update the
actor network, the critic network, and the target networks (Lines
13-23). Lines 8-23 are repeated until the end of the episode.

Computers and Chemical Engineering 154 (2021) 107489

Algorithm 1 DRL controller training.

1: Output: Optimal control policy w(s, Wq)
2: Initialize Wy, W,
3: Initialize W < Wy, W/ < W,
4: Initialize RM with historical data
5: for each episode do
Set the set-point for episode as ysp
for each stept =0,1,...T — 1 do
Set's < [ye.¥e-1.-- Ye_dy» e — Ysp)]
: Set ar < (s, Wy)
10:  Implement a; and obtain y,,; and r;
1 Sets’ < [ye.Ye 1. Ye_q, OVt = Ysp)]
12:  Store tuple (s, a, s, ) in RM
13:  Obtain M tuples from RM
14: fori=1,.. M do
150 JO < r® 4 e, ws W) W)
16: end
17. Update W, using Eq. (8)
18: fori=1,...M do

6
7:
8:
9

19: Calculate V,Q#(s®, a, WC)|a=//_(s(i) Wo)
20: Clip gradient using Eq. (14)
21:  end

22:  Update W, using Eq. (10)

23:  Update W/ and W/ using Eq. (12) and (13), respectively
24: end

25: end

4. Hydraulic fracturing process

For simulation purposes, we utilize a first-principles model of
hydraulic fracturing which comprises of 3 subprocesses: (a) Frac-
ture propagation; (b) Proppant transport; and (c) Proppant bank
formation. They are briefly discussed in the following subsections.

4.1. Fracture propagation

We assume the fracture propagation follows the Perkins, Kern
and Nordgren (PKN) model (Perkins and Kern, 1961; Nordgren,
1972). The assumptions included are as follows: (a) the fracture
length is assumed to be greater than the fracture width, and hence,
the fluid pressure in the vertical direction remains constant; (b)
the fracture is confined to a single layer because of large stresses
in the rock layers above and below the fractures; and (c) the frac-
turing fluid is assumed to be incompressible, and the rock proper-
ties such as Young’s modulus and Poisson’s ratio are also assumed
to be constant. Following the assumptions, the fracture geometry
and fracture cross-sectional area take an elliptical and rectangu-
lar shape, respectively. Lubrication theory is utilized to explain the
fluid momentum inside the fracture which relates the fluid flow
rate, qz, in the horizontal direction to the pressure gradient, —3—’22,
as follows:

Q=T o (15)

where H is the fracture height, W is the fracture width, and u is
the fracturing fluid viscosity. The maximum width of the fracture
can be calculated using the net pressure exerted by the fracturing
fluids as follows:

W= sz(;fuﬂ) (16)

where v is the Poisson’s ratio, and E is the Young’s modulus of the
rock formation. The local mass conservation of an incompressible
fluid leads to the continuity equation which is:

JA  0q;

E—FE—FHU:O (17)
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where A is the cross-sectional area of the fracture (calculated as
A=mWH/4), U is the fluid leak-off rate per unit height, t is the
time elapsed since the beginning of pumping, and z is the spa-
tial coordinate in the horizontal direction. Plugging Eqs. (15) and
(16) into Eq. (17) results in the following partial differential equa-
tion of W:

il il 92
ZH — i [3w2 (TW)2 + W3BZ‘Q’i| +HU =0 (18)

The two boundary conditions and an initial condition for the pro-
cess are shown below (Gu and Hoo, 2015):

W(z0) =0 (20)

where Qg is the fracturing fluid rate at the wellbore, and L(t) is
the length of the fracture varying with time.

4.2. Proppant transport

In this model, it is assumed that the proppant moves at a rate
equal to the superficial velocity of the fracturing fluid in the hori-
zontal direction, and with the settling velocity relative to the frac-
turing fluid in the vertical direction. The other assumptions utilized
are: (1) the size of proppant particle is large enough that its diffu-
sive flux is neglected and only its convective flux is considered; (2)
the proppant particle-particle interactions are neglected while only
drag and gravity effects are considered; and (3) the uniform size of
proppant particles is considered. Utilizing the assumptions with re-
gards to proppant transport as explained in (Siddhamshetty, 2020),
the advection of proppant can be defined in the following manner:

3(‘5&0 n %(WCVP) -0 (21)

C(0,t) =Co(t) and C(z,0)=0 (22)

where C(z,t) is the proppant concentration at distance z in the
horizontal direction from the wellbore at time t, and Cy(t) is the
proppant concentration at the wellbore varied with time. Vj is
the net velocity of proppant and is calculated using the following
equation (Adachi et al., 2007):

V,=V—(1-0)V, (23)

where V is the superficial fluid velocity, and V; is the gravitational
settling velocity which is calculated using the following equation
(Daneshy, 1978):

~ (1 =0)*(psa — py)gd?

