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Abstract—In this paper, we propose an improvement of the
Hungarian method to optimally solve the task assignment prob-
lem for a multi-robot team. Our proposed method involves
all robots collaboratively working together to disseminate cost
information and then individually computing an assignment that
optimizes a particular global goal. Through theoretical analysis,
we show that our approach is able to produce a common
optimal assignment, sending significantly fewer messages and
resulting in faster convergence than other approaches based on
the Hungarian method. Our experimental results back up this
claim, demonstrating that, even in the worst case, our approach
sends a fraction of the messages required by other assignment
methods and as a result scales better as team size increases.

Index Terms—swarm robots, task allocation

I. INTRODUCTION

In future pervasive computing environments, it will be
common practice to deploy multiple robots for different appli-
cations such as search and rescue, environmental monitoring.
These robots need to collaborate with each other to accomplish
designated missions. Task assignment is a crucial component
in the coordination of large multi-robot teams and can serve as
a building block for more complex problems. Often times, task
assignment in a multi-robot scenario is concerned with finding
a one-to-one matching between robots and available tasks,
while either minimizing some assignment cost or maximizing
an assignment utility. This one-to-one matching ensures that
the robots in a team are not performing redundant tasks (i.e.,
tasks already completed by other team members), and can
contribute to the overall mission’s goals in the most effective
way possible. Task assignment can also serve as a means for
balancing the workload of a multi-robot team and making the
most out of limited resources.

Formally, the task assignment problem falls under the cat-
egory of linear sum assignment problems (LSAPs) [4], where
the Hungarian method was the first centralized algorithm
developed to produce an optimal solution in finite time [7].
Other methods, such as auction based algorithms [2], [3], have
since been shown to also produce optimal assignments for
LSAPs in finite time. Although existing methods are able to
produce optimal assignments in finite time, as the number
of robots that need to be assigned to tasks increases, the
need for global information regarding each robot’s state (e.g.,
costs, utility, etc.) can become highly prohibitive. The impact
of a large number of robots becomes especially problem-
atic in centralized approaches. Furthermore, in cases where

robots have limited onboard resources (e.g., energy) and a
limited communication range, relying on a single robot to
collect the needed information and compute the assignment
increases the chance of critical failures occurring, as well
as poses many other issues (e.g., leader selection, workload
balance). Many existing distributed algorithms to solve the
task assignment problem attempt to combat the issues facing
centralized approaches by having all robots work together to
collaboratively determine an assignment rather than relying on
a single coordinator. However, decentralized approaches must
also be concerned with ensuring that all robots converge on
the same assignment which can be a challenge in itself.

A large variety of distributed approaches have been pro-
posed to solve the task assignment problem, ranging from
game-theory based approaches [9] to consensus based ap-
proaches. Two of the most popular approaches, however, are
auction based methods and distributed versions of the Hungar-
ian method. Although these approaches have shown that they
can produce a common optimal assignment in finite time, they
are not without their problems. One issue with many of the
existing distributed algorithms is that they characterize their
performance based on the average computational load of each
robot or the total number of communication rounds performed
before the robots converge on an assignment. However, in
the case of resource limited robots, a more useful measure
of performance would be the total number of messages or
bytes sent before an assignment is reached. Characterizing
the performance of task assignment algorithms for multi-robot
teams using the total number of messages or bytes sent,
links the performance much closer to the actual amount of
energy that would be used by the robots when determining an
assignment. This is because the energy required to transmit
and receive messages from other robots within the team can
be orders of magnitude higher than that required to perform
onboard processing. It is also important to keep in mind
that this difference in energy consumption between processing
and communication grows as the communication distance
increases.

Our main contribution in this paper is the proposal of
RASTA (Request and Send Then Assign), an approach for
task assignment utilizing the Hungarian method that leverages
cooperation between robots in a team to disseminate needed
information in such a way that each robot can individually
compute its assigned task, and such that the overall assignment



is optimal. By focusing first on disseminating the information
needed for each robot to compute an assignment, and then
computing the assignment locally, RASTA effectively reduces
the total number of messages and data needed to be sent during
the assignment procedure. Furthermore, we prove through
theoretical analysis and simulation that RASTA requires sig-
nificantly less messages (and data) to be sent compared to
other similar distributed task assignment algorithms based on
the Hungarian method.

