Nightcore: Efficient and Scalable Serverless Computing for
Latency-Sensitive, Interactive Microservices

Zhipeng Jia
The University of Texas at Austin
Austin, TX, USA
zjia@cs.utexas.edu

ABSTRACT

The microservice architecture is a popular software engineering ap-
proach for building flexible, large-scale online services. Serverless
functions, or function as a service (FaaS), provide a simple program-
ming model of stateless functions which are a natural substrate for
implementing the stateless RPC handlers of microservices, as an al-
ternative to containerized RPC servers. However, current serverless
platforms have millisecond-scale runtime overheads, making them
unable to meet the strict sub-millisecond latency targets required
by existing interactive microservices.

We present Nightcore, a serverless function runtime with mi-
crosecond-scale overheads that provides container-based isolation
between functions. Nightcore’s design carefully considers various
factors having microsecond-scale overheads, including scheduling
of function requests, communication primitives, threading models
for I/0O, and concurrent function executions. Nightcore currently
supports serverless functions written in C/C++, Go, Node.js, and
Python. Our evaluation shows that when running latency-sensitive
interactive microservices, Nightcore achieves 1.36x-2.93% higher
throughput and up to 69% reduction in tail latency.

CCS CONCEPTS

« Computer systems organization — Cloud computing; « Soft-
ware and its engineering — Cloud computing; n-tier archi-
tectures.

KEYWORDS

Cloud computing, serverless computing, function-as-a-service, mi-
croservices

ACM Reference Format:

Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Efficient and Scalable
Serverless Computing for Latency-Sensitive, Interactive Microservices. In
Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS °21), April 19—
23, 2021, Virtual, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3445814.3446701

This work is licensed under a Creative Commons Attribution International 4.0 License.

ASPLOS 21, April 19-23, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8317-2/21/04.
https://doi.org/10.1145/3445814.3446701

152

Emmett Witchel
The University of Texas at Austin
Austin, TX, USA
witchel@cs.utexas.edu

1 INTRODUCTION

The microservice architecture is a popular software engineering
approach for building large-scale online services. It has been widely
adopted by large companies such as Amazon, Netflix, LinkedIn,
Uber, and Airbnb [1, 4, 5, 42, 47]. The microservice architecture
enables a large system to evolve more rapidly because each mi-
croservice is developed, tested, and deployed independently [36, 49].
Microservices communicate with each other via pre-defined APIs,
mostly using remote procedure calls (RPC) [70]. Hence, the domi-
nant design pattern for microservices is that each microservice is
an RPC server and they are deployed on top of a container orches-
tration platform such as Kubernetes [29, 54, 70].

Serverless cloud computing enables a new way of building mi-
croservice-based applications [10, 18, 44, 52], having the benefit of
greatly reduced operational complexity (§2). Serverless functions, or
function as a service (FaaS), provide a simple programming model
of stateless functions. These functions provide a natural substrate
for implementing stateless RPC handlers in microservices, as an
alternative to containerized RPC servers. However, readily available
FaaS systems have invocation latency overheads ranging from a few
to tens of milliseconds [14, 55, 84] (see Table 1), making them a poor
choice for latency-sensitive interactive microservices, where RPC
handlers only run for hundreds of microseconds to a few millisec-
onds [70, 83, 100, 101] (see Figure 1). The microservice architecture
also implies a high invocation rate for FaaS systems, creating a per-
formance challenge. Taking Figure 1 as an example, one request that
uploads a new social media post results in 15 stateless RPCs (blue
boxes in the figure). Our experiments on this workload show that
100K RPCs per second is a realistic performance goal, achievable
under non-serverless deployment using five 8-vCPU RPC server
VMs. For a Faa$ system to efficiently support interactive microser-
vices, it should achieve at least two performance goals which are
not accomplished by existing FaaS systems: (1) invocation latency
overheads are well within 100us; (2) the invocation rate must scale
to 100K/s with a low CPU usage.

Some previous studies [62, 98] reduced FaaS runtime overheads
to microsecond-scale by leveraging software-based fault isolation
(SFI), which weakens isolation guarantees between different func-
tions. We prefer the stronger isolation provided by containers be-
cause that is the standard set by containerized RPC servers and
provided by popular FaaS systems such as Apache OpenWhisk [50]
and OpenFaaS [37]. But achieving our performance goals while
providing the isolation of containers is a technical challenge.

We present Nightcore, a serverless function runtime designed
and engineered to combine high performance with container-based
isolation. Any microsecond-or-greater-scale performance overheads

ASPLOS 21, April 19-23, 2021, Virtual, USA

Table 1: Invocation latencies of a warm nop function.

FaaS$ systems 50th 99th | 99.9th
AWS Lambda 10.4 ms | 25.8 ms | 59.9 ms
OpenFaaS [37] 1.09 ms | 3.66 ms | 5.54 ms
Nightcore (external) | 285 pus | 536 us | 855 pus
Nightcore (internal) 39ps | 107 ps | 154 ps

can prevent Nightcore from reaching its performance goal, moti-
vating a “hunt for the killer microseconds” [60] in the regime of
FaaS systems.

Existing FaaS systems like OpenFaaS [37] and Apache Open-
Whisk [50] share a generic high-level design: all function requests
are received by a frontend (mostly an API gateway), and then for-
warded to independent backends where function code executes. The
frontend and backends mostly execute on separate servers for fault
tolerance, which requires invocation latencies that include at least
one network round trip. Although datacenter networking perfor-
mance is improving, round-trip times (RTTs) between two VMs in
the same AWS region range from 101us to 237us [25]. Nightcore
is motivated by noticing the prevalence of internal function calls
made during function execution (see Figure 1). An internal function
call is one that is generated by the execution of a microservice, not
generated by a client (in which case it would be an external function
call, received by the gateway). What we call internal function calls
have been called “chained function calls” in previous work [98].
Nightcore schedules internal function calls on the same backend
server that made the call, eliminating a trip to through the gateway
and lowering latency (§ 3.2).

Nightcore’s support for internal function calls makes most com-
munication local, which means its inter-process communications
(IPC) must be efficient. Popular, feature-rich RPC libraries like gRPC
work for IPC (over Unix sockets), but gRPC’s protocol adds over-
heads of ~10us [60], motivating Nightcore to design its own mes-
sage channels for IPC (§ 3.1). Nightcore’s message channels are
built on top of OS pipes, and transmit fixed-size 1KB messages, be-
cause previous studies [83, 93] show that 1KB is sufficient for most
microservice RPCs. Our measurements show Nightcore’s message
channels deliver messages in 3.4yus, while gRPC over Unix sockets
takes 13pus for sending 1KB RPC payloads.

Previous work has shown microsecond-scale latencies in Linux’s
thread scheduler [60, 92, 100], leading dataplane OSes [61, 77, 87, 91,
92, 94] to build their own schedulers for lower latency. Nightcore
relies on Linux’s scheduler, because building an efficient, time-
sharing scheduler for microsecond-scale tasks is an ongoing re-
search topic [63, 77, 84, 91, 96]. To support an invocation rate
of >100K/s, Nightcore’s engine (§ 4.1) uses event-driven concur-
rency [23, 105], allowing it to handle many concurrent I/O events
with a small number of OS threads. Our measurements show that 4
OS threads can handle an invocation rate of 100K/s. Furthermore,
I/O threads in Nightcore’s engine can wake function worker threads
(where function code is executed) via message channels, which en-
sures the engine’s dispatch suffers only a single wake-up delay
from Linux’s scheduler.

Existing FaaS systems do not provide concurrency management
to applications. However, stage-based microservices create internal

153

Zhipeng Jia and Emmett Witchel

New compose-post
Tweet | D NGINX frontend text | _v| Uloadrex
UploadText (1710ps)
End-to-end (3640ps)
response time: P
5.10ms " - - user-timeline
unique-id user-mention WriteUserTimeline
" i UploadUserMenti
media user UploadUniqueld IploadUserMention (650ps)
(330ps) (690ps)
UploadMedia | | UploadUserWithUserld
(320ps) (300ps) &
X compose-post compose-post po:tt;,s:g:’ge
i UploadUserMention
compose-post Ubigsatipiqueld (260ps)
UploadMedia || COMPOSE-post (140ps) (130ps)

UploadCreator
(130ps)

[] Stateful service

[] stateless service (running on FaaS)

(140ps)

write-home-timeline
FanoutHomeTimelines
(640ps)

url-shorten
UploadUris
(590ps)

social-graph
GetFollows
(230ps)

— External function call compose-post
UploadUrls

(140ps)

— Internal function call

Figure 1: RPC graph of uploading new post in a microservice-
based SocialNetwork application [70]. This graph omits state-
ful services for data caching and data storage.

load variations even under a stable external request rate [73, 105].
Previous studies [38, 73, 104, 105] indicate overuse of concurrency
for bursty loads can lead to worse overall performance. Night-
core, unlike existing FaaS systems, actively manages concurrency
providing dynamically computed targets for concurrent function
executions that adjust with input load (§ 3.3). Nightcore’s managed
concurrency flattens CPU utilization (see Figure 4) such that overall
performance and efficiency are improved, as well as being robust
under varying request rates (§ 5.2).

We evaluate the Nightcore prototype on four interactive mi-
croservices, each with a custom workload. Three are from Death-
StarBench [70] and one is from Google Cloud [29]. These workloads
are originally implemented in RPC servers, and we port them to
Nightcore, as well as OpenFaa$S [37] for comparison. The evalu-
ation shows that only by the carefully finding and eliminating
microsecond-scale latencies can Nightcore use serverless functions
to efficiently implement latency-sensitive microservices.

This paper makes the following contributions.

e Nightcore is a FaaS runtime optimized for microsecond-
scale microservices. It achieves invocation latency overheads
under 100ps and efficiently supports invocation rates of
100K/s with low CPU usage. Nightcore is publicly available
at GitHub ut-osa/nightcore.

e Nightcore’s design uses diverse techniques to eliminate mi-
crosecond-scale overheads, including a fast path for internal
function calls, low-latency message channels for IPC, effi-
cient threading for I/O, and function executions with dynam-
ically computed concurrency hints (§3).

e With containerized RPC servers as the baseline, Nightcore
achieves 1.36x-2.93% higher throughput and up to 69%
reduction in tail latency, while OpenFaaS only achieves 29%-
38% of baseline throughput and increases tail latency by up
to 3.4x (§5).

2 BACKGROUND

Latency-Sensitive Interactive Microservices. Online services
must scale to high concurrency, with response times small enough
(a few tens of milliseconds) to deliver an interactive experience [58,

Nightcore: Efficient and Scalable Serverless Computing for Latency-Sensitive, Interactive Microservices

66, 106]. Once built with monolithic architectures, interactive on-
line services are undergoing a shift to microservice architectures [1,
4,5, 42, 47], where a large application is built by connecting loosely
coupled, single-purpose microservices. On the one hand, microser-
vice architectures provide software engineering benefits such as
modularity and agility as the scale and complexity of the application
grows [36, 49]. On the other hand, staged designs for online services
inherently provide better scalability and reliability, as shown in
pioneering works like SEDA [105]. However, while the interactive
nature of online services implies an end-to-end service-level objec-
tives (SLO) of a few tens of milliseconds, individual microservices
face more strict latency SLOs - at the sub-millisecond-scale for leaf
microservices [100, 110].

