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66, 106]. Once built with monolithic architectures, interactive on-

line services are undergoing a shift to microservice architectures [1,

4, 5, 42, 47], where a large application is built by connecting loosely

coupled, single-purpose microservices. On the one hand, microser-

vice architectures provide software engineering benefits such as

modularity and agility as the scale and complexity of the application

grows [36, 49]. On the other hand, staged designs for online services

inherently provide better scalability and reliability, as shown in

pioneering works like SEDA [105]. However, while the interactive

nature of online services implies an end-to-end service-level objec-

tives (SLO) of a few tens of milliseconds, individual microservices

face more strict latency SLOs ś at the sub-millisecond-scale for leaf

microservices [100, 110].

Microservice architectures are more complex to operate com-

pared to monolithic architectures [22, 35, 36], and the complexity

grows with the number of microservices. Although microservices

are designed to be loosely coupled, their failures are usually very de-

pendent. For example, one overloaded service in the system can eas-

ily trigger failures of other services, eventually causing cascading

failures [3]. Overload control for microservices is difficult because

microservices call each other on data-dependent execution paths,

creating dynamics that cannot be predicted or controlled from the

runtime [38, 48, 88, 111]. Microservices are often comprised of ser-

vices written in different programming languages and frameworks,

further complicating their operational problems. By leveraging fully

managed cloud services (e.g., Amazon’s DynamoDB [6], Elastic-

Cache [7], S3 [19], Fargate [12], and Lambda [15]), responsibilities

for scalability and availability (as well as operational complexity)

are mostly shifted to cloud providers, motivating serverless microser-

vices [20, 33, 41, 43ś45, 52, 53].

Serverless Microservices. Simplifying the development and man-

agement of online services is the largest benefit of buildingmicroser-

vices on serverless infrastructure. For example, scaling the service

is automatically handled by the serverless runtime, deploying a new

version of code is a push-button operation, and monitoring is inte-

grated with the platform (e.g., CloudWatch [2] on AWS). Amazon

promotes serverless microservices with the slogan łno server is eas-

ier to manage than no serverž [44]. However, current FaaS systems

have high runtime overheads (Table 1) that cannot always meet

the strict latency requirement imposed by interactive microservices.

Nightcore fills this performance gap.

Nightcore focuses on mid-tier services implementing stateless

business logic in microservice-based online applications. These

mid-tier microservices bridge the user-facing frontend and the data

storage, and fit naturally in the programming model of serverless

functions. Online data intensive (OLDI) microservices [100] repre-

sent another category of microservices, where the mid-tier service

fans out requests to leaf microservices for parallel data processing.

Microservices in OLDI applications are mostly stateful and memory

intensive, and therefore are not a good fit for serverless functions.

We leave serverless support of OLDI microservices as future work.

The programming model of serverless functions expects func-

tion invocations to be short-lived, which seems to contradict the

assumption of service-oriented architectures which expect services

to be long-running. However, FaaS systems like AWS Lambda al-

lows clients to maintain long-lived connections to their API gate-

ways [8], making a serverless function łservice-likež. Moreover,

because AWS Lambda re-uses execution contexts for multiple func-

tion invocations [13], users’ code in serverless functions can also

cache reusable resources (e.g., database connections) between invo-

cations for better performance [17].

Optimizing FaaS Runtime Overheads. Reducing start-up laten-

cies, especially cold-start latencies, is amajor research focus for FaaS

runtime overheads [57, 64, 67, 89, 90, 98]. Nightcore assumes suffi-

cient resources have been provisioned and relevant function con-

tainers are in warm states which can be achieved on AWS Lambda

by using provisioned concurrency (AWS Lambda strongly recom-

mends provisioned concurrency for latency-critical functions [40]).

As techniques for optimizing cold-start latencies [89, 90] become

mainstream, they can be applied to Nightcore.

Invocation latency overheads of FaaS systems are largely over-

looked, as recent studies on serverless computing focus on data

intensive workloads such as big data analysis [75, 95], video analyt-

ics [59, 69], code compilation [68], and machine learning [65, 98],

where function execution times range from hundreds of millisec-

onds to a few seconds. However, a few studies [62, 84] point out that

the millisecond-scale invocation overheads of current FaaS systems

make them a poor substrate for microservices with microsecond-

scale latency targets. For serverless computing to be successful in

new problem domains [71, 76, 84], it must address microsecond-

scale overheads.

