

Nightcore: Efficient and Scalable Serverless Computing for Latency-Sensitive, Interactive Microservices ASPLOS ’21, April 19ś23, 2021, Virtual, USA

66, 106]. Once built with monolithic architectures, interactive on-

line services are undergoing a shift to microservice architectures [1,

4, 5, 42, 47], where a large application is built by connecting loosely

coupled, single-purpose microservices. On the one hand, microser-

vice architectures provide software engineering benefits such as

modularity and agility as the scale and complexity of the application

grows [36, 49]. On the other hand, staged designs for online services

inherently provide better scalability and reliability, as shown in

pioneering works like SEDA [105]. However, while the interactive

nature of online services implies an end-to-end service-level objec-

tives (SLO) of a few tens of milliseconds, individual microservices

face more strict latency SLOs ś at the sub-millisecond-scale for leaf

microservices [100, 110].

Microservice architectures are more complex to operate com-

pared to monolithic architectures [22, 35, 36], and the complexity

grows with the number of microservices. Although microservices

are designed to be loosely coupled, their failures are usually very de-

pendent. For example, one overloaded service in the system can eas-

ily trigger failures of other services, eventually causing cascading

failures [3]. Overload control for microservices is difficult because

microservices call each other on data-dependent execution paths,

creating dynamics that cannot be predicted or controlled from the

runtime [38, 48, 88, 111]. Microservices are often comprised of ser-

vices written in different programming languages and frameworks,

further complicating their operational problems. By leveraging fully

managed cloud services (e.g., Amazon’s DynamoDB [6], Elastic-

Cache [7], S3 [19], Fargate [12], and Lambda [15]), responsibilities

for scalability and availability (as well as operational complexity)

are mostly shifted to cloud providers, motivating serverless microser-

vices [20, 33, 41, 43ś45, 52, 53].

Serverless Microservices. Simplifying the development and man-

agement of online services is the largest benefit of buildingmicroser-

vices on serverless infrastructure. For example, scaling the service

is automatically handled by the serverless runtime, deploying a new

version of code is a push-button operation, and monitoring is inte-

grated with the platform (e.g., CloudWatch [2] on AWS). Amazon

promotes serverless microservices with the slogan łno server is eas-

ier to manage than no serverž [44]. However, current FaaS systems

have high runtime overheads (Table 1) that cannot always meet

the strict latency requirement imposed by interactive microservices.

Nightcore fills this performance gap.

Nightcore focuses on mid-tier services implementing stateless

business logic in microservice-based online applications. These

mid-tier microservices bridge the user-facing frontend and the data

storage, and fit naturally in the programming model of serverless

functions. Online data intensive (OLDI) microservices [100] repre-

sent another category of microservices, where the mid-tier service

fans out requests to leaf microservices for parallel data processing.

Microservices in OLDI applications are mostly stateful and memory

intensive, and therefore are not a good fit for serverless functions.

We leave serverless support of OLDI microservices as future work.

The programming model of serverless functions expects func-

tion invocations to be short-lived, which seems to contradict the

assumption of service-oriented architectures which expect services

to be long-running. However, FaaS systems like AWS Lambda al-

lows clients to maintain long-lived connections to their API gate-

ways [8], making a serverless function łservice-likež. Moreover,

because AWS Lambda re-uses execution contexts for multiple func-

tion invocations [13], users’ code in serverless functions can also

cache reusable resources (e.g., database connections) between invo-

cations for better performance [17].

Optimizing FaaS Runtime Overheads. Reducing start-up laten-

cies, especially cold-start latencies, is amajor research focus for FaaS

runtime overheads [57, 64, 67, 89, 90, 98]. Nightcore assumes suffi-

cient resources have been provisioned and relevant function con-

tainers are in warm states which can be achieved on AWS Lambda

by using provisioned concurrency (AWS Lambda strongly recom-

mends provisioned concurrency for latency-critical functions [40]).

As techniques for optimizing cold-start latencies [89, 90] become

mainstream, they can be applied to Nightcore.

Invocation latency overheads of FaaS systems are largely over-

looked, as recent studies on serverless computing focus on data

intensive workloads such as big data analysis [75, 95], video analyt-

ics [59, 69], code compilation [68], and machine learning [65, 98],

where function execution times range from hundreds of millisec-

onds to a few seconds. However, a few studies [62, 84] point out that

the millisecond-scale invocation overheads of current FaaS systems

make them a poor substrate for microservices with microsecond-

scale latency targets. For serverless computing to be successful in

new problem domains [71, 76, 84], it must address microsecond-

scale overheads.

3 DESIGN

Nightcore is designed to run serverless functions with sub-millisec-

ond-scale execution times, and to efficiently process internal func-

tion calls, which are generated during the execution of a serverless

function (not by an external client). Nightcore exposes a serverless

function interface that is similar to AWS Lambda: users provide

stateless function handlers written in supported programming lan-

guages. The only addition to this simple interface is that Nightcore’s

runtime library provides APIs for fast internal function invocations.

3.1 System Architecture

Figure 2 depicts Nightcore’s design which mirrors the design of

other FaaS systems starting with the separation of frontend and

backend. Nightcore’s frontend is an API gateway for serving ex-

ternal function requests and other management requests (e.g., to

register new functions), while the backend consists of a number

of independent worker servers. This separation eases availability

and scalability of Nightcore, by making the frontend API gateway

fault tolerant and horizontally scaling backend worker servers. Each

worker server runs a Nightcore engine process and function con-

tainers, where each function container has one registered serverless

function, and each function has only one container on each worker

server. Nightcore’s engine directly manages function containers

and communicates with worker threads within containers.

Internal Function Calls. Nightcore optimizes internal function

calls locally on the same worker server, without going through the

API gateway. Figure 2 depicts this fast path in Nightcore’s runtime

154

Nightcore: Efficient and Scalable Serverless Computing for Latency-Sensitive, Interactive Microservices ASPLOS ’21, April 19ś23, 2021, Virtual, USA

containers, to aid the setup of pipes and shared memory buffers.