The remainder of this paper is organized as follows. In
Section II, we briefly review related work focused on solv-
ing the task assignment problem in a distributed fashion.
In Section III, we formally define the distributed the task
assignment problem. In Section IV-A we briefly discuss an
existing distributed task assignment algorithm. In Section
IV we discuss our proposed algorithm, and in Section V
we provide a theoretical analysis of its message complexity,
focusing on the total number of messages sent by the robots
and the size of each message. In Section VI we provide an
overview of the experiments that we performed and discuss
the results of our simulations. Finally, in Section VII we make
concluding remarks regarding our results.

II. RELATED WORK

Distributed task assignment has been addressed using two
main approaches: the Hungarian method based algorithms and
auction based algorithms.

A distributed Hungarian method [5] has been developed in
which robots share their states with their neighbors. These
states consist of the robot’s local information denoted by
a bipartite weighted graph, a vertex labeling function, and
a counter value. Upon receiving messages containing state
information from each of their neighbors, robots then update
their own state and perform a step of the Hungarian method
to produce a new state that brings them closer to finding an
assignment. Robots continue to send messages containing state
information to their neighbors until an assignment is found and
propagated to all the other robots. The authors have shown that
for n robots, a common optimal assignment is found in O(n3)
communication rounds, and that during each communication
round ((2n) ∗ (4 + [ 14 log2(n)]) − 2) bytes are sent out by
each robot. A different approach [6], based on the Hungarian
method has also been taken. The robots maintain a forest of
all the alternating trees rooted in free task vertices as well
as a forest of the alternating trees in the admissible bipartite
graph. The forests determine a robot’s changing role, where
each robot is either sending messages to other robots in the
network or performing calculations during each iteration of the
algorithm. The algorithm converges to an optimal assignment
with a computational payload for each robot of O(n2), and
with O(n3) total messages being sent. However, there is no
analysis of the size of the sent messages.

Auction based approaches typically involve robots bidding
for tasks in such a way as to maximize their own profit. These
approaches often require an auction coordinator, however, and
depending on the way that the auctions are set up they can

produce suboptimal assignments. For example, a distributed
auction based method [9] utilizes only local information that
is available to the robots in order to determine an assignment.
Even without global information the assignment produced by
this method is within a linear approximation of the optimal
one.

III. PROBLEM STATEMENT

We envision a situation in which a large team of networked
robots has already been deployed in an environment and is
informed of a new set of tasks that must be assigned and
undertaken. The network topology of the robotic team is
represented by the communication graph G = (V, E) where
each robot is mapped to a vertex vi ∈ V , and communication
links between robot ri and robot rj are represented by an edge,
eij ∈ E . i.e., if robot ri is able to communicate with another
robot rj in one hop, then the edge e(vi,vj) will exist in G and
these two robots are neighbors of each other. Furthermore, the
robots are able to dynamically compute their associated costs
for each of the tasks, using some metric such as distance,
residual energy, or other factors. These costs will remain
static during the assignment procedure. For example, robots
may take into consideration their distance from a particular
task, residual energy, and other factors to compute their cost
values. However, robots do not initially know the cost values
associated with any of the others. Additionally, we will assume
that each of the robots is equipped with specific equipment
and is only eligible to complete a subset of the total number
of tasks that require that particular hardware. If a robot is
ineligible for a particular task it will assign a predetermined
fixed cost (e.g., a maximum penalty) to that task.

To formalize this problem mathematically, let us suppose
that we are given a set of robots R and a set of tasks T ,
in which we assume that every robot i ∈ R initially knows
only its own cost information cij for each of the tasks j ∈ T .
Therefore, we are interested in assigning the robots to tasks
in such a way that the overall cost of the assignment is
minimized. Furthermore, each robot can be assigned to one
task, and each task can only be performed by a single robot.
To represent a robot’s assignment, let xij = 1 if robot i is
assigned to task j, otherwise xij = 0. Thus, the distributed
assignment problem requires all robots to assign themselves
to a unique task such that the overall assignment is optimal.