Vs = 10182018, (24)

where py is the pure fluid density, pyy is the proppant particle
density, g is the gravitational constant, d is the proppant particle
diameter, and w is the fracture fluid viscosity which is dependent
on the proppant concentration, C (Barree and Conway, 1995):

C -0
u(€) = Mo(1 - Cmax> (25)

where g is the pure fluid viscosity, @ is an exponent in the range
of 1.2 to 1.8, and Cpax is the maximum theoretical concentration
calculated using the equation Cmax = (1 — ¢@)pyy Where ¢ is the
proppant bank porosity.
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4.3. Proppant bank formation

When proppant settles down in a fracture, a proppant bank is
formed whose height § can be calculated using the following equa-
tions (Gu and Hoo, 2014; Novotny, 1977):

d@w) VW
Ty (26)
8(z,0) =0 (27)

where Eq. (27) is the initial condition for Eq. (26). A point to note
here is that this model comprising of Eqs. (15)-(27) was used to
generate data for the RM and also as a simulation environment in
designing the DRL controller.

5. Design of DRL controller for hydraulic fracturing

In our work, we design a DRL controller with the objective of
obtaining an optimal control policy that leads to a uniform prop-
pant concentration profile at the end of the pumping process.

5.1. RL state definition and dimensionality reduction

In order to obtain a uniform concentration profile at the end of
the pumping process, we define a set-point Csp for the concentra-
tion at 6 different locations along the length of the fracture and
use these concentration variables as the outputs to be controlled.
Let these be variables be represented as C; where i =1,...,6. An-
other important parameter in the hydraulic fracturing process is
the total amount of proppant injected into the fracture A; by time
t. The total amount to be injected in the entire pumping process
is prefixed, and this criteria has to be met by the DRL controller at
the end of the pumping process. In order to ensure that this con-
straint is satisfied, we include A; in the output definition with the
prefixed value as its set-point Asp. Therefore, the output vector at
time ¢ is as follows:

Ve=[Cie Co Gy Ca Cs¢ Cor Acl” (28)

In our work, unlike Eq. (5), we propose to use a simpler definition
of RL state as follows:

st = [ye] (29)

In order to quicken the learning process, we propose to reduce the
dimension of the RL state by using Principal Component Analysis
(PCA) on the concentration vector, i.e., [Cqy Cor C3¢ Cy¢ Cs¢ Coe]. We
use historical data to obtain the Principal Components (PCs) and
select the most dominant one to calculate the corresponding PCA
score. Therefore, the reduced output vector at time t is as follows:

Yre = [Cr.t At]T (30)

Using the reduced output vector, the RL state definition is changed
as follows:

st :=[yre] (31)
5.2. Action

Action a; is the concentration of proppant injected into the frac-
ture at time t. The unit of a; is in terms of ppga which is a con-
centration unit used in petroleum engineering that refers to one
pound of proppant added to a gallon of water. The range of a; in
ppga is [0 10] but is normalized to [0 1]. The DRL controller imple-
ments a control action every 100 s, and we assume that the mea-
surements of the concentrations at the selected 6 locations will be
available by then.
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Fig. 3. A schematic of the proposed learning strategy.

5.3. Reward function

At each time step, the controller receives a reward r; from the
process whose aggregate value is to be maximized by the con-
troller. Since the objective of the controller in set-point tracking is
to minimize the tracking error, we incorporate this in the reward
function r; as follows:

1- rtracking(t) %f[ < lend )
() =11 if |Viena — Vispl =€ Vie{1,2...7}
penalty s [1 — Tirgeking ()] if |Viena — Yispl > € Vie{1,2...7}

(32)

where Tgcing 1s the squared euclidean distance of the elements of
the output vector from their respective set-points, and is defined
as:

Co—Copl?
Ttracking () = @1 * Z?:] % + wy * |A; *Asplz (33)

where since the variables C; and A are normalized between 0 and 1,
the range of r; is [0 1]. The weights w; and w, indicate the signifi-
cance of the variables C; and A, respectively, to the reward function
r.