3 DESIGN

Nightcore is designed to run serverless functions with sub-millisec-

ond-scale execution times, and to efficiently process internal func-

tion calls, which are generated during the execution of a serverless

function (not by an external client). Nightcore exposes a serverless

function interface that is similar to AWS Lambda: users provide

stateless function handlers written in supported programming lan-

guages. The only addition to this simple interface is that Nightcore’s

runtime library provides APIs for fast internal function invocations.

3.1 System Architecture

Figure 2 depicts Nightcore’s design which mirrors the design of

other FaaS systems starting with the separation of frontend and

backend. Nightcore’s frontend is an API gateway for serving ex-

ternal function requests and other management requests (e.g., to

register new functions), while the backend consists of a number

of independent worker servers. This separation eases availability

and scalability of Nightcore, by making the frontend API gateway

fault tolerant and horizontally scaling backend worker servers. Each

worker server runs a Nightcore engine process and function con-

tainers, where each function container has one registered serverless

function, and each function has only one container on each worker

server. Nightcore’s engine directly manages function containers

and communicates with worker threads within containers.

Internal Function Calls. Nightcore optimizes internal function

calls locally on the same worker server, without going through the

API gateway. Figure 2 depicts this fast path in Nightcore’s runtime
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containers, to aid the setup of pipes and shared memory buffers.

Nightcore creates named pipes in the shared tmpfs, allowing func-

tion workers to connect. Shared memory buffers are implemented

by creating files in the shared tmpfs, which are mmaped with the

MAP_SHARED flag by both the engine and function workers. Docker

by itself supports sharing IPC namespaces between containers [31],

but the setup is difficult for Docker’s cluster mode. Nightcore’s

approach is functionally identical to IPC namespaces, as Linux’s

System V shared memory is internally implemented by tmpfs [46].

Communications between Function Worker Threads. Indi-

vidual worker threads within function containers connect to Night-

core’s engine with a message channel for receiving new function

requests and sending responses ( 4○ and 6○ in Figure 3). A worker

thread can be either busy (executing function code) or idle. During

the execution of function code, the worker thread’s message chan-

nel is also used by Nightcore’s runtime library for internal function

calls ( 2○ and 7○ in Figure 3). When a worker thread finishes execut-

ing function code, it sends a response message with the function

output to the engine and enters the idle state. An idle worker thread

is put to sleep by the operating system, but the engine can wake

it by writing a function request message to its message channel.

The engine tracks the busy/idle state of each worker so there is no

queuing at worker threads, the engine only dispatches requests to

idle workers.

Mailbox. The design of Nightcore’s engine only allows individual

I/O threads to write data to message channels assigned to it (shown

as violet arrows in Figure 5). In certain cases, however, an I/O

thread needs to communicate with a thread that does not share a

message channel. Nightcore routes these requests using per-thread

mailboxes. When an I/O thread drops a message in the mailbox of

another thread, uv_async_send (using eventfd [24] internally)

is called to notify the event loop of the owner thread.

Computing Concurrency Hints (𝜏𝑘 ). To properly regulate the

amount of concurrent function executions, Nightcore’s enginemain-

tains two exponential moving averages 𝜆𝑘 (invocation rate) and

𝑡𝑘 (processing time) for each function Fn𝑘 (ğ 3.3). Samples of in-

vocation rates are computed as 1/(interval between consecutive

Fn𝑘 invocations), while processing times are computed as intervals

between dispatch and completion timestamps, excluding queue-

ing delays (the interval between receive and dispatch timestamps)

from sub-invocations. Nightcore uses a coefficient 𝛼 = 10
−3 for

computing exponential moving averages.

4.2 Function Workers

Nightcore executes user-provided function code in its function

worker processes (ğ 3.1). As different programming languages have

different abstractions for threading and I/O, Nightcore has different

function worker implementations for them.

Nightcore’s implementation of function workers also includes a

runtime library for fast internal function calls. Nightcore’s runtime

library exposes a simple API output := nc_fn_call(fn_name,

input) to user-provided function code for internal function calls.