The assignment problem can be expressed as:

min
∑
i,j

cijxij (1)

subject to
n∑

i=1

xij = 1, ∀j, (2)

and
n∑

j=1

xij = 1, ∀i, (3)

xij ∈ {0, 1}. (4)



Although in this formulation we are looking to minimize
the cost of the task assignment, we could equivalently assign
tasks in such a way as to maximize an assignment utility. All
that would be required to solve such a maximization problem
would be to perform a simple transformation of the utility
values.

To further focus our efforts, we will make the following
assumptions about the problem including assumptions about
each robot’s prior knowledge and the network topology. Our
assumptions are as follows:

1) There are an equal number of tasks and robots (If not,
then fictional tasks or robots can be created in such a
way that overall cost of the assignment is not impacted
by their introduction). This reduces the problem to
finding a minimum cost bipartite matching.

2) Each robot is assigned a unique ID and has prior
knowledge of what sensors all of the other robots have.
This allows each robot to reason about what other robots
will be competing for the same subset of tasks as it it.

3) Messages are sent as a broadcast to all of a robot’s
neighbors.

4) The communication graph is strongly connected and
static over the course of the assignment procedure.

5) Cost values determined by a robot do not change during
the assignment procedure. Since robots may be perform-
ing task assignment multiple times throughout a mission,
they must be able to converge to an assignment quickly.
We argue that in the short time it should take for robots
to perform an assignment their cost information should
not have changed.

IV. PROPOSED ALGORITHM: RASTA

Our approach RASTA uses the Distributed Hungarian
Method for Task Assignment (DHM) [5] for comparison. We
next briefly describe DHM, discuss the design principle behind
RASTA, and then present the details of RASTA.

A. Preliminary: Distributed Hungarian Method for Task As-
signment (DHM)

In DHM the robots collaboratively compute a common
optimal assignment by performing sub-steps of the centralized
Hungarian method and then share state information amongst
each other. The shared state information consists of a bipartite
weighted graph, a vertex labeling function, and a counter
value. The DHM algorithm is broken down into synchronous
communication rounds in which robots share their state in-
formation, process received state information along with their
own state to produce a temporary state, and finally perform a
substep of the centralized Hungarian method to update their
own internal state that will be shared in the next communica-
tion round. This process continues until an optimal assignment
is found and all robots converge to the found assignment.

B. RASTA Design Rationale

To provide motivation to our approach we can observe that
when performing task assignment, only robots equipped with

the same sensors or actuators would be competing amongst
each other for a particular subset of tasks.

Theorem 1. Breaking up the job of assigning tasks to the
whole swarm into multiple smaller assignment problems that
focus only on robots equipped with the same sensors or
actuators and the tasks requiring that equipment, still produces
an optimal overall assignment.

Proof. Since all robots award the same predetermined fixed
cost (e.g., a maximum penalty) to tasks for which they are inel-
igible, each group of robots equipped with the same sensors or
actuators have a maximal cost equal to the predetermined fixed
cost for the subset of tasks for which they are all eligible to
complete, and the same predetermined fixed cost for all other
tasks. Therefore, within the smaller assignment problem, no
matter what task from the eligible subset a robot gets assigned,
that cost will be less than or equal to the cost associated with
all of the other tasks that were not considered in the assignment
(i.e., those in the ineligible subset). Furthermore, swapping
the assignment of any two robots with different equipment
will always result in the overall cost of the assignment either
increasing or remaining the same. The only way in which
the overall assignment’s cost could possibly decrease in a
suboptimal solution would be to swap the assignments of
two robots that are both eligible for the same subset of
tasks. Therefore, the cost of the assignment produced by
breaking the work up into smaller assignment problems, which
only consider robots with the same sensors or actuators, is
equivalent to that produced by considering all of the robots
together.

We can also observe that in existing distributed methods
based on the Hungarian method, such as those proposed in
[5] and [6], the messaging complexity of their algorithms
are linked directly to the time complexity of the Hungarian
method. This is because in those methods the robots are
passing messages amongst themselves to compute steps of
the Hungarian method itself. From a message conservation
perspective, it would be much more efficient to simply dis-
seminate the needed cost information to each robot (where in
the worst case, cost information can get from one robot to
another in at most n− 1 hops for a connected communication
graph) and then perform the Hungarian method rather than
trying to come up with an assignment as a whole group.