Additionally, in our work, we do not use the gradient clipping
technique to ensure that the control actions are within the feasible
range [a; ay] as specified in Algorithm 1. Instead we use a reward
function r, to achieve this goal. The reward function r, is defined
as follows:

ifa(t) e [0 1]

otherwise (34)

rp(t) = {2a(t)*(a(t)1)

025
Since the range of [a; ay] is normalized to [0 1], we use the prod-
uct term a(t) * (a(t) — 1) in r, to penalize the controller if the con-
trol actions predicted are outside the feasible range.

Also, based on the knowledge about the process from the litera-
ture, we know that the optimal solution should follow a monotoni-
cally increasing profile (Nolte, 1986). But Nolte’s power law pump-
ing schedule is practically infeasible to implement. Hence, a step-
wise increasing profile which is practical to implement is desired
from the DRL controller. This can be obtained by enforcing a con-
straint on the amount of change in two consecutive inputs. We in-
clude this information in the form of a reward function r3, which
is defined as follows:

if Aa(t) €[00.3]

otherwise (35)

0
r3(t) = { Aa(t)+(Aa(t)-0.3)
0.0225

where Aa(t) = a(t) —a(t — 1). The reward function r3 ensures that
the controller learns a control policy which is monotonically in-
creasing with an increment less than 3 ppga/stage. The upper limit
of 3 ppga/stage when normalized is equal to 0.3.

Therefore, considering all the constraints, the net reward r; that
the controller receives at time ¢t is the cumulative sum of the re-

wards obtained using Eqs. (32)-(35) as shown below:
e =T11(t) +12(t) +13(t) (36)

Considering the reduced RL state definition and the tailor-made
reward function, the algorithm for training the DRL controller for
the hydraulic fracturing process is shown below in Algorithm 2.

Remark 1. Theoretically, the DRL controller is able to obtain an
optimal control policy without any process knowledge. Practically,
incorporating any process knowledge in the DRL controller, as in
Eq. (35), helps in reducing training time, and achieving faster con-
vergence to a solution. This is because we are restricting the input
space for the DRL controller to obtain a solution.

5.4. DRL controller learning

In our work, we use two stages of learning. In the first stage,
the controller learns using a reduced-order-model (ROM) of the
process and the learning process is terminated when the controller
learns a sub-optimal policy. In the second stage of learning, trans-
fer learning is used wherein the sub-optimal controller parameters
are used as initial values, and the controller continues to learn by
interacting with the process directly. A schematic of our learning
strategy for the DRL controller is shown in Fig. 3.

5.5. DRL controller hyperparameters

The actor and the critic are each represented using a DNN. Each
of the DNNs has two hidden layers, where the first hidden layer
consists of 400 neurons and the second hidden layer consists of
300 neurons. A large number of neurons are utilized because these
networks have to represent complex policy and value functions for
continuous state and action spaces. Rectified linear unit and lin-
ear activation functions were used in the hidden layers and out-
put layer, respectively. For the first stage of learning, the parame-
ters of the actor and the critic network, i.e., the weights and the
biases, were initialized using Xavier initialization as this helps in
maintaining constant variance in the outputs from the neurons
across every layer. This constant variance helps prevent vanish-
ing or exploding gradients. Also, batch normalization (loffe and
Szegedy, 2015) was used in the hidden layers in order to ensure
that the training is effective as different variables could have differ-
ent units and could vary on different scales. Finally, we used Adam
optimizer (Kingma and Ba, 2015) in order to train the networks
as it is computationally efficient and well-suited for our optimiza-
tion problem with a large number of parameters. Adam optimizer
combines the advantages of AdaGrad and RMSProp, two popular
stochastic optimization methods, by computing adaptive learning
rates for each parameter using estimates of the first and the sec-
ond moments of the first-order gradients (Kingma and Ba, 2015).
The hyperparameters used in our work are given in Table 1.
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Fig. 4. Training input for building ROMs.