Furthermore, Nightcore’s runtime library provides Apache Thrift [9]

and gRPC [30] wrappers for its function call API, easing porting of

existing Thrift-based and gRPC-based microservices to Nightcore.

C/C++. Nightcore’s C/C++ function workers create OS threads for

executing user’s code, loaded as dynamically linked libraries. These

OS threads map to łworker threadsž in Nightcore’s design (ğ 3.1

and Figure 2). To simplify the implementation, each C/C++ function

worker process only runs one worker thread, and the launcher will

fork more worker processes when the engine asks for more worker

threads.

Go. In Go function workers, łworker threadsž map to goroutines,

the user-level threads provided by Go’s runtime, and the launcher

only forks one Go worker process. Users’ code are compiled to-

gether with Nightcore’s Go worker implementation, as Go’s run-

time does not support dynamic loading of arbitrary Go code 2. Go’s

runtime allows dynamically setting the maximum number of OS

threads for running goroutines (via runtime.GOMAXPROCS), and

Nightcore’s implementation sets it to ⌈worker goroutines/8⌉.

Node.js and Python. Node.js follows an event-driven design

where all I/O is asynchronouswithout depending onmulti-threading,

while Python is the same when using the asyncio [11] library for

I/O. In both cases, Nightcore implements its message channel pro-

tocol within their event loops. As there are no parallel threads
3 inside Node.js and Python function workers, launching a new

łworker threadž simplymeans creating amessage channel, while the

engine’s notion of łworker threadsž becomes event-based concur-

rency [23]. Also, nc_fn_call is an asynchronous API in Node.js

and Python workers, rather than being synchronous in C/C++ and

Go workers. For Node.js and Python functions, the launcher only

forks one worker process.

5 EVALUATION

We conduct all of our experiments on Amazon EC2 C5 instances in

the us-east-2 region, running Ubuntu 20.04 with Linux kernel

5.4.41. We enable hyperthreading, but disable transparent huge

pages.

5.1 Methodology

Microservice Workloads. Nightcore is designed to optimize mi-

croservice workloads, so we evaluate it on the four most realistic,

publicly available, interactive microservice code bases: SocialNet-

work, MovieReviewing, HotelReservation, and HipsterShop. The

first three are from DeathStarBench [70], while HipsterShop is a mi-

croservice demo from Google Cloud Platform [29]. The workloads

are summarized in Table 2.

For the SocialNetwork workload, we tested two load patterns:

(1) a pure load of ComposePost requests (shown in Figure 1) (de-

noted as łwritež); (2) a mixed load (denoted as łmixedž), that is

a combination of 30% CompostPost, 40% ReadUserTimeline, 25%

ReadHomeTimeline, and 5% FollowUser requests.

HipsterShop itself does not implement data storage, and we

modify it to use MongoDB for saving orders and Redis for shopping

carts. We also add Redis instances for caching product and ad lists.

2Go partially supports dynamic code loading via a plugin [39], but it requires the
plugin and the loader be compiled with a same version of the Go toolchain, and all
their dependency libraries have exactly the same versions.
3Node.js supports worker threads [56] for running CPU-intensive tasks, but they have
worse performance for I/O-intensive tasks.
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of non-idle CPU time, both of which are used for inter-service com-

munications. In contrast, Nightcore spends much less CPU time in

TCP-related system calls, because only communication with ser-

vices running on other hosts (e.g., database and Redis) uses TCP

sockets. Both systems spend roughly the same amount of CPU time

in netrx softirqs, which is caused only by inter-host networking.

5.4 Discussion

A goal for Nightcore is to avoid modifying Linux, because we want

Nightcore to be easier to adopt for existing microservice workloads.

Nightcore therefore relies on existing OS abstractions to achieve

its performance goals, creating a challenge to efficiently use the

operating systems’ existing I/O abstractions and to find individual

łkiller microseconds.ž

In our experience with Nightcore, we find there is no single

dominant łkiller microsecond.ž There are multiple factors with

significant contributions, and all must be addressed. Profiling the

whole system for microsecond-scale optimization opportunities is

challenging given the overheads introduced by profiling itself. In

Nightcore, we implement low-overhead statistics collectors, and

use eBPF programs [16] for kernel-related profiling.