Microservice architectures are more complex to operate com-
pared to monolithic architectures [22, 35, 36], and the complexity
grows with the number of microservices. Although microservices
are designed to be loosely coupled, their failures are usually very de-
pendent. For example, one overloaded service in the system can eas-
ily trigger failures of other services, eventually causing cascading
failures [3]. Overload control for microservices is difficult because
microservices call each other on data-dependent execution paths,
creating dynamics that cannot be predicted or controlled from the
runtime [38, 48, 88, 111]. Microservices are often comprised of ser-
vices written in different programming languages and frameworks,
further complicating their operational problems. By leveraging fully
managed cloud services (e.g., Amazon’s DynamoDB [6], Elastic-
Cache [7], S3 [19], Fargate [12], and Lambda [15]), responsibilities
for scalability and availability (as well as operational complexity)
are mostly shifted to cloud providers, motivating serverless microser-
vices [20, 33, 41, 43-45, 52, 53].

Serverless Microservices. Simplifying the development and man-
agement of online services is the largest benefit of building microser-
vices on serverless infrastructure. For example, scaling the service
is automatically handled by the serverless runtime, deploying a new
version of code is a push-button operation, and monitoring is inte-
grated with the platform (e.g., CloudWatch [2] on AWS). Amazon
promotes serverless microservices with the slogan “no server is eas-
ier to manage than no server” [44]. However, current Faa$ systems
have high runtime overheads (Table 1) that cannot always meet
the strict latency requirement imposed by interactive microservices.
Nightcore fills this performance gap.

Nightcore focuses on mid-tier services implementing stateless
business logic in microservice-based online applications. These
mid-tier microservices bridge the user-facing frontend and the data
storage, and fit naturally in the programming model of serverless
functions. Online data intensive (OLDI) microservices [100] repre-
sent another category of microservices, where the mid-tier service
fans out requests to leaf microservices for parallel data processing.
Microservices in OLDI applications are mostly stateful and memory
intensive, and therefore are not a good fit for serverless functions.
We leave serverless support of OLDI microservices as future work.

The programming model of serverless functions expects func-
tion invocations to be short-lived, which seems to contradict the
assumption of service-oriented architectures which expect services

154

ASPLOS 21, April 19-23, 2021, Virtual, USA

to be long-running. However, FaaS systems like AWS Lambda al-
lows clients to maintain long-lived connections to their API gate-
ways [8], making a serverless function “service-like”. Moreover,
because AWS Lambda re-uses execution contexts for multiple func-
tion invocations [13], users’ code in serverless functions can also
cache reusable resources (e.g., database connections) between invo-
cations for better performance [17].

Optimizing FaaS Runtime Overheads. Reducing start-up laten-
cies, especially cold-start latencies, is a major research focus for FaaS
runtime overheads [57, 64, 67, 89, 90, 98]. Nightcore assumes suffi-
cient resources have been provisioned and relevant function con-
tainers are in warm states which can be achieved on AWS Lambda
by using provisioned concurrency (AWS Lambda strongly recom-
mends provisioned concurrency for latency-critical functions [40]).
As techniques for optimizing cold-start latencies [89, 90] become
mainstream, they can be applied to Nightcore.

Invocation latency overheads of FaaS systems are largely over-
looked, as recent studies on serverless computing focus on data
intensive workloads such as big data analysis [75, 95], video analyt-
ics [59, 69], code compilation [68], and machine learning [65, 98],
where function execution times range from hundreds of millisec-
onds to a few seconds. However, a few studies [62, 84] point out that
the millisecond-scale invocation overheads of current FaaS systems
make them a poor substrate for microservices with microsecond-
scale latency targets. For serverless computing to be successful in
new problem domains [71, 76, 84], it must address microsecond-
scale overheads.

3 DESIGN

Nightcore is designed to run serverless functions with sub-millisec-
ond-scale execution times, and to efficiently process internal func-
tion calls, which are generated during the execution of a serverless
function (not by an external client). Nightcore exposes a serverless
function interface that is similar to AWS Lambda: users provide
stateless function handlers written in supported programming lan-
guages. The only addition to this simple interface is that Nightcore’s
runtime library provides APIs for fast internal function invocations.

3.1 System Architecture

Figure 2 depicts Nightcore’s design which mirrors the design of
other Faa$ systems starting with the separation of frontend and
backend. Nightcore’s frontend is an API gateway for serving ex-
ternal function requests and other management requests (e.g., to
register new functions), while the backend consists of a number
of independent worker servers. This separation eases availability
and scalability of Nightcore, by making the frontend API gateway
fault tolerant and horizontally scaling backend worker servers. Each
worker server runs a Nightcore engine process and function con-
tainers, where each function container has one registered serverless
function, and each function has only one container on each worker
server. Nightcore’s engine directly manages function containers
and communicates with worker threads within containers.

Internal Function Calls. Nightcore optimizes internal function
calls locally on the same worker server, without going through the
API gateway. Figure 2 depicts this fast path in Nightcore’s runtime

ASPLOS "21, April 19-23, 2021, Virtual, USA

Gateway @
* fast path for M
| internal function call]
Per-Fn dispatching queues @ I \
Nightcore’s
(Al runtime library @ Launcher
Fn.: Worker threads
L) I:l:l:‘ NN\

...... | F!; cé;e S‘ () I
X Fn container @

Fn worker @ (Fn,)

Per-request tracing logs (4]

Req, \

Req Nightcore’s
..... 2 runtime library © Launcher
NN N

Nightcore’s Engine @

| F!; cé;e (‘ (7] I
Fn container @

Fn worker @ (Fny,)

Worker server
I

VM or Bare
metal machine

User-provided

Process h
function code

Docker
container

Zhipeng Jia and Emmett Witchel

o Accept external function requests

O Gateway o Load balance requests to worker servers
e The main Nightcore process on each worker server, which
communicates with Gateway @), launchers @), and worker
@ Engine threads inside Fn workers @

o Maintain per-function dispatching queues @ and per-request
tracing logs @

@© Dispatching

e Function requests queued here

queues Dispatch function requests to worker threads in Fn worker @

@ Tracing logs

® Track life-cycle of all function invocations, by recording
receive, dispatch, and completion timestamps

@ Fn container

e Execution environment for individual functions
o Consists of Fn worker @ and Launcher @ processes

@® Fn worker

e Multiple worker threads execute user-provided function code
@, and call a runtime library @ for fast, internal function call

e Implementation tailored to each supported programming
language

process

@ User-provided

o Stateless function code written in supported programming
language (C/C++, Go, Python, or Node. js)

Fn code e Executed on worker threads within Fn worker process (6]
@ Runtime e Fast path for internal function call: talk directly with Engine to
library enqueue the function call @, entirely bypassing Gateway @
© Launcher e Launch new Fn worker ® or worker threads

Figure 2: Architecture of Nightcore (§ 3.1).

library which executes inside a function container. By optimizing
the locality of dependent function calls, Nightcore brings perfor-
mance close to a monolithic design. At the same time, different
microservices remain logically independent and they execute on
different worker servers, ensuring there is no single point of failure.
Moreover, Nightcore preserves the engineering and deployment
benefits of microservices such as diverse programming languages
and software stacks.

Nightcore’s performance optimization for internal function calls
assumes that an individual worker server is capable of running most
function containers from a single microservice-based application .
We believe this is justified because we measure small working sets
for stateless microservices. For example, when running SocialNet-
work [70] at its saturation throughput, the 11 stateless microservice
containers consume only 432 MB of memory, while the host VM is
provisioned with 16 GB. As current datacenter servers have grow-
ing numbers of CPUs and increasing memory sizes (e.g., AWS EC2
VMs have up to 96 vCPUs and 192 GB of memory), a single server is
able to support the execution of thousands of containers [98, 109].
When it is not possible to schedule function containers on the same
worker server, Nightcore falls back to scheduling internal function
calls on different worker servers through the gateway.

Gateway. Nightcore’s gateway (Figure 2(D) performs load bal-
ancing across worker servers for incoming function requests and
forwards requests to Nightcore’s engine on worker servers. The
gateway also uses external storage (e.g., Amazon’s S3) for saving
function metadata and it periodically monitors resource utilizations

!Nightcore also needs to know which set of functions form a single application. In
practice, this knowledge comes directly from the developer, e.g., Azure Functions allow
developers to organize related functions as a single function app [34].

on all worker servers, to know when it should increase capacity by
launching new servers.

Engine. The engine process (Figure 2(2)) is the most critical com-
ponent of Nightcore for achieving microsecond-scale invocation
latencies, because it invokes functions on each worker server. Night-
core’ engine responds to function requests from both the gateway
and from the runtime library within function containers. It creates
low-latency message channels to communicate with function work-
ers and launchers inside function containers (§ 4.1). Nightcore’s
engine is event driven (Figure 5) allowing it to manage hundreds of
message channels using a small number of OS threads. Nightcore’s
engine maintains two important data structures: (1) Per-function
dispatching queues for dispatching function requests to function
worker threads (Figure 2®); (2) Per-request tracing logs for tracking
the life cycle of all inflight function invocations, used for computing
the proper concurrency level for function execution (Figure 2(®).

Function Containers. Function containers (Figure 2(3) provide
isolated environments for executing user-provided function code.
Inside the function container, there is a launcher process, and one
or more worker processes depending on the programming language
implementation (see § 4.2 for details). Worker threads within worker
processes receive function requests from Nightcore’s engine, and
execute user-provided function code. Worker processes also con-
tain a Nightcore runtime library, exposing APIs for user-provided
function code. The runtime library includes APIs for fast internal
function calls without going through the gateway. Nightcore’s in-
ternal function calls directly contact the dispatcher to enqueue the
calls that are executed on the same worker server without having
to involve the gateway.

Nightcore has different implementations of worker processes
for each supported programming language. The notion of “worker

155

Nightcore: Efficient and Scalable Serverless Computing for Latency-Sensitive, Interactive Microservices

threads” is particularly malleable because different programming
languages have different threading models. Futhermore, Night-
core’s engine does not distinguish worker threads from worker
processes, as it maintains communication channels with each in-
dividual worker thread. For clarity of exposition we assume the
simplest case in this Section (which holds for the C/C++ implemen-
tation), where “worker threads” are OS threads (details for other
languages in § 4.2).