Nightcore creates named pipes in the shared tmpfs, allowing func-

tion workers to connect. Shared memory buffers are implemented

by creating files in the shared tmpfs, which are mmaped with the

MAP_SHARED flag by both the engine and function workers. Docker

by itself supports sharing IPC namespaces between containers [31],

but the setup is difficult for Docker’s cluster mode. Nightcore’s

approach is functionally identical to IPC namespaces, as Linux’s

System V shared memory is internally implemented by tmpfs [46].

Communications between Function Worker Threads. Indi-

vidual worker threads within function containers connect to Night-

core’s engine with a message channel for receiving new function

requests and sending responses (4○ and 6○ in Figure 3). A worker

thread can be either busy (executing function code) or idle. During

the execution of function code, the worker thread’s message chan-

nel is also used by Nightcore’s runtime library for internal function

calls (2○ and 7○ in Figure 3). When a worker thread finishes execut-

ing function code, it sends a response message with the function

output to the engine and enters the idle state. An idle worker thread

is put to sleep by the operating system, but the engine can wake

it by writing a function request message to its message channel.

The engine tracks the busy/idle state of each worker so there is no

queuing at worker threads, the engine only dispatches requests to

idle workers.

Mailbox. The design of Nightcore’s engine only allows individual

I/O threads to write data to message channels assigned to it (shown

as violet arrows in Figure 5). In certain cases, however, an I/O

thread needs to communicate with a thread that does not share a

message channel. Nightcore routes these requests using per-thread

mailboxes. When an I/O thread drops a message in the mailbox of

another thread, uv_async_send (using eventfd [24] internally)

is called to notify the event loop of the owner thread.

Computing Concurrency Hints (𝜏𝑘). To properly regulate the

amount of concurrent function executions, Nightcore’s enginemain-

tains two exponential moving averages 𝜆𝑘 (invocation rate) and

𝑡𝑘 (processing time) for each function Fn𝑘 (ğ 3.3). Samples of in-

vocation rates are computed as 1/(interval between consecutive

Fn𝑘 invocations), while processing times are computed as intervals

between dispatch and completion timestamps, excluding queue-

ing delays (the interval between receive and dispatch timestamps)

from sub-invocations. Nightcore uses a coefficient 𝛼 = 10
−3 for

computing exponential moving averages.

4.2 Function Workers

Nightcore executes user-provided function code in its function

worker processes (ğ 3.1). As different programming languages have

different abstractions for threading and I/O, Nightcore has different

function worker implementations for them.

Nightcore’s implementation of function workers also includes a

runtime library for fast internal function calls. Nightcore’s runtime

library exposes a simple API output := nc_fn_call(fn_name,

input) to user-provided function code for internal function calls.

Furthermore, Nightcore’s runtime library provides Apache Thrift [9]

and gRPC [30] wrappers for its function call API, easing porting of

existing Thrift-based and gRPC-based microservices to Nightcore.

C/C++. Nightcore’s C/C++ function workers create OS threads for

executing user’s code, loaded as dynamically linked libraries. These

OS threads map to łworker threadsž in Nightcore’s design (ğ 3.1

and Figure 2). To simplify the implementation, each C/C++ function

worker process only runs one worker thread, and the launcher will

fork more worker processes when the engine asks for more worker

threads.

Go. In Go function workers, łworker threadsž map to goroutines,

the user-level threads provided by Go’s runtime, and the launcher

only forks one Go worker process. Users’ code are compiled to-

gether with Nightcore’s Go worker implementation, as Go’s run-

time does not support dynamic loading of arbitrary Go code 2. Go’s

runtime allows dynamically setting the maximum number of OS

threads for running goroutines (via runtime.GOMAXPROCS), and

Nightcore’s implementation sets it to ⌈worker goroutines/8⌉.

Node.js and Python. Node.js follows an event-driven design

where all I/O is asynchronouswithout depending onmulti-threading,

while Python is the same when using the asyncio [11] library for

I/O. In both cases, Nightcore implements its message channel pro-

tocol within their event loops. As there are no parallel threads
3 inside Node.js and Python function workers, launching a new

łworker threadž simplymeans creating amessage channel, while the

engine’s notion of łworker threadsž becomes event-based concur-

rency [23]. Also, nc_fn_call is an asynchronous API in Node.js

and Python workers, rather than being synchronous in C/C++ and

Go workers. For Node.js and Python functions, the launcher only

forks one worker process.

5 EVALUATION

We conduct all of our experiments on Amazon EC2 C5 instances in

the us-east-2 region, running Ubuntu 20.04 with Linux kernel

5.4.41. We enable hyperthreading, but disable transparent huge

pages.

5.1 Methodology

Microservice Workloads. Nightcore is designed to optimize mi-

croservice workloads, so we evaluate it on the four most realistic,

publicly available, interactive microservice code bases: SocialNet-

work, MovieReviewing, HotelReservation, and HipsterShop. The

first three are from DeathStarBench [70], while HipsterShop is a mi-

croservice demo from Google Cloud Platform [29]. The workloads

are summarized in Table 2.

For the SocialNetwork workload, we tested two load patterns:

(1) a pure load of ComposePost requests (shown in Figure 1) (de-

noted as łwritež); (2) a mixed load (denoted as łmixedž), that is

a combination of 30% CompostPost, 40% ReadUserTimeline, 25%

ReadHomeTimeline, and 5% FollowUser requests.

HipsterShop itself does not implement data storage, and we

modify it to use MongoDB for saving orders and Redis for shopping

carts. We also add Redis instances for caching product and ad lists.

2Go partially supports dynamic code loading via a plugin [39], but it requires the
plugin and the loader be compiled with a same version of the Go toolchain, and all
their dependency libraries have exactly the same versions.
3Node.js supports worker threads [56] for running CPU-intensive tasks, but they have
worse performance for I/O-intensive tasks.