6 RELATED WORK

Microservices. The emergence of microservices for building large-

scale cloud applications has prompted recent research on charac-

terizing their workloads [70, 99, 102, 112], as well as studying their

hardware-software implications [70, 99, 100]. Microservices have a

higher communication-to-computation ratio than traditional work-

loads [70] and frequent microsecond-scale RPCs, so prior work has

studied various software and hardware optimization opportuni-

ties for microsecond-scale RPCs, including transport layer proto-

cols [78, 79], a taxonomy of threading models [100], heterogeneous

NIC hardware [85], data transformations [93], and CPU memory

controllers [101]. The programming model of serverless functions

maps inter-service RPCs to internal function calls, allowing Night-

core to avoid inter-host networking and transparently eliminate

RPC protocol overheads. X-Containers [97] is a recently proposed

LibOS-based container runtime, that improves the efficiency of

inter-service communications for mutually trusting microservices.

For comparison, Nightcore still relies on the current container mech-

anism (provided by Docker), which does not require microservices

to trust each other.

Serverless Computing. Recent research on serverless comput-

ing has mostly focused on data intensive workloads [59, 65, 68,

69, 75, 95, 98], leading invocation latency overheads to be largely

overlooked. SAND [57] features a local message bus as the fast

path for chained function invocations. However, SAND only allows

a single, local call at the end of a function, while Nightcore sup-

ports arbitrary calling patterns (e.g., Figure 1). Faasm [98]’s chained

function calls have the same functionality as Nightcore’s inter-

nal function calls, but they are executed within the same process,

relying on WebAssembly for software-based fault isolation. One

previous work [62] also notices that FaaS systems have to achieve

microsecond-scale overheads for efficient support of microservices,

but they demonstrate only a proof-of-concept FaaS runtime that

relies on Rust’s memory safety for isolation and lacks end-to-end

evaluations on realistic microservices.

System Supports for Microsecond-Scale I/Os. Prior work on

achieving microsecond-scale I/O has been spread across various

system components, ranging from optimizing the network stack [74,

78, 79]; designs for a dataplane OS [61, 77, 87, 91, 92, 94]; thread

scheduling for microsecond-scale tasks [63, 77, 91, 96, 100]; and

novel filesystems leveraging persistent memory [81, 86, 108]. Ad-

ditionally, the efficiency of I/O is also affected by the user-facing

programming model [72, 105] and the underlying mechanism for

concurrency [80, 103]. A recent paper from Google [60] argues that

current systems are not tuned for microsecond-scale events, as vari-

ous OS building blocks have microsecond-scale overheads. Eliminat-

ing these overheads requires a tedious hunt for the łkiller microsec-

onds.ž Inspired by this work, the design of Nightcore eliminates

many of these overheads, making it practical for a microsecond-

scale serverless system.

7 CONCLUSION

Optimizing Nightcore justifies one of Lampson’s early hints [82]:

łmake it fast, rather than general or powerfulž, because fast building

blocks can be used more widely. As computing becomes more

granular [84], we anticipate more microsecond-scale applications

will come to serverless computing. Designing and building this next

generation of services will require careful attention to microsecond-

scale overheads.
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A ARTIFACT APPENDIX

A.1 Abstract

Our artifact includes the prototype implementation of Nightcore,

theDeathStarBench [21] andHipsterShopmicroservices [29] ported

to Nightcore, and the experiment workflow to run these workloads

on AWS EC2 instances.

A.2 Artifact Check-List (Meta-Information)

• Program: Nightcore, Docker runtime, and wrk2

• Run-time environment: AWS EC2 instances

• Metrics: Latency and throughput

• Experiments: Our ports of DeathStarBench [21] andHip-

sterShop microservices [29] (included in this artifact)

• Disk space required: 2GB

• Time needed to prepare workflow: 1 hour

• Time needed to complete experiments: 3 hours

• Publicly available: Yes

• Code licenses: Apache License 2.0

• Archive: 10.5281/zenodo.4321760
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A.3 Description

How to Access. The source code and benchmarks are host on

GitHub ut-osa/nightcore and ut-osa/nightcore-benchmarks.

Hardware Dependencies. This artifact runs on AWS EC2 in-

stances in us-east-2 region.