Isolation in Nightcore. Nightcore provides container-level isola-
tion between different functions, but does not guarantee isolation
between different invocations of the same function. We believe
this is a reasonable trade-off for microservices, as creating a clean
isolated execution environment within tens of microseconds is too
challenging for current systems. When using RPC servers to im-
plement microservices, different RPC calls of the same service can
be concurrently processed within the same process, so Nightcore’s
isolation guarantee is as strong as containerized RPC servers.

Previous FaaS systems all have different trade-offs between iso-
lation and performance. OpenFaaS [51] allows concurrent invo-
cations within the same function worker process, which is the
same as Nightcore. AWS Lambda [13] does not allow concurrent
invocations in the same container/MicroVM but allows execution
environments to be re-used by subsequent invocations. SAND [57]
has two levels of isolation—different applications are isolated by
containers but concurrent invocations within the same application
are only isolated by processes. Faasm [98] leverages the software-
based fault isolation provided by WebAssembly, allowing a new
execution environment to be created within hundreds of microsec-
onds, but it relies on language-level isolation which is weaker than
container-based isolation.

Message Channels. Nightcore’s message channels are designed
for low-latency message passing between its engine and other
components, which carry fixed-size 1KB messages. The first 64
bytes of a message is the header which contains the message type
and other metadata, while the remaining 960 bytes are message
payload. There are three types of messages relevant to function
invocations:
(1) Dispatch, used by engine for dispatching function requests to
worker threads (@ in Figure 3).
(2) Completion, used by function worker threads for sending out-
puts back to the engine (® in Figure 3), as well as by the engine
for sending outputs of internal function calls ((7) in Figure 3).
(3) Invoke, used by Nightcore’s runtime library for initiating inter-
nal function calls () in Figure 3).
When payload buffers are not large enough for function inputs
or outputs, Nightcore creates extra shared memory buffers for
exchanging data. In our experiments, these overflow buffers are
needed for less than 1% of the messages for most workloads, though
HipsterShop needs them for 9.7% of messages. When overflow
buffers are required, they fit within 5KB 99.9% of the time. Previous
work [83] has shown that 1KB is sufficient for more than 97% of
microservice RPCs.

156

ASPLOS 21, April 19-23, 2021, Virtual, USA

o] o]
A

Fn, Invoke Fn, @

\4 {

Dispatching queues

Nightcore’s
runtime library

D4 1®

. mmmn

Worker of Fn,
Pl . [[v]®
Tracing logs Niqhtco.re’s
Regx | @ :untlme hilrla
v [866] B
<]

o

Nightcore’s Engine

Worker of Fn,,

Worker server

Figure 3: Diagram of an internal function call (§ 3.2).

3.2 Processing Function Requests

Figure 3 shows an example with both an external and internal
function call. Suppose code of F'ny includes an invocation of Fny,.
In this case, Fny is invoked via Nightcore’s runtime API (D). Then,
Nightcore’s runtime library generates a unique ID (denoted by reqy)
for the new invocation, and sends an internal function call request to
Nightcore’s engine (). On receiving the request, the engine writes
reqy’s receive timestamp (also (2). Next, the engine places reqy
in the dispatching queue of Fny 3. Once there is an idle worker
thread for Fny and the concurrency level of F'ny, allows, the engine
will dispatch reqy to it, and records reqy’s dispatch timestamp in
its tracing log (@). The selected worker thread executes Fn’s code
(®) and sends the output back to the engine (). On receiving the
output, the engine records request reqy’s completion timestamp
(also (®), and directs the function output back to Fny’s worker ().
Finally, execution flow returns back to user-provided Fny (.

3.3 Managing Concurrency for Function
Executions (7x)

Nightcore maintains a pool of worker threads in function contain-
ers for concurrently executing functions, but deciding the size of
thread pools can be a hard problem. One obvious approach is to
always create new worker threads when needed, thereby maxi-
mizing the concurrency for function executions. However, this
approach is problematic for microservice-based applications, where
one function often calls many others. Maximizing the concurrency
of function invocations with high fanout can have a domino effect
that overloads a server. The problem is compounded when function
execution time is short. In such cases, overload happens too quickly
for a runtime system to notice it and respond appropriately.

To address the problem, Nightcore adaptively manages the num-
ber of concurrent function executions, to achieve the highest useful
concurrency level while preventing instantaneous server overload.
Following Little’s law, the ideal concurrency can be estimated as
the product of the average request rate and the average processing
time. For a registered function Fny, Nightcore’s engine maintains
exponential moving averages of its invocation rate (denoted by Ay)

ASPLOS 21, April 19-23, 2021, Virtual, USA

OpenFaa$S B user time (%) M sys time (%)

100
EAAA N APAAMNAMNAD
50
25 N —— e — — T — N
0
Os 20s 40s 60s
100 Nightcore (w/o managed concurrency)
75
« Rbest et At acRed o i
25
0
Os 20s 40s 60s
100 Nightcore (with managed concurrency)
75
50
25
0
Os 20s 40s 60s

Figure 4: CPU utilization timelines of OpenFaaS$, and Night-
core (w/o and with managed concurrency), running Social-
Network microservices [70] at a fixed rate of 500 QPS for
OpenFaa$ and 1200 QPS for Nightcore.

and function execution time (denoted by t;.). Both are computed
from request tracing logs. Nightcore uses their product Ay - ;. as
the concurrency hint (denoted by 7i) for function Fny.

When receiving an invocation request of Fny, the engine will
only dispatch the request if there are fewer than 7 concurrent
executions of Fny. Otherwise, the request will be queued, waiting
for other function executions to finish. In other words, the engine
ensures the maximum concurrency of Fny is 7 at any moment.
Note that Nightcore’s approach is adaptive because 73 is computed
from two exponential moving averages (A and t;), that change
over time as new function requests are received and executed. To
realize the desired concurrency level, Nightcore must also maintain
aworker thread pool with at least 7. threads. However, the dynamic
nature of 75 makes it change rapidly (see Figure 6), and frequent
creation and termination of threads is not performant. To modulate
the dynamic values of 7, Nightcore allows more than 7. threads
to exist in the pool, but only uses 73 of them. It terminates extra
threads when there are more than 27 threads.

Nightcore’s managed concurrency is fully automatic, without
any knowledge or hints from users. The concurrency hint (zy)
changes frequently at the scale of microseconds, to adapt to load
variation from microsecond-scale microservices (§ 5.2) . Figure 4
demonstrates the importance of managing concurrency levels in-
stead of maximizing them. Even when running at a fixed input rate,
CPU utilization varies quite a bit for both OpenFaaS and Nightcore
when the runtime maximizes the concurrency. On the other hand,
managing concurrency with hints has a dramatic “flatten-the-curve”
benefit for CPU utilization.

4 IMPLEMENTATION

Nightcore’s API gateway and engine consists of 8,874 lines of C++.
Function workers are supported in C/C++, Go, Node.js, and Python,

157

Zhipeng Jia and Emmett Witchel

L. & tew?ay e |
B v ——
Engine’s Englne S Engine’s
I/O thread #1 I/O thread #2 I/O thread #3

an FnY an FnZ FnZ an
.F"Y Fnz] [Fox{] [Fnz{] [Fox{][FnY (]

<«——> Persistent TCP connection

Connected to 1/0 thread
with message channels

an Function worker thread

Launcher process

Figure 5: Event-driven I/O threads in Nightcore’s engine

(§ 4.1).

requiring 1,588 lines of C++, 893 lines of Go, 57 lines of JavaScript,
and 137 lines of Python.

Nightcore’s engine (its most performance-critical component) is
implemented in C++. Garbage collection can have a significant
impact for latency-sensitive services [107] and short-lived rou-
tines [27, 28]. Both OpenFaaS [37] and Apache OpenWhisk [50]
are implemented with garbage-collected languages (Go and Scala,
respectively), but Nightcore eschews garbage collection in keeping
with its theme of addressing microsecond-scale latencies.

4.1 Nightcore’s Engine

Figure 5 shows the event-driven design of Nightcore’s engine as
it responds to I/O events from the gateway and message channels.
Each I/O thread maintains a fixed number of persistent TCP connec-
tions to the gateway for receiving function requests and sending
back responses, while message channels are assigned to I/O threads
with a round-robin policy. Individual I/O threads can only read from
and write to their own TCP connections and message channels.
Shared data structures including dispatching queues and tracing
logs are protected by mutexes, as they can be accessed by different
I/O threads.

Event-Driven IO Threads. Nightcore’s engine adopts Libuv [32],
which is built on top of the epoll system call, to implement its
event-driven design. Llibuv provides APIs for watching events on
file descriptors, and registering handlers for those events. Each IO
thread of the engine runs a libuv event loop, which polls for file
descriptor events and executes registered handlers.

Message Channels. Nightcore’s messages channels are imple-
mented with two Linux pipes in opposite directions to form a full-
duplex connection. Meanwhile, shared memory buffers are used
when inline payload buffers are not large enough for function in-
puts or outputs (§ 3.1). Although shared memory allows fast IPC at
memory speed, it lacks an efficient mechanism to notify the con-
sumer thread when data is available. Nightcore’s use of pipes and
shared memory gets the best of both worlds. It allows the consumer
to be eventually notified through a blocking read on the pipe, and
at the same time, it provides the low latency and high throughput
of shared memory when transferring large message payloads.

As the engine and function workers are isolated in different con-
tainers, Nightcore mounts a shared tmpfs directory between their

Nightcore: Efficient and Scalable Serverless Computing for Latency-Sensitive, Interactive Microservices

containers, to aid the setup of pipes and shared memory buffers.
Nightcore creates named pipes in the shared tmpfs, allowing func-
tion workers to connect. Shared memory buffers are implemented
by creating files in the shared tmpfs, which are mmaped with the
MAP_SHARED flag by both the engine and function workers. Docker
by itself supports sharing IPC namespaces between containers [31],
but the setup is difficult for Docker’s cluster mode. Nightcore’s
approach is functionally identical to IPC namespaces, as Linux’s
System V shared memory is internally implemented by tmpfs [46].

Communications between Function Worker Threads. Indi-
vidual worker threads within function containers connect to Night-
core’s engine with a message channel for receiving new function
requests and sending responses (@ and © in Figure 3). A worker
thread can be either busy (executing function code) or idle. During
the execution of function code, the worker thread’s message chan-
nel is also used by Nightcore’s runtime library for internal function
calls (@ and (D in Figure 3). When a worker thread finishes execut-
ing function code, it sends a response message with the function
output to the engine and enters the idle state. An idle worker thread
is put to sleep by the operating system, but the engine can wake
it by writing a function request message to its message channel.
The engine tracks the busy/idle state of each worker so there is no
queuing at worker threads, the engine only dispatches requests to
idle workers.

Mailbox. The design of Nightcore’s engine only allows individual
I/O threads to write data to message channels assigned to it (shown
as violet arrows in Figure 5). In certain cases, however, an I/O
thread needs to communicate with a thread that does not share a
message channel. Nightcore routes these requests using per-thread
mailboxes. When an I/O thread drops a message in the mailbox of
another thread, uv_async_send (using eventfd [24] internally)
is called to notify the event loop of the owner thread.

