Data Ingestion and Inspection for Smart City
Applications

Pierfrancesco Bellini, Daniele Bologna
Department of Information Engineering, DISIT
University of Florence, Italy
pierfrancesco.bellini, Daniele.bologna@unifi.it

Paolo Nesi, Gianni Pantaleo
Department of Information Engineering, DISIT
University of Florence, Italy
paolo.nesi, gianni.pantaleo @unifi.it

Abstract—Smart cities are distributed heterogeneous systems
of systems connected to each other via a variety of heterogeneous
data streams involving multiple stakeholders and organizations.
This complexity is reflected also in the data that have to be
managed to provide a concrete and useful real time service to the
citizens. The data ingestion phase is critical for the whole services,
since it has to preserve the information, connect the new data with
old data and establish right connections with city entities. This
paper describes data ingestion and inspection in the Snap4City
open source scalable Smart aNalytic APplication builder, with
a specific focus on how heterogeneous data is represented, how
its quality is inspected, and how to develop ingestion procedures
in an efficient manner. The Snap4City ingestion processes are
based on a semantic and unified data ingestion model, capable
of aggregating different types of data. A performance comparison
of different data ingestion modalities is presented.

Index Terms—smart city, data ingestion, data inspection

I. INTRODUCTION

Smart cities are distributed heterogeneous systems of sys-
tems, ranging from IoT Networks to front end distribution.
Smart Cities are managed by multiple stakeholders and or-
ganizations sometimes with competing objectives, and are
exploited by city users including citizens, tourists, commuters,
students, operators, etc. One major challenge for smart cities
solutions is to collect and manage heterogeneous multi-
dimensional data sources, ensuring interoperability of data
represented in any format and transmission protocol. Many
applications in the smart city context [4], [7], [10] have been
developed, but they often take a vertical approach and focus
on a specific domain such as Smart Power Grids [2], smart
parking [3], smart meters [10], [12], or roadside assistance
[5]. A typical smart city system presents a multitude of
data providers, data exchange modalities and licenses. These
include IoT/IoE, Open Data portals, social media, private

The authors would like to thank the European Union’s Horizon 2020
research and innovation program for funding the “Select4Cities” PCP project
(within which the Snap4City framework has been supported) under grant
agreement No 688196, and also all the companies and partners involved.
Snap4City and Km4City are open technologies and research of DISIT Lab
https://www.snap4city.org

Qi Han
Department of Computer Science
Colorado School of Mines, Golden, CO 80401 USA
ghan@mines.edu

Michela Paolucci
Department of Information Engineering, DISIT
University of Florence, Italy
michela.paolucci @unifi.it

and/or public data, GIS, city utilities, etc. To manage all
these aspects, many IoT systems and big data frameworks put
emphasis on the life cycle of data [3], [6]. Give importance
to the life cycle approach is fundamental to identify problems
in data gathering, thus having the possibility to contact a data
provider in case of missing or low quality data, or tracing back
to the data source to assign the right user license on a single
data, etc. [2], [3]. In smart cities, a big data infrastructure must
be instrumented with advanced data gathering flow processes
taking information from different data providers and consider-
ing a set of big data requirements, such as those classified in
[O], [11], [13]: 1) volume, ii) velocity, iii) variety, iv) variability
and (v) veracity (data quality). Additional aspects are related
to semantic data aggregation, data redundancy, fault tolerance,
licences of use, data protection, real time queries on the
Knowledge Base, data analytic and visualization or GIS-based
visualization, drill down on data, etc. The work presented in
this paper focuses on data ingestion and inspection developed
in the Snap4City framework, [14], [15]. While most existing
works have adopted a simple NoSQL for data management,
in Snap4City a multimodal approach is developed, performing
data ingestion and applying semantic reconciliation strategies
to uniformly take both dynamic static data from traditional
services such as rest API, WS, FTP via PULL protocols as
well as IOT data using PUSH protocols. This paper describes
the process of ingestion of the heterogeneous data managed
by the Snap4City platform. Moreover, a unified data ingestion
model to accelerate these processes is described. In Section
I, an overview of the Snap4City system is introduced; in
Section III, the data Ingestion process model is described.
Section IV provides a detailed description of the data ingestion
model. In Section V, a performance comparison of different
data ingestion modalities is provided. Section VI concludes
the paper.