Table 1

Hyperparameter values for the DRL con-

troller.
Actor learning rate 0.01
Critic learning rate 0.01
Target network update rate  0.001
Minibatch size 16
RM size 4110
Reward discount factor 0.9
Control action limits [0, 1]
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5.6. ROM for hydraulic fracturing

In our work, we developed a ROM by applying the multi-
variate output error state space (MOESP) algorithm (Van Over-
schee and De Moor, 1996) to regress a linear time-invariant state-
space model of the hydraulic fracturing process, which is presented
in the following form:

X(tiy1) = Ax(ty) + Bu(ty) (37)

y(te) = Hx(ty) (38)

where y(t;) is the concentration of proppant at 25 different lo-
cations, i.e., [ccw, CCg, ..., CCy16], Where cc;, is the concentration at
location z; with z; —z;_1 = 0.5 m, and u(t,) = [ccw(ty), . .. cCo (tx —
6516)] is the input to the state space model where ccy, is the con-
centration at the wellbore, and 6 is the input time-delay due to
the time required for the proppant to travel from the wellbore to
location z;. In order to obtain the ROM, we obtained training data
from the first principles model presented in the previous section
by giving input as shown in Fig. 4.

The locations that are of interest for the purpose of designing
the DRL controller are z = 36, 72, 108, 144, 172, 216 which are in-
cluded in the output of the ROM. Fig. 5 shows the comparison be-
tween the predictions from the ROM and from the first principles
model at the wellbore and at these 6 locations. It can be observed
that the predictions of the proppant concentration at these loca-
tions across the fracture are fairly accurate.

6. DRL controller results
6.1. Initializing the learning process

To briefly summarize the hydraulic fracturing process, a frac-
turing fluid along with proppant is injected at high pressures

Fig. 5. Output predictions from the ROMs at the wellbore and 6 other locations.
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Fig. 6. Net reward gained in each episode during the ROM learning.

Table 2
Hyperparameter values used in
rewards calculation.

w1 0.1
wy 09
penalty 0.1

to extend the fracture and to deposit proppant inside the frac-
ture which acts as an artificial medium for the easier extraction
of oil and gas. The objective of the DRL controller is to learn a
control policy with injected proppant concentration as the ma-
nipulated variable and the concentration at 6 locations, i.e., z=
36, 72,108, 144,172, 216 from the wellbore as the controlled out-
puts with the objective of obtaining a uniform concentration of
10 ppga at these locations. The limits for the control actions are
0 and 10 ppga. The total fracking time considered is 1220 s. Dur-
ing the first 220 s of the injection process, called pad time, no
proppant is injected, and thereafter, proppant injection begins. The
pad time of 220 s was fixed in order to prevent premature termi-
nation of the hydraulic fracturing process, due to tip screen-out.
So the DRL controller learns a control policy from 220 s onwards.
The injection process occurs over 10 stages with a constant fractur-
ing fluid rate of Q = 0.03 m3/s in order to reach a fracture length
of 135 m.

For the construction of the RM, we generated simulation data
by implementing 411 input profiles on the first-principles model
and collected 4110 snapshots of input-output data. PCA was used
on the RM data to calculate the dominant PC in order to reduce the
RL state during the learning process. In each episode of learning,
the set-point for C; is 10 ppga and for A is 24,000 kgs but after nor-
malization these values change to 1. The tolerance for C; is 0.08 and
for A is 0.0417 after normalization. These tolerance values should
be selected carefully as stricter tolerances will require longer train-
ing times, and laxer tolerances will result in poor performance of
the DRL controller. The parameters used in the rewards calculation
are tabulated in Table 2.

6.2. First stage of learning

In the first stage of the learning process, the parameters of the
DRL controller are initialized as described in the previous section,
and the learning process using the ROM was started. The DRL con-
troller implements the control action as predicted by the actor and
implements it on the ROM to obtain the outputs. The rewards are
calculated using Eq. (36), and the tuple (s, a,s’,r) is stored in the
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Fig. 7. Net reward gained in each episode during the entire learning process of the
DRL controller. Please note that the learning curve of the second stage continues
from Fig. 6, and corresponds to the episodes between 603 and 724 in this figure.

RM. Then M = 16 tuples are randomly selected from the RM and
used to update the actor, critic, and the target networks as pre-
sented in Algorithm 2. The learning process is terminated when
the following criteria are satisfied: (a) the net reward gained in an
episode is 0.75 times the theoretical maximum (obtained from lit-
erature); and (b) the total amount of proppant injected is within
the tolerance.