With these observations in mind we propose a method
in which each robot gathers from its neighbors the needed
cost information to compute its own assignment, while also
assisting in the sharing of any cost information that it knows.
Once the robots have collected all the needed cost information
to compute an assignment they are then able to locally perform
the Hungarian method to produce an assignment. This method
attempts to reduce the total number of messages and data sent
when performing a task assignment procedure by unlinking
the messaging complexity from the time complexity of the
Hungarian method, and instead shifting it to the complexity
of disseminating the needed data.



C. RASTA Details

1) Message Formation: To ensure that each robot is able
to collect the information that is needed to compute its own
assignment, we propose the use of two special types of
messages: request messages and score messages.

The purpose of a request message is twofold. Each request
message serves as a way for a robot to let their neighbors
know what cost information they are personally interested in,
as well as allows each robot to update their own interests
regarding cost information to better assist their neighbors in
the gathering of needed information. Each request message
contains an ID field that lets the receiver know which robot
the request is from, and an interest field that contains a bit
for each of the tasks to represent whether or not the sender
is interested in receiving cost information for that particular
task.

Score messages are designed to contain the cost information
of a particular robot. Similar to the request messages these
messages contain an ID field that lets the receiver know which
robot the message was sent from, but in addition to the sender
ID field, a second ID field is used to convey which robot’s
cost information the message contains. A third field is then
used to store the cost information. To reduce the size of this
third field, a robot only needs to share its costs for each of the
tasks that it is eligible for. Since all other tasks would have
been assigned a predetermined fixed score, there is no need to
share this information since it is implicitly known.

Cost Info

Sender ID RequestsRequest Message:

Robot IDScore Message: Sender ID

Fig. 1. Structure of the request and score messages.

2) Information Dissemination: For ease of understanding,
we will present our proposed method for information dis-
semination throughout the multi-robot team as a synchronous
procedure, however, the steps of this algorithm could also be
performed by each robot asynchronously and still lead to the
same outcome. Fig. 2 shows the flow chart of the information
dissemination process followed by each robot.

The task assignment procedure starts after all robots receive
a new set of tasks that must be assigned. First, each robot
computes its own cost information and determines what other
robots it needs to receive cost information from in order to
compute an assignment. Let us call the set of all other robots,
from which the robot must receive cost information from to
compute an assignment, lneed, and let a second set, lknown,
contain a list of all of the members of the team that a robot
currently has cost information for. Finally, let lrequest be the
set of other robots from which a robot would like to receive
cost information from.

Start

Compute cost for each task

Initialize request

Send request message to neighbors

Process received request messages
& update own request

Know requested  
costs?

Send score message(s) to neighbors 
& update request 

Yes

Process received score messages &
update known info and request 

No

New request? 
No

Yes Is request  
empty?  

Compute Assignment

No

Yes

Fig. 2. Flowchart showing the information dissemination process followed
by each robot.

In the first round of the algorithm, each robot initializes the
set lneed to contain the IDs of all other robots equipped with
the same sensors or actuators as itself, and initializes lknown

to include its own ID. Each robot then initializes lrequest to
contain all of the same elements as lneed. Using the lrequest
set, each robot then creates an initial request message and
broadcasts it to its neighbors.

Upon receiving a request message from a neighbor during
the first communication round, a robot adds any IDs to lrequest
that were requested by its neighbors and not currently present
in the set (i.e., effectively merging each of its neighbors
lrequest sets with its own). The robot then stores each of its
neighbors’ requests locally to maintain a database of which
robots requested which information.

In subsequent rounds updating lrequest based on the re-
ceived request messages becomes a little more complicated. A
robot compares each of its newly received request messages to
the ones it has stored. If a message indicates that a neighboring
robot is no longer requesting a particular set of information
that it previously had, and none of the other neighbors or
the robot itself are requesting it either, then the associated ID
can be removed from lrequest. If a new piece of information
is requested that was not requested prior then it is added
to lrequest. The robot then replaces the old request message
it had stored with the new one. Additionally, a robot only
needs to send a new request message during the start of a
communication round if lrequest has changed since the last
time a request message was sent by the robot.