158

Nightcore: Efficient and Scalable Serverless Computing for Latency-Sensitive, Interactive Microservices ASPLOS ’21, April 19ś23, 2021, Virtual, USA

of non-idle CPU time, both of which are used for inter-service com-

munications. In contrast, Nightcore spends much less CPU time in

TCP-related system calls, because only communication with ser-

vices running on other hosts (e.g., database and Redis) uses TCP

sockets. Both systems spend roughly the same amount of CPU time

in netrx softirqs, which is caused only by inter-host networking.

5.4 Discussion

A goal for Nightcore is to avoid modifying Linux, because we want

Nightcore to be easier to adopt for existing microservice workloads.

Nightcore therefore relies on existing OS abstractions to achieve

its performance goals, creating a challenge to efficiently use the

operating systems’ existing I/O abstractions and to find individual

łkiller microseconds.ž

In our experience with Nightcore, we find there is no single

dominant łkiller microsecond.ž There are multiple factors with

significant contributions, and all must be addressed. Profiling the

whole system for microsecond-scale optimization opportunities is

challenging given the overheads introduced by profiling itself. In

Nightcore, we implement low-overhead statistics collectors, and

use eBPF programs [16] for kernel-related profiling.

6 RELATED WORK

Microservices. The emergence of microservices for building large-

scale cloud applications has prompted recent research on charac-

terizing their workloads [70, 99, 102, 112], as well as studying their

hardware-software implications [70, 99, 100]. Microservices have a

higher communication-to-computation ratio than traditional work-

loads [70] and frequent microsecond-scale RPCs, so prior work has

studied various software and hardware optimization opportuni-

ties for microsecond-scale RPCs, including transport layer proto-

cols [78, 79], a taxonomy of threading models [100], heterogeneous

NIC hardware [85], data transformations [93], and CPU memory

controllers [101]. The programming model of serverless functions

maps inter-service RPCs to internal function calls, allowing Night-

core to avoid inter-host networking and transparently eliminate

RPC protocol overheads. X-Containers [97] is a recently proposed

LibOS-based container runtime, that improves the efficiency of

inter-service communications for mutually trusting microservices.

For comparison, Nightcore still relies on the current container mech-

anism (provided by Docker), which does not require microservices

to trust each other.

Serverless Computing. Recent research on serverless comput-

ing has mostly focused on data intensive workloads [59, 65, 68,

69, 75, 95, 98], leading invocation latency overheads to be largely

overlooked. SAND [57] features a local message bus as the fast

path for chained function invocations. However, SAND only allows

a single, local call at the end of a function, while Nightcore sup-

ports arbitrary calling patterns (e.g., Figure 1). Faasm [98]’s chained

function calls have the same functionality as Nightcore’s inter-

nal function calls, but they are executed within the same process,

relying on WebAssembly for software-based fault isolation. One

previous work [62] also notices that FaaS systems have to achieve

microsecond-scale overheads for efficient support of microservices,

but they demonstrate only a proof-of-concept FaaS runtime that

relies on Rust’s memory safety for isolation and lacks end-to-end

evaluations on realistic microservices.

System Supports for Microsecond-Scale I/Os. Prior work on

achieving microsecond-scale I/O has been spread across various

system components, ranging from optimizing the network stack [74,

78, 79]; designs for a dataplane OS [61, 77, 87, 91, 92, 94]; thread

scheduling for microsecond-scale tasks [63, 77, 91, 96, 100]; and

novel filesystems leveraging persistent memory [81, 86, 108]. Ad-

ditionally, the efficiency of I/O is also affected by the user-facing

programming model [72, 105] and the underlying mechanism for

concurrency [80, 103]. A recent paper from Google [60] argues that

current systems are not tuned for microsecond-scale events, as vari-

ous OS building blocks have microsecond-scale overheads. Eliminat-

ing these overheads requires a tedious hunt for the łkiller microsec-

onds.ž Inspired by this work, the design of Nightcore eliminates

many of these overheads, making it practical for a microsecond-

scale serverless system.

7 CONCLUSION

Optimizing Nightcore justifies one of Lampson’s early hints [82]:

łmake it fast, rather than general or powerfulž, because fast building

blocks can be used more widely. As computing becomes more

granular [84], we anticipate more microsecond-scale applications

will come to serverless computing. Designing and building this next

generation of services will require careful attention to microsecond-

scale overheads.

ACKNOWLEDGEMENTS

We thank our shepherd Christina Delimitrou and the anonymous

reviewers for their insightful feedback. We also thank Zhiting Zhu,

Christopher J. Rossbach, James Bornholt, Zhan Shi, and Wei Sun

for their valuable comments on the early draft of this work. This

work is supported in part by NSF grants CNS-2008321 and NSF

CNS-1900457, and the Texas Systems Research Consortium.

A ARTIFACT APPENDIX

A.1 Abstract

Our artifact includes the prototype implementation of Nightcore,

theDeathStarBench [21] andHipsterShopmicroservices [29] ported

to Nightcore, and the experiment workflow to run these workloads

on AWS EC2 instances.

A.2 Artifact Check-List (Meta-Information)

• Program: Nightcore, Docker runtime, and wrk2

• Run-time environment: AWS EC2 instances

• Metrics: Latency and throughput

• Experiments: Our ports of DeathStarBench [21] andHip-

sterShop microservices [29] (included in this artifact)

• Disk space required: 2GB

• Time needed to prepare workflow: 1 hour

• Time needed to complete experiments: 3 hours

• Publicly available: Yes

• Code licenses: Apache License 2.0

• Archive: 10.5281/zenodo.4321760

162

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Zhipeng Jia and Emmett Witchel

A.3 Description

How to Access. The source code and benchmarks are host on

GitHub ut-osa/nightcore and ut-osa/nightcore-benchmarks.

Hardware Dependencies. This artifact runs on AWS EC2 in-

stances in us-east-2 region.

Software Dependencies. This artifact requires experiment VMs

running Ubuntu 20.04 with Docker installed.

We provide a pre-built VM image hosted on AWS us-east-2 re-

gion (ami-06e206d7334bff2ec) with all necessary dependencies

installed, which is used by experiment scripts in this artifact.