II. SNAP4CITY SYSTEM OVERVIEW

Snap4City has been developed to provide many online ser-
vices and suggesting guidelines to involve all different kinds of

https://www.snap4city.org

Snap4City Smart City Services Development Phases
Data Analytics =

Data Analytics
Developmsnt Mobile & Web Apps
Special Tool

Dev. Kit
Development

Apm 2
Deve\cpmen/tg
™ .
N IS
N m %
(oeploy
A——
Publication -
Production Testing

| Mobile and Web Apps

Analysis

Application
Requirements
Analysis

and MicroServices

Dashboard
Development

Advanced Snap4City APIs

Development

‘ Data Inspection ' N '
and Testing c(,
e

Deploy

Publication
Production,

P
Deploy

Fig. 1. Snap4City Smart City Services Development Phases.

organizations (e.g., Research Centers and Universities, small
and large industries, public administrations and local govern-
ments) and citizens (city operators, companies, tech providers,
corporations, advertisers, city users, community builders, etc.)
[14], [16]-[19]. It adopts a Quadruple Helix approach [16],
[17] as shown in Fig.1. The Snap4City process consists in the
analysis of the requirements and needs involving all the city
decisors and data providers to establish what types of data are
needed and/or available. After that the data ingestion processes
are realized and described in details in section III. Semantic
integration and standardization is then carried out and is at
the basis of the Data Analytics and Algorithm Development
processes, such as predictions and high performance analysis.
Snap4City is compliant with GDPR (General Data Protection
Regulation of the European Commission), it is capable to
manage a variety of data having different licensens. Snap4City
has been applied in many Italian (Firenze, Pisa, Livorno, Prato,
Lonato, etc.) and European cities (Antwerp, Helsinki, Santiago
De Compostela) and in their surrounding geographical area
(e.g. Tuscany, Sardinia, Lombardia but also Belgium and
Finland) [15].

III. DATA INGESTION PROCESS MODEL

Fig.2 shows the Snap4City Data Ingestion Diagram Flow
[14], [15]. In a Smart City, the first action of the Snap4City
data ingestion process is the Road Graph Setup collecting
data on streets coming from city government as well as open
datasets (e.g. Open Street Map). In this way Points of Interest
(POI), Sensors, Citizens, etc., can be connected to road graphs
and located in a specific place of the city, not only based on
their coordinates but also on the streets and civic numbers.
After this, it is necessary to understand if a dataset is i) only
static, or ii) has also some dynamic fields that can change in
future. The first case is the easiest one, a typical sample are
the Point of Interests (POIs), data that are usually available in
the Official Open Data Portals in Europe, most of them based
on CKAN. For this reason, a solution to automate the process
from CKAN to KB via a customized plugin (DataGate) has
been integrated in Snap4City. It regularizes the open data via
a template to be filled by the data providers, after that the
data are processed by an Extract Transform and Load process
(ETL), capable to map each data in the Km4City multi-
ontology. The ETL is executed on a distributed Scheduler

[Road Graph setup |

Semantic Reasoners \-:“L"'r

Put dataset in KB ETL Automated s
v dataset with Datagate 7 | Execution A

yes

Static yes Regular
file? e?

ETL:
Developed ETL on
Penthao/Spoon

only
10T Broker Reg.

ETL Execution
via Spoon (low
frequency)

registration

ETL periodical HDFS, Hbase, Phoenix
Execution on

DISCES (high
frequency) ¢

(2) Real Time

£ Static

!

ETLor

loTApp? Elastic Search

PULL ETLs

registratiol

push static subscription note

SESY
)

Real Time

pull/push, 707 Device/Source Reg.