Computing Concurrency Hints (7;). To properly regulate the
amount of concurrent function executions, Nightcore’s engine main-
tains two exponential moving averages A (invocation rate) and
t (processing time) for each function Fny (§ 3.3). Samples of in-
vocation rates are computed as 1/(interval between consecutive
Fny invocations), while processing times are computed as intervals
between dispatch and completion timestamps, excluding queue-
ing delays (the interval between receive and dispatch timestamps)
from sub-invocations. Nightcore uses a coefficient « = 1073 for
computing exponential moving averages.

4.2 Function Workers

Nightcore executes user-provided function code in its function
worker processes (§ 3.1). As different programming languages have
different abstractions for threading and I/O, Nightcore has different
function worker implementations for them.

Nightcore’s implementation of function workers also includes a
runtime library for fast internal function calls. Nightcore’s runtime
library exposes a simple APl output nc_fn_call(fn_name,
input) to user-provided function code for internal function calls.
Furthermore, Nightcore’s runtime library provides Apache Thrift [9]
and gRPC [30] wrappers for its function call AP, easing porting of
existing Thrift-based and gRPC-based microservices to Nightcore.

158

ASPLOS 21, April 19-23, 2021, Virtual, USA

C/C++. Nightcore’s C/C++ function workers create OS threads for
executing user’s code, loaded as dynamically linked libraries. These
OS threads map to “worker threads” in Nightcore’s design (§ 3.1
and Figure 2). To simplify the implementation, each C/C++ function
worker process only runs one worker thread, and the launcher will
fork more worker processes when the engine asks for more worker
threads.

Go. In Go function workers, “worker threads” map to goroutines,
the user-level threads provided by Go’s runtime, and the launcher
only forks one Go worker process. Users’ code are compiled to-
gether with Nightcore’s Go worker implementation, as Go’s run-
time does not support dynamic loading of arbitrary Go code 2. Go’s
runtime allows dynamically setting the maximum number of OS
threads for running goroutines (via runtime.GOMAXPROCS), and
Nightcore’s implementation sets it to [worker goroutines/8].

Node.js and Python. Node.js follows an event-driven design
where all /O is asynchronous without depending on multi-threading,
while Python is the same when using the asyncio [11] library for
I/0. In both cases, Nightcore implements its message channel pro-
tocol within their event loops. As there are no parallel threads
3 inside Node.js and Python function workers, launching a new
“worker thread” simply means creating a message channel, while the
engine’s notion of “worker threads” becomes event-based concur-
rency [23]. Also, nc_fn_call is an asynchronous API in Node.js
and Python workers, rather than being synchronous in C/C++ and
Go workers. For Node.js and Python functions, the launcher only
forks one worker process.

5 EVALUATION

We conduct all of our experiments on Amazon EC2 C5 instances in
the us-east-2 region, running Ubuntu 20.04 with Linux kernel
5.4.41. We enable hyperthreading, but disable transparent huge

pages.

5.1 Methodology

Microservice Workloads. Nightcore is designed to optimize mi-
croservice workloads, so we evaluate it on the four most realistic,
publicly available, interactive microservice code bases: SocialNet-
work, MovieReviewing, HotelReservation, and HipsterShop. The
first three are from DeathStarBench [70], while HipsterShop is a mi-
croservice demo from Google Cloud Platform [29]. The workloads
are summarized in Table 2.

For the SocialNetwork workload, we tested two load patterns:
(1) a pure load of ComposePost requests (shown in Figure 1) (de-
noted as “write”); (2) a mixed load (denoted as “mixed”), that is
a combination of 30% CompostPost, 40% ReadUserTimeline, 25%
ReadHomeTimeline, and 5% FollowUser requests.

HipsterShop itself does not implement data storage, and we
modify it to use MongoDB for saving orders and Redis for shopping
carts. We also add Redis instances for caching product and ad lists.

2Go partially supports dynamic code loading via a plugin [39], but it requires the
plugin and the loader be compiled with a same version of the Go toolchain, and all
their dependency libraries have exactly the same versions.

3Node.js supports worker threads [56] for running CPU-intensive tasks, but they have
worse performance for I/O-intensive tasks.

ASPLOS 21, April 19-23, 2021, Virtual, USA

Table 2: Microservice workloads in evaluation (from [29, 70])

Ported RPC
. Languages
services | framework
SocialNetwork 11 Thrift [9] C++
MovieReviewing 12 Thrift C++
HotelReservation 11 gRPC [30] Go
. Go, Node.js,
HipsterShop 13 gRPC
Python

Table 3: Percentage of internal function calls (§ 5.1).

SocialNetwork Movie Hotel Hipster
write | mixed | Reviewing | Reservation | Shop
66.7% | 62.3% 69.2% 79.2% 85.1%

HipsterShop includes two services written in Java and C#, which
are not languages supported by Nightcore. Thus we re-implement
their functionality in Go and Node.js.

For each benchmark workload, we port their stateless mid-tier

services to Nightcore, as well as OpenFaaS [37] for comparison.

For other stateful services (e.g., database, Redis, NGINX, etc.), we
run them on dedicated VMs with sufficiently large resources to
ensure they are not bottlenecks. For Nightcore and OpenFaaS$, their
API gateways also run on a separate VM. This configuration favors
OpenFaaS because its gateway is used for both external and internal
function calls and is therefore more heavily loaded than Nightcore’s
gateway.

We use wrk2 [26] as the load generator for all workloads. In
our experiments, the target input load (queries per second (QPS))
is run for 180 seconds, where the first 30 seconds are used for
warming up the system, and 50th and 99th percentile latencies
of the next 150 seconds are reported. Following this methodology,
variances of measured latencies are well within 10% before reaching
the saturation throughput.

Internal Function Calls. One major design decision in Nightcore
is to optimize internal function calls (§3), so we quantify the per-
centage of internal function calls in our workloads in Table 3. The
results show that internal function calls dominate external calls,
sometimes by more than a factor of 5x.

Cold-Start Latencies. There are two components of cold-start
latencies in a FaaS system. The first arises from provisioning a func-
tion container. Our prototype of Nightcore relies on unmodified
Docker, thus does not include optimizations. However, state-of-
the-art techniques such as Catalyzer [67] achieve startup latencies
of 1-14ms. These techniques can be applied to Nightcore as they
become mainstream. The second component of cold-start latency
is provisioning the FaaS runtime inside the container. Our measure-
ment shows that Nightcore’s function worker process takes only
0.8ms to be ready for executing user-provided function code.

Systems for Comparison. We compare Nightcore with two other
systems: (1) RPC servers running in Docker containers which are
originally used for implementing stateless microservices in the

159

Zhipeng Jia and Emmett Witchel

2000

1
QPS & 99% tail latency
ﬁ 11ms
* ¢ * 9ms
PO S e L

Throughput (QPS)
o B @
o [=] o
o o o

. o < * 7ms
t t t t t t 15ms
Os 50s 100's 150s 200s 250s 300s 350s
25
£
< 20 M
3
c 15
o
5 10
I3}
é 5 + t t t + t {
Os 50s 100's 150's 200s 250s 300s 350 s
80%
M usertime M sys time

M

Os

50s 100s 150s 200s 250s 300s 350

Figure 6: Nightcore running SocialNetwork (write) with load
variations. The upper chart shows tail latencies under chang-
ing QPS, the middle chart shows how the concurrency hint
(71) of the post microservice changes with time, and the lower

chart is a timeline of CPU utilization.

evaluation workloads; (2) OpenFaaS [37], a popular open source
FaaS$ system, where we use the OpenFaaS watchdog [51] in HTTP
mode to implement function handlers, and Docker for running
function containers.

We also tested the SocialNetwork application on AWS Lambda.
Even when running with a light input load and with provisioned
concurrency, Lambda cannot meet our latency targets. Execut-
ing the “mixed” load pattern shows median and 99% latencies are
26.94ms and 160.77ms, while they are 2.34ms and 6.48ms for con-
tainerized RPC servers. These results are not surprising given the
measurements in Table 1.

5.2 Benchmarks

Single Worker Server. We start with evaluating Nightcore with
one worker server. All systems use one c5.2xlarge EC2 VM,
which has 8 vCPUs and 16GiB of memory. For Nightcore and Open-
Faa$, this VM is its single worker server, that executes all serverless
functions. On the worker VM, Nightcore’s engine uses two I/O
threads. For RPC servers, this VM runs all ported stateless microser-
vices, such that all inter-service RPCs are local.

Figure 7 demonstrates experimental results on all workloads. For
all workloads, results show the trend that OpenFaaS’ performance
is dominated by containerized RPC servers, while Nightcore is su-
perior to those RPC servers. OpenFaa$S’ performance trails the RPC
servers because all inter-service RPCs flow through OpenFaaS’s
gateway and watchdogs, which adds significant latency and CPU
processing overheads. On the other hand, Nightcore’s performance
is much better than OpenFaaS, because Nightcore optimizes the
gateway out of most inter-service RPCs, and its event-driven engine
handles internal function calls with microsecond-scale overheads.

Nightcore: Efficient and Scalable Serverless Computing for Latency-Sensitive, Interactive Microservices

50% latency (ms)
SN
o o oo u

©

= RPC servers 4 OpenFaaS e Nightcore

= RPC servers 4 OpenFaaS e Nightcore

ASPLOS 21, April 19-23, 2021, Virtual, USA

= RPC servers 4 OpenFaaS e Nightcore

10 .20
[} [}
E 8 E16
Z 6 312
§ &
g4 2
R 2 x4
3o 3o
250 500 750 1000 1250 1500 1750 2000 0 1000 2000 3000 4000 5000 6000 0 250 500 750 1000 1250 1500 1750 2000

280 580
Ego Eso
3 3
§40 540
k} k]
e e
8o 8 o -

0 250 500 750 1000 1250 1500 1750 2000 0 1000 2000 3000 4000 5000 6000 0 250 500 750 1000 1250 1500 1750 2000

Throughput (queries per second)
(a) SocialNetwork (write)

= RPC servers 4 OpenFaaS e Nightcore

S

Throughput (queries per second)

(b) SocialNetwork (mixed)

=

Throughput (queries per second)
(c) MovieReviewing

= RPC servers 4 OpenFaaS e Nightcore

500 1000

A

1500 2000

2500 3000

2 20

(%) [}

E 6 E 16

312 312

S g g g

k] =

e 4 e 4

[=3 o

® 0 o 0
0 1000 2000 3000 4000 5000 6000 7000 0

100 .80

[%) [}

E, 75 % 60

3)

S 50 g 40

kS k]

= L2

8 o 8o
0 1000 2000 3000 4000 5000 6000 7000 0

Throughput (queries per second)

(d) HotelReservation

500 1000 1500 2000

2500 3000

Throughput (queries per second)

(e) HipsterShop

Figure 7: Comparison of Nightcore with RPC servers and OpenFaa$ using one VM.