A.4 Installation

Setting up the Controller Machine. A controller machine in

AWS us-east-2 region is required for running scripts executing

experiment workflows. The controller machine can use very small

EC2 instance type, as it only provisions and controls experiment

VMs, but does not affect experimental results. In our own setup, we

use a t3.micro EC2 instance installed with Ubuntu 20.04 as the

controller machine.

The controller machine needs python3, rsync, and AWS CLI

version 1 installed. python3 and rsync can be installed with apt.

This documentation details the recommended way for installing

AWS CLI version 1. Once installed, AWS CLI has to be configured

with region us-east-2 and access key (see this).

Then on the controller machine, clone our artifact repository

with all git submodules:

git clone --recursive \

https://github.com/ut-osa/nightcore-benchmarks.git

Finally, execute scripts/setup_sshkey.sh to setup SSH keys

that will be used to access experiment VMs. Please read the notice

in the script before executing it to check if this script works for

your setup.

Setting up EC2 Security Group and Placement Group. Our

VM provisioning script creates EC2 instances with security group

nightcore and placement group nightcore-experiments. The

security group includes firewall rules for experiment VMs (i.e., al-

lowing the controller machine to SSH into them), while the place-

ment group instructs AWS to place experiment VMs close together.

Executing scripts/aws_provision.sh on the controller ma-

chine creates these groups with correct configurations.

Building Docker Images. We also provide the script

(scripts/docker_images.sh) for building Docker images rele-

vant to experiments in this artifact. As we already pushed all com-

piled images to DockerHub, there is no need to run this script as

long as you do not modify source code of Nightcore (in nightcore

directory) and evaluation workloads (in workloads directory).

A.5 Experiment Workflow

Each sub-directory within experiments corresponds to one ex-

periment. Within each experiment directory, a config.json file

describes machine configuration and placement assignment of in-

dividual Docker containers (i.e. microservices) for this experiment.

The entry point of each experiment is the run_all.sh script.

It first provisions VMs for experiments. Then it executes evalua-

tion workloads with different QPS targets via run_once.sh script.

run_once.sh script performs workload-specific setups, runs wrk2

to measure latency distribution under the target QPS, and stores re-

sults in results directory.When everything is done, run_all.sh

script terminates all provisioned experiment VMs.

VM provisioning is done by scripts/exp_helper with sub-

command start-machines. By default, it creates on-demand EC2

instances. But it also supports the option to use Spot instances for

cost saving. After EC2 instances are up, the script then sets up

Docker engines on newly created VMs to form a Docker cluster in

swarm mode.

A.6 Evaluation and Expected Result

For each experiment, the evaluation metric is the latency distribu-

tion under a specific QPS. We use wrk2 as the benchmarking tool,

and it outputs a detailed latency distribution, which looks like

Latency Distribution (HdrHistogram - Recorded Latency)

50.000% 2.21ms

75.000% 3.29ms

90.000% 5.13ms

99.000% 9.12ms

99.900% 12.28ms

99.990% 17.45ms

99.999% 20.32ms

100.000% 23.61ms

We report the 50% and 99% percentile values as median and tail

latencies in the paper. run_all.sh script conducts evaluations on

various QPS targets.

Experiment sub-directories ending with łsinglenodež corre-

spond to Nightcore results in Figure 7 of themain paper. Experiment

sub-directories ending with ł4nodež correspond to Nightcore (4

servers) results in Table 4 of the main paper. Note that run_all.sh

scripts run less data points than presented in the paper, to allow a

fast validation. But all run_all.sh scripts can be easily modified

to collect more data points.

We provide a helper script łscripts/collect_resultsł to

print a summary of all experiment results. Meanwhile,

łexpected_results_summary.txtł gives the summary gener-

ated from our experiment runs. Details of our runs are stored in

the łexpected_resultsł directory within each experiment sub-

directory. Note that these results are not the exact ones presented

in the paper.

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES
[1] [n.d.]. 4 Microservices Examples: Amazon, Netflix, Uber, and Etsy. https:

//blog.dreamfactory.com/microservices-examples/ [Accessed Jan, 2021].
[2] [n.d.]. Accessing Amazon CloudWatch logs for AWS Lambda. https://docs.

aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html [Accessed
Dec, 2020].

[3] [n.d.]. Addressing Cascading Failures. https://landing.google.com/sre/sre-
book/chapters/addressing-cascading-failures/ [Accessed Jan, 2021].

163

Nightcore: Efficient and Scalable Serverless Computing for Latency-Sensitive, Interactive Microservices ASPLOS ’21, April 19ś23, 2021, Virtual, USA

[4] [n.d.]. Adopting Microservices at Netflix: Lessons for Architectural De-
sign. https://www.nginx.com/blog/microservices-at-netflix-architectural-
best-practices/ [Accessed Jan, 2021].

[5] [n.d.]. Airbnb’s 10 Takeaways from Moving to Microservices. https:
//thenewstack.io/airbnbs-10-takeaways-moving-microservices/ [Accessed Jan,
2021].

[6] [n.d.]. Amazon DynamoDB | NoSQL Key-Value Database | AmazonWeb Services.
https://aws.amazon.com/dynamodb/ [Accessed Jan, 2021].

[7] [n.d.]. Amazon ElastiCache- In-memory data store and cache. https://aws.
amazon.com/elasticache/ [Accessed Jan, 2021].

[8] [n.d.]. Announcing WebSocket APIs in Amazon API Gateway.
https://aws.amazon.com/blogs/compute/announcing-websocket-apis-in-
amazon-api-gateway/ [Accessed Dec, 2020].

[9] [n.d.]. Apache Thrift - Home. https://thrift.apache.org/ [Accessed Jan, 2021].
[10] [n.d.]. Architecture: Scalable commerce workloads using microser-

vices. https://cloud.google.com/solutions/architecture/scaling-commerce-
workloads-architecture [Accessed Jan, 2021].

[11] [n.d.]. asyncio Ð Asynchronous I/O. https://docs.python.org/3.8/library/
asyncio.html [Accessed Jan, 2021].