~

Developed (0T App
= Node-RED + Snay

10T Apps
PUSH or PULL

pull/push Any Source/Protocols (2)

1oT Apps

Fig. 2. Snap4City Data Ingestion Diagram Flow.

called DISCES and the data are automatically put in the
Snap4City Knowledge Base [14], [15]. The second case is
more interesting, as a non-regular dataset can have both static
and dynamic info. Many kind of data belong to this case: a car
park monitoring system has both a fixed location and registers
data every minute (i.e. number of free slots, the amount of
time each slot is free or occupied); a sensor for registering the
number of people coming in a museum has a fixed location
and counts the number of people every second; an air quality
sensor placed on a bus continuously moves as the bus moves
and takes measurements in real time, etc. If the data are not
regular, different methodologies to classify/manage/exchange
data (e.g Push or Pull) must be adopted, via ETL or IoTApp.
In this paper, a relevant part is devoted to the comparison of
these different ingestion tools, making an evaluation in terms
of cost, complexity, and development time as shown in Fig.2.

A. ETL Data Ingestion

For the development of ETL processes, the Pentaho Kettle
Open Source tool has been integrated in the system. For each
dataset, two ETLs processes are created: (1) Static, addressing
fixed aspects and ingesting them into the KB; and (2) Periodic,
that is put in execution on the DISCES, depending on the data
frequency variability. The data storage can be implemented
via: a) a Big Data Cluster (based on HDFS, HBase, Phoenix);
or b) an Indexing and Aggregating tool (e.g., based on Elastic
Search). Each solution has its pros and cons, but in both cases
replica and federations are set up, with vertical and horizontal
scaling, thus creating a large data store with some indices. In
both cases, queries are performed by using NoSQL approaches
via APL

B. IoT Data Ingestion

IoT data is typically sent in push, using a publisher/sub-
scriber protocol. IoT devices are registered in an IoT Broker
which is registered on the Snap4City IoTDirectory. When a
new loT Device is created: i) a set of static data is registered
on the KB; then ii) a command to the storage system for
the subscription to the corresponding IoT Broker is sent. In
case of HBase, for each new entity, a specific process is set
up for writing into the storage, and it is implemented by

ChargingStations

Fig. 3. Ingestion via NodeRED IotApplications and Pentaho ETL processes
in the Snap4City Portal.

using ETL or IoTApp. On the contrary, for Elastic Search,
a scalable NIFI Apache ingestion process is implemented to
automatically subscribe the IoT Brokers on all its devices,
and feed the Elastic Search engine, thus creating the data
shadow for IoT data. In our system, we have adopted an IoT
App flow for registering the data model, as an IoT Device,
on both the IoT Broker and IoT Directory via the Snap4City
APIs. A second IoT App flow registers all the metadata and
descriptors for modeling the new entry into the KB. When a
new dataset needs to be ingested, if the methodology adopted
is ETL or IoTApp, an ad-hoc semantic mapping to connect
each sensor/IoTDevice, POI, etc. to the KM4City ontology is
realized. The mapping generates a set of RDF Triples based
on the KM4City classes and properties and then adds them to
the Snap4City KB, realized in Virtuoso. The IoT Applications
can be used for data ingestion both in pull and push, while
ETL collect data only in PULL. In case of ETL, the work
of creating the triples must be done by the developers (using
Karma data integration tool). If the ingestion method adopted
is IoTApp, the most relevant triples are automatically created
by the system and added to the KB when each sensor is
registered (the registration is done with an easy to use web
tool also in bulk), then developers are free to add other specific
RDF triples via IoTApp. Developers are supported all the time,
thanks to the Living Lab and co-creation activities available
on the Snap4City platform.

C. Formal Model: IoT Ingestion vs Ontology

The following describes the semantic connections that are
automatically added when a user registers his/her new sensor
or IoT Device.