Table 4: Evaluation of Nightcore’s scalability, where n worker servers run n times the base QPS input. For each workload, the
base QPS is selected to be close to the saturation throughput when using one server.

Base Median latency (ms) 99% tail latency (ms)

QPS [1server 2server 4 server 8server | 1server 2server 4 server 8 server
SocialNetwork 2000 3.40 2.64 2.39 2.64 10.93 8.36 7.18 8.07
(mixed) 2300 3.37 2.65 243 2.61 13.95 10.34 8.20 10.63
MovieReviewing 800 7.24 7.93 7.35 8.10 9.26 11.42 10.97 16.31
850 7.24 7.54 7.57 8.57 9.31 11.18 12.24 25.01
HotelReservation 3000 3.48 3.29 3.08 4.32 18.27 15.98 14.98 18.09
3300 5.56 443 5.50 4.43 31.92 22.66 22.54 20.83
HipsterShop 1400 6.05 5.70 6.23 5.68 19.68 17.42 19.10 15.02
1500 7.95 7.51 8.32 7.06 25.39 23.74 23.81 20.53

Table 5: Comparison of Nightcore with other systems using 8 VMs. Median and 99% tail latencies are shown in milliseconds.
For each workload, the saturation throughput of the RPC servers is the baseline QPS (1.00x in the table) for comparison.

Compared to RPC servers, Nightcore achieves 1.27x to 1.59%
higher throughput and up to 34% reduction in tail latencies, show-
ing that Nightcore has a lower overhead for inter-service commu-
nications than RPC servers, which we will discuss more in § 5.3.

SocialNetwork (mixed) MovieReviewing HotelReservation HipsterShop
QPS median tail | QPS median tail | QPS median tail | QPS median tail
RPC servers 1.00x 3.21 2398 | 1.00x 14.45 25.57 | 1.00x 5.54 19.73 | 1.00x 10.68 48.13
1.17x 110.01 >1000 | 1.20x 30.80 >1000 | 1.22x 10.43 43.46 | 1.17x 15.61 80.89
OpenFaaS 0.29x 4.57 81.60 | 0.30x 10.06 113.47 | 0.28x 5.80 18.96 | 0.29x 9.29 3213
0.33x 6.72 368.38 | 0.40x 13.32 >1000 | 0.33x 16.21 103.81 | 0.38x 2493 86.59
Nightcore 1.33x 2.64 8.07 | 1.28x 8.10 16.31 | 2.67x 4.32 18.09 | 1.87x 5.68 15.02
1.53x 2.61 10.63 | 1.36x 8.57 25.01 | 2.93x 4.43 20.83 | 2.00x 7.06 20.53

160

We also tested Nightcore under variable load to demonstrate
how its ability to manage concurrency (§ 3.3) adapts to changing
loads. Figure 6 shows the results with a corresponding timeline of
CPU utilization, indicating that Nightcore can promptly change

ASPLOS 21, April 19-23, 2021, Virtual, USA

® RPC servers 4 Nightcore baseline @ ¢ +Managed concurrency @
= +Fast path for internal calls @ * +Low-latency message channels @

n

3

3

g g

5 A

2 6 -

Q La)

©og : : }
0 500 1000 1500 2000

500

0

£

>

2 50

o

=

X

e 5 f : : :
0 500 1000 1500 2000

Queries per second (QPS)

Figure 8: Comparison of Nightcore with RPC servers, running
SocialNetwork (write) using one VM. Designs of Nightcore
are progressively added to show their effectiveness (§ 5.3).

its concurrency level under increasing loads. When the input load
reaches its maximum (of 1800 QPS), the tail latency also reaches its
maximum (of 10.07 ms).

Multiple Worker Servers. We also evaluate Nightcore in a dis-
tributed setting, where multiple VMs are used as Nightcore’s worker
servers. We use c5.xlarge EC2 instances for worker VMs, which
have 4 vCPUs and 8GiB of memory.

Table 4 evaluates Nightcore’s scalability, where up to 8 VMs are
used for worker servers and the input load is scaled with the number
of VMs. The similar (or decreasing) median and tail latencies show
that Nightcore’s scalability is nearly linear—e.g., increasing the
input load 8 and providing 8 servers does not change median and
tail latencies significantly. The only exception is MovieReviewing,
where the tail latency of running on 8 server is 2.7X worse than 1
server. However, we observe that scaling this workload with RPC
servers also suffers increased tail latencies.

Next we compare RPC servers and OpenFaaS to Nightcore with 8
worker VMs. For RPC servers, 8 VMs run stateless services, where
each VM runs one replica of each service and load balancing is
transparently supported by RPC client libraries. For OpenFaa$S and
Nightcore, 8 VMs run their function handlers. Table 5 summarizes
the experimental results, demonstrating that Nightcore achieves
1.36x to 2.93x higher throughput and up to 69% reduction in tail
latency than an RPC server (while OpenFaa$ consistently under-
performs an RPC server). The advantage of Nightcore over RPC
servers is more significant in the distributed setting, because there
are inter-host RPCs in the case of replicated RPC servers, while
there is no network traffic among Nightcore’s worker VMs.

5.3 Analysis

Evaluating Nightcore’s Design. We quantify the value of Night-
core’s design decisions in Figure 8. The figure shows the perfor-
mance effect of adding managed concurrency for function exe-
cutions (§ 3.3), a fast path for internal function call (§ 3.2), and

161

Zhipeng Jia and Emmett Witchel

Table 6: Breakdowns of stacktrace samples, when running
SocialNetwork (write) at 1200 QPS on one VM. Unix sockets
are used by Thrift RPC servers for inter-thread synchroniza-
tions.

RPC servers | Nightcore
do_idle 41.6% 60.4%
user space 18.3% 14.8%
irq / softirq
- netrx 7.1% 6.8%
— others 2.0% 1.6%
syscall
- tep socket 20.7% 7.6%
- poll / epoll 2.5% 1.1%
- futex 2.2% 0.1%
- pipe 0% 3.7%
— unix socket 1.1% 0%
- others 3.1% 3.1%
uncategorized 1.4% 0.8%

low-latency message channels as IPC primitives (§ 3.1). The Night-
core baseline (1) maximizes concurrent function executions (i.e.,
concurrency management is disabled), all internal function calls
go through the gateway, and Nightcore’s message channels are
replaced with TCP sockets. This baseline Nightcore design can
achieve only one third the throughput of RPC servers while meet-
ing tail latency targets (). When we add managed concurrency
(@), Nightcore’s performance comes close to RPC servers, as tail
latencies are significantly improved. Optimizing the gateway out
of the processing path for internal function calls ((3) brings Night-
core’s performance above the RPC servers. Finally, Nightcore’s
low-latency message channels boost performance further (@), re-
sulting in 1.33% higher throughput than RPC servers.

Communication Overheads. Microservice-based applications
are known to have a high communication-to-computation ratio [70,
83, 101]. When using RPC servers to implement microservices and
running them in containers, inter-service RPCs pass through net-
work sockets virtualized by the container runtime, via overlay
networks [113]. Container overlay networks allow a set of related
containers running on multiple host machines to use independent
IP addresses, without knowing if other containers reside on the
same host. While this approach works for the general case, even
containers on the same host pay the processing costs of the full
network stack.

On the other hand, Nightcore keeps most inter-service calls
on the same host and uses Linux pipes for intra-host communica-
tions. Eliminating most inter-host networking explains Nightcore’s
performance advantage over containerized RPC servers in the dis-
tributed setting. But Nightcore also has a noticeable advantage over
containerized RPC servers for intra-host communications, shown in
Figure 7. To further understand this advantage, we collect stacktrace
samples for both Nightcore and containerized RPC servers running
with a single VM, and Table 6 summarizes the results. For RPC
servers, TCP-related system calls and netrx softirq consume 47.6%

Nightcore: Efficient and Scalable Serverless Computing for Latency-Sensitive, Interactive Microservices

of non-idle CPU time, both of which are used for inter-service com-
munications. In contrast, Nightcore spends much less CPU time in
TCP-related system calls, because only communication with ser-
vices running on other hosts (e.g., database and Redis) uses TCP
sockets. Both systems spend roughly the same amount of CPU time
in netrx softirgs, which is caused only by inter-host networking.

5.4 Discussion

A goal for Nightcore is to avoid modifying Linux, because we want
Nightcore to be easier to adopt for existing microservice workloads.
Nightcore therefore relies on existing OS abstractions to achieve
its performance goals, creating a challenge to efficiently use the
operating systems’ existing I/O abstractions and to find individual
“killer microseconds.”

In our experience with Nightcore, we find there is no single
dominant “killer microsecond.” There are multiple factors with
significant contributions, and all must be addressed. Profiling the
whole system for microsecond-scale optimization opportunities is
challenging given the overheads introduced by profiling itself. In
Nightcore, we implement low-overhead statistics collectors, and
use eBPF programs [16] for kernel-related profiling.

6 RELATED WORK

Microservices. The emergence of microservices for building large-
scale cloud applications has prompted recent research on charac-
terizing their workloads [70, 99, 102, 112], as well as studying their
hardware-software implications [70, 99, 100]. Microservices have a
higher communication-to-computation ratio than traditional work-
loads [70] and frequent microsecond-scale RPCs, so prior work has
studied various software and hardware optimization opportuni-
ties for microsecond-scale RPCs, including transport layer proto-
cols [78, 79], a taxonomy of threading models [100], heterogeneous
NIC hardware [85], data transformations [93], and CPU memory
controllers [101]. The programming model of serverless functions
maps inter-service RPCs to internal function calls, allowing Night-
core to avoid inter-host networking and transparently eliminate
RPC protocol overheads. X-Containers [97] is a recently proposed
LibOS-based container runtime, that improves the efficiency of
inter-service communications for mutually trusting microservices.
For comparison, Nightcore still relies on the current container mech-
anism (provided by Docker), which does not require microservices
to trust each other.

Serverless Computing. Recent research on serverless comput-
ing has mostly focused on data intensive workloads [59, 65, 68,
69, 75, 95, 98], leading invocation latency overheads to be largely
overlooked. SAND [57] features a local message bus as the fast
path for chained function invocations. However, SAND only allows
a single, local call at the end of a function, while Nightcore sup-
ports arbitrary calling patterns (e.g., Figure 1). Faasm [98]’s chained
function calls have the same functionality as Nightcore’s inter-
nal function calls, but they are executed within the same process,
relying on WebAssembly for software-based fault isolation. One
previous work [62] also notices that FaaS systems have to achieve
microsecond-scale overheads for efficient support of microservices,
but they demonstrate only a proof-of-concept FaaS runtime that

162

ASPLOS 21, April 19-23, 2021, Virtual, USA

relies on Rust’s memory safety for isolation and lacks end-to-end
evaluations on realistic microservices.