[12] [n.d.]. AWS Fargate - Run containers without having to manage servers or
clusters. https://aws.amazon.com/fargate/ [Accessed Jan, 2021].

[13] [n.d.]. AWS Lambda execution context - AWS Lambda. https://docs.aws.
amazon.com/lambda/latest/dg/runtimes-context.html [Accessed Jan, 2021].

[14] [n.d.]. AWS Lambda FAQs. https://aws.amazon.com/lambda/faqs/ [Accessed
Jan, 2021].

[15] [n.d.]. AWS Lambda ś Serverless Compute - Amazon Web Servicesy. https:
//aws.amazon.com/lambda/ [Accessed Jan, 2021].

[16] [n.d.]. BCC - Tools for BPF-based Linux IO analysis, networking, monitoring,
and more. https://github.com/iovisor/bcc [Accessed Jan, 2021].

[17] [n.d.]. Best practices for working with AWS Lambda functions. https://docs.
aws.amazon.com/lambda/latest/dg/best-practices.html [Accessed Dec, 2020].

[18] [n.d.]. Building serverless microservices in Azure - sample architec-
ture. https://azure.microsoft.com/is-is/blog/building-serverless-microservices-
in-azure-sample-architecture/ [Accessed Jan, 2021].

[19] [n.d.]. Cloud Object Storage | Store and Retrieve Data Anywhere | Amazon
Simple Storage Service (S3). https://aws.amazon.com/s3/ [Accessed Jan, 2021].

[20] [n.d.]. Coursera Case Study. https://aws.amazon.com/solutions/case-studies/
coursera-ecs/ [Accessed Jan, 2021].

[21] [n.d.]. delimitrou/DeathStarBench: Open-source benchmark suite for cloud
microservices. https://github.com/delimitrou/DeathStarBench [Accessed Jan,
2021].

[22] [n.d.]. Enough with the microservices. https://adamdrake.com/enough-with-
the-microservices.html [Accessed Jan, 2021].

[23] [n.d.]. Event-based Concurrency (Advanced). http://pages.cs.wisc.edu/~remzi/
OSTEP/threads-events.pdf [Accessed Jan, 2021].

[24] [n.d.]. eventfd(2) - Linux manual page. https://man7.org/linux/man-pages/
man2/eventfd.2.html [Accessed Jan, 2021].

[25] [n.d.]. firecracker/network-performance.md at master · firecracker-
microvm/firecracker. https://github.com/firecracker-microvm/firecracker/
blob/master/docs/network-performance.md [Accessed Jan, 2021].

[26] [n.d.]. giltene/wrk2: A constant throughput, correct latency recording variant
of wrk. https://github.com/giltene/wrk2 [Accessed Jan, 2021].

[27] [n.d.]. Go, don’t collect my garbage. https://blog.cloudflare.com/go-dont-
collect-my-garbage/ [Accessed Jan, 2021].

[28] [n.d.]. Go memory ballast: How I learnt to stop worrying and love the
heap. https://blog.twitch.tv/en/2019/04/10/go-memory-ballast-how-i-learnt-
to-stop-worrying-and-love-the-heap-26c2462549a2/ [Accessed Jan, 2021].

[29] [n.d.]. GoogleCloudPlatform/microservices-demo. https://github.com/
GoogleCloudPlatform/microservices-demo [Accessed Jan, 2021].

[30] [n.d.]. gRPC - A high-performance, open source universal RPC framework.
https://grpc.io/ [Accessed Jan, 2021].

[31] [n.d.]. IPC settings | Docker run reference. https://docs.docker.com/engine/
reference/run/#ipc-settings---ipc [Accessed Jan, 2021].

[32] [n.d.]. libuv | Cross-platform asynchronous I/O. https://libuv.org/ [Accessed
Jan, 2021].

[33] [n.d.]. Lyft Case Study. https://aws.amazon.com/solutions/case-studies/lyft/
[Accessed Jan, 2021].

[34] [n.d.]. Manage your function app. https://docs.microsoft.com/en-us/azure/
azure-functions/functions-how-to-use-azure-function-app-settings [Accessed
Jan, 2021].

[35] [n.d.]. Microservice Trade-Offs. https://martinfowler.com/articles/microservice-
trade-offs.html [Accessed Jan, 2021].

[36] [n.d.]. Microservices - Wikipedia. https://en.wikipedia.org/wiki/Microservices
[Accessed Jan, 2021].

[37] [n.d.]. OpenFaaS | Serverless Functions, Made Simple. https://www.openfaas.
com/ [Accessed Jan, 2021].

[38] [n.d.]. Performance Under Load. https://medium.com/@NetflixTechBlog/
performance-under-load-3e6fa9a60581 [Accessed Jan, 2021].

[39] [n.d.]. plugin - The Go Programming Language. https://golang.org/pkg/plugin/
[Accessed Jan, 2021].

[40] [n.d.]. Provisioned Concurrency for Lambda Functions. https://aws.amazon.
com/blogs/aws/new-provisioned-concurrency-for-lambda-functions/ [Ac-
cessed Jan, 2021].

[41] [n.d.]. Remind Case Study. https://aws.amazon.com/solutions/case-studies/
remind/ [Accessed Jan, 2021].

[42] [n.d.]. Rewriting Uber Engineering: The Opportunities Microservices Provide.
https://eng.uber.com/building-tincup-microservice-implementation/ [Accessed
Jan, 2021].

[43] [n.d.]. Serverless and Microservices: a match made in heaven?
https://pauldjohnston.medium.com/serverless-and-microservices-a-match-
made-in-heaven-9964f329a3bc [Accessed Dec, 2020].

[44] [n.d.]. Serverless Microservices - Microservices on AWS. https:
//docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/serverless-
microservices.html [Accessed Jan, 2021].

[45] [n.d.]. Serverless Microservices reference architecture. https:
//docs.microsoft.com/en-us/samples/azure-samples/serverless-microservices-
reference-architecture/serverless-microservices-reference-architecture/
[Accessed Dec, 2020].