The DRL controller reaches the above-mentioned criterion at
603 episodes and in order to track the learning process, the net re-
ward gained in each episode is plotted as shown in Fig. 6. Initially,
since the weights and the biases of the DNNs are randomly ini-

Algorithm 2 DRL algorithm for hydraulic fracturing.
1: Output: Optimal control policy (s, Wy)

2: Initialize Wy, W,

3: Initialize W} « Wy, W/ « W,

4: Initialize RM with historical data

5: Calculate the dominant PC

6: Set the set-point for DRL controller as ysp
7: for each episode do

8: for eachstept=0,1,...T -1 do

9:  Calculate y,; using y; and PC

10:  Set s « [yr]

11:  Set ar < u(s,Wy)

12:  Implement a; and obtain y; 4

13:  Calculate y,¢,q using y;,q and PC

14:  Sets’ <« [yrri1]

15:  Calculate r; using Eq. (36)

16:  Store tuple (s, at,s’, ;) in RM

17 Obtain M tuples from RM

18: fori=1,...Mdo _ )
1§D < r® 4 yus” n W)W
200 end
21:  Update W, using Eq. (8)
222 fori=1,..Mdo
23: Calculate VoQ# (sD, q, WC)‘a:M(s(i),Wa)
24:  end

25:  Update W, using Eq. (10)

26:  Update W/ and W/ using Egs. (12) and (13), respectively
27: end

28: end
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Fig. 8. The input profile implemented in the last episode.

tialized, the DRL controller shows poor performance. From episode
17, the controller performs reasonably well as observed in Fig. 6,
but does not meet the criterion for termination until episode 603
wherein it gains a net reward of 3.481.
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6.3. Second stage of learning

In the second stage of the learning process, the weights and the
biases are initialized using the parameters obtained from the last
episode of learning from the previous stage. The learning process
is repeated as mentioned in Algorithm 2 and is terminated when
all the states (i.e., the concentrations at 6 locations and the to-
tal amount of proppant injected) reach their respective set-points.
The DRL controller is able to meet the criteria by episode 724. The
learning curve in terms of net rewards per episode for both the
stages is shown in Fig. 7. Initially, the curve undergoes fluctua-
tions as the parameters are randomly initialized in the first stage,
and thereafter, the controller performance improves until episode
603 where the criteria for the first stage learning is satisfied. The
DRL controller continues to improve even in the second stage un-
til episode 724 wherein the controller reaches the desired control
objectives.

Fig. 8 shows the input profile implemented by the controller in
the last episode of learning, and Fig. 9 shows the evolution of the
concentrations at the selected locations in the same episode. The
input profile obtained is a step-wise increasing profile with the in-
jected proppant concentration values within the specified control
limits of 0-10 ppga, and a maximum step increase of 3 ppga be-
tween two control actions. Additionally, as seen in Fig. 9, all the
states are within their specified tolerance limits from their respec-
tive set-points. Hence, learning was terminated at the end of this
episode.
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Fig. 9. Evolution of states in the last episode.
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Fig. 10. The input profile obtained from the DRL controller (left) and the concentration profile at the end of pumping process (right) are presented.

In order to test the DRL controller’s performance, we stop the
learning process, utilize the actor to predict control actions, and
obtain the corresponding outputs. Fig. 10 shows the inputs pre-
dicted by the DRL controller, and the concentration profile across
the fracture length at the end of the proppant injection process.
The input profile predicted by the controller satisfies the con-
straints, and the concentrations at the 6 selected locations are
within the tolerance limits from the set-point.

7. Conclusions

This paper presents a DRL control framework based on DDPG
and dimensionality reduction via PCA. This framework is able to
learn a control policy for a high-dimensional and complex system,
i.e., hydraulic fracturing. We demonstrate that multiple input con-
straints can be enforced on the controller through a careful design
of the reward function. In order to quicken the learning process,
we used a ROM to learn a sub-optimal policy offline and then used
the learned parameters to re-initialize the learning process on-
line. Our proposed framework enables the DRL controller to quickly
learn a control policy in a continuous state and action space via
self-learning. The advantage of the DRL controller over traditional
controllers is the inherent ability to learn from data/measurements
in an automated manner. On the contrary, careful initialization of
various controller parameters is necessary, and using informative
RL states along with a clear reward function that aligns with the
objectives of designing the controller are both important factors
too.
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