System Supports for Microsecond-Scale I/Os. Prior work on
achieving microsecond-scale I/O has been spread across various
system components, ranging from optimizing the network stack [74,
78, 79]; designs for a dataplane OS [61, 77, 87, 91, 92, 94]; thread
scheduling for microsecond-scale tasks [63, 77, 91, 96, 100]; and
novel filesystems leveraging persistent memory [81, 86, 108]. Ad-
ditionally, the efficiency of I/O is also affected by the user-facing
programming model [72, 105] and the underlying mechanism for
concurrency [80, 103]. A recent paper from Google [60] argues that
current systems are not tuned for microsecond-scale events, as vari-
ous OS building blocks have microsecond-scale overheads. Eliminat-
ing these overheads requires a tedious hunt for the “killer microsec-
onds.” Inspired by this work, the design of Nightcore eliminates
many of these overheads, making it practical for a microsecond-
scale serverless system.

7 CONCLUSION

Optimizing Nightcore justifies one of Lampson’s early hints [82]:
“make it fast, rather than general or powerful”, because fast building
blocks can be used more widely. As computing becomes more
granular [84], we anticipate more microsecond-scale applications
will come to serverless computing. Designing and building this next
generation of services will require careful attention to microsecond-
scale overheads.

ACKNOWLEDGEMENTS

We thank our shepherd Christina Delimitrou and the anonymous
reviewers for their insightful feedback. We also thank Zhiting Zhu,
Christopher]J. Rossbach, James Bornholt, Zhan Shi, and Wei Sun
for their valuable comments on the early draft of this work. This
work is supported in part by NSF grants CNS-2008321 and NSF
CNS-1900457, and the Texas Systems Research Consortium.

A ARTIFACT APPENDIX
A.1 Abstract

Our artifact includes the prototype implementation of Nightcore,
the DeathStarBench [21] and HipsterShop microservices [29] ported
to Nightcore, and the experiment workflow to run these workloads
on AWS EC2 instances.

A.2 Artifact Check-List (Meta-Information)

e Program: Nightcore, Docker runtime, and wrk2
¢ Run-time environment: AWS EC2 instances
e Metrics: Latency and throughput
o Experiments: Our ports of DeathStarBench [21] and Hip-
sterShop microservices [29] (included in this artifact)
¢ Disk space required: 2GB
Time needed to prepare workflow: 1 hour
Time needed to complete experiments: 3 hours
Publicly available: Yes
Code licenses: Apache License 2.0
Archive: 10.5281/zenodo.4321760

ASPLOS 21, April 19-23, 2021, Virtual, USA

A.3 Description

How to Access. The source code and benchmarks are host on

GitHub ut-osa/nightcoreandut-osa/nightcore-benchmarks.

Hardware Dependencies. This artifact runs on AWS EC2 in-
stances in us-east -2 region.

Software Dependencies. This artifact requires experiment VMs
running Ubuntu 20.04 with Docker installed.

We provide a pre-built VM image hosted on AWS us-east-2 re-
gion (ami-06e206d7334bff2ec) with all necessary dependencies
installed, which is used by experiment scripts in this artifact.

A.4 Installation

Setting up the Controller Machine. A controller machine in
AWS us-east-2 region is required for running scripts executing
experiment workflows. The controller machine can use very small
EC2 instance type, as it only provisions and controls experiment
VMs, but does not affect experimental results. In our own setup, we
use a t3.micro EC2 instance installed with Ubuntu 20.04 as the
controller machine.

The controller machine needs python3, rsync, and AWS CLI
version 1 installed. python3 and rsync can be installed with apt.
This documentation details the recommended way for installing
AWS CLI version 1. Once installed, AWS CLI has to be configured
with region us-east-2 and access key (see this).

Then on the controller machine, clone our artifact repository
with all git submodules:

git clone --recursive \
https://github.com/ut-osa/nightcore-benchmarks.git

Finally, execute scripts/setup_sshkey. sh to setup SSH keys
that will be used to access experiment VMs. Please read the notice
in the script before executing it to check if this script works for
your setup.

Setting up EC2 Security Group and Placement Group. Our
VM provisioning script creates EC2 instances with security group
nightcore andplacement group nightcore-experiments. The
security group includes firewall rules for experiment VMs (i.e., al-
lowing the controller machine to SSH into them), while the place-
ment group instructs AWS to place experiment VMs close together.

Executing scripts/aws_provision.sh on the controller ma-
chine creates these groups with correct configurations.

Building Docker Images. We also provide the script
(scripts/docker_images. sh) for building Docker images rele-
vant to experiments in this artifact. As we already pushed all com-
piled images to DockerHub, there is no need to run this script as
long as you do not modify source code of Nightcore (in nightcore
directory) and evaluation workloads (in workloads directory).

A.5 Experiment Workflow

Each sub-directory within experiments corresponds to one ex-
periment. Within each experiment directory, a config. json file
describes machine configuration and placement assignment of in-
dividual Docker containers (i.e. microservices) for this experiment.

163

Zhipeng Jia and Emmett Witchel

The entry point of each experiment is the run_all. sh script.
It first provisions VMs for experiments. Then it executes evalua-
tion workloads with different QPS targets via run_once. sh script.
run_once. sh script performs workload-specific setups, runs wrk2
to measure latency distribution under the target QPS, and stores re-
sults in results directory. When everything is done, run_all.sh
script terminates all provisioned experiment VMs.

VM provisioning is done by scripts/exp_helper with sub-
command start-machines. By default, it creates on-demand EC2
instances. But it also supports the option to use Spot instances for
cost saving. After EC2 instances are up, the script then sets up
Docker engines on newly created VMs to form a Docker cluster in
swarm mode.

A.6 Evaluation and Expected Result

For each experiment, the evaluation metric is the latency distribu-
tion under a specific QPS. We use wrk2 as the benchmarking tool,
and it outputs a detailed latency distribution, which looks like

Latency Distribution (HdrHistogram - Recorded Latency)

50.000% 2.21ms
75.000% 3.29ms
90.000% 5.13ms
99.000% 9.12ms
99.900% 12.28ms
99.990% 17.45ms
99.999% 20.32ms
100.000% 23.61ms

We report the 50% and 99% percentile values as median and tail
latencies in the paper. run_all. sh script conducts evaluations on
various QPS targets.

Experiment sub-directories ending with “singlenode” corre-
spond to Nightcore results in Figure 7 of the main paper. Experiment
sub-directories ending with “4node” correspond to Nightcore (4
servers) results in Table 4 of the main paper. Note that run_all.sh
scripts run less data points than presented in the paper, to allow a
fast validation. But all run_all. sh scripts can be easily modified
to collect more data points.

We provide a helper script “scripts/collect_results to
print a summary of all experiment results. Meanwhile,
“expected_results_summary.txt® gives the summary gener-
ated from our experiment runs. Details of our runs are stored in
the “expected_results® directory within each experiment sub-
directory. Note that these results are not the exact ones presented
in the paper.

A.7 Methodology

Submission, reviewing and badging methodology:
o https://www.acm.org/publications/policies/artifact-review-badging
e http://cTuning.org/ae/submission-20201122.html
o http://cTuning.org/ae/reviewing-20201122.html

REFERENCES

[1] [n.d.]. 4 Microservices Examples: Amazon, Netflix, Uber, and Etsy.
//blog.dreamfactory.com/microservices-examples/ [Accessed Jan, 2021].

[2] [n.d.]. Accessing Amazon CloudWatch logs for AWS Lambda. https://docs.
aws.amazon.com/lambda/latest/dg/monitoring- cloudwatchlogs.html [Accessed
Dec, 2020].

[3] [n.d.]. Addressing Cascading Failures. https://landing.google.com/sre/sre-
book/chapters/addressing- cascading-failures/ [Accessed Jan, 2021].

https:

Nightcore: Efficient and Scalable Serverless Computing for Latency-Sensitive, Interactive Microservices

[4]

i)

=
)

==
&S &

=
=

@
=

'@
&,

[n.d.]. Adopting Microservices at Netflix: Lessons for Architectural De-
sign. https://www.nginx.com/blog/microservices-at-netflix-architectural-
best-practices/ [Accessed Jan, 2021].

[nd.]. Airbnb’s 10 Takeaways from Moving to Microservices. https:
//thenewstack.io/airbnbs-10-takeaways-moving-microservices/ [Accessed Jan,
2021].

[n.d.]. Amazon DynamoDB | NoSQL Key-Value Database | Amazon Web Services.
https://aws.amazon.com/dynamodb/ [Accessed Jan, 2021].
[n.d.]. Amazon ElastiCache- In-memory data store and cache.
amazon.com/elasticache/ [Accessed Jan, 2021].

[n.d.]. Announcing WebSocket APIs in Amazon API Gateway.
https://aws.amazon.com/blogs/compute/announcing-websocket-apis-in-
amazon-api-gateway/ [Accessed Dec, 2020].

[n.d.]. Apache Thrift - Home. https://thrift.apache.org/ [Accessed Jan, 2021].
[n.d.]. Architecture: Scalable commerce workloads using microser-
vices. https://cloud.google.com/solutions/architecture/scaling-commerce-
workloads-architecture [Accessed Jan, 2021].

[n.d.]. asyncio — Asynchronous I/O. https://docs.python.org/3.8/library/
asyncio.html [Accessed Jan, 2021].

[n.d.]. AWS Fargate - Run containers without having to manage servers or
clusters. https://aws.amazon.com/fargate/ [Accessed Jan, 2021].

[n.d.]. AWS Lambda execution context - AWS Lambda. https://docs.aws.
amazon.com/lambda/latest/dg/runtimes-context.html [Accessed Jan, 2021].
[n.d.]. AWS Lambda FAQs. https://aws.amazon.com/lambda/faqs/ [Accessed
Jan, 2021].

[n.d.]. AWS Lambda - Serverless Compute - Amazon Web Servicesy. https:
//aws.amazon.com/lambda/ [Accessed Jan, 2021].

[n.d.]. BCC - Tools for BPF-based Linux IO analysis, networking, monitoring,
and more. https://github.com/iovisor/bcc [Accessed Jan, 2021].

[n.d.]. Best practices for working with AWS Lambda functions. https://docs.
aws.amazon.com/lambda/latest/dg/best-practices.html [Accessed Dec, 2020].
[n.d.]. Building serverless microservices in Azure - sample architec-
ture. https://azure.microsoft.com/is-is/blog/building- serverless-microservices-
in-azure-sample-architecture/ [Accessed Jan, 2021].

[n.d.]. Cloud Object Storage | Store and Retrieve Data Anywhere | Amazon
Simple Storage Service (S3). https://aws.amazon.com/s3/ [Accessed Jan, 2021].
[n.d.]. Coursera Case Study. https://aws.amazon.com/solutions/case-studies/
coursera-ecs/ [Accessed Jan, 2021].

[n.d.]. delimitrou/DeathStarBench: Open-source benchmark suite for cloud
microservices. https://github.com/delimitrou/DeathStarBench [Accessed Jan,
2021].