kmdcr:eCharging_18XP22
geo:long "11.261270001652804"" "xsd:float;
geo:lat "43.77000404722702"""xsd:float;
http://schema.org/name "eCharging_18XP22";
rdf:type sosa:Sensor;
rdf:type kméc:Charging_stations;
ssn:implements kmécr:iot/ChargingStation;
kméc:hasAttribute
kmdcr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22/chargingState;
kmdc:hasAttribute
kmdcr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22/chargingStateValue;
kmdc:hasAttribute
kmdcr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22/dateObserved;
kmdc:hasAttribute
kmécr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22/stationState;
kmdc:hasAttribute
km4cr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22/stationStateValue;
sosa:observes kmdcr:value_type/charging_station_state;
sosa:observes kmdcr:value_type/charging_state;
sosa:observes kmdcr:value_type/timestamp;

ssn:hasSystemCapability
kmdcr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22/systemCapability;
iot-lite:exposedBy kmdcr:iot/orionFirenze-UNIFI;

km4c:protocol "ngsi";

kmdc: format "json";

km4c:model "ChargingStationModel";

kmdc:producer "Comune di Firenze";

kmdc:macaddress " ;

kmdc:organization "Firenze".

#for each attribute
kmécr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22/chargingState
rdf:type kméc:DeviceAttribute;
kmdc:order 1;
km4c:data_type "string";
kmdc:value_type kmdcr:value_type/charging_state;
kméc:value_name "chargingState";
kmdc:value_unit "-";
kmdc:value_refresh_rate "900";
kmdc:different_values "0";
km4c:value_bounds "unspecified";
kmé4c:editable "false""“xsd:boolean;
km4c:disabled "false"” “xsd:boolean.

#broker description
kmdcr:iot/orionFirenze-UNIFI
rdf:type kmé4c:NGSIBroker;
iot-lite:endpoint "http://orion:1026";
kmdc:created "2019-10-28 10:01:53";
schema:name "orionFirenze-UNIFI".

Additional triples can be manually added, for
related to the Graph street, as the following:

example

kmdcr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22
schema:streetAddress "VIA GIUSEPPE VERDI" .
kmécr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22
km4c:houseNumber "15" .
kmécr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22
schema:addressRegion "FI" .
kmécr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22
schema:addressLocality "FIRENZE" .
kmdcr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22
kmdc:isInRoad kmdcr:RT04801703173TO .

IV. UNIFIED DATA MODEL

Data inspection for smart cities applications is faced with
multiple challenges. Data sources are heterogeneous and di-
verse, data may come from stationary or mobile sensors, social
media, web pages, etc. This large amount of data can be stored
or managed in streaming. Different data storage models may
be preferred with respect to data lakes, also basing on the data
arrival and data update frequencies. Moreover, a wide variety
of data consumers is present: some may use the data for offline
processing, others conduct online processing; data analytic
tasks are also different, some for visualization and others for
data mining and still others for prediction and early warning.
Considering all these challenges, in the smart city back office
management it is important to have a unique model and tool,
accessing and harmonizing all the information. To do this it
is necessary to map and connect data providers, technical de-
scription, processes used for ingestion, ingestion status, quality
level, relationships with other cities’ elements, processes and
tools used to collect data, data analytic, dashboards on which
the data are shown. For example, a single sensor value may be
received in push mode, the sensor is related to an IoT Device
that may also have other sensors attached and it is managed by
one or more IoT Brokers. The sensor and the IoT Device, can
be shown on Dashboards or used by some data transformation
or data analytic process. If something happens to the process,
the manager should be able to guide the technicians to solve
the problem quickly, suggesting to check the data provider,
data ingestion, communication channels, or database, etc. Data
can enter the system in different modalities, so data inspector
of Snap4City manages the data according to classification cat-
egories of the data, High Level Type (HLT). The classification

of HLT is relevant, since the model unification aims to strongly
reduce the time for data discovery and composition when
dashboards are created. The HLT or kind of Sensors can be
conceptually classified into the following classes, while their
usage is transparent for users:

o Sensor-ETL data collected “from ETL” processes running
in a periodical modality thanks to the presence of the
DISCES schedule. These are typically data collected via
PULL by server;

o Sensor-IoT sending data “From IoT Devices to the knowl-
edge base” via PUSH. These are data ingested by IOT
Brokers with a publish-subscription protocol.

o Sensor-IoT sending data “From Snap4City Dashboards to
IoT Applications.”

o Sensor-Actuator which are data messages passing “From
Snap4City Dashboards to IoT Applications.” IoT Ap-
plications or Brokers are capable of sending actuation
produced by the user via graphic widgets: switch, keypad,
button, etc.