[46] [n.d.]. shm_overview(7) Ð Linux manual page. https://man7.org/linux/man-
pages/man7/shm_overview.7.html [Accessed Jan, 2021].

[47] [n.d.]. Splitting Up a Codebase into Microservices and Artifacts.
https://engineering.linkedin.com/blog/2016/02/q-a-with-jim-brikman--
splitting-up-a-codebase-into-microservices [Accessed Jan, 2021].

[48] [n.d.]. "Stop Rate Limiting! Capacity Management Done Right" by Jon Moore.
https://www.youtube.com/watch?v=m64SWl9bfvk [Accessed Jan, 2021].

[49] [n.d.]. Thoughts on (micro)services. https://luminousmen.com/post/thoughts-
on-microservices [Accessed Jan, 2021].

[50] [n.d.]. Uncovering the magic: How serverless platforms really work!
https://medium.com/openwhisk/uncovering-the-magic-how-serverless-
platforms-really-work-3cb127b05f71 [Accessed Jan, 2021].

[51] [n.d.]. Watchdog - OpenFaaS. https://docs.openfaas.com/architecture/
watchdog/ [Accessed Jan, 2021].

[52] [n.d.]. What are Microservices? | AWS. https://aws.amazon.com/microservices/
[Accessed Jan, 2021].

[53] [n.d.]. What is a serverless microservice? | Serverless microservices ex-
plained. https://www.cloudflare.com/learning/serverless/glossary/serverless-
microservice/ [Accessed Dec, 2020].

[54] [n.d.]. Why should you use microservices and containers? https:
//developer.ibm.com/technologies/microservices/articles/why-should-we-
use-microservices-and-containers/ [Accessed Jan, 2021].

[55] [n.d.]. Why so slow? - Binaris Blog. https://blog.binaris.com/why-so-slow/
[Accessed Jan, 2021].

[56] [n.d.]. Worker threads | Node.js v14.8.0 Documentation. https://nodejs.org/api/
worker_threads.html [Accessed Jan, 2021].

[57] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-
Performance Serverless Computing. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX Association, Boston, MA, 923ś935. https://www.
usenix.org/conference/atc18/presentation/akkus

[58] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Confer-
ence (New Delhi, India) (SIGCOMM ’10). Association for Computing Machinery,
New York, NY, USA, 63ś74. https://doi.org/10.1145/1851182.1851192

[59] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter. 2018.
Sprocket: A Serverless Video Processing Framework. In Proceedings of the
ACM Symposium on Cloud Computing (Carlsbad, CA, USA) (SoCC ’18). As-
sociation for Computing Machinery, New York, NY, USA, 263ś274. https:
//doi.org/10.1145/3267809.3267815

[60] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan.
2017. Attack of the Killer Microseconds. Commun. ACM 60, 4 (March 2017),
48ś54. https://doi.org/10.1145/3015146

[61] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane Operat-
ing System for High Throughput and Low Latency. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14). USENIX Association,
Broomfield, CO, 49ś65. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/belay

[62] Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kaminsky. 2018.
Putting the łMicrož Back in Microservice. In Proceedings of the 2018 USENIX
Conference on Usenix Annual Technical Conference (Boston, MA, USA) (USENIX
ATC ’18). USENIX Association, USA, 645ś650.

[63] Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kaminsky. 2020.
Lightweight Preemptible Functions. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). USENIX Association, 465ś477. https://www.usenix.org/
conference/atc20/presentation/boucher

164

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Zhipeng Jia and Emmett Witchel

[64] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and
Jonathan Appavoo. 2020. SEUSS: Skip Redundant Paths to Make Serverless
Fast. In Proceedings of the Fifteenth European Conference on Computer Systems
(Heraklion, Greece) (EuroSys ’20). Association for Computing Machinery, New
York, NY, USA, Article 32, 15 pages. https://doi.org/10.1145/3342195.3392698

[65] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy
Katz. 2019. Cirrus: A Serverless Framework for End-to-End ML Workflows. In
Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz, CA, USA)
(SoCC ’19). Association for Computing Machinery, New York, NY, USA, 13ś24.
https://doi.org/10.1145/3357223.3362711

[66] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM
56, 2 (Feb. 2013), 74ś80. https://doi.org/10.1145/2408776.2408794

[67] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin,
Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-Millisecond Startup for
Serverless Computing with Initialization-Less Booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS
’20). Association for Computing Machinery, New York, NY, USA, 467ś481.
https://doi.org/10.1145/3373376.3378512

[68] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From Laptop to Lambda:
Outsourcing Everyday Jobs to Thousands of Transient Functional Containers. In
2019 USENIXAnnual Technical Conference (USENIXATC 19). USENIXAssociation,
Renton, WA, 475ś488. https://www.usenix.org/conference/atc19/presentation/
fouladi

[69] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Bal-
asubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George
Porter, and Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video
Processing Using Thousands of Tiny Threads. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX Association,
Boston, MA, 363ś376. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/fouladi

[70] YuGan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud & Edge
Systems. In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Providence,
RI, USA) (ASPLOS ’19). Association for Computing Machinery, New York, NY,
USA, 3ś18. https://doi.org/10.1145/3297858.3304013

[71] Pedro García-López, Aleksander Slominski, Simon Shillaker, Michael Behrendt,
and Barnard Metzler. 2020. Serverless End Game: Disaggregation enabling
Transparency. arXiv preprint arXiv:2006.01251 (2020).

[72] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy. 2012.
MegaPipe: A New Programming Interface for Scalable Network I/O. In Proceed-
ings of the 10th USENIX Conference on Operating Systems Design and Implemen-
tation (Hollywood, CA, USA) (OSDI’12). USENIX Association, USA, 135ś148.

[73] Călin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj Syamala,
Vivek Narasayya, Herodotos Herodotou, Paulo Tomita, Alex Chen, Jack Zhang,
and JunhuaWang. 2018. PerfIso: Performance Isolation for Commercial Latency-
Sensitive Services. In Proceedings of the 2018 USENIXConference on Usenix Annual
Technical Conference (Boston, MA, USA) (USENIX ATC ’18). USENIX Association,
USA, 519ś531.