[n.d.]. Enough with the microservices. https://adamdrake.com/enough-with-
the-microservices.html [Accessed Jan, 2021].

[n.d.]. Event-based Concurrency (Advanced). http://pages.cs.wisc.edu/~remzi/
OSTEP/threads-events.pdf [Accessed Jan, 2021].

[n.d.]. eventfd(2) - Linux manual page. https://man7.org/linux/man-pages/
man2/eventfd.2.html [Accessed Jan, 2021].

[nd.]. firecracker/network-performance.md at master - firecracker-
microvm/firecracker. https://github.com/firecracker-microvm/firecracker/
blob/master/docs/network-performance.md [Accessed Jan, 2021].

[n.d.]. giltene/wrk2: A constant throughput, correct latency recording variant
of wrk. https://github.com/giltene/wrk2 [Accessed Jan, 2021].

[n.d.]. Go, don’t collect my garbage. https://blog.cloudflare.com/go-dont-
collect-my-garbage/ [Accessed Jan, 2021].

[n.d.]. Go memory ballast: How I learnt to stop worrying and love the
heap. https://blog.twitch.tv/en/2019/04/10/go-memory-ballast-how-i-learnt-
to-stop-worrying-and-love-the-heap-26c2462549a2/ [Accessed Jan, 2021].
[n.d.]. GoogleCloudPlatform/microservices-demo. https://github.com/
GoogleCloudPlatform/microservices-demo [Accessed Jan, 2021].

[n.d.]. gRPC - A high-performance, open source universal RPC framework.
https://grpc.io/ [Accessed Jan, 2021].

[n.d.]. IPC settings | Docker run reference. https://docs.docker.com/engine/
reference/run/#ipc-settings---ipc [Accessed Jan, 2021].

[n.d.]. libuv | Cross-platform asynchronous I/O. https://libuv.org/ [Accessed
Jan, 2021].

[n.d.]. Lyft Case Study. https://aws.amazon.com/solutions/case-studies/lyft/
[Accessed Jan, 2021].

[n.d.]. Manage your function app. https://docs.microsoft.com/en-us/azure/
azure-functions/functions-how- to-use-azure-function-app-settings [Accessed
Jan, 2021].

[n.d.]. Microservice Trade-Offs. https://martinfowler.com/articles/microservice-
trade-offs.html [Accessed Jan, 2021].

[n.d.]. Microservices - Wikipedia. https://en.wikipedia.org/wiki/Microservices
[Accessed Jan, 2021].

[n.d.]. OpenFaasS | Serverless Functions, Made Simple. https://www.openfaas.
com/ [Accessed Jan, 2021].

[n.d.]. Performance Under Load. https://medium.com/@NetflixTechBlog/
performance-under-load-3e6fa9a60581 [Accessed Jan, 2021].

https://aws.

164

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48

[49]

[50]

[51]

[52

[53]

[54

[55

[56]

[57

[58]

[59

[60

[61

[62

[63

ASPLOS 21, April 19-23, 2021, Virtual, USA

[n.d.]. plugin - The Go Programming Language. https://golang.org/pkg/plugin/
[Accessed Jan, 2021].

[n.d.]. Provisioned Concurrency for Lambda Functions. https://aws.amazon.
com/blogs/aws/new-provisioned- concurrency-for-lambda-functions/ [Ac-
cessed Jan, 2021].

[n.d.]. Remind Case Study. https://aws.amazon.com/solutions/case-studies/
remind/ [Accessed Jan, 2021].

[n.d.]. Rewriting Uber Engineering: The Opportunities Microservices Provide.
https://eng.uber.com/building- tincup- microservice-implementation/ [Accessed
Jan, 2021].

[n.d.]. Serverless and Microservices: a match made in heaven?
https://pauldjohnston.medium.com/serverless-and-microservices-a-match-
made-in-heaven-9964f329a3bc [Accessed Dec, 2020].

[n.d.]. Serverless Microservices - Microservices on AWS. https:
//docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/serverless-
microservices.html [Accessed Jan, 2021].

[n.d.]. Serverless Microservices reference architecture. https:
//docs.microsoft.com/en-us/samples/azure-samples/serverless-microservices-
reference-architecture/serverless-microservices-reference-architecture/
[Accessed Dec, 2020].

[n.d.]. shm_overview(7) — Linux manual page. https://man7.org/linux/man-
pages/man7/shm_overview.7.html [Accessed Jan, 2021].

[nd.]. Splitting Up a Codebase into Microservices and Artifacts.
https://engineering.linkedin.com/blog/2016/02/q-a-with-jim-brikman--
splitting-up-a-codebase-into-microservices [Accessed Jan, 2021].

[n.d.]. "Stop Rate Limiting! Capacity Management Done Right" by Jon Moore.
https://www.youtube.com/watch?v=m64SWI19bfvk [Accessed Jan, 2021].
[n.d.]. Thoughts on (micro)services. https://luminousmen.com/post/thoughts-
on-microservices [Accessed Jan, 2021].

[n.d.]. Uncovering the magic: How serverless platforms really work!
https://medium.com/openwhisk/uncovering-the-magic-how-serverless-
platforms-really-work-3cb127b05f71 [Accessed Jan, 2021].

[nd.]. Watchdog - OpenFaaS. https://docs.openfaas.com/architecture/
watchdog/ [Accessed Jan, 2021].

[n.d.]. What are Microservices? | AWS. https://aws.amazon.com/microservices/
[Accessed Jan, 2021].

[n.d.]. What is a serverless microservice? | Serverless microservices ex-
plained. https://www.cloudflare.com/learning/serverless/glossary/serverless-
microservice/ [Accessed Dec, 2020].

[n.d.]. Why should you use microservices and containers? https:
//developer.ibm.com/technologies/microservices/articles/why-should-we-
use-microservices-and-containers/ [Accessed Jan, 2021].

[n.d.]. Why so slow? - Binaris Blog. https://blog.binaris.com/why-so-slow/
[Accessed Jan, 2021].

[n.d.]. Worker threads | Node.js v14.8.0 Documentation. https://nodejs.org/api/
worker_threads.html [Accessed Jan, 2021].

Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-
Performance Serverless Computing. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX Association, Boston, MA, 923-935. https://www.
usenix.org/conference/atc18/presentation/akkus

Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Confer-
ence (New Delhi, India) (SIGCOMM °’10). Association for Computing Machinery,
New York, NY, USA, 63-74. https://doi.org/10.1145/1851182.1851192

Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter. 2018.
Sprocket: A Serverless Video Processing Framework. In Proceedings of the
ACM Symposium on Cloud Computing (Carlsbad, CA, USA) (SoCC ’18). As-
sociation for Computing Machinery, New York, NY, USA, 263-274. https:
//doi.org/10.1145/3267809.3267815

Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan.
2017. Attack of the Killer Microseconds. Commun. ACM 60, 4 (March 2017),
48-54. https://doi.org/10.1145/3015146

Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane Operat-
ing System for High Throughput and Low Latency. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14). USENIX Association,
Broomfield, CO, 49-65. https://www.usenix.org/conference/osdil4/technical-
sessions/presentation/belay

Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kaminsky. 2018.
Putting the “Micro” Back in Microservice. In Proceedings of the 2018 USENIX
Conference on Usenix Annual Technical Conference (Boston, MA, USA) (USENIX
ATC ’18). USENIX Association, USA, 645-650.

Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kaminsky. 2020.
Lightweight Preemptible Functions. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). USENIX Association, 465-477. https://www.usenix.org/
conference/atc20/presentation/boucher

ASPLOS 21, April 19-23, 2021, Virtual, USA

[64] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and

Jonathan Appavoo. 2020. SEUSS: Skip Redundant Paths to Make Serverless
Fast. In Proceedings of the Fifteenth European Conference on Computer Systems
(Heraklion, Greece) (EuroSys "20). Association for Computing Machinery, New
York, NY, USA, Article 32, 15 pages. https://doi.org/10.1145/3342195.3392698
Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy
Katz. 2019. Cirrus: A Serverless Framework for End-to-End ML Workflows. In
Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz, CA, USA)
(SoCC °19). Association for Computing Machinery, New York, NY, USA, 13-24.
https://doi.org/10.1145/3357223.3362711

Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM
56, 2 (Feb. 2013), 74-80. https://doi.org/10.1145/2408776.2408794

Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin,
Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-Millisecond Startup for
Serverless Computing with Initialization-Less Booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS
°20). Association for Computing Machinery, New York, NY, USA, 467-481.
https://doi.org/10.1145/3373376.3378512

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From Laptop to Lambda:
Outsourcing Everyday Jobs to Thousands of Transient Functional Containers. In
2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,
Renton, WA, 475-488. https://www.usenix.org/conference/atc19/presentation/
fouladi

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Bal-
asubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George
Porter, and Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video
Processing Using Thousands of Tiny Threads. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX Association,
Boston, MA, 363-376. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/fouladi

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud & Edge
Systems. In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Providence,
RI, USA) (ASPLOS ’19). Association for Computing Machinery, New York, NY,
USA, 3-18. https://doi.org/10.1145/3297858.3304013

Pedro Garcia-Lopez, Aleksander Slominski, Simon Shillaker, Michael Behrendt,
and Barnard Metzler. 2020. Serverless End Game: Disaggregation enabling
Transparency. arXiv preprint arXiv:2006.01251 (2020).

Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy. 2012.
MegaPipe: A New Programming Interface for Scalable Network I/O. In Proceed-
ings of the 10th USENIX Conference on Operating Systems Design and Implemen-
tation (Hollywood, CA, USA) (OSDI’12). USENIX Association, USA, 135-148.
Cilin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj Syamala,
Vivek Narasayya, Herodotos Herodotou, Paulo Tomita, Alex Chen, Jack Zhang,
and Junhua Wang. 2018. PerfIso: Performance Isolation for Commercial Latency-
Sensitive Services. In Proceedings of the 2018 USENLX Conference on Usenix Annual
Technical Conference (Boston, MA, USA) (USENIX ATC ’18). USENIX Association,
USA, 519-531.

Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sunghwan
Thm, Dongsu Han, and KyoungSoo Park. 2014. MTCP: A Highly Scalable User-
Level TCP Stack for Multicore Systems. In Proceedings of the 11th USENIX Con-
ference on Networked Systems Design and Implementation (Seattle, WA) (NSDI'14).
USENIX Association, USA, 489-502.

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the Cloud: Distributed Computing for the 99%. In Proceedings of
the 2017 Symposium on Cloud Computing (Santa Clara, California) (SoCC ’17).
Association for Computing Machinery, New York, NY, USA, 445-451. https:
//doi.org/10.1145/3127479.3128601

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Carreira, Karl Krauth,
Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Stoica, and David A.
Patterson. 2019. Cloud Programming Simplified: A Berkeley View on Serverless
Computing. Technical Report UCB/EECS-2019-3. EECS Department, University
of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/
EECS-2019-3.html

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David
Maziéres, and Christos Kozyrakis. 2019. Shinjuku: Preemptive Scheduling
for pSecond-Scale Tail Latency. In Proceedings of the 16th USENIX Conference
on Networked Systems Design and Implementation (Boston, MA, USA) (NSDI'19).
USENIX Association, USA, 345-359.