The major HLTs are described in the following in order
of relevance: sensors, MyKPI, POI and MyPOI, Heatmaps,
Events, External Services, Special, WFS (Web Feature Ser-
vice) and WMS (Web Map Service). The HLT called MyKPI
are geo-localized Key Personal data over time and have a
time stamp and a new GPS coordinate. MyKPI provides some
metadata to allow the unified model. MyKPIs are typically
used for modeling sensors that can be moved in the city,
e.g., a pax-counter used to count the number of people in
a specific area of the city such as in a building, a museum, a
district; a PM10 located on top of the buses. MyKPIs are used
on dashboards/widgets for tracking (e.g., mobile sensors, on-
board units of cars and buses, mobile apps) and showing the
sensors position in a map to better understand the status in
a period of time and develop new city strategies. The POI
and MyPOI, are Point Of Interests and are typically used
to model static data (a fixed GPS positions). For example,
the position of restaurants, museum, benches, etc. are static
information typically modeled as POI or MyPOI. POIs are
typically collected from Open Data of the city and region.
The Heatmaps are matrices graphically representing the geo-
distribution of specific values. In most cases, the heatmaps are
expected to be depicted according to a regular grid, but sensors
are located in compliance with the city street graph, so data
sources are from non-regular grid of sensors. The regular view
is produced by some algorithms.

The Events (or Complex Events) can be generated by
operators, tickets, policeman, and planned workers in the
city. They are typically classified and thus can be shown on
Dashboard according to different filters and status.

The External Services are typically links to third party’s
web pages and services, which can be useful to directly access
to specific applications and services of the city such as: traffic
light management, waste management, general administration
of the ticketing system.

The Special are complex data records describing a situation
with an had-hoc semantic. They are typically represented in

dashboards with a dedicated widgets providing hight interac-
tivity levels. Typical samples could be: the civil protection alert
coding messages, the status of a parking area with an animated
representation of the parking lots, the status of a gate, etc.

The WFS and WMS are data which may consist of direct
links to the end point of a GIS WES service providing a JSON
including GIS data obtained on the fly. The connection allows
access to the GIS data and also provides data to the GIS server.
For example, a connection may be with a GeoServer, or an
ArcGIS Server. This kind of data may include POI, shapes,
images, orthomaps, and a range of structured information.

Fig.4 shows the data inspector tool that models device
descriptor, values and links with other city entities, values over
time, and value of the other sensors of the same father device,
process involved for its ingestion, eventual image and licensing
details.

A. HLT Metadata

The unified data model describes HLT's by using the follow-
ing metadata for indexing them in faceted index. in addition,
the faceted index is used in Data Inspector and Dashboard
Wizard to facilitate the single data identification during data
inspection and dashboard creation. In order to enable the
faceted search, a classification is performed classifying the
metadata into: semantic, technical, healthiness, ownership and
licensing. In addition, other details are needed to manage data
sources such as ingestion processes, data provider, historical
values, eventual images and links to the tools for managing
them in case of errors or problems in the data ingestion. The
Semantic aspects include Nature and SubNature to classify
the data and take trace of the relation with the Km4City
multi-ontology classes such as mobility, energy, government,
environment, etc. In fact, Nature and SubNature are taken from
the KM4city ontology.

The Technical aspects include GPS coordinates, Value
Name (the name of data), Value Type (e.g. temperature,
velocity), Value Unit depending on the value type selected
(e.g., Km/h or m/s for the velocity), data value (the actual value
of a variable), Data Type (data format such as integer, binary,
boolean, date, date/time, float, html, url, vector, webpage,
wkt, xml, etc.). Value Type, Value Units and Data Types are
taken from a well-defined dictionary of coherent terms. In the
technical aspects, are also recovered: the last valid value, the
date and time when data was obtained, a possible view of the
data belonging to the same time series, i.e., the historical data
of the same device or source. In Fig.4A, a traffic flow sensor
(e.g. ‘METRO640’) can be selected using textual search or
setting the filters on the metadata, then a set of possible HLT
or metrics related to it are accessible. To access the value for a
given sensor, a click on the green circle and the ‘Data Source
Detail’ is popped up (Fig.4.B) is needed. Moreover, a click on
one of the metrics (Fig.4.C) in the ‘concentration’, allows to
access to the Data History Manager is shown.