[74] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. 2014. MTCP: A Highly Scalable User-
Level TCP Stack for Multicore Systems. In Proceedings of the 11th USENIX Con-
ference on Networked Systems Design and Implementation (Seattle, WA) (NSDI’14).
USENIX Association, USA, 489ś502.

[75] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the Cloud: Distributed Computing for the 99%. In Proceedings of
the 2017 Symposium on Cloud Computing (Santa Clara, California) (SoCC ’17).
Association for Computing Machinery, New York, NY, USA, 445ś451. https:
//doi.org/10.1145/3127479.3128601

[76] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Carreira, Karl Krauth,
Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Stoica, and David A.
Patterson. 2019. Cloud Programming Simplified: A Berkeley View on Serverless
Computing. Technical Report UCB/EECS-2019-3. EECS Department, University
of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/
EECS-2019-3.html

[77] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David
Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive Scheduling
for µSecond-Scale Tail Latency. In Proceedings of the 16th USENIX Conference
on Networked Systems Design and Implementation (Boston, MA, USA) (NSDI’19).
USENIX Association, USA, 345ś359.

[78] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2019. Datacenter RPCs
Can Be General and Fast. In Proceedings of the 16th USENIX Conference on
Networked Systems Design and Implementation (Boston, MA, USA) (NSDI’19).
USENIX Association, USA, 1ś16.

[79] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard Bugnion.
2019. R2P2: Making RPCs first-class datacenter citizens. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19). USENIX Association, Renton, WA, 863ś
880. https://www.usenix.org/conference/atc19/presentation/kogias-r2p2

[80] Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek. 2007. Events Can Make
Sense. In 2007 USENIX Annual Technical Conference on Proceedings of the USENIX
Annual Technical Conference (Santa Clara, CA) (ATC’07). USENIX Association,
USA, Article 7, 14 pages.

[81] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel,
and Thomas Anderson. 2017. Strata: A Cross Media File System. In Proceedings
of the 26th Symposium on Operating Systems Principles (Shanghai, China) (SOSP
’17). Association for Computing Machinery, New York, NY, USA, 460ś477. https:
//doi.org/10.1145/3132747.3132770

[82] Butler W. Lampson. 1983. Hints for Computer System Design. In Proceedings
of the Ninth ACM Symposium on Operating Systems Principles (Bretton Woods,
New Hampshire, USA) (SOSP ’83). Association for Computing Machinery, New
York, NY, USA, 33ś48. https://doi.org/10.1145/800217.806614

[83] N. Lazarev, N. Adit, S. Xiang, Z. Zhang, and C. Delimitrou. 2020. Dagger: Towards
Efficient RPCs in Cloud Microservices With Near-Memory Reconfigurable NICs.
IEEE Computer Architecture Letters 19, 2 (2020), 134ś138. https://doi.org/10.
1109/LCA.2020.3020064

[84] Collin Lee and John Ousterhout. 2019. Granular Computing. In Proceedings of
the Workshop on Hot Topics in Operating Systems (Bertinoro, Italy) (HotOS ’19).
Association for Computing Machinery, New York, NY, USA, 149ś154. https:
//doi.org/10.1145/3317550.3321447

[85] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. 2019. E3: Energy-Efficient Microservices on SmartNIC-
Accelerated Servers. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19). USENIX Association, Renton, WA, 363ś378. https://www.usenix.org/
conference/atc19/presentation/liu-ming

[86] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an RDMA-
enabled Distributed Persistent Memory File System. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17). USENIX Association, Santa Clara,
CA, 773ś785. https://www.usenix.org/conference/atc17/technical-sessions/
presentation/lu

[87] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean
Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C. Evans,
Steve Gribble, Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl Mauer,
Emily Musick, Lena Olson, Erik Rubow, Michael Ryan, Kevin Springborn, Paul
Turner, Valas Valancius, Xi Wang, and Amin Vahdat. 2019. Snap: A Micro-
kernel Approach to Host Networking. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP
’19). Association for Computing Machinery, New York, NY, USA, 399ś413.
https://doi.org/10.1145/3341301.3359657

[88] Ben Maurer. 2015. Fail at Scale: Reliability in the Face of Rapid Change. Queue
13, 8 (Sept. 2015), 30ś46. https://doi.org/10.1145/2838344.2839461

[89] AnupMohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren Nayak,
and Vadim Sukhomlinov. 2019. Agile Cold Starts for Scalable Serverless. In 11th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19). USENIX
Association, Renton, WA. https://www.usenix.org/conference/hotcloud19/
presentation/mohan

[90] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea
Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK: Rapid Task Provi-
sioning with Serverless-Optimized Containers. In 2018 USENIX Annual Tech-
nical Conference (USENIX ATC 18). USENIX Association, Boston, MA, 57ś70.
https://www.usenix.org/conference/atc18/presentation/oakes

[91] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Bal-
akrishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-
Sensitive Datacenter Workloads. In Proceedings of the 16th USENIX Conference
on Networked Systems Design and Implementation (Boston, MA, USA) (NSDI’19).
USENIX Association, USA, 361ś377.

[92] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Kr-
ishnamurthy, Thomas Anderson, and Timothy Roscoe. 2014. Arrakis: The
Operating System is the Control Plane. In 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 14). USENIX Association,
Broomfield, CO, 1ś16. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/peter

[93] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu Tian,
Mario Paulo Drumond, Babak Falsafi, and Christoph Koch. 2020. Optimus Prime:
Accelerating Data Transformation in Servers. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for
Computing Machinery, New York, NY, USA, 1203ś1216. https://doi.org/10.
1145/3373376.3378501

165

Nightcore: Efficient and Scalable Serverless Computing for Latency-Sensitive, Interactive Microservices ASPLOS ’21, April 19ś23, 2021, Virtual, USA

[94] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving
Low Tail Latency for Microsecond-Scale Networked Tasks. In Proceedings of the
26th Symposium on Operating Systems Principles (Shanghai, China) (SOSP ’17).
Association for Computing Machinery, New York, NY, USA, 325ś341. https:
//doi.org/10.1145/3132747.3132780

[95] Qifan Pu, ShivaramVenkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow:
Scalable Analytics on Serverless Infrastructure. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). USENIX Association,
Boston, MA, 193ś206. https://www.usenix.org/conference/nsdi19/presentation/
pu

[96] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout. 2018.
Arachne: Core-Aware Thread Management. In Proceedings of the 13th USENIX
Conference on Operating Systems Design and Implementation (Carlsbad, CA, USA)
(OSDI’18). USENIX Association, USA, 145ś160.