After receiving and processing all of the received request
messages, each robot looks at lknown to see if it has any of
the cost information requested by one of its neighbors. This is
done by checking the intersection of lknown and lrequest. If a
robot knows any of the cost information requested by a neigh-
bor (i.e., lknown ∩ lrequest 6= ∅), it forms a score message
containing the requested information and broadcasts it out.
In the first round this can only occur if a neighbor requests
the robot’s own cost information. However, in later rounds



a robot may send out multiple score messages containing
cost information associated with different robots. The sender
then removes the ID associated with the score message from
lrequest and modifies each of its stored neighbor’s requests
so that they no longer reflect a desire for that particular cost
information.

If a robot receives a score message from a neighbor, it
saves the cost information locally (if it is not already known)
and updates lknown to reflect the newly acquired information.
If the robot received cost information regarding a robot in
lrequest, it removes the associated element from lrequest if
and only if none of its neighbors (excluding the robot that sent
the message) are requesting that particular cost information.
Finally, the robot modifies the stored request of the robot who
sent the score message to reflect that it does not need the
information that it just sent.

The process of sending request messages and score mes-
sages continues until the lrequest set of each robot is empty
and lknown contains all of the elements of lneed. When these
conditions are met then neither a robot nor any of its neighbors
need additional information to compute an assignment. Each
robot is then free to utilize the Hungarian method locally
using only the cost information related to lneed to compute
its own assignment. Furthermore, since all robots equipped
with the same sensors or actuators will be using the same
cost information to compute an assignment, and assuming they
store it in the same order (e.g., by robot ID), then they are
guaranteed to come to the same solution and there will be no
conflicting assignments for the entire system.

Since any information request is able to reach every robot
in the team in at most n − 1 communication rounds, even
if a robot and its immediate neighbors do not require any
additional cost information before n−1 communication rounds
have completed, each robot must wait to compute its assign-
ment in case it needs to service other incoming requests. After
waiting a predetermined amount of time or participating in at
least n−1 communication rounds, every robot is guaranteed to
have received request information (although indirectly) from
every other robot. Once these requests have been serviced,
and a robot has all its needed information, which may take at
most another n− 1 communication rounds (i.e., for a total of
2n− 2 communication rounds), a robot is free to compute its
own assignment.

Figure 3 shows the finite state machine of each robot’s
information dissemination process and Algorithm 1 is the
pseudocode.

V. CONVERGENCE ANALYSIS

Since our algorithm is focused on disseminating the infor-
mation necessary for each robot to locally calculate their own
assignment the messaging complexity of our algorithm is tied
to the network topology. Therefore, we will provide analysis
of several special scenarios to characterize the performance of
our algorithm.

InitializeStart Send Request 
Message 

Process and
Update
Request

Have Request
Receive Request 

Message(s)

Send Score 
Message(s) 

Know Requested 
Info

Update
Known Info Receive Score  

Message(s) 

No Known 
Info & Receive 

Compute
Assignment

Request  
Empty

New 
Request

Fig. 3. High-level Finite State Machine of each robot’s information dissem-
ination process.

Algorithm 1 Information Dissemination & Task Assignment
1: Each robot i performs the following tasks:
2: Initialization:
3: lknown ← {i}
4: lrequest ← lneed
5: lprev ← ∅
6: Information Dissemination:
7: while lrequest 6= ∅ do
8: if lrequest 6= lprev then
9: Send lrequest to neighbors

10: lprev ← lrequest
11: end if
12: Update lrequest based on received requests
13: for j ∈ lrequest do
14: if j ∈ lknown then
15: Send score message for robot j to neighbors
16: lrequest ← lrequest \ {j}
17: end if
18: end for
19: Update lknown and lrequest based on received score

messages
20: end while
21: Assignment:
22: Compute assignment locally

A. Message Complexity: Number of Messages

The total number of messages sent by the robots before each
robot has the necessary information to compute its assignment
is dependent on the network topology. Therefore, we have
provided an analysis of a number of different communication
graphs (representing different network topologies). Our analy-
sis shows that in the worst case the number of messages sent
before each robot has the information necessary to converge
to a common assignment is O(n2), while in the best case it
is O(n).