Another relevant aspect is related to the data Healthiness
due to the large variability of the HLTs. To assess the data
healthiness a set of metadata are defined. The healthiness

Snap4City

User: roottooladminl, Org: DISIT
Level:7

Data Inspector

]
-

Alselected (61 Alselected) ¥

DataType 4 Healthiness 4 LastCheck ‘4
float X 2020-0117 161725
2020-011715:4336 Q 2020017161725
2020-011715:4336 2020011716725
2020-011715:4336

Al selected 2) +

ValueName § Ownership §

2020-0117 167725

2020-0117167725
2020-0117 161725

Fig. 4. Data Inspector in Snap4city.

criteria, depends on the type of data and must be specified by
the responsible who ingests the data in the system. In some
cases more than one method may co-exist and can be:

« refresh rate (in seconds): frequency at which a new value
is expected to have. For example, if the frequency is 900
seconds and if the last value has been updated more than
900 seconds ago, data is considered old and a problem
is reported. The refresh rate can also be regarded as the
maximum duration between a valid value/sample and the
next.

« different values (expressed as an integer V). This is a
field useful to check the variability of the data values. If
a value is the same for more than N times/samples, a
problem is reported.

« value bounds are possible max and min value bounds.
If a value is over the max or under the min, a problem
is reported.

According to the model above, in order to estimate the
healthiness, it is mandatory to have a precise timestamp of the
last value obtained as collected in the set of technical aspects
of the data. In the Ingestion Process details, it is necessary to
associate various information with each single data item that
may allow the back office personnel to understand how the
data is ingested and processed. In fact, once an healthiness
problem is detected, the administrator should be directly
engaged in solving the problem inspecting the data ingestion
processes and workflows. To this end, lots of information
needs to be associated with each data item and in particular:

o Data Source, describes how the data are ingested into
the platform, which may include Datagate, loTApp, ETL,
Java, IoT Device, Dashboards, etc.

o Links to direct access the services for managing data
and/or external web pages. Each data may have one or
more links such as Service Map, [oT Broker, DISCES

scheduler, External Open Web Pages or Snap4City Dash-
boards. Following the links a data preview is visible.

o Processes, used to ingest the data and/or to manipulate
them for data analytic. Differs on the Data Source type
managed. Moreover, the data series can be stored into
HBase or Elastic search noSQL data stores or both. In
both cases, different procedures and tools are used to
verify if the data have been correctly ingested or not.

The last aspect is related to the Ownership and Licensing.
It is mandatory for any data city administrator to have a clear
view of the ownership of the data and how these data can be
used. In case of disputations and uncertainties it is fundamental
to have a direct link to the data responsible holding the
data ownership. In the Snap4City model, an Organization is
typically related to a geo-political area, for example: Firenze
and Tuscany, Helsinki and Finland, Antwerp and Belgium,
Sardegna, etc. According to GDPR, all the data ingested start
as strictly private and the eventual access to them is granted by
instantiating specific delegations. Basing on the license, it is
possible to delegate the access to the data that can be: private,
public, accessible only for the creator or for a selected user or
group of users.

V. PERFORMANCE EVALUATION

The Snap4City Data Ingestion process is implemented to
ingest data using three main different procedures: Datagate,
ETL processes, and IoTApps. Table I shows a comparative
analysis of these three acquisition methods. Datagate is an in-
gestion tool for non-technical users. The metric considered for
the comparison is the number of datasets uploaded. As of now
15,968 datasets are present in DataGate, of which only 3.8%
have been uploaded following the Snap4City standard template
with the semantic mapping on Snap4city. On the contrary, both
the ETL processes and the IoTApps are managed by Snap4city
registered users who are more technical. Most of the datasets

TABLE I
COMPARATIVE ANALYSIS AMONG DATAGATE, ETLS, IOTAPPS.