[97] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina De-
limitrou, Robbert Van Renesse, and Hakim Weatherspoon. 2019. X-Containers:
Breaking Down Barriers to Improve Performance and Isolation of Cloud-Native
Containers. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems (Provi-
dence, RI, USA) (ASPLOS ’19). Association for Computing Machinery, New York,
NY, USA, 121ś135. https://doi.org/10.1145/3297858.3304016

[98] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation for
Efficient Stateful Serverless Computing. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20). USENIX Association, 419ś433. https://www.usenix.
org/conference/atc20/presentation/shillaker

[99] A. Sriraman and T. F. Wenisch. 2018. 𝜇Suite: A Benchmark Suite for Mi-
croservices. In 2018 IEEE International Symposium on Workload Characterization
(IISWC). 1ś12.

[100] Akshitha Sriraman and Thomas F.Wenisch. 2018. µTune: Auto-Tuned Threading
for OLDI Microservices. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 177ś194.
https://www.usenix.org/conference/osdi18/presentation/sriraman

[101] M. Sutherland, S. Gupta, B. Falsafi, V. Marathe, D. Pnevmatikatos, and A. Daglis.
2020. The NEBULA RPC-Optimized Architecture. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). 199ś212.

[102] T. Ueda, T. Nakaike, and M. Ohara. 2016. Workload characterization for mi-
croservices. In 2016 IEEE International Symposium on Workload Characterization
(IISWC). 1ś10.

[103] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric Brewer.
2003. Capriccio: Scalable Threads for Internet Services. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles (Bolton Landing,
NY, USA) (SOSP ’03). Association for Computing Machinery, New York, NY,
USA, 268ś281. https://doi.org/10.1145/945445.945471

[104] Matt Welsh and David Culler. 2003. Adaptive Overload Control for Busy In-
ternet Servers. In Proceedings of the 4th Conference on USENIX Symposium on

Internet Technologies and Systems - Volume 4 (Seattle, WA) (USITS’03). USENIX
Association, USA, 4.

[105] Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An Architecture for
Well-Conditioned, Scalable Internet Services. SIGOPS Oper. Syst. Rev. 35, 5 (Oct.
2001), 230ś243. https://doi.org/10.1145/502059.502057

[106] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. 2011.
Better Never than Late: Meeting Deadlines in Datacenter Networks. In Pro-
ceedings of the ACM SIGCOMM 2011 Conference (Toronto, Ontario, Canada)
(SIGCOMM ’11). Association for Computing Machinery, New York, NY, USA,
50ś61. https://doi.org/10.1145/2018436.2018443

[107] Mingyu Wu, Ziming Zhao, Yanfei Yang, Haoyu Li, Haibo Chen, Binyu Zang,
Haibing Guan, Sanhong Li, Chuansheng Lu, and Tongbao Zhang. 2020. Platinum:
A CPU-Efficient Concurrent Garbage Collector for Tail-Reduction of Interactive
Services. In 2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX
Association, 159ś172. https://www.usenix.org/conference/atc20/presentation/
wu-mingyu

[108] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System
for Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX Conference
on File and Storage Technologies (FAST 16). USENIX Association, Santa Clara,
CA, 323ś338. https://www.usenix.org/conference/fast16/technical-sessions/
presentation/xu

[109] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John
Wilkes. 2013. CPI2: CPU Performance Isolation for Shared Compute Clusters. In
Proceedings of the 8th ACM European Conference on Computer Systems (Prague,
Czech Republic) (EuroSys ’13). Association for Computing Machinery, New York,
NY, USA, 379ś391. https://doi.org/10.1145/2465351.2465388

[110] Y. Zhang, D. Meisner, J. Mars, and L. Tang. 2016. Treadmill: Attributing the
Source of Tail Latency through Precise Load Testing and Statistical Inference. In
2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA). 456ś468.

[111] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu, Rui Gu,
Beng Chin Ooi, and Junfeng Yang. 2018. Overload Control for Scaling WeChat
Microservices. In Proceedings of the ACM Symposium on Cloud Computing (Carls-
bad, CA, USA) (SoCC ’18). Association for Computing Machinery, New York,
NY, USA, 149ś161. https://doi.org/10.1145/3267809.3267823

[112] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun
Zhao. 2018. Benchmarking Microservice Systems for Software Engineer-
ing Research. In Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings (Gothenburg, Sweden) (ICSE ’18). As-
sociation for Computing Machinery, New York, NY, USA, 323ś324. https:
//doi.org/10.1145/3183440.3194991

[113] Danyang Zhuo, Kaiyuan Zhang, Yibo Zhu, Hongqiang Harry Liu, Matthew
Rockett, Arvind Krishnamurthy, and Thomas Anderson. 2019. Slim: OS Kernel
Support for a Low-Overhead Container Overlay Network. In Proceedings of
the 16th USENIX Conference on Networked Systems Design and Implementation
(Boston, MA, USA) (NSDI’19). USENIX Association, USA, 331ś344.

166

	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 System Architecture
	3.2 Processing Function Requests
	3.3 Managing Concurrency for Function Executions

	4 Implementation
	4.1 Nightcore's Engine
	4.2 Function Workers

	5 Evaluation
	5.1 Methodology
	5.2 Benchmarks
	5.3 Analysis
	5.4 Discussion

	6 Related work
	7 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Methodology

	References