Zhipeng Jia and Emmett Witchel

[78] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2019. Datacenter RPCs

Can Be General and Fast. In Proceedings of the 16th USENIX Conference on
Networked Systems Design and Implementation (Boston, MA, USA) (NSDI'19).
USENIX Association, USA, 1-16.

Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard Bugnion.
2019. R2P2: Making RPCs first-class datacenter citizens. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19). USENIX Association, Renton, WA, 863
880. https://www.usenix.org/conference/atc19/presentation/kogias-r2p2
Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek. 2007. Events Can Make
Sense. In 2007 USENIX Annual Technical Conference on Proceedings of the USENIX
Annual Technical Conference (Santa Clara, CA) (ATC’07). USENIX Association,
USA, Article 7, 14 pages.

Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel,
and Thomas Anderson. 2017. Strata: A Cross Media File System. In Proceedings
of the 26th Symposium on Operating Systems Principles (Shanghai, China) (SOSP
’17). Association for Computing Machinery, New York, NY, USA, 460-477. https:
//doi.org/10.1145/3132747.3132770

Butler W. Lampson. 1983. Hints for Computer System Design. In Proceedings
of the Ninth ACM Symposium on Operating Systems Principles (Bretton Woods,
New Hampshire, USA) (SOSP ’83). Association for Computing Machinery, New
York, NY, USA, 33-48. https://doi.org/10.1145/800217.806614

N. Lazarev, N. Adit, S. Xiang, Z. Zhang, and C. Delimitrou. 2020. Dagger: Towards
Efficient RPCs in Cloud Microservices With Near-Memory Reconfigurable NICs.
IEEE Computer Architecture Letters 19, 2 (2020), 134-138. https://doi.org/10.
1109/LCA.2020.3020064

Collin Lee and John Ousterhout. 2019. Granular Computing. In Proceedings of
the Workshop on Hot Topics in Operating Systems (Bertinoro, Italy) (HotOS °19).
Association for Computing Machinery, New York, NY, USA, 149-154. https:
//doi.org/10.1145/3317550.3321447

Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. 2019. E3: Energy-Efficient Microservices on SmartNIC-
Accelerated Servers. In 2019 USENIX Annual Technical Conference (USENLX
ATC 19). USENIX Association, Renton, WA, 363-378. https://www.usenix.org/
conference/atc19/presentation/liu-ming

Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an RDMA-
enabled Distributed Persistent Memory File System. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17). USENIX Association, Santa Clara,
CA, 773-785. https://www.usenix.org/conference/atc17/technical-sessions/
presentation/lu

Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean
Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C. Evans,
Steve Gribble, Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl Mauer,
Emily Musick, Lena Olson, Erik Rubow, Michael Ryan, Kevin Springborn, Paul
Turner, Valas Valancius, Xi Wang, and Amin Vahdat. 2019. Snap: A Micro-
kernel Approach to Host Networking. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP
’19). Association for Computing Machinery, New York, NY, USA, 399-413.
https://doi.org/10.1145/3341301.3359657

Ben Maurer. 2015. Fail at Scale: Reliability in the Face of Rapid Change. Queue
13, 8 (Sept. 2015), 30-46. https://doi.org/10.1145/2838344.2839461

Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren Nayak,
and Vadim Sukhomlinov. 2019. Agile Cold Starts for Scalable Serverless. In 11th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19). USENIX
Association, Renton, WA. https://www.usenix.org/conference/hotcloud19/
presentation/mohan

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea
Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK: Rapid Task Provi-
sioning with Serverless-Optimized Containers. In 2018 USENLX Annual Tech-
nical Conference (USENIX ATC 18). USENIX Association, Boston, MA, 57-70.
https://www.usenix.org/conference/atc18/presentation/oakes

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Bal-
akrishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-
Sensitive Datacenter Workloads. In Proceedings of the 16th USENIX Conference
on Networked Systems Design and Implementation (Boston, MA, USA) (NSDI'19).
USENIX Association, USA, 361-377.

Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Kr-
ishnamurthy, Thomas Anderson, and Timothy Roscoe. 2014. Arrakis: The
Operating System is the Control Plane. In 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 14). USENIX Association,
Broomfield, CO, 1-16. https://www.usenix.org/conference/osdil4/technical-
sessions/presentation/peter

Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu Tian,
Mario Paulo Drumond, Babak Falsafi, and Christoph Koch. 2020. Optimus Prime:
Accelerating Data Transformation in Servers. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS °20). Association for
Computing Machinery, New York, NY, USA, 1203-1216. https://doi.org/10.
1145/3373376.3378501

Nightcore: Efficient and Scalable Serverless Computing for Latency-Sensitive, Interactive Microservices

[94] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving

[95

[97

[98

[99

[100

[101

[102

[103

[104

]

]

Low Tail Latency for Microsecond-Scale Networked Tasks. In Proceedings of the
26th Symposium on Operating Systems Principles (Shanghai, China) (SOSP ’17).
Association for Computing Machinery, New York, NY, USA, 325-341. https:
//doi.org/10.1145/3132747.3132780

Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow:
Scalable Analytics on Serverless Infrastructure. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). USENIX Association,
Boston, MA, 193-206. https://www.usenix.org/conference/nsdi19/presentation/
pu

Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout. 2018.
Arachne: Core-Aware Thread Management. In Proceedings of the 13th USENIX
Conference on Operating Systems Design and Implementation (Carlsbad, CA, USA)
(OSDI’18). USENIX Association, USA, 145-160.

Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina De-
limitrou, Robbert Van Renesse, and Hakim Weatherspoon. 2019. X-Containers:
Breaking Down Barriers to Improve Performance and Isolation of Cloud-Native
Containers. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems (Provi-
dence, RI, USA) (ASPLOS ’19). Association for Computing Machinery, New York,
NY, USA, 121-135. https://doi.org/10.1145/3297858.3304016

Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation for
Efficient Stateful Serverless Computing. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20). USENIX Association, 419-433. https://www.usenix.
org/conference/atc20/presentation/shillaker

A. Sriraman and T. F. Wenisch. 2018. pSuite: A Benchmark Suite for Mi-
croservices. In 2018 IEEE International Symposium on Workload Characterization
(ISWC). 1-12.

Akshitha Sriraman and Thomas F. Wenisch. 2018. uTune: Auto-Tuned Threading
for OLDI Microservices. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 177-194.
https://www.usenix.org/conference/osdil8/presentation/sriraman

M. Sutherland, S. Gupta, B. Falsafi, V. Marathe, D. Pnevmatikatos, and A. Daglis.
2020. The NEBULA RPC-Optimized Architecture. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). 199-212.

T. Ueda, T. Nakaike, and M. Ohara. 2016. Workload characterization for mi-
croservices. In 2016 IEEE International Symposium on Workload Characterization
(LISWC). 1-10.

Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric Brewer.
2003. Capriccio: Scalable Threads for Internet Services. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles (Bolton Landing,
NY, USA) (SOSP *03). Association for Computing Machinery, New York, NY,
USA, 268-281. https://doi.org/10.1145/945445.945471

Matt Welsh and David Culler. 2003. Adaptive Overload Control for Busy In-
ternet Servers. In Proceedings of the 4th Conference on USENIX Symposium on

166

[105

[106

[107

[108

[109

[110

[111

[112

[113

ASPLOS 21, April 19-23, 2021, Virtual, USA

Internet Technologies and Systems - Volume 4 (Seattle, WA) (USITS 03). USENIX
Association, USA, 4.

Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An Architecture for
Well-Conditioned, Scalable Internet Services. SIGOPS Oper. Syst. Rev. 35, 5 (Oct.
2001), 230-243. https://doi.org/10.1145/502059.502057

Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. 2011.
Better Never than Late: Meeting Deadlines in Datacenter Networks. In Pro-
ceedings of the ACM SIGCOMM 2011 Conference (Toronto, Ontario, Canada)
(SIGCOMM °11). Association for Computing Machinery, New York, NY, USA,
50-61. https://doi.org/10.1145/2018436.2018443

Mingyu Wu, Ziming Zhao, Yanfei Yang, Haoyu Li, Haibo Chen, Binyu Zang,
Haibing Guan, Sanhong Li, Chuansheng Lu, and Tongbao Zhang. 2020. Platinum:
A CPU-Efficient Concurrent Garbage Collector for Tail-Reduction of Interactive
Services. In 2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX
Association, 159-172. https://www.usenix.org/conference/atc20/presentation/
wu-mingyu

Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System
for Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX Conference
on File and Storage Technologies (FAST 16). USENIX Association, Santa Clara,
CA, 323-338. https://www.usenix.org/conference/fast16/technical-sessions/
presentation/xu

Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John
Wilkes. 2013. CPI2: CPU Performance Isolation for Shared Compute Clusters. In
Proceedings of the 8th ACM European Conference on Computer Systems (Prague,
Czech Republic) (EuroSys '13). Association for Computing Machinery, New York,
NY, USA, 379-391. https://doi.org/10.1145/2465351.2465388

Y. Zhang, D. Meisner, J. Mars, and L. Tang. 2016. Treadmill: Attributing the
Source of Tail Latency through Precise Load Testing and Statistical Inference. In
2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA). 456-468.

Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu, Rui Gu,
Beng Chin Ooi, and Junfeng YanE 2018. Overload Control for Scaling WeChat
Microservices. In Proceedings of the ACM Symposium on Cloud Computing (Carls-

bad, CA, USA) (SoCC ’18). Association for Computing Machinery, New York,
NY, USA, 149-161. https://doi.org/10.1145/3267809.3267823

Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun
Zhao. 2018. Benchmarking Microservice Systems for Software Engineer-
ing Research. In Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings (Gothenburg, Sweden) (ICSE ’18). As-
sociation for Computing Machinery, New York, NY, USA, 323-324. https:
//doi.org/10.1145/3183440.3194991

Danyang Zhuo, Kaiyuan Zhang, Yibo Zhu, Honggiang Harry Liu, Matthew
Rockett, Arvind Krishnamurthy, and Thomas Anderson. 2019. Slim: OS Kernel
Support for a Low-Overhead Container Overlay Network. In Proceedings of
the 16th USENIX Conference on Networked Systems Design and Implementation
(Boston, MA, USA) (NSDI'19). USENIX Association, USA, 331-344.

	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 System Architecture
	3.2 Processing Function Requests
	3.3 Managing Concurrency for Function Executions

	4 Implementation
	4.1 Nightcore's Engine
	4.2 Function Workers

	5 Evaluation
	5.1 Methodology
	5.2 Benchmarks
	5.3 Analysis
	5.4 Discussion

	6 Related work
	7 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Methodology

	References