Datagate | ETL ToTApp
types of data managed S S, P S, P, RT
Data protocol types managed | PULL PULL PULL&PUSH
Scheduling external external internal
Flows to manage N instances | N N 1
of the same dataset
Users’ technical level without medium/highow
Development time 1,2 1, 2 | 3,4 days

hours weeks
Semantic (KM4City) standard ad hoc | ad hoc

template | (man- (semi-
ual) automatic)
Developed number 1334 162 76

datasets
Mean number of blocks 0 120.333 27,67
Mean number of lines of code | 0 275 229

managed in this case provide both static and dynamic data.
The dynamic data can be periodical (P) or real time (RT). A
distinction on the required technical level of the programmers
must be done: for the development of ETL, the level has to be
medium/high, while for the IoTApp, it is designed for people
with a very low technical level. In fact, the time spent to ingest
a dataset developing and scheduling an ETL process is about
one or two weeks. For the same dataset with the [oTApp, the
development time is three or four days. Both ETL processes
and IoTApp are based on block or visual programming. For
this reason a comparison among the two methodologies was
performed on the number of blocks used and the lines of code
written. It is also relevant that in the case of ETL processes
(and consequently also for Datagate that is based on many
instances of an ETL), an external scheduler is used, while for
IoTApps an internal scheduler can be set. The presence of the
internal schedule in the IoTApps also decreases the complexity
when a set of different instances for the same IoTApp (or
ETL) is managed. In the management of IoTApps, the scaling
is provided using an elastic management of containers based
on Mesos/Marathon frameworks.

VI. CONCLUSION

In this paper, a unified data ingestion model developed for
Snap4City is described. A comparison among the different
data ingestion methodologies adopted in Snap4City is con-
ducted in terms of data structures, transmission protocol used,
static or dynamic information, etc. The comparison shows that
the Datagate tool is easy to use even in the presence of massive
upload of i) static data that mainly need to be stored and not to
be reworked to provide new knowledge; and 2) static data that
have a standard set of metadata. In case of dynamic dataset, the
best methodology is IoT Apps considering time consumption,
implementation complexity, and semantic mapping.

REFERENCES

[11 A. A. Ghaemi, “A Cyber-Physical System Approach to Smart City
Development”, 2017 IEEE International Conference on Smart Grid and
Smart Cities, Singapore, July 2017.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Q. Zhoua, Y. Simmhanb, V. Prasanna, “Knowledge-infused and consis-
tent Complex Event Processing over real-time and persistent streams”,
Future Generation Computer Systems 76 (2017) 391-406.

A. Hefnawy, A. Bouras, C. Cherifi, “IoT for Smart City Services:
Lifecycle Approach”, 2nd IEEE International Conference on Cloud
Computing and Internet of Things(CCIOT2016), Cambridge, United-
Kingdom., pp.55, March 2016, 10.1145/2896387.2896440.hal-01531630
M. Ge, H. Bangui, B. Buhnova, “Big Data for Internet of Things:
A Survey”, Future Generation Computer Systems, May 2018, DOI:
10.1016/j.future.2018.04.053

S. K. Datta, C. Bonnet, “Next-Generation, Data Centric and End-to-
End IoT Architecture Based on Microservices”, 2018 IEEE International
Conference on Consumer Electronics, Asia (ICCE-Asia), June 2018.
DOI: 10.1109/ICCE-ASIA.2018.8552135

L. F. Rahmana, T. Ozcelebia, J. Lukkiena, “Understanding IoT Systems:
A Life Cycle Approach”, Procedia Computer Science, Volume 130,
2018, pp. 1057-106, DOI: https://doi.org/10.1016/j.procs.2018.04.148
Z. Lv, X. Li, H. Lv, W. Xiu, “BIM Big Data Storage in WebVRGIS”,
Published in: IEEE Transactions on Industrial Informatics (Early Ac-
cess), 13 May 2019, DOL: 10.1109/T11.2019.2916689