1) Line Communication Graph: Intuitively, a line commu-
nication graph is the worst case scenario for a connected graph
when trying to disseminate the information needed for task
assignment. If we assume that one of the end nodes needs



information from the other end node then it will take at most
n−1 communication rounds for a request message to reach the
other end node and at most another n−1 score messages to be
sent for the first end node to receive the requested information.
If we assume that all other robots in the network are a similar
number of communication hops away from the information
they need, then it follows that the messaging complexity for
a line communication graph is on the order of O(n2).

2) Complete Communication Graph: In contrast to the
worst case scenario of a line communication graph, a complete
graph in which every robot is able to communicate with every
other robot directly represents the best case scenario. In this
case, the analysis of the total number of messages sent is
straight forward. In the first round, each robot sends a request
message that reaches every other robot. Each robot then would
transmit their own cost information in a single score message
that also reaches every other robot. Finally, having received
all of the information they needed, each robot would transmit
one final request message indicating that they no longer needed
any more cost information. In this case, a total of exactly 2n
request messages and n score messages would be transmitted
before an assignment could be calculated. Thus, the messaging
complexity for a complete communication graph is on the
order of O(n).

3) Star Communication Graph: A similar analysis of a
star communication graph in which a single robot is able
to communicate with all others reveals that the messaging
complexity in that case is also O(n). To provide intuition as to
why this claim is true, consider that in a star communication
graph a robot’s information requests or score information
can reach any other robot in the network in at most two
communication hops. For completeness, however, we will
provide an in-depth analysis of this particular situation.

In the first round each robot sends a request message. The
robot acting as the central hub of the star communication
graph receives the request messages from every other robot,
while all the other robot’s receive the central robot’s request.
After receiving and processing the requests, each robot would
send at most a single score message containing their own
cost information. In the second round, the central robot would
send a request message that reflects all of the robot’s requests,
while the other robots may or may not send a request message
themselves. At this point every robot would send their own
cost information to the central robot, that would then be able
to share it with all the others that need it, sending at most
n − 1 score messages in the next round. All robots would
then have the cost information necessary to compute their own
assignments, and no more messages would need to be sent.
Therefore, it is clear that the messaging complexity for a star
communication graph is O(n).

Table I summarizes the comparison of message complex-
ity between DHM and RASTA for line, complete, and star
communication graphs.

TABLE I
COMPARISON OF MESSAGING COMPLEXITY

Total Number of Messages
Line Complete Star

DHM O(n3) O(n3) O(n3)

RASTA O(n2) O(n) O(n)

B. Message Complexity: Message size

To perform a more complete analysis of our algorithm, it
is also important to take into consideration the message size.
Along with the theoretical messaging complexity the message
size helps to predict the total amount of data that would need
to be transmitted before an assignment can be found.

We will derive the size of both the request and score
messages using the following assumptions.

1) Each ID field can be represented by a single number,
the size of which is dependent on the total number of
robots.

2) Each robot can be represented by a single bit in the
request field, where a 1 represents a desire for that
particular robot’s cost information and a 0 indicates no
need for the information.

3) Each value in the cost filed can be stored in a single
integer, therefore at most there will be n integers stored
in this field in cases where all robots are equipped with
the same sensors or actuators and the task assignment
problem cannot be broken down. In other cases a frac-
tion of n integers will be stored in this field.

Therefore, using the assumptions laid out above the size
of each request message is 1

8 (log2(n) + n) bytes and the
maximum size of each score message is 1

8 (2 log2(n)) + (4n).
Table II summarizes the comparison of message size for DHM
and RASTA.

TABLE II
COMPARISON OF MESSAGE SIZE

Message Size (Bytes)
DHM O(n logn)

RASTA
(Request) O(n)

(Score) O(n)

TABLE III
COMPARISON OF MESSAGE SIZE

Message Size (Bytes)
DHM ((2n) ∗ (4 + [ 1

4
log2(n)])− 2)

RASTA
(Request) 1

8
(log2(n) + n)

(Score) 1
8
(2 log2(n)) + (4n)