Software Dependencies. This artifact requires experiment VMs

running Ubuntu 20.04 with Docker installed.

We provide a pre-built VM image hosted on AWS us-east-2 re-

gion (ami-06e206d7334bff2ec) with all necessary dependencies

installed, which is used by experiment scripts in this artifact.

A.4 Installation

Setting up the Controller Machine. A controller machine in

AWS us-east-2 region is required for running scripts executing

experiment workflows. The controller machine can use very small

EC2 instance type, as it only provisions and controls experiment

VMs, but does not affect experimental results. In our own setup, we

use a t3.micro EC2 instance installed with Ubuntu 20.04 as the

controller machine.

The controller machine needs python3, rsync, and AWS CLI

version 1 installed. python3 and rsync can be installed with apt.

This documentation details the recommended way for installing

AWS CLI version 1. Once installed, AWS CLI has to be configured

with region us-east-2 and access key (see this).

Then on the controller machine, clone our artifact repository

with all git submodules:

git clone --recursive \

https://github.com/ut-osa/nightcore-benchmarks.git

Finally, execute scripts/setup_sshkey.sh to setup SSH keys

that will be used to access experiment VMs. Please read the notice

in the script before executing it to check if this script works for

your setup.

Setting up EC2 Security Group and Placement Group. Our

VM provisioning script creates EC2 instances with security group

nightcore and placement group nightcore-experiments. The

security group includes firewall rules for experiment VMs (i.e., al-

lowing the controller machine to SSH into them), while the place-

ment group instructs AWS to place experiment VMs close together.

Executing scripts/aws_provision.sh on the controller ma-

chine creates these groups with correct configurations.

Building Docker Images. We also provide the script

(scripts/docker_images.sh) for building Docker images rele-

vant to experiments in this artifact. As we already pushed all com-

piled images to DockerHub, there is no need to run this script as

long as you do not modify source code of Nightcore (in nightcore

directory) and evaluation workloads (in workloads directory).

A.5 Experiment Workflow

Each sub-directory within experiments corresponds to one ex-

periment. Within each experiment directory, a config.json file

describes machine configuration and placement assignment of in-

dividual Docker containers (i.e. microservices) for this experiment.

The entry point of each experiment is the run_all.sh script.

It first provisions VMs for experiments. Then it executes evalua-

tion workloads with different QPS targets via run_once.sh script.

run_once.sh script performs workload-specific setups, runs wrk2

to measure latency distribution under the target QPS, and stores re-

sults in results directory.When everything is done, run_all.sh

script terminates all provisioned experiment VMs.

VM provisioning is done by scripts/exp_helper with sub-

command start-machines. By default, it creates on-demand EC2

instances. But it also supports the option to use Spot instances for

cost saving. After EC2 instances are up, the script then sets up

Docker engines on newly created VMs to form a Docker cluster in

swarm mode.

A.6 Evaluation and Expected Result

For each experiment, the evaluation metric is the latency distribu-

tion under a specific QPS. We use wrk2 as the benchmarking tool,

and it outputs a detailed latency distribution, which looks like

Latency Distribution (HdrHistogram - Recorded Latency)

50.000% 2.21ms

75.000% 3.29ms

90.000% 5.13ms

99.000% 9.12ms

99.900% 12.28ms

99.990% 17.45ms

99.999% 20.32ms

100.000% 23.61ms

We report the 50% and 99% percentile values as median and tail

latencies in the paper. run_all.sh script conducts evaluations on

various QPS targets.

Experiment sub-directories ending with łsinglenodež corre-

spond to Nightcore results in Figure 7 of themain paper. Experiment

sub-directories ending with ł4nodež correspond to Nightcore (4

servers) results in Table 4 of the main paper. Note that run_all.sh

scripts run less data points than presented in the paper, to allow a

fast validation. But all run_all.sh scripts can be easily modified

to collect more data points.

We provide a helper script łscripts/collect_resultsł to

print a summary of all experiment results. Meanwhile,

łexpected_results_summary.txtł gives the summary gener-

ated from our experiment runs. Details of our runs are stored in

the łexpected_resultsł directory within each experiment sub-

directory. Note that these results are not the exact ones presented

in the paper.

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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