A. A. Munshia, Y. A.-R. I. Mohamed, Big data framework for analytics
in smart grids, Electric Power Systems Research, 151 (2017) 369-380,
DOI: http://dx.doi.org/10.1016/j.epsr.2017.06.006

S. Nadal, V. Herrero, O. Romero, A. Abelld, X. Franch, S. Vansum-
meren, D. Valerio, “A software reference architecture for semantic-aware
Big Data systems”, Information and Software Technology 90, pp. 75-92,
2017, DOL: https://doi.org/10.1016/j.infsof.2017.06.001

I. A. T. Hashema, V. Changb, N. B. Anuara,K. Adewolea, I.
Yaqooba, A. Gania, E. Ahmeda, H. Chiroma, “The role of big
data in smart city”, International Journal of Information Man-
agement, Volume 36, Issue 5, October 2016, pp. 748-758, DOI:
https://doi.org/10.1016/j.ijinfomgt.2016.05.002

W. Inoubli, S. Aridhi, H. Mezni, M. Maddouri, E. M. Nguifo, “An
experimental survey on big data frameworks”, Future Generation Com-
puter Systems, Volume 86, September 2018, Pages 546-564. DOI:
https://doi.org/10.1016/j.future.2018.04.032

T. Wilcoxa, N. lJinb, P. Flachc, J. Thumimd, “A Big Data
platform for smart meter data analytics”, Computers in
Industry, Volume 105, February 2019, pp. 250-259, DOI:

https://doi.org/10.1016/j.compind.2018.12.010

M. Babar, F. Arif, M. A. Jan, Z. Tan, F. Khan, “Urban data man-
agement system: Towards Big Data analytics for Internet of Things
based smart urban environment using customized Hadoop”. Future
Generation Computer Systems, Volume 96, July 2019, Pages 398-
409DOI: https://doi.org/10.1016/j.future.2019.02.035

C. Badii, E. G. Belay, P. Bellini, D. Cenni, M. Marazzini, M.
Mesiti, P. Nesi, G. Pantaleo, M. Paolucci, S. Valtolina, M. Soderi, I.
Zaza,“Snap4City: A Scalable IOT/IOE Platform for Developing Smart
City Applications”, IEEE Smart City Innovation, China 2018. DOI:
https://ieeexplore.ieee.org/document/8560331/

P. Bellini, P. Nesi, M. Paolucci, 1. Zaza, “Smart city architecture for
data ingestion and analytics: Processes and solutions”, IEEE 4th Inter-
national Conference on Big Data Computing Service and Applications,
BigDataService 2018, pp. 137-144, March 2018. DOI: 10.1109/Big-
DataService.2018.00028

P. Nesi, M. Paolucci, “Supporting Living Lab with Life Cycle and Tools
for Smart City Environments”, The 24th International DMS Conference
on Visualization and Visual Languages, DMSVIVA 2018, Redwood City,
San Francisco Bay, California, USA, June 2018.

M. Azzari, C. Garau, P. Nesi, M. Paolucci, P. Zamperlin, "Smart City
Governance Strategies to better move towards a Smart Urbanism”,
The 18th International Conference on Computational Science and Its
Applications, ICCSA 2018. July 2018, Melbourne, Australia.

C. Badii, PBellini, D.Cenni, A. Difino, P. Nesi, M. Paolucci, “User
Engagement Engine for Smart City Strategies”, IEEE International
Conference on Smart Computing, IEEE SMARCOMP 2017, Hong
Kong.

C. Badii, P. Bellini, P. Nesi, M., Paolucci, A smart city development
kit for designing Web and mobile Apps, 2017 IEEE SmartWorld,
Ubiquitous Intelligence & Computing, Advanced & Trusted Computed,
Scalable Computing & Communications, Cloud & Big Data Com-
puting, Internet of People and Smart City Innovation, 10.1109/UIC-
ATC.2017.8397569.

	Introduction
	Snap4city System Overview
	Data Ingestion Process Model
	ETL Data Ingestion
	IoT Data Ingestion
	Formal Model: IoT Ingestion vs Ontology

	Unified Data Model
	HLT Metadata

	Performance Evaluation
	Conclusion
	References