C. Time Complexity: Computation

As for the computational load of each robot, since we
are relying on the existing Hungarian method to perform the



assignment, in the worst case the computational complex-
ity is O(n3). However, this analysis does not consider the
exploitation of a heterogeneous swarm. In Section IV-B we
have shown that breaking up the task assignment problem
into smaller assignment problems that consider only robots
equipped with the same sensor or actuator still results in the
convergence to an optimal solution. Therefore, if we are able
to break up the assignment into smaller problems, the value of
n in these cases can be a fraction of the total size of the entire
multi-robot system, resulting in considerable reductions in the
computational complexity of running the Hungarian method
at each robot, since they only need to compute the assignment
for a smaller subset of the whole team. Furthermore, since
the Hungarian method is deterministic, if each robot runs
the algorithm locally (and possibly with a smaller subset of
the cost information focused only on robots with the same
hardware and abilities), they will all produce a consistent
assignment (i.e., one without conflicts). Upon producing this
assignment, there is no need for further communication among
the robots to verify that the assignment is consistent since the
information dissemination stage ensures that every robot is
able to run the Hungarian method on its own and produce the
same result.

D. Time Complexity: Communication

Now using our analysis on the total number of messages
needed to be sent and the size of each message we are
able to produce an upper bound on the time it takes the
robots to communicate with each other to converge to an
assignment. If we assume that all robots communicate with
a fixed data rate, drate, and assume that at most one robot
can send a message at a time (although some communication
technologies and topologies may allow for multiple robots
to communicate simultaneously without interfering with one
another) the communication times shown in Eq. (5) through
Eq. (8) can be derived. Eq. (5) shows the time for DHM,
while Eq. (6) through Eq. (8) show the time for RASTA with
line, complete, and star communication graphs respectfully. A
summary of these upper bounds is also shown in Table IV.

((2n4)(4 + [ 14 log2(n)])− 2n3)

drate
(5)

(2n− 3) 18 (log2(n) + n) + (n2 − n)( 18 (2 log2(n)) + (4n))

drate
(6)

n
4 (log2(n) + n) + n

8 (2 log2(n)) + (4n)

drate
(7)

n
2 (log2(n) + n) + (2n− 1) 18 (2 log2(n)) + (4n)

drate
(8)

TABLE IV
COMPARISON OF COMMUNICATION TIMES

Communication Time (s)

DHM O(n4)

RASTA (Line) O(n3)

RASTA (Complete) O(n2)

RASTA (Star) O(n2)

It is important to note that the overall convergence time of
the two algorithms is going to be the combination of both the
computational time complexity and the communication time
complexity. That is, the time it will take each algorithm to
converge to an assignment will be the sum of the time it takes
for the robots to communicate and the time it takes for the
robots to perform local computations.

VI. PERFORMANCE EVALUATION

To further characterize the performance of our proposed
algorithm under various conditions and verify our theoretical
analysis, we implemented both RASTA and DHM in C++.

A. Experimental Setup

We performed simulation experiments on multiple different
system sizes and communication graphs. Additionally, we
utilized the NS-3 [1] simulation environment to randomly
generate each robot’s costs and ensured that the same values
(i.e., by using the same seed) were used both for trials using
RASTA and for those using DHM.

In these simulations we did not consider heterogeneous
robot teams. Since DHM is unable to exploit heterogeneity
in the same way that RASTA is able to, it would not serve
as a far comparison. It should be obvious why exploiting
heterogeneity can reduce the total number of messages sent,
since now instead of every robot requiring the cost information
from every other robot, they just need the cost information
from a smaller subset. Even though we did not take advantage
of heterogeneity in our simulations, we still are able to show a
considerable reduction in the messaging overhead required to
perform task assignment when using RASTA when compared
with DHM.

In each experiment the total number of messages sent before
all the robots converged on a common assignment or had
the information necessary to calculate their own assignment
was recorded. From this messaging data we were also able to
determine the total size of the data transmitted by the robots.
Furthermore, we verified that the assignments produced using
RASTA and DHM both produced optimal assignments.

In cases in which there was a single optimal assignment,
it was observed that both methods produced identical assign-
ments. However, in cases in which more than one optimal
assignment existed, such as when two or more robots share
the same cost values for multiple tasks, the two methods did
not always produce identical assignments. Even though the



results in some cases were not identical, it was verified that
the assignments had the same cost and that they were both
still optimal.

In addition to testing the impacts of various system sizes on
the number of messages and bytes sent to perform task assign-
ment, we also tested the impact of the type of communication
graph. We tested three special types of communication graphs
including complete communication graphs, star communica-
tion graphs, and line communication graphs. Furthermore, we
tested randomized communication graphs that were created by
randomly assigning each robot a position in a predefined area
and using a simple disk communication model to determine
their neighbors. Precautions were taken to ensure that these
randomly constructed communication graphs were connected.

B. Experimental Results

Figs. 4 through 7 show the average number of messages sent
before an assignment was reached for numerous trials of run-
ning our simulations on complete, line, star, and randomized
communication graphs respectively. For each of the different
types of communication graphs, 12 sizes of robot teams were
tested (i.e., 12 different values of n), and 30 trials were run
for each size.

Looking at the results for both the complete communication
graph and star communication graph shown in Figs. 4 and
5 it is evident that our experimental results line up with our
theoretical analysis. In Section V we proved that for these two
types of communication graphs the total number of messages
sent was on the order of O(n) and the experimental data
clearly shows a linear relationship between the total number
of messages sent (for both request and score messages) and
the number of robots. Similarly, the experimental results for
the line communication graph shown in Fig. 6 back up our
theoretical analysis, in which we showed that the total number
of messages sent would be O(n2). This quadratic relationship
between the number of robots n and the total number of
messages sent can be seen for both message types sent by
RASTA in Fig. 6.

To provide further comparison of the performance of
RASTA and DHM it is useful to look at some of the exper-
imental results quantitatively. For example, in the worst case
scenario (i.e., the line communication communication graph)
for a multi-robot team size of n = 42 it was found that on
average a total of 3, 126 messages were sent by RASTA (i.e.,
combining both request and score messages), while 25, 273
messages were sent by DHM before an assignment was found.
This is an average reduction in the number of messages sent
by a factor of over 8. It is important to note that this reduction
factor continues to grow as the number of robots increases. In
the best case scenario (i.e., a complete communication graph),
we see an even larger reduction in the number of messages
sent. Again, looking at a team size of n = 42, our results
show that on average RASTA sends 53.8 times less messages
than DHM.

Similarly, Figs. 8 through 11 show the average number of
bytes sent before an assignment was reached for numerous

trials of running our simulation on complete, line, star, and ran-
domized communication graphs respectfully. Similar results to
what was shown in Figures 4 through 7 can be seen, where in
all cases, RASTA requires less data to be transmitted before
an assignment can be found and is more resilient to increases
in the number of robots participating in the task assignment
procedure.

As an example of the data savings of RASTA compared
to DHM, if we look at the results shown in 9 for n = 36,
we see that DHM sends on average 6.176 MB of data
before an assignment is reached while RASTA only needs to
send 0.177 MB on average to compute the same assignment.
Again, similar to what was observed with the messages, the
discrepancy between the amount of data sent by these two
methods only continues to grow as the number of robots
increases.

Finally, Fig. 12 shows the time it takes for different sizes
of robot teams to converge to a final assignment. For this
particular result we assumed that each robot communicated
at a rate of 10 Mbits/second, which has been shown to be
a reasonable data rate even for distances of up to 10km [8].
Looking at Fig. 12 it is clear that these results are consistent
with our theoretical analysis in Section V-D. The convergence
rates as the size of the robotic team increases grows strictly
slower for RASTA than the convergence rates for DHM.

VII. CONCLUSION

In this paper we proposed a method for performing task
assignment for a multi-robot team, in which needed informa-
tion is first disseminated to the robots and then the Hungarian
method is utilized to calculate an assignment for each robot
locally. We have shown that in the worst case a total of O(n2)
messages need to be sent by the robots before an assignment
can be calculated and have backed up our theoretical anal-
ysis with simulation results. Other similar methods for task
assignment, like DHM, have a messaging complexity on the
order of O(n3). In our theoretical analysis and simulation,
we looked only at static communication graphs. However, it
would be interesting to see the impact on performance if these
communication graphs were dynamic or if the multi-robot
team had intermittent connectivity where the communication
graph was not always connected. Also, this work needs to
be extended to address the scenarios where robots are not
homogeneous, and the number of robots is not the same as
the number of tasks.